1
|
Huang R, Zhou G, Cai J, Cao C, Zhu Z, Wu Q, Zhang F, Ding Y. Maternal consumption of urbanized diet compromises early-life health in association with gut microbiota. Gut Microbes 2025; 17:2483783. [PMID: 40176259 PMCID: PMC11988223 DOI: 10.1080/19490976.2025.2483783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
Urbanization has significantly transformed dietary habits worldwide, contributing to a globally increased burden of non-communicable diseases and altered gut microbiota landscape. However, it is often overlooked that the adverse effects of these dietary changes can be transmitted from the mother to offspring during early developmental stages, subsequently influencing the predisposition to various diseases later in life. This review aims to delineate the detrimental effects of maternal urban-lifestyle diet (urbanized diet) on early-life health and gut microbiota assembly, provide mechanistic insights on how urbanized diet mediates mother-to-offspring transfer of bioactive substances in both intrauterine and extrauterine and thus affects fetal and neonatal development. Moreover, we also further propose a framework for developing microbiome-targeted precision nutrition and diet strategies specifically for pregnant and lactating women. The establishment of such knowledge can help develop proactive preventive measures from the beginning of life, ultimately reducing the long-term risk of disease and improving public health outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guicheng Zhou
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jie Cai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Cha Cao
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Hetta HF, Ahmed R, Ramadan YN, Fathy H, Khorshid M, Mabrouk MM, Hashem M. Gut virome: New key players in the pathogenesis of inflammatory bowel disease. World J Methodol 2025; 15:92592. [DOI: 10.5662/wjm.v15.i2.92592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 11/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the intestine. While the mechanism underlying the pathogenesis of IBD is not fully understood, it is believed that a complex combination of host immunological response, environmental exposure, particularly the gut microbiota, and genetic susceptibility represents the major determinants. The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans. The gut virome varies greatly among individuals and is influenced by factors including lifestyle, diet, health and disease conditions, geography, and urbanization. The majority of research has focused on the significance of gut bacteria in the progression of IBD, although viral populations represent an important component of the microbiome. We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Division of Microbiology, Immunology and Biotechnology, Faculty of pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Yasmin N Ramadan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hayam Fathy
- Department of Internal Medicine, Division Hepatogastroenterology, Assiut University, Assiut 71515, Egypt
| | - Mohammed Khorshid
- Department of Clinical Research, Egyptian Developers of Gastroenterology and Endoscopy Foundation, Cairo 11936, Egypt
| | - Mohamed M Mabrouk
- Department of Internal Medicine, Faculty of Medicine. Tanta University, Tanta 31527, Egypt
| | - Mai Hashem
- Department of Tropical Medicine, Gastroenterology and Hepatology, Assiut University Hospital, Assiut 71515, Egypt
| |
Collapse
|
3
|
Gao A, Lv J, Su Y. The Inflammatory Mechanism of Parkinson's Disease: Gut Microbiota Metabolites Affect the Development of the Disease Through the Gut-Brain Axis. Brain Sci 2025; 15:159. [PMID: 40002492 PMCID: PMC11853208 DOI: 10.3390/brainsci15020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease is recognized as the second most prevalent neurodegenerative disorder globally, with its incidence rate projected to increase alongside ongoing population growth. However, the precise etiology of Parkinson's disease remains elusive. This article explores the inflammatory mechanisms linking gut microbiota to Parkinson's disease, emphasizing alterations in gut microbiota and their metabolites that influence the disease's progression through the bidirectional transmission of inflammatory signals along the gut-brain axis. Building on this mechanistic framework, this article further discusses research methodologies and treatment strategies focused on gut microbiota metabolites, including metabolomics detection techniques, animal model investigations, and therapeutic approaches such as dietary interventions, probiotic treatments, and fecal transplantation. Ultimately, this article aims to elucidate the relationship between gut microbiota metabolites and the inflammatory mechanisms underlying Parkinson's disease, thereby paving the way for novel avenues in the research and treatment of this condition.
Collapse
Affiliation(s)
| | | | - Yanwei Su
- Department of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (A.G.); (J.L.)
| |
Collapse
|
4
|
Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, Stanton C. The interplay between diet and the gut microbiome: implications for health and disease. Nat Rev Microbiol 2024; 22:671-686. [PMID: 39009882 DOI: 10.1038/s41579-024-01068-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Dhrati Patangia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Ghjuvan Grimaud
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Castells-Nobau A, Puig I, Motger-Albertí A, de la Vega-Correa L, Rosell-Díaz M, Arnoriaga-Rodríguez M, Escrichs A, Garre-Olmo J, Puig J, Ramos R, Ramió-Torrentà L, Pérez-Brocal V, Moya A, Pamplona R, Jové M, Sol J, Martin-Garcia E, Martinez-Garcia M, Deco G, Maldonado R, Fernández-Real JM, Mayneris-Perxachs J. Microviridae bacteriophages influence behavioural hallmarks of food addiction via tryptophan and tyrosine signalling pathways. Nat Metab 2024; 6:2157-2186. [PMID: 39587339 DOI: 10.1038/s42255-024-01157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Food addiction contributes to the obesity pandemic, but the connection between how the gut microbiome is linked to food addiction remains largely unclear. Here we show that Microviridae bacteriophages, particularly Gokushovirus WZ-2015a, are associated with food addiction and obesity across multiple human cohorts. Further analyses reveal that food addiction and Gokushovirus are linked to serotonin and dopamine metabolism. Mice receiving faecal microbiota and viral transplantation from human donors with the highest Gokushovirus load exhibit increased food addiction along with changes in tryptophan, serotonin and dopamine metabolism in different regions of the brain, together with alterations in dopamine receptors. Mechanistically, targeted tryptophan analysis shows lower anthranilic acid (AA) concentrations associated with Gokushovirus. AA supplementation in mice decreases food addiction and alters pathways related to the cycle of neurotransmitter synthesis release. In Drosophila, AA regulates feeding behaviour and addiction-like ethanol preference. In summary, this study proposes that bacteriophages in the gut microbiome contribute to regulating food addiction by modulating tryptophan and tyrosine metabolism.
Collapse
Affiliation(s)
- Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain
| | - Irene Puig
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Anna Motger-Albertí
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Lisset de la Vega-Correa
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Marisel Rosell-Díaz
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Josep Garre-Olmo
- Research Group on Health, Gender and Aging, University of Girona, Girona, Spain
- Serra-Hunter Programme, Department of Nursing, University of Girona, Girona, Spain
| | - Josep Puig
- Department of Radiology (CDI) and IDIBAPS, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Vascular Health Research Group of Girona (ISV-Girona). Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina -IDIAPJGol), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud-RICAPPS- ISCIII, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Dr Josep Trueta University Hospital, Catalonia, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr Josep Trueta University Hospital. Neurodegeneration and Neuroinflammation Research Group, IDIBGI. Department of Medical Sciences, University of Girona, Girona-Salt, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida, Spain
- Research Support Unit (USR) Lleida, Primary Care Services, Catalan Health Institute (ICS), Lleida, Spain
- Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), Lleida, Spain
| | - Elena Martin-Garcia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
- Multidisiciplinary Institute for Environmental Studies Ramon Margalef, University of Alicante, Alicante, Spain
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institucio Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain.
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain.
- Serra-Hunter Programme, Department of Nursing, University of Girona, Girona, Spain.
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain.
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain.
| |
Collapse
|
6
|
Dong S, Wu S, Li L, Hao F, Wu J, Liao Z, Wang J, Zhong R, Wei H, Fang X. Alleviation of lipid metabolic dysfunction through regulation of intestinal bacteriophages and bacteria by green tea polyphenols in Ob/Ob mice. Food Chem 2024; 456:139988. [PMID: 38852447 DOI: 10.1016/j.foodchem.2024.139988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Green tea polyphenols (GTP) have been shown to ameliorate lipid metabolic disorders by regulating intestinal bacteria. Given the significant role of intestinal bacteriophages in shaping the gut microbiota, this study investigates GTP's influence on gut bacteriophage-bacteria interactions and lipid metabolism using metagenomics and metabonomics. The research results indicated that GTP significantly reduced body weight, serum triglycerides, leptin, insulin resistance, interleukin-6, and TNF-α levels while increasing adiponectin in ob/ob mice fed high-fat diet, aiding intestinal repair. GTP improved gut health by decreasing Enterobacter, Siphoviridae and Enterobacteria_phage_sfv, increasing Bifidobacterium and intestinal metabolites SCFA and hippuric acid. Correlation analysis showed negative correlations between Enterobacter sp. 50,588,862 and Enterobacteria_phages, Shigella_phages with 4-hydroxyphenylpyruvate and hippuric acid. Bifidobacterium choerinum and Bifidobacterium sp. AGR2158 were positively correlated with fatty acids and bile acids. In conclusion, GTP reduced fat accumulation and inflammation, enhanced gut barrier function in obese mice, closely associated with changes in the gut bacteriophage community.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Sitong Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Lanyin Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Jinsong Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Hong Wei
- Yu- Yue Pathology Scientific Research Center, Chongqing 401329, P. R. China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
7
|
Zhao F, Wang J. Another piece of puzzle for the human microbiome: the gut virome under dietary modulation. J Genet Genomics 2024; 51:983-996. [PMID: 38710286 DOI: 10.1016/j.jgg.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
The virome is the most abundant and highly variable microbial consortium in the gut. Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes, the virome has remained a relatively elusive aspect of the human microbiome. In recent years, studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health. Here, we review the responses of the gut virome to dietary intake and the potential health implications, presenting changes in the gut viral community and preferences of viral members to particular diets. We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota. We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer, as well as the import of new viral members along with the diet. Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary interventions and health maintenance strategies targeting the gut microbiota.
Collapse
Affiliation(s)
- Fengxiang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Howard A, Carroll-Portillo A, Alcock J, Lin HC. Dietary Effects on the Gut Phageome. Int J Mol Sci 2024; 25:8690. [PMID: 39201374 PMCID: PMC11354428 DOI: 10.3390/ijms25168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
As knowledge of the gut microbiome has expanded our understanding of the symbiotic and dysbiotic relationships between the human host and its microbial constituents, the influence of gastrointestinal (GI) microbes both locally and beyond the intestine has become evident. Shifts in bacterial populations have now been associated with several conditions including Crohn's disease (CD), Ulcerative Colitis (UC), irritable bowel syndrome (IBS), Alzheimer's disease, Parkinson's Disease, liver diseases, obesity, metabolic syndrome, anxiety, depression, and cancers. As the bacteria in our gut thrive on the food we eat, diet plays a critical role in the functional aspects of our gut microbiome, influencing not only health but also the development of disease. While the bacterial microbiome in the context of disease is well studied, the associated gut phageome-bacteriophages living amongst and within our bacterial microbiome-is less well understood. With growing evidence that fluctuations in the phageome also correlate with dysbiosis, how diet influences this population needs to be better understood. This review surveys the current understanding of the effects of diet on the gut phageome.
Collapse
Affiliation(s)
- Andrea Howard
- School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM 87131, USA
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
9
|
Gholamzad A, Khakpour N, Hashemi SMA, Goudarzi Y, Ahmadi P, Gholamzad M, Mohammadi M, Hashemi M. Exploring the virome: An integral part of human health and disease. Pathol Res Pract 2024; 260:155466. [PMID: 39053136 DOI: 10.1016/j.prp.2024.155466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
The human microbiome is a complex network of microorganisms that includes viruses, bacteria, and fungi. The gut virome is an essential component of the immune system, which is responsible for regulating the growth and responses of the host's immune system. The virome maintains a crucial role in the development of numerous diseases, including inflammatory bowel disease (IBD), Crohn's disease, and neurodegenerative disorders. The human virome has emerged as a promising biomarker and therapeutic target. This comprehensive review summarizes the present understanding of the virome and its implications in matters of health and disease, with a focus on the Human Microbiome Project.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yalda Goudarzi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahya Mohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology ,Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
10
|
Jin K, Chen B, Han S, Dong J, Cheng S, Qin B, Lu J. Repetitive Transcranial Magnetic Stimulation (rTMS) Improves Cognitive Impairment and Intestinal Microecological Dysfunction Induced by High-Fat Diet in Rats. RESEARCH (WASHINGTON, D.C.) 2024; 7:0384. [PMID: 38826566 PMCID: PMC11140411 DOI: 10.34133/research.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 06/04/2024]
Abstract
Consuming a high-fat diet (HFD) is widely recognized to cause obesity and result in chronic brain inflammation that impairs cognitive function. Repetitive transcranial magnetic stimulation (rTMS) has shown effectiveness in both weight loss and cognitive improvement, although the exact mechanism is still unknown. Our study examined the effects of rTMS on the brain and intestinal microecological dysfunction. rTMS successfully reduced cognitive decline caused by an HFD in behavioral assessments involving the Y maze and novel object recognition. This was accompanied by an increase in the number of new neurons and the transcription level of genes related to synaptic plasticity (spindlin 1, synaptophysin, and postsynaptic protein-95) in the hippocampus. It was reached that rTMS decreased the release of high mobility group box 1, activation of microglia, and inflammation in the brains of HFD rats. rTMS also reduced hypothalamic hypocretin levels and improved peripheral blood lipid metabolism. In addition, rTMS recovered the HFD-induced gut microbiome imbalances, metabolic disorders, and, in particular, reduced levels of the microvirus. Our research emphasized that rTMS enhanced cognitive abilities, resulting in positive impacts on brain inflammation, neurodegeneration, and the microbiota in the gut, indicating the potential connection between the brain and gut, proposing that rTMS could be a new approach to addressing cognitive deficits linked to obesity.
Collapse
Affiliation(s)
- Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Bing Chen
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou City 310003, China
| | - Jingyi Dong
- School of Life Sciences,
Zhejiang Chinese Medical University, Hangzhou, China
| | - Shangping Cheng
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Bin Qin
- School of Life Sciences,
Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| |
Collapse
|
11
|
Istvan P, Birkeland E, Avershina E, Kværner AS, Bemanian V, Pardini B, Tarallo S, de Vos WM, Rognes T, Berstad P, Rounge TB. Exploring the gut DNA virome in fecal immunochemical test stool samples reveals associations with lifestyle in a large population-based study. Nat Commun 2024; 15:1791. [PMID: 38424056 PMCID: PMC10904388 DOI: 10.1038/s41467-024-46033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Stool samples for fecal immunochemical tests (FIT) are collected in large numbers worldwide as part of colorectal cancer screening programs. Employing FIT samples from 1034 CRCbiome participants, recruited from a Norwegian colorectal cancer screening study, we identify, annotate and characterize more than 18000 DNA viruses, using shotgun metagenome sequencing. Only six percent of them are assigned to a known taxonomic family, with Microviridae being the most prevalent viral family. Linking individual profiles to comprehensive lifestyle and demographic data shows 17/25 of the variables to be associated with the gut virome. Physical activity, smoking, and dietary fiber consumption exhibit strong and consistent associations with both diversity and relative abundance of individual viruses, as well as with enrichment for auxiliary metabolic genes. We demonstrate the suitability of FIT samples for virome analysis, opening an opportunity for large-scale studies of this enigmatic part of the gut microbiome. The diverse viral populations and their connections to the individual lifestyle uncovered herein paves the way for further exploration of the role of the gut virome in health and disease.
Collapse
Affiliation(s)
- Paula Istvan
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Einar Birkeland
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ekaterina Avershina
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ane S Kværner
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Vahid Bemanian
- Pathology Department, Akershus University Hospital, Lørenskog, Norway
| | - Barbara Pardini
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Sonia Tarallo
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Torbjørn Rognes
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Paula Berstad
- Section for Colorectal Cancer Screening, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Trine B Rounge
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.
- Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway.
- Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
12
|
Gao SM, Fei HL, Li Q, Lan LY, Huang LN, Fan PF. Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations. Nat Commun 2024; 15:1254. [PMID: 38341424 PMCID: PMC10858875 DOI: 10.1038/s41467-024-45663-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
- College of Life Science, China West Normal University, Nanchong, 637002, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
13
|
Zhang Y, Sharma S, Tom L, Liao YT, Wu VCH. Gut Phageome-An Insight into the Role and Impact of Gut Microbiome and Their Correlation with Mammal Health and Diseases. Microorganisms 2023; 11:2454. [PMID: 37894111 PMCID: PMC10609124 DOI: 10.3390/microorganisms11102454] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The gut microbiota, including bacteria, archaea, fungi, and viruses, compose a diverse mammalian gut environment and are highly associated with host health. Bacteriophages, the viruses that infect bacteria, are the primary members of the gastrointestinal virome, known as the phageome. However, our knowledge regarding the gut phageome remains poorly understood. In this review, the critical role of the gut phageome and its correlation with mammalian health were summarized. First, an overall profile of phages across the gastrointestinal tract and their dynamic roles in shaping the surrounding microorganisms was elucidated. Further, the impacts of the gut phageome on gastrointestinal fitness and the bacterial community were highlighted, together with the influence of diets on the gut phageome composition. Additionally, new reports on the role of the gut phageome in the association of mammalian health and diseases were reviewed. Finally, a comprehensive update regarding the advanced phage benchwork and contributions of phage-based therapy to prevent/treat mammalian diseases was provided. This study provides insights into the role and impact of the gut phagenome in gut environments closely related to mammal health and diseases. The findings provoke the potential applications of phage-based diagnosis and therapy in clinical and agricultural fields. Future research is needed to uncover the underlying mechanism of phage-bacterial interactions in gut environments and explore the maintenance of mammalian health via phage-regulated gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
14
|
Abstract
The gut microbiome is a dense and metabolically active consortium of microorganisms and viruses located in the lower gastrointestinal tract of the human body. Bacteria and their viruses (phages) are the most abundant members of the gut microbiome. Investigating their biology and the interplay between the two is important if we are to understand their roles in human health and disease. In this review, we summarize recent advances in resolving the taxonomic structure and ecological functions of the complex community of phages in the human gut-the gut phageome. We discuss how age, diet, and geography can all have a significant impact on phageome composition. We note that alterations to the gut phageome have been observed in several diseases such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer, and we evaluate whether these phageome changes can directly or indirectly contribute to disease etiology and pathogenesis. We also highlight how lack of standardization in studying the gut phageome has contributed to variation in reported results.
Collapse
Affiliation(s)
- Ciara A Tobin
- APC Microbiome Ireland, Cork, Ireland; , ,
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Cork, Ireland; , ,
- School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, Cork, Ireland; , ,
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Avellaneda-Franco L, Dahlman S, Barr JJ. The gut virome and the relevance of temperate phages in human health. Front Cell Infect Microbiol 2023; 13:1241058. [PMID: 37577374 PMCID: PMC10413269 DOI: 10.3389/fcimb.2023.1241058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 08/15/2023] Open
Abstract
Alterations in the gut virome impact human health. Bacteriophages, viruses that infect bacteria, dominate the gut virome and are mainly composed by virulent and temperate phages. While virulent phages exclusively replicate within and lyse their bacterial host's cell, temperate phages switch from an integrated state residing within their bacterial host's chromosome to an induced free virion state via an induction event. How often do these induction events occur and what are their implications on gut homeostasis? Here, we summarize the current knowledge of the gut virome based on metagenomics and present how the proportion of induced temperate phages varies amongst individuals, age, and disease states. Finally, we highlight the importance of building upon classical culture-dependent techniques and sequencing approaches to improve our understanding of temperate phages to enable their potential therapeutic use.
Collapse
Affiliation(s)
| | | | - Jeremy J. Barr
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
16
|
Pargin E, Roach MJ, Skye A, Papudeshi B, Inglis LK, Mallawaarachchi V, Grigson SR, Harker C, Edwards RA, Giles SK. The human gut virome: composition, colonization, interactions, and impacts on human health. Front Microbiol 2023; 14:963173. [PMID: 37293229 PMCID: PMC10244655 DOI: 10.3389/fmicb.2023.963173] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
The gut virome is an incredibly complex part of the gut ecosystem. Gut viruses play a role in many disease states, but it is unknown to what extent the gut virome impacts everyday human health. New experimental and bioinformatic approaches are required to address this knowledge gap. Gut virome colonization begins at birth and is considered unique and stable in adulthood. The stable virome is highly specific to each individual and is modulated by varying factors such as age, diet, disease state, and use of antibiotics. The gut virome primarily comprises bacteriophages, predominantly order Crassvirales, also referred to as crAss-like phages, in industrialized populations and other Caudoviricetes (formerly Caudovirales). The stability of the virome's regular constituents is disrupted by disease. Transferring the fecal microbiome, including its viruses, from a healthy individual can restore the functionality of the gut. It can alleviate symptoms of chronic illnesses such as colitis caused by Clostridiodes difficile. Investigation of the virome is a relatively novel field, with new genetic sequences being published at an increasing rate. A large percentage of unknown sequences, termed 'viral dark matter', is one of the significant challenges facing virologists and bioinformaticians. To address this challenge, strategies include mining publicly available viral datasets, untargeted metagenomic approaches, and utilizing cutting-edge bioinformatic tools to quantify and classify viral species. Here, we review the literature surrounding the gut virome, its establishment, its impact on human health, the methods used to investigate it, and the viral dark matter veiling our understanding of the gut virome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sarah K. Giles
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
17
|
Lamy-Besnier Q, Bignaud A, Garneau JR, Titecat M, Conti DE, Von Strempel A, Monot M, Stecher B, Koszul R, Debarbieux L, Marbouty M. Chromosome folding and prophage activation reveal specific genomic architecture for intestinal bacteria. MICROBIOME 2023; 11:111. [PMID: 37208714 PMCID: PMC10197239 DOI: 10.1186/s40168-023-01541-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the interactions between these two key components are still largely unknown. In particular, the impact of the gut environment on bacteria and their associated prophages is yet to be deciphered. RESULTS To gain insight into the activity of lysogenic bacteriophages within the context of their host genomes, we performed proximity ligation-based sequencing (Hi-C) in both in vitro and in vivo conditions on the 12 bacterial strains of the OMM12 synthetic bacterial community stably associated within mice gut (gnotobiotic mouse line OMM12). High-resolution contact maps of the chromosome 3D organization of the bacterial genomes revealed a wide diversity of architectures, differences between environments, and an overall stability over time in the gut of mice. The DNA contacts pointed at 3D signatures of prophages leading to 16 of them being predicted as functional. We also identified circularization signals and observed different 3D patterns between in vitro and in vivo conditions. Concurrent virome analysis showed that 11 of these prophages produced viral particles and that OMM12 mice do not carry other intestinal viruses. CONCLUSIONS The precise identification by Hi-C of functional and active prophages within bacterial communities will unlock the study of interactions between bacteriophages and bacteria across conditions (healthy vs disease). Video Abstract.
Collapse
Affiliation(s)
- Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Julian R Garneau
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Marie Titecat
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, 59000, France
| | - Devon E Conti
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Alexandra Von Strempel
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Bärbel Stecher
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site LMU Munich, Munich, Germany
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France.
| | - Martial Marbouty
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
18
|
Chen L, Hou X, Chu H. The Novel Role of Phage Particles in Chronic Liver Diseases. Microorganisms 2023; 11:1181. [PMID: 37317156 PMCID: PMC10220600 DOI: 10.3390/microorganisms11051181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
The gut microbiome is made up of bacteria, fungi, viruses and archaea, all of which are closely related with human health. As the main component of enterovirus, the role of bacteriophages (phages) in chronic liver disease has been gradually recognized. Chronic liver diseases, including alcohol-related liver disease and nonalcoholic fatty liver disease, exhibit alterations of the enteric phages. Phages shape intestinal bacterial colonization and regulate bacterial metabolism. Phages adjoining to intestinal epithelial cells prevent bacteria from invading the intestinal barrier, and mediate intestinal inflammatory response. Phages are also observed increasing intestinal permeability and migrating to peripheral blood and organs, likely contributing to inflammatory injury in chronic liver diseases. By preying on harmful bacteria, phages can improve the gut microbiome of patients with chronic liver disease and thus act as an effective treatment method.
Collapse
Affiliation(s)
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
19
|
Ezzatpour S, Mondragon Portocarrero ADC, Cardelle-Cobas A, Lamas A, López-Santamarina A, Miranda JM, Aguilar HC. The Human Gut Virome and Its Relationship with Nontransmissible Chronic Diseases. Nutrients 2023; 15:977. [PMID: 36839335 PMCID: PMC9960951 DOI: 10.3390/nu15040977] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The human gastrointestinal tract contains large communities of microorganisms that are in constant interaction with the host, playing an essential role in the regulation of several metabolic processes. Among the gut microbial communities, the gut bacteriome has been most widely studied in recent decades. However, in recent years, there has been increasing interest in studying the influences that other microbial groups can exert on the host. Among them, the gut virome is attracting great interest because viruses can interact with the host immune system and metabolic functions; this is also the case for phages, which interact with the bacterial microbiota. The antecedents of virome-rectification-based therapies among various diseases were also investigated. In the near future, stool metagenomic investigation should include the identification of bacteria and phages, as well as their correlation networks, to better understand gut microbiota activity in metabolic disease progression.
Collapse
Affiliation(s)
- Shahrzad Ezzatpour
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alicia del Carmen Mondragon Portocarrero
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alejandra Cardelle-Cobas
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Alexandre Lamas
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Aroa López-Santamarina
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José Manuel Miranda
- Laboratorio de Higiene, Inspección y Control de Alimentos (LHICA), Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Jansen D, Matthijnssens J. The Emerging Role of the Gut Virome in Health and Inflammatory Bowel Disease: Challenges, Covariates and a Viral Imbalance. Viruses 2023; 15:173. [PMID: 36680214 PMCID: PMC9861652 DOI: 10.3390/v15010173] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Virome research is a rapidly growing area in the microbiome field that is increasingly associated with human diseases, such as inflammatory bowel disease (IBD). Although substantial progress has been made, major methodological challenges limit our understanding of the virota. In this review, we describe challenges that must be considered to accurately report the virome composition and the current knowledge on the virome in health and IBD. First, the description of the virome shows strong methodological biases related to wetlab (e.g., VLP enrichment) and bioinformatics approaches (viral identification and classification). Second, IBD patients show consistent viral imbalances characterized by a high relative abundance of phages belonging to the Caudovirales and a low relative abundance of phages belonging to the Microviridae. Simultaneously, a sporadic contraction of CrAss-like phages and a potential expansion of the lysogenic potential of the intestinal virome are observed. Finally, despite numerous studies that have conducted diversity analysis, it is difficult to draw firm conclusions due to methodological biases. Overall, we present the many methodological and environmental factors that influence the virome, its current consensus in health and IBD, and a contributing hypothesis called the "positive inflammatory feedback loop" that may play a role in the pathophysiology of IBD.
Collapse
Affiliation(s)
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute, Department of Microbiology, Immunology and Transplantation, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
21
|
Borin JM, Liu R, Wang Y, Wu TC, Chopyk J, Huang L, Kuo P, Ghose C, Meyer JR, Tu XM, Schnabl B, Pride DT. Fecal virome transplantation is sufficient to alter fecal microbiota and drive lean and obese body phenotypes in mice. Gut Microbes 2023; 15:2236750. [PMID: 37475473 PMCID: PMC10364654 DOI: 10.1080/19490976.2023.2236750] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The gastrointestinal microbiome plays a significant role in modulating numerous host processes, including metabolism. Prior studies show that when mice receive fecal transplants from obese donors on high-fat diets (HFD) (even when recipient mice are fed normal diets after transplantation), they develop obese phenotypes, demonstrating the prominent role that gut microbiota play in determining lean and obese phenotypes. While much of the credit has been given to gut bacteria, the impact of gut viruses on these phenotypes is understudied. To address this shortcoming, we gavaged mice with viromes isolated from donors fed HFD or normal chow over a 4-week study. By characterizing the gut bacterial biota via 16S rRNA amplicon sequencing and measuring mouse weights over time, we demonstrate that transplanted viruses affect the gut bacterial community, as well as weight gain/loss. Notably, mice fed chow but gavaged with HFD-derived viromes gained more weight than their counterparts receiving chow-derived viromes. The converse was also true: mice fed HFD but gavaged with chow-derived viromes gained less weight than their counterparts receiving HFD-derived viromes. Results were replicated in two independent experiments and phenotypic changes were accompanied by significant and identifiable differences in the fecal bacterial biota. Due to methodological limitations, we were unable to identify the specific bacterial strains responsible for respective phenotypic changes. This study confirms that virome-mediated perturbations can alter the fecal microbiome in vivo and indicates that such perturbations are sufficient to drive lean and obese phenotypes in mice.
Collapse
Affiliation(s)
- Joshua M. Borin
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Roland Liu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tsung-Chin Wu
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Jessica Chopyk
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Lina Huang
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Peiting Kuo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | | | - Justin R. Meyer
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xin M. Tu
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - David T. Pride
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Fujimoto K, Miyaoka D, Uematsu S. Characterization of the human gut virome in metabolic and autoimmune diseases. Inflamm Regen 2022; 42:32. [PMID: 36316749 PMCID: PMC9623931 DOI: 10.1186/s41232-022-00218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
The intestinal microbiome is dominated by bacteria and plays a pivotal role in the occurrence and development of disease, including several metabolic and autoimmune disorders. While intestinal viral communities, primarily made up of bacteriophages, are also thought to play a role in disease pathogenesis in the gastrointestinal tract, they have received much less attention than intestinal bacteria. Thus, there is limited information about the relationship between bacteriophages and disease. This review explores a potential role for the intestinal viral microbiome in various metabolic and autoimmune diseases.
Collapse
Affiliation(s)
- Kosuke Fujimoto
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan
| | - Daichi Miyaoka
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Metagenome Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XDivision of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.26999.3d0000 0001 2151 536XCollaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
23
|
Deng Z, Zeng S, Zhou R, Hou D, Bao S, Zhang L, Hou Q, Li X, Weng S, He J, Huang Z. Phage-prokaryote coexistence strategy mediates microbial community diversity in the intestine and sediment microhabitats of shrimp culture pond ecosystem. Front Microbiol 2022; 13:1011342. [PMID: 36212844 PMCID: PMC9537357 DOI: 10.3389/fmicb.2022.1011342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence supports that the phage-prokaryote interaction drives ecological processes in various environments with different phage life strategies. However, the knowledge of phage-prokaryote interaction in the shrimp culture pond ecosystem (SCPE) is still limited. Here, the viral and prokaryotic community profiles at four culture stages in the intestine of Litopenaeus vannamei and cultural sediment microhabitats of SCPE were explored to elucidate the contribution of phage-prokaryote interaction in modulating microbial communities. The results demonstrated that the most abundant viral families in the shrimp intestine and sediment were Microviridae, Circoviridae, Inoviridae, Siphoviridae, Podoviridae, Myoviridae, Parvoviridae, Herelleviridae, Mimiviridae, and Genomoviridae, while phages dominated the viral community. The dominant prokaryotic genera were Vibrio, Formosa, Aurantisolimonas, and Shewanella in the shrimp intestine, and Formosa, Aurantisolimonas, Algoriphagus, and Flavobacterium in the sediment. The viral and prokaryotic composition of the shrimp intestine and sediment were significantly different at four culture stages, and the phage communities were closely related to the prokaryotic communities. Moreover, the phage-prokaryote interactions can directly or indirectly modulate the microbial community composition and function, including auxiliary metabolic genes and closed toxin genes. The interactional analysis revealed that phages and prokaryotes had diverse coexistence strategies in the shrimp intestine and sediment microhabitats of SCPE. Collectively, our findings characterized the composition of viral communities in the shrimp intestine and cultural sediment and revealed the distinct pattern of phage-prokaryote interaction in modulating microbial community diversity, which expanded our cognization of the phage-prokaryote coexistence strategy in aquatic ecosystems from the microecological perspective and provided theoretical support for microecological prevention and control of shrimp culture health management.
Collapse
Affiliation(s)
- Zhixuan Deng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renjun Zhou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shicheng Bao
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linyu Zhang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qilu Hou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuanting Li
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
- *Correspondence: Jianguo He,
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming, China
- Zhijian Huang,
| |
Collapse
|
24
|
He H, Liu M, He R, Zhao W. Lipid-lowering activity of metformin-soluble soybean polysaccharide nanoparticles. Food Funct 2022; 13:10265-10274. [PMID: 36125039 DOI: 10.1039/d2fo01237e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soybean dregs are one of the most important albeit underutilized byproducts in soybean processing. In this study, soluble soybean polysaccharides with lipid-lowering activity were extracted from soybean dregs and used as a wall material for embedding metformin. Metformin-soluble soybean polysaccharide nanoparticles (MET-SSPS-NPs) were prepared by electrostatic interaction. The lipid-lowering activity and possible mechanism of MET-SSPS-NPs were investigated. Western blotting was used to detect the expression levels of cell-related protein proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein receptor (LDLR) in vitro. The results showed that MET-SSPS-NPs lowered the expression of PCSK9 and improved LDLR levels. A high-fat diet (HFD) animal model was established to study the lipid-lowering effect of MET-SSPS-NPs by real-time quantitative PCR and western blotting. MET-SSPS-NPs significantly upregulated peroxisome proliferator-activated receptor gamma (PPARγ) expression and downregulated PCSK9, fatty acid-binding protein (FABP)7 and FABP5 expression more strongly than MET or SSPS alone. In conclusion, MET-SSPS-NPs can inhibit PCSK9 expression and improve the level of adipokines, providing a theoretical basis for the application of MET-SSPS-NPs in lipid lowering.
Collapse
Affiliation(s)
- Haiyan He
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic China. .,Health College, Jiangsu Vocational Institute of Commerce, Nanjing 211168, People's Republic China
| | - Mengting Liu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic China
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic China
| | - Wei Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic China.
| |
Collapse
|
25
|
Chelluboina B, Kieft K, Breister A, Anantharaman K, Vemuganti R. Gut virome dysbiosis following focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2022; 42:1597-1602. [PMID: 35702025 PMCID: PMC9441728 DOI: 10.1177/0271678x221107702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/11/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
Abstract
Stroke leads to gut bacterial dysbiosis that impacts the post-stroke outcome. The gut microbiome also contains a high abundance of viruses which might play a crucial role in disease progression and recovery by modulating the metabolism of both host and host's gut bacteria. We presently analyzed the virome composition (viruses and phages) by shotgun metagenomics in the fecal samples obtained at 1 day of reperfusion following transient focal ischemia in adult mice. Viral genomes, viral auxiliary metabolic genes, and viral protein networks were compared between stroke and sham conditions (stroke vs sham, exclusive to sham and exclusive to stroke). Following focal ischemia, abundances of 2 viral taxa decreased, and 5 viral taxa increased compared with the sham. Furthermore, the abundance of Clostridia-like phages and Erysipelatoclostridiaceae-like phages were altered in the stroke compared with the sham cohorts. This is the first report to show that the gut virome responds acutely to stroke.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of
Wisconsin-Madison, Madison, WI, USA
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison,
Madison, WI, USA
| | - Adam Breister
- Department of Bacteriology, University of Wisconsin-Madison,
Madison, WI, USA
| | | | - Raghu Vemuganti
- Department of Neurological Surgery, University of
Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Veterans Administration Hospital, Madison,
WI, USA
| |
Collapse
|
26
|
Li Y, Liu WC, Chang B. Intestinal virome: An important research direction for alcoholic and nonalcoholic liver diseases. World J Gastroenterol 2022; 28:3279-3281. [PMID: 36051333 PMCID: PMC9331532 DOI: 10.3748/wjg.v28.i26.3279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/07/2021] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, the interaction between the gut microflora and liver diseases has attracted much attention. The intestinal microflora is composed of bacteria, archaea, fungi and viruses. There are few studies on the intestinal virome, and whether it has a causal relationship with bacterial changes in the gut is still unclear. However, it is undeniable that the intestinal virome is also a very important portion of the blueprint for the development of liver diseases and the diagnosis and therapeutic modalities in the future.
Collapse
Affiliation(s)
- Yan Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Wen-Cheng Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
27
|
Cao Z, Sugimura N, Burgermeister E, Ebert MP, Zuo T, Lan P. The gut virome: A new microbiome component in health and disease. EBioMedicine 2022; 81:104113. [PMID: 35753153 PMCID: PMC9240800 DOI: 10.1016/j.ebiom.2022.104113] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/14/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
The human gastrointestinal tract harbours an abundance of viruses, collectively known as the gut virome. The gut virome is highly heterogeneous across populations and is linked to geography, ethnicity, diet, lifestyle, and urbanisation. The currently known function of the gut virome varies greatly across human populations, and much remains unknown. We review current literature on the human gut virome, and the intricate trans-kingdom interplay among gut viruses, bacteria, and the mammalian host underlying health and diseases. We summarise evidence on the use of the gut virome as diagnostic markers and a therapeutic target. We shed light on novel avenues of microbiome-inspired diagnosis and therapies. We also review pre-clinical and clinical studies on gut virome-rectification-based therapies, including faecal microbiota transplantation, faecal virome transplantation, and refined phage therapy. Our review suggests that future research effort should focus on unravelling the mechanisms exerted by gut viruses/phages in human pathophysiology, and on developing phage-prompted precision therapies.
Collapse
Affiliation(s)
- Zhirui Cao
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Naoki Sugimura
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; DKFZ-Hector Cancer Institute, Mannheim, Germany; Mannheim Cancer Centre (MCC), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Ping Lan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China; Centre for Faecal Microbiota Transplantation Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J, Ramos R, Martínez-Hernández F, Burokas A, Coll C, Moreno-Navarrete JM, Zapata-Tona C, Pedraza S, Pérez-Brocal V, Ramió-Torrentà L, Ricart W, Moya A, Martínez-García M, Maldonado R, Fernández-Real JM. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe 2022; 30:340-356.e8. [PMID: 35176247 DOI: 10.1016/j.chom.2022.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates the gut microbiome in cognition. Viruses, the most abundant life entities on the planet, are a commonly overlooked component of the gut virome, dominated by the Caudovirales and Microviridae bacteriophages. Here, we show in a discovery (n = 114) and a validation cohort (n = 942) that subjects with increased Caudovirales and Siphoviridae levels in the gut microbiome had better performance in executive processes and verbal memory. Conversely, increased Microviridae levels were linked to a greater impairment in executive abilities. Microbiota transplantation from human donors with increased specific Caudovirales (>90% from the Siphoviridae family) levels led to increased scores in the novel object recognition test in mice and up-regulated memory-promoting immediate early genes in the prefrontal cortex. Supplementation of the Drosophila diet with the 936 group of lactococcal Siphoviridae bacteriophages resulted in increased memory scores and upregulation of memory-involved brain genes. Thus, bacteriophages warrant consideration as novel actors in the microbiome-brain axis.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Aging, Disability, and Health, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Serra-Hunter Fellow. Department of Nursing, University of Girona, Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research, (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina-IDIAPJGol), Girona Biomedical Research Institute, (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain
| | | | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Clàudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Cristina Zapata-Tona
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Salvador Pedraza
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation research group. Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Manuel Martínez-García
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
29
|
Zhang J, Zhang Y, Xia Y, Sun J. Imbalance of the intestinal virome and altered viral-bacterial interactions caused by a conditional deletion of the vitamin D receptor. Gut Microbes 2021; 13:1957408. [PMID: 34375154 PMCID: PMC8366551 DOI: 10.1080/19490976.2021.1957408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vitamin D receptor (VDR) deficiency is associated with cancer, infection, and chronic inflammation. Prior research has demonstrated VDR regulation of bacteria; however, little is known regarding VDR and viruses. We hypothesize that VDR deficiency impacts on the intestinal virome and viral-bacterial interactions. We specifically deleted VDR from intestinal epithelial cells (VDRΔIEC), Paneth cells (VDRΔPC), and myeloid cells (VDRΔLyz) in mice. Feces were collected for shotgun metagenomic sequencing and metabolite profiling. To test the functional changes, we evaluated pattern recognition receptors (PRRs) and analyzed microbial metabolites. Vibrio phages, Lactobacillus phages, and Escherichia coli typing phages were significantly enriched in all three conditional VDR-knockout mice. In the VDRΔLyz mice, the levels of eight more virus species (2 enriched, 6 depleted) were significantly changed. Altered virus species were primarily observed in female VDRΔLyz (2 enriched, 3 depleted) versus male VDRΔLyz (1 enriched, 1 depleted). Altered alpha and beta diversity (family to species) were found in VDRΔLyz. In VDRΔIEC mice, bovine viral diarrhea virus 1 was significantly enriched. A significant correlation between viral and bacterial alterations was found in conditional VDR knockout mice. There was a positive correlation between Vibrio phage JSF5 and Cutibacterium acnes in VDRΔPC and VDRΔLyz mice. Also, there were more altered viral species in female conditional VDR knockout mice. Notably, there were significant changes in PRRs: upregulated TLR3, TLR7, and NOD2 in VDRΔLyz mice and increased CLEC4L expression in VDRΔIEC and VDRΔPC mice. Furthermore, we identified metabolites related to virus infection: decreased glucose in VDRΔIEC mice, increased ribulose/xylulose and xylose in VDRΔLyz mice, and increased long-chain fatty acids in VDRΔIEC and VDRΔLyz female mice. Tissue-specific deletion of VDR changes the virome and functionally changes viral receptors, which leads to dysbiosis, metabolic dysfunction, and infection risk. This study helps to elucidate VDR regulating the virome in a tissue-specific and sex-specific manner.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA,CONTACT Yinglin Xia Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 734 CSB, MC716, Chicago, IL, 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA,Department of Medicine, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA,Jesse Brown VA Medical Center Chicago, IL, USA,Jun Sun Division of Gastroenterology and Hepatology Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB, MC716Chicago, IL, 60612, USA
| |
Collapse
|
30
|
Hallowell HA, Higgins KV, Roberts M, Johnson RM, Bayne J, Maxwell HS, Brandebourg T, Hiltbold Schwartz E. Longitudinal Analysis of the Intestinal Microbiota in the Obese Mangalica Pig Reveals Alterations in Bacteria and Bacteriophage Populations Associated With Changes in Body Composition and Diet. Front Cell Infect Microbiol 2021; 11:698657. [PMID: 34737972 PMCID: PMC8560744 DOI: 10.3389/fcimb.2021.698657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Due to its immunomodulatory potential, the intestinal microbiota has been implicated as a contributing factor in the development of the meta-inflammatory state that drives obesity-associated insulin resistance and type 2 diabetes. A better understanding of this link would facilitate the development of targeted treatments and therapies to treat the metabolic complications of obesity. To this end, we validated and utilized a novel swine model of obesity, the Mangalica pig, to characterize changes in the gut microbiota during the development of an obese phenotype, and in response to dietary differences. In the first study, we characterized the metabolic phenotype and gut microbiota in lean and obese adult Mangalica pigs. Obese or lean groups were created by allowing either ad libitum (obese) or restricted (lean) access to a standard diet for 54 weeks. Mature obese pigs were significantly heavier and exhibited 170% greater subcutaneous adipose tissue mass, with no differences in muscle mass compared to their lean counterparts. Obese pigs displayed impaired glucose tolerance and hyperinsulinemia following oral glucose challenge, indicating that a metabolic phenotype also manifested with changes in body composition. Consistent with observations in human obesity, the gut microbiota of obese pigs displayed altered bacterial composition. In the second study, we characterized the longitudinal changes in the gut microbiota in response to diet and aging in growing Mangalica pigs that were either limit fed a standard diet, allowed ad libitum access to a standard diet, or allowed ad libitum access to a high fat-supplemented diet over an 18-week period. As expected, weight gain was highest in pigs fed the high fat diet compared to ad libitum and limit fed groups. Furthermore, the ad libitum and high fat groups displayed significantly greater adiposity consistent with the development of obesity relative to the limit fed pigs. The intestinal microbiota was generally resilient to differences in dietary intake (limit fed vs ad libitum), though changes in the microbiota of pigs fed the high fat diet mirrored changes observed in mature obese pigs during the first study. This is consistent with the link observed between the microbiota and adiposity. In contrast to intestinal bacterial populations, bacteriophage populations within the gut microbiota responded rapidly to differences in diet, with significant compositional changes in bacteriophage genera observed between the dietary treatment groups as pigs aged. These studies are the first to describe the development of the intestinal microbiota in the Mangalica pig, and are the first to provide evidence that changes in body composition and dietary conditions are associated with changes in the microbiome of this novel porcine model of obesity.
Collapse
Affiliation(s)
- Haley A Hallowell
- Department of Biological Sciences, Auburn University, College of Science and Mathematics, Auburn, AL, United States
| | - Keah V Higgins
- Department of Biological Sciences, Auburn University, College of Science and Mathematics, Auburn, AL, United States
| | - Morgan Roberts
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, AL, United States
| | - Robert M Johnson
- Department of Biological Sciences, Auburn University, College of Science and Mathematics, Auburn, AL, United States
| | - Jenna Bayne
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Herris Stevens Maxwell
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Terry Brandebourg
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, AL, United States
| | - Elizabeth Hiltbold Schwartz
- Department of Biological Sciences, Auburn University, College of Science and Mathematics, Auburn, AL, United States
| |
Collapse
|
31
|
Yang K, Niu J, Zuo T, Sun Y, Xu Z, Tang W, Liu Q, Zhang J, Ng EKW, Wong SKH, Yeoh YK, Chan PKS, Chan FKL, Miao Y, Ng SC. Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus. Gastroenterology 2021; 161:1257-1269.e13. [PMID: 34175280 DOI: 10.1053/j.gastro.2021.06.056] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Obesity and type 2 diabetes mellitus (T2DM) are associated with changes in the gut bacterial composition, but little is known about the role of the viral community (virome) in disease development. This study aims to characterize the gut virome alterations in obese subjects with or without T2DM. METHODS There were 128 obese subjects (body mass index ≥28 kg/m2) and 101 lean controls (body mass index ≥18.5 and <23 kg/m2) recruited from 2 regions in China (Hong Kong and Kunming). Fecal virome and bacteriome were profiled by shotgun metagenomic sequencing. Gut virome, bacteriome, and viral-bacterial correlations were compared between obese subjects and lean controls. RESULTS Obese subjects, especially those with T2DM (ObT2), had a decreased gut viral richness and diversity compared with lean controls in the Hong Kong cohort (P < .05), while no significant differences were observed in the Kunming cohort. Eleven viruses, including Escherichia phage, Geobacillus phage, and Lactobacillus phage were enriched in obese subjects (q < .1). Besides, 17 differentially abundant viruses were identified between ObT2 and lean controls (q < .1). Further ecologic analysis revealed that intensive transkingdom correlations between viruses and bacteria observed in lean controls were significantly decreased in ObT2 subjects (P < .001). CONCLUSIONS Obesity is characterized by altered viral taxonomic composition and weakened viral-bacterial correlations compared with lean controls. Obesity accompanied with T2DM may aggravate the obesity-associated virus signatures, signifying that the gut virome may play an important role in the development of obesity and T2DM. Geographic factors also contributed to the variations of gut virome in obesity and T2DM.
Collapse
Affiliation(s)
- Keli Yang
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Tao Zuo
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Zhilu Xu
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Whitney Tang
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Qin Liu
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Jingwan Zhang
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Enders K W Ng
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon K H Wong
- Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China; Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China; Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Francis K L Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China.
| | - Siew C Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Microbiota I-Center (MagIC) Limited, Hong Kong, China.
| |
Collapse
|
32
|
Bikel S, López-Leal G, Cornejo-Granados F, Gallardo-Becerra L, García-López R, Sánchez F, Equihua-Medina E, Ochoa-Romo JP, López-Contreras BE, Canizales-Quinteros S, Hernández-Reyna A, Mendoza-Vargas A, Ochoa-Leyva A. Gut dsDNA virome shows diversity and richness alterations associated with childhood obesity and metabolic syndrome. iScience 2021; 24:102900. [PMID: 34409269 PMCID: PMC8361208 DOI: 10.1016/j.isci.2021.102900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/01/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2023] Open
Abstract
Changes in the human gut microbiome are associated with obesity and metabolic syndrome, but the role of the gut virome in both diseases remains largely unknown. We characterized the gut dsDNA virome of 28 school-aged children with healthy normal-weight (NW, n = 10), obesity (O, n = 10), and obesity with metabolic syndrome (OMS, n = 8), using metagenomic sequencing of virus-like particles (VLPs) from fecal samples. The virome classification confirmed the bacteriophages' dominance, mainly composed of Caudovirales. Notably, phage richness and diversity of individuals with O and OMS tended to increase, while the VLP abundance remained the same among all groups. Of the 4,611 phage contigs composing the phageome, 48 contigs were highly prevalent in ≥80% of individuals, suggesting high inter-individual phage diversity. The abundance of several contigs correlated with gut bacterial taxa; and with anthropometric and biochemical parameters altered in O and OMS. To our knowledge, this gut phageome represents one of the largest datasets and suggests disease-specific phage alterations.
Collapse
Affiliation(s)
- Shirley Bikel
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Gamaliel López-Leal
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Rodrigo García-López
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Filiberto Sánchez
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Edgar Equihua-Medina
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Juan Pablo Ochoa-Romo
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Blanca Estela López-Contreras
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Quimica, UNAM/Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Quimica, UNAM/Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City, Mexico
| | - Abigail Hernández-Reyna
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | | | - Adrian Ochoa-Leyva
- Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
33
|
Townsend EM, Kelly L, Muscatt G, Box JD, Hargraves N, Lilley D, Jameson E. The Human Gut Phageome: Origins and Roles in the Human Gut Microbiome. Front Cell Infect Microbiol 2021; 11:643214. [PMID: 34150671 PMCID: PMC8213399 DOI: 10.3389/fcimb.2021.643214] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
The investigation of the microbial populations of the human body, known as the microbiome, has led to a revolutionary field of science, and understanding of its impacts on human development and health. The majority of microbiome research to date has focussed on bacteria and other kingdoms of life, such as fungi. Trailing behind these is the interrogation of the gut viruses, specifically the phageome. Bacteriophages, viruses that infect bacterial hosts, are known to dictate the dynamics and diversity of bacterial populations in a number of ecosystems. However, the phageome of the human gut, while of apparent importance, remains an area of many unknowns. In this paper we discuss the role of bacteriophages within the human gut microbiome. We examine the methods used to study bacteriophage populations, how this evolved over time and what we now understand about the phageome. We review the phageome development in infancy, and factors that may influence phage populations in adult life. The role and action of the phageome is then discussed at both a biological-level, and in the broader context of human health and disease.
Collapse
Affiliation(s)
- Eleanor M Townsend
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Lucy Kelly
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - George Muscatt
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Joshua D Box
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Nicole Hargraves
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Daniel Lilley
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Eleanor Jameson
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
34
|
Foegeding NJ, Jones ZS, Byndloss MX. Western lifestyle as a driver of dysbiosis in colorectal cancer. Dis Model Mech 2021; 14:dmm049051. [PMID: 34060626 PMCID: PMC8214737 DOI: 10.1242/dmm.049051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Landmark discoveries in the gut microbiome field have paved the way for new research aimed at illuminating the influence of microbiota in colorectal cancer. A major challenge is to account for the effect of inherently variable environmental factors on the host and the gut microbiome, while concurrently determining their contribution to carcinogenesis. Here, we briefly discuss the role of the gut microbial community in colorectal cancer and elaborate on the recent insight that environmental factors related to a Western diet and lifestyle may drive the bloom of tumorigenic members of the gut microbiota. We also discuss how future research focused on untangling host-microbe interactions in the colon may influence medical insights that relate to the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Nora J. Foegeding
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Zachary S. Jones
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
35
|
Rasmussen TS, Jakobsen RR, Castro-Mejía JL, Kot W, Thomsen AR, Vogensen FK, Nielsen DS, Hansen AK. Inter-vendor variance of enteric eukaryotic DNA viruses in specific pathogen free C57BL/6N mice. Res Vet Sci 2021; 136:1-5. [PMID: 33548686 DOI: 10.1016/j.rvsc.2021.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
The laboratory mouse strain C57BL/6 is widely used as an animal model for various applications. It is becoming increasingly clear that the bacterial enteric community highly influences the phenotype. Eukaryotic viruses represent a sparsely investigated member of the enteric microbiome that might also affect the phenotype. We here investigated the presence of enteric eukaryotic DNA viruses (EDVs) in specific pathogen-free (SPF) C57BL/6N mice purchased from three vendors upon arrival and after being fed a low-fat diet (LFD) or high-fat diet (HFD). We detected genetic fragments of EDVs belonging to the viral families of Herpes-, Mimi-, Baculo- and Phycodnaviridae represented by two genera; Chlorovirus and Prasinovirus. The EDVs were detected in the mice upon arrival and persisted for 13 weeks. However, these signals of EDVs were only detected at notable levels in mice fed LFD from 2 out of 3 vendors, which suggested that the enteric composition of these EDVs were affected by both vendor (p < 0.003) and different dietary regimes (p < 0.013). This highlights the need of additional studies assessing the potential function of these EDVs that may influence the mouse phenotype and the reproducibility of animal studies using this C57BL/6N substrain.
Collapse
Affiliation(s)
| | | | | | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Finn Kvist Vogensen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
36
|
Santiago-Rodriguez TM, Hollister EB. Potential Applications of Human Viral Metagenomics and Reference Materials: Considerations for Current and Future Viruses. Appl Environ Microbiol 2020; 86:e01794-20. [PMID: 32917759 PMCID: PMC7642086 DOI: 10.1128/aem.01794-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Viruses are ubiquitous particles comprising genetic material that can infect bacteria, archaea, and fungi, as well as human and other animal cells. Given that determining virus composition and function in association with states of human health and disease is of increasing interest, we anticipate that the field of viral metagenomics will continue to expand and be applied in a variety of areas ranging from surveillance to discovery and will rely heavily upon the continued development of reference materials and databases. Information regarding viral composition and function readily translates into biological and clinical applications, including the rapid sequence identification of pathogenic viruses in various sample types. However, viral metagenomic approaches often lack appropriate standards and reference materials to enable cross-study comparisons and assess potential biases which can be introduced at the various stages of collection, storage, processing, and sequence analysis. In addition, implementation of appropriate viral reference materials can aid in the benchmarking of current and development of novel assays for virus identification, discovery, and surveillance. As the field of viral metagenomics expands and standardizes, results will continue to translate into diverse applications.
Collapse
|
37
|
Chen J, Deng X, Liu Y, Tan Q, Huang G, Che Q, Guo J, Su Z. Kupffer Cells in Non-alcoholic Fatty Liver Disease: Friend or Foe? Int J Biol Sci 2020; 16:2367-2378. [PMID: 32760204 PMCID: PMC7378652 DOI: 10.7150/ijbs.47143] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing all around the world and it may become the primary cause of terminal liver disease in adults and children in the next few decades. However, the pathogenesis of NAFLD is complex, and the Food and Drug Administration (FDA) has not approved any drugs for its treatment. Kupffer cells are the key cells regulating immunity in the liver, and the effect of their unique polarization on NAFLD has received increasing attention. Kupffer cells mainly reside in the lumen of hepatic sinusoids and account for 80% to 90% of colonized macrophages in the human body. They are phagocytic cells with the capacity for self-renewal that rarely migrate from their niche in the liver, and play a crucial role in regulating and maintaining homeostasis. Upon liver damage, Kupffer cells will be activated, releasing a good deal of inflammatory cytokines and chemokines. This review summarizes the multiple roles of Kupffer cells in the pathogenesis of NAFLD, the role of infiltrating macrophages in the pathogenesis of NAFLD is also briefly discussed, and aims to provide a theoretical basis for designing an NAFLD treatment strategy with Kupffer cells as the therapeutic target.
Collapse
Affiliation(s)
- Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiuhua Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guidong Huang
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University; 15# Lequn Road, Guilin, Guangxi Zhuang Autonomous Region 54101, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech CO., LTD 5F, No.10 Yongsheng Road, Yonghe Econoic region, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
38
|
McCallin S, Suh G, Sacher J, Koeris M, Barreto M, Blasdel B, Merril C, McCallin S. PHAGE Futures Congress Meeting Summary Washington, DC January 29 to 30, 2020. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:83-86. [PMID: 36147891 PMCID: PMC9041456 DOI: 10.1089/phage.2020.29006.fre] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Shawna McCallin
- Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|