1
|
Boem F, Lamminpää I, Amedei A. Updating the Discontinuity Theory to the Extended Immunity: The Symmunobiome Concept. Eur J Immunol 2025; 55:e202451528. [PMID: 40251928 PMCID: PMC12008767 DOI: 10.1002/eji.202451528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/21/2025]
Abstract
The immune system (IS) is commonly understood as a system composed of specific cells and tissues that have evolved to contrast pathogens and defend the host. By virtue of this capacity, it has come to be considered capable of making an essential distinction, that between self versus non-self, which would contribute to a clear identity of the organism. However, in the wake of evolution and ecology, growing evidence suggests that the so-called immune system, which also evolved from symbiotic interactions with external agents, is not just a defensive system that merely protects the organism but, on the contrary, is involved in many global regulatory and homeostatic functions. Moreover, in performing these many functions, IS is not only an ensemble of host cells and tissues but functionally is constitutively determined by the interaction with a set of associated microorganisms, that is, the human microbiome. In this scenario, it is open-and-shut that the microbiome itself is a functional part of this extended immune system. Organisms and microbiomes together, therefore, form a functional whole, which constitutes a privileged form of biological organization. In light of this evidence showing the inadequacy of traditional accounts, we propose to extend and supplement the current IS conceptualization by introducing the notion of the symmunobiome. With this term, we intend to characterize the microbiome's own and unavoidable component to overall immune functionality. Therefore, we suggest a new immune system determination, articulated in three linked pillars-adaptive immunity, innate immunity, and symmunobiome-to better grasp the diverse functionality of extended immunity.
Collapse
Affiliation(s)
- Federico Boem
- Dipartimento di Scienze PoliticheGiuridiche, Sociologiche e UmanisticheUniversità degli Studi “Niccolò CusanoRomeItaly
| | - Ingrid Lamminpää
- Department of Clinical and Experimental MedicineUniversity of FlorenceFlorenceItaly
| | - Amedeo Amedei
- Department of Clinical and Experimental MedicineUniversity of FlorenceFlorenceItaly
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)FlorenceItaly
| |
Collapse
|
2
|
Ma L, Hahn ME, Karchner SI, Nacci D, Clark BW, Apprill A. Environmental and population influences on mummichog ( Fundulus heteroclitus) gut microbiomes. Microbiol Spectr 2025; 13:e0094724. [PMID: 39868785 PMCID: PMC11878049 DOI: 10.1128/spectrum.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/16/2024] [Indexed: 01/28/2025] Open
Abstract
The mummichog, Fundulus heteroclitus, an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds. To understand host population and PCB-126 exposure effects on mummichog gut microbiota, we sampled two populations of wild fish, one from a PCB-contaminated environment (New Bedford Harbor, MA, USA) and the other from a much less polluted location (Scorton Creek, MA, USA), as well as laboratory-reared F2 generation fish originating from each of these populations. We examined the microbes associated with the gut of these fish using amplicon sequencing of bacterial and archaeal small subunit ribosomal RNA genes. Fish living in the PCB-polluted site had high microbial alpha and beta diversity compared to fish from the low PCB site. These differences between wild fish were not present in laboratory-reared F2 fish that originated from the same populations. Microbial compositional differences existed between wild and lab-reared fish, with the wild fish dominated by Vibrionaceae and the lab-reared fish by Enterococceae. These results suggest that mummichog habitat and/or environmental conditions have a stronger influence on the mummichog gut microbiome compared to population or hereditary-based influences. Mummichog are important eco-evolutionary model organisms; this work reveals their importance for exploring host-environmental-microbiome dynamics. IMPORTANCE The mummichog fish, a common resident of North America's east coast estuaries, has evolved the ability to survive in waters contaminated with toxic chemicals that would typically be deadly. Our study investigates how living in and adapting to these toxic environments may affect their gut microbiomes. We compared mummichogs from a polluted area in Massachusetts with those from a non-polluted site and found significant differences in their gut microbes. Interestingly, when we raised the next generation of these fish in a lab, these differences disappeared, suggesting that the environment plays a more crucial role in shaping the gut microbiome than genetics. Understanding these changes helps shed light on how animals and their associated microbiomes adapt to pollution, which can inform conservation efforts and our broader understanding of environmental impacts on host-microbe dynamics.
Collapse
Affiliation(s)
- Lei Ma
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Sibel I. Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Diane Nacci
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Bryan W. Clark
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Amy Apprill
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Guo Y, Guo W, Chen H, Sun J, Yin Y. Mechanisms of sepsis-induced acute liver injury: a comprehensive review. Front Cell Infect Microbiol 2025; 15:1504223. [PMID: 40061452 PMCID: PMC11885285 DOI: 10.3389/fcimb.2025.1504223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/31/2025] [Indexed: 05/13/2025] Open
Abstract
Sepsis is a severe, often life-threatening form of organ dysfunction that arises from an inappropriately regulated host response to infectious pathogen exposure. As the largest gland in the body, the liver serves as a regulatory hub for metabolic, immune, and detoxification activity. It is also an early sepsis target organ such that hepatic dysfunction is observed in 34-46% of patients with sepsis. The precise mechanisms that give rise to sepsis-induced liver injury, however, remain incompletely understood. Based on the research conducted to date, dysregulated systemic inflammation, microbial translocation, microcirculatory abnormalities, cell death, metabolic dysfunction, and liver inflammation may all contribute to the liver damage that can arise in the context of septicemia. This review was developed to provide an overview summarizing the potential mechanisms underlying sepsis-induced liver injury, informing the selection of potential targets for therapeutic intervention and providing a framework for the alleviation of patient symptoms and the improvement of prognostic outcomes.
Collapse
Affiliation(s)
- Yongjing Guo
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China
| | - Wanxu Guo
- Department of Neonate, The Second Hospital of Jilin University, Changchun, China
| | - Huimin Chen
- Department of Neonate, The Second Hospital of Jilin University, Changchun, China
| | - Jian Sun
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China
| | - Yongjie Yin
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Brown AL, Koskella B, Boots M. How host-microbiome/holobiont evolution depends on whether the microbiome affects host lifespan or fecundity. J Evol Biol 2025; 38:41-49. [PMID: 39513573 DOI: 10.1093/jeb/voae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
There is overwhelming evidence that the microbiome can be important to host physiology and fitness. As such, there is interest in and some theoretical work on understanding when hosts and microbiomes (co)evolve so that microbes benefit hosts and hosts favour beneficial microbes. However, the outcome of evolution likely depends on how microbes benefit hosts. Here, we use adaptive dynamics to investigate how host and symbiont evolution depend on whether symbionts increase host lifespan or host reproduction in a simple model of host and symbiont dynamics. In addition, we investigate 2 ways hosts release (and transmit) symbionts: by releasing symbionts steadily during their lifetime or by releasing them at reproduction, potentially increasing symbionts' chances of infecting the host's offspring. The former is strict horizontal transmission, whereas the latter is also a form of indirect or "pseudovertical" transmission. Our first key result is that the evolution of symbionts that benefit host fecundity requires pseudovertical transmission, while the evolution of symbionts that benefit host lifespan does not. Furthermore, our second key result is that when investing in host benefits is costly to the free-living symbiont stage, intermediate levels of pseudovertical transmission are needed for selection to favour beneficial symbionts. This is true regardless of fitness effects because release at reproduction increases the free-living symbiont population, which increases competition for hosts. Consequently, hosts could evolve away from traits that favour beneficial symbionts. Generally, our work emphasizes the importance of different forms of vertical transmission and fitness benefits in host, microbiome, and holobiont evolution as highlighted by our prediction that the evolution of fecundity-increasing symbionts requires parent-to-offspring transmission.
Collapse
Affiliation(s)
- Alexandra L Brown
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, CA, United States
- Department of Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
5
|
Dame-Teixeira N, Do T, Deng D. The Oral Microbiome and Us. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:3-9. [PMID: 40111682 DOI: 10.1007/978-3-031-79146-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Oral and systemic human health depend on the symbiotic relationship between the human host and its microbiome. As the second most diverse site of the human microbiome, the oral cavity is instrumental in symbiotic relationships, transforming nutrients and acting as the human body's initial barrier against pathogens. However, under certain conditions, the typically beneficial oral microbiome can become harmful. Systemic inflammatory diseases can send signals through the oral-gut axis, such as cytokines and host defensins, altering gene expression and, consequently, the composition of the oral microbiome. These changes can be responsible for causing oral diseases, such as periodontitis and candidiasis. Evidence of metabolic syndrome, including obesity, hypertension, hyperglycemia, and dyslipidemia, exacerbates oral microbiome dysbiosis. On the other hand, the oral microbiota can also influence systemic health. Inflammatory processes in the gingival structures caused by a dysbiotic oral microbiome are linked to worsen glycemic levels in diabetics, premature birth, and rheumatoid arthritis, among others. The idea for this book emerged from the need to explore the multifaceted nature of this relationship in its various dimensions. We discuss multispecies characteristics from an ecological perspective, focusing on how the host affects the microbiome and vice versa. Understanding how the oral microbiome influences human health will guide tailored strategies for disease prevention and treatment, which is discussed in the last section of the book. Looking ahead, predictive health and disease models will enable personalized therapies centered on restoring the healthy human microbiome.
Collapse
Affiliation(s)
- Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil.
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Zagal D, Graham JG, Bisson J, Green SJ, Pauli GF. Medicinal Plant Microbiomes: Factors Affecting Bacterial and Fungal Community Composition. PLANTA MEDICA 2024; 90:1130-1142. [PMID: 39447601 PMCID: PMC11816503 DOI: 10.1055/a-2420-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This exploratory study was designed to identify factors implicating microbial influence on medicinal plant metabolomes. Utilizing a whole-microbiome approach, amplicon sequencing was used to identify the makeup of fungal and bacterial assemblages from endophytic (interior) and epiphytic (external) environments in two different sets of congeneric host-plant pairs, with collection of multiple samples of two medicinal plant species (Actaea racemosa, Rhodiola rosea) and two generic analogs (Actaea rubra, Rhodiola integrifolia). Diversity analysis of microbial assemblages revealed the influence of three primary factors driving variance in microbial community composition: host-plant taxonomy, the compartmentalization of microbial communities within discrete plant parts, and the scale of distance (microhabitat heterogeneity) between sampling locations. These three factors accounted for ~ 60% of variance within and between investigated microbiomes. Across all our collections, bacterial populations were more diverse than fungi (per compartment), and microbial density in epiphytic compartments (aerial parts, rhizosphere) were higher than those of endophytes (leaf and root). These comparative data point to key loci associated with variation between congeneric pairs and plant genera, providing insight into the complex and contrasting relationships found within this multi-kingdom coevolutionary relationship. Although reflective of only a limited set of botanical source materials, these data document the richness of a relatively unexplored component of the plant world and highlight the relevance of a whole-microbiome ecology-driven approach to botanical research and directed natural product investigations.
Collapse
Affiliation(s)
- Daniel Zagal
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, Illinois, USA
| | - James G Graham
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, Illinois, USA
| | - Jonathan Bisson
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, Illinois, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, Illinois, USA
| | - Guido F Pauli
- Pharmacognosy Institute and Department of Pharmaceutical Sciences, University of Illinois Chicago College of Pharmacy, Chicago, Illinois, USA
| |
Collapse
|
7
|
Koellsch C, Poulin R, Salloum PM. What shapes a microbiome? Differences in bacterial communities associated with helminth-amphipod interactions. Int J Parasitol 2024; 54:733-742. [PMID: 39209213 DOI: 10.1016/j.ijpara.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The fast technological advances of molecular tools have enabled us to uncover a new dimension hidden within parasites and their hosts: their microbiomes. Increasingly, parasitologists characterise host microbiome changes in the face of parasitic infections, revealing the potential of these microscopic fast-evolving entities to influence host-parasite interactions. However, most of the changes in host microbiomes seem to depend on the host and parasite species in question. Furthermore, we should understand the relative role of parasitic infections as microbiome modulators when compared with other microbiome-impacting factors (e.g., host size, age, sex). Here, we characterised the microbiome of a single intermediate host species infected by two parasites belonging to different phyla: the acanthocephalan Plagiorhynchus allisonae and a dilepidid cestode, both infecting Transorchestia serrulata amphipods collected simultaneously from the same locality. We used the v4 hypervariable region of the 16S rRNA prokaryotic gene to identify the hemolymph bacterial community of uninfected, acanthocephalan-infected, and cestode-infected amphipods, as well as the bacteria in the amphipods' immediate environment and in the parasites infecting them. Our results show that parasitic infections were more strongly associated with differences in host bacterial community richness than amphipod size, presence of amphipod eggs in female amphipods, and even parasite load. Amphipods infected by acanthocephalans had the most divergent bacterial community, with a marked decrease in alpha diversity compared with cestode-infected and uninfected hosts. In accordance with the species-specific nature of microbiome changes in parasitic infections, we found unique microbial taxa associating with hosts infected by each parasite species, as well as taxa only shared between a parasite species and their infected hosts. However, there were some bacterial taxa detected in all parasitised amphipods (regardless of the parasite species), but not in uninfected amphipods or the environment. We propose that shared bacteria associated with all hosts parasitised by distantly related helminths may be important either in helping host defences or parasites' success, and could thus interact with host-parasite evolution.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
8
|
Yang J, Jia S, Li T, Zhang J, Zhang Y, Hao J, Zhao J. Delayed Sowing Reduced Verticillium Wilt by Altering Soil Temperature and Humidity to Enhance Beneficial Rhizosphere Bacteria of Sunflower. Microorganisms 2024; 12:2416. [PMID: 39770619 PMCID: PMC11676687 DOI: 10.3390/microorganisms12122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Sunflower Verticillium Wilt (SVW) caused by Verticillium dahliae is a significant threat to sunflower production in China. This soilborne disease is difficult to control. It has been observed that delayed sowing reduces the severity of SVW on different varieties and across various locations. Soil was collected from multiple locations with different sowing dates to understand the underlying biological mechanisms driving this phenomenon. The soil bacterial community was characterized through 16S rRNA gene amplicon sequencing performed on the Illumina MiSeq platform, followed by comprehensive bioinformatics analysis. Microsclerotia numbers in soil were detected using both NP-10 selective medium and quantitative polymerase chain reaction (qPCR). By delaying the sowing date, the number of microsclerotia in soil and the biomass of V. dahliae colonized inside sunflower roots were reduced during the early developmental stages (V2-V6) of sunflowers. Amplicon sequencing revealed an increased abundance of bacterial genera, such as Pseudomonas, Azoarcus, and Bacillus in soil samples collected from delayed sowing plots. Five bacterial strains isolated from the delayed sowing plot exhibited strong antagonistic effects against V. dahliae. The result of the pot experiments indicated that supplying two different synthetic communities (SynComs) in the pot did increase the control efficiencies on SVW by 19.08% and 37.82% separately. Additionally, soil temperature and humidity across different sowing dates were also monitored, and a significant correlation between disease severity and environmental factors was observed. In conclusion, delayed sowing appears to decrease microsclerotia levels by recruiting beneficial rhizosphere bacteria, thereby reducing the severity of SVW.
Collapse
Affiliation(s)
- Jianfeng Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Shuo Jia
- Hinngan League Institute of Agricultural and Husbandry Sciences, Ulanhot 134000, China
| | - Tie Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Jian Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| | - Yuanyuan Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of CAAS, Hohhot 010010, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.Y.)
| |
Collapse
|
9
|
Li J, Ma Q, Jin M, Huang L, Hui D, Sardans J, Peñuelas J, O'Connor P, Zhu Y, Yang X, Wang L, Zhu YG. From grasslands to genes: exploring the major microbial drivers of antibiotic-resistance in microhabitats under persistent overgrazing. MICROBIOME 2024; 12:245. [PMID: 39578932 PMCID: PMC11583533 DOI: 10.1186/s40168-024-01965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND The extensive use of antibiotics in the global livestock industry in recent decades has accelerated the accumulation and dissemination of antibiotic-resistance genes (ARGs) within terrestrial ecosystems. This occurs due to the limited absorption of most antibiotics, leading to their release into the environment through feces and urine. This poses a significant threat to both the environment and human health. However, the response of antibiotic-resistant microorganisms and their ARGs in grasslands to prolonged grazing, as well as the primary microbial taxa driving the ARG distribution, remain poorly understood, especially within various microhabitats. In this study, we characterized ARGs in the phyllosphere, litter, and soil after decades of livestock grazing in a meadow steppe. We particularly focused on identifying the major members of the microbial community influencing ARGs and the distinction between microbial generalists and specialists. RESULTS Our findings indicate that a core set of ARGs accounted for 90% of the abundance in this plant-soil ecosystem. While the soil exhibited the highest ARG abundance, the phyllosphere, and litter displayed higher ARG diversity and diverse distribution patterns after overgrazing. Grazing increased ARG abundance by elevating the proportion of core ARGs and suppressing stochastic ARGs in the phyllosphere and litter, while it had little effect on the ARGs in the soil. Additionally, microbial generalist abundance increased, but specialist abundance decreased in the phyllosphere and litter, with no effect in the soil, under grazed conditions. Ultimately, microbial microhabitats and grazing influenced ARG community characteristics through direct (i.e., feces and other exogenous ARG input) and indirect (i.e., trampling and selective feeding) effects on nutrient availability, microbial community composition, and mobile genetic elements. The generalist community, with its broad ecological niches and phylogenetic composition, made the most significant contribution to the ARG characteristics. CONCLUSIONS This study underscores the impact of environmental disturbances on the distributional patterns of ARGs in ecosystems, mediated by the regulation of microbial generalized species. These insights enhance our understanding of microbial control over ARGs and facilitate predictions regarding the dynamics and risk of ARGs in diverse ecological niches subjected to anthropogenic disturbances. Video Abstract.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China.
| | - Quanhui Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen, Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Mingkang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lijie Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Jordi Sardans
- Global Ecology Unit, CSIC, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Josep Peñuelas
- Global Ecology Unit, CSIC, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, 08193, Spain
| | - Patrick O'Connor
- Centre for Global Food and Resources, University of Adelaide, Adelaide, 5005, Australia
| | - Yu Zhu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
- State Key Laboratory of Black Soils Conservation and Utilization & Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Ling Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen, Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
11
|
Bordenstein SR, The Holobiont Biology Network. The disciplinary matrix of holobiont biology. Science 2024; 386:731-732. [PMID: 39541453 DOI: 10.1126/science.ado2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Uniting life's seen and unseen realms guides a conceptual advance in research.
Collapse
Affiliation(s)
- Seth R Bordenstein
- Department of Biology, Eberly College of Science, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Eberly College of Science, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
12
|
Gandolfi I, Canedoli C, Rosatelli A, Covino S, Cappelletti D, Sebastiani B, Tatangelo V, Corengia D, Pittino F, Padoa-Schioppa E, Báez-Matus X, Hernández L, Seeger M, Saati-Santamaría Z, García-Fraile P, López-Mondéjar R, Ambrosini R, Papacchini M, Franzetti A. Microbiomes of urban trees: unveiling contributions to atmospheric pollution mitigation. Front Microbiol 2024; 15:1470376. [PMID: 39588101 PMCID: PMC11586189 DOI: 10.3389/fmicb.2024.1470376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Urban trees are crucial in delivering essential ecosystem services, including air pollution mitigation. This service is influenced by plant associated microbiomes, which can degrade hydrocarbons, support tree health, and influence ecological processes. Yet, our understanding of tree microbiomes remains limited, thus affecting our ability to assess and quantify the ecosystem services provided by trees as complex systems. The main hypothesis of this work was that tree microbiomes concur to hydrocarbon biodegradation, and was tested through three case studies, which collectively investigated two tree micro-habitats (phyllosphere and tree cavity organic soil-TCOS) under various conditions representing diverse ecological scenarios, by applying different culture-based and molecular techniques and at different scales. The integration of all results provided a more comprehensive understanding of the role of microbiomes in urban trees. Firstly, bacterial strains isolated from the phyllosphere of Quercus ilex were characterized, indicating the presence of Plant-Growth Promoting bacteria and strains able to catabolize PAHs, particularly naphthalene and phenanthrene. Secondly, naphthalene biodegradation on artificially spiked Hedera helix leaves was quantified in greenhouse experiments on inoculated and untreated plants. The persistence of the inoculated strain and community structure of epiphytic bacteria were assessed by Illumina sequencing of V5-V6 hypervariable regions of 16S rRNA gene. Results showed that naphthalene degradation was initially faster on inoculated plants but later the degradation rates became similar, probably because bacterial populations with hydrocarbon-degrading abilities gradually developed also on non-inoculated plants. Finally, we explored bacterial and fungal biodiversity hosted by TCOS samples, collected from six large trees located in an urban park and belonging to different species. Microbial communities were characterized by Illumina sequencing of V5-V6 hypervariable regions of bacterial gene 16S rRNA and of fungal ITS1. Results indicated TCOS as a distinct substrate, whose microbiome is determined both by the host tree and by canopy environmental conditions and has a pronounced aerobic hydrocarbon degradation potential. Overall, a better assessment of biodiversity associated with trees and the subsequent provision of ecosystem services constitute a first step toward developing future new microbe-driven sustainable solutions, especially in terms of support for urban green planning and management policy.
Collapse
Affiliation(s)
- Isabella Gandolfi
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Claudia Canedoli
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Asia Rosatelli
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Covino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - David Cappelletti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Bartolomeo Sebastiani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Valeria Tatangelo
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | | | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Emilio Padoa-Schioppa
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Ximena Báez-Matus
- Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millenium Nucleus Bioproducts, Genomics and Environmental Genomics (BioGEM), Valparaíso, Chile
| | - Lisette Hernández
- Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millenium Nucleus Bioproducts, Genomics and Environmental Genomics (BioGEM), Valparaíso, Chile
| | - Michael Seeger
- Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Millenium Nucleus Bioproducts, Genomics and Environmental Genomics (BioGEM), Valparaíso, Chile
| | - Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| | - Rubén López-Mondéjar
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Maddalena Papacchini
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, Italian National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
13
|
Kranke N. Do concepts of individuality account for individuation practices in studies of host-parasite systems? A modeling account of biological individuality. Theory Biosci 2024; 143:279-292. [PMID: 39269598 PMCID: PMC11604681 DOI: 10.1007/s12064-024-00426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
In recent discussions, the widespread conviction that scientific individuation practices are governed by theories and concepts of biological individuality has been challenged, particularly by advocates of practice-based approaches. This discussion raises questions about the relationship between individuation practices and concepts of individuality. In this paper, I discuss four studies of host-parasite systems and analyze the respective individuation practices to see whether they correspond to established concepts of biological individuality. My analysis suggests that scientists individuate biological systems on different levels of organization and that the researchers' respective emphasis on one of the levels depends on the explanandum and research context as well as epistemic aims and purposes. It thus makes sense to use different concepts of individuality to account for different individuation practices. However, not all individuation practices are represented equally well by concepts of biological individuality. To account for this observation, I propose that concepts of individuality should be understood as abstracted, idealized, or simplified models that represent only certain aspects of scientific practice. A modeling account suggests a pluralistic view of concepts of biological individuality that not only allows the coexistence of different kinds of individuality (e.g., evolutionary individuality, immunological individuality, ecological individuality) but also of normative and descriptive concepts.
Collapse
Affiliation(s)
- Nina Kranke
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Stefan-Meier-Str. 76, 79104, Freiburg, Germany.
| |
Collapse
|
14
|
Kim B, Jeon HJ, Rhee MH, Kim JH, Han JE. The effects of Panax ginseng on growth enhancement, innate immunity, and microbiome profiling in Penaeus vannamei. J Ginseng Res 2024; 48:552-558. [PMID: 39583171 PMCID: PMC11583340 DOI: 10.1016/j.jgr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 11/26/2024] Open
Abstract
Background In aquaculture, feed additives are widely explored. Among them, Panax ginseng Meyer, a natural herbal remedy, has demonstrated its efficacy in many aquaculture species. However, research regarding Penaeus vannamei shrimp, one of the most significant species in aquaculture, remains limited. Methods This study investigates the benefits of P. ginseng for P. vannamei, specifically its effects on growth, innate immunity, and shrimp microbiome. Juvenile P. vannamei were fed commercial feed mixed with red ginseng extract at 5 concentrations (0.00 %, 0.05 %, 0.10 %, 0.50 %, and 1.00 %) for 6 weeks. Body weight was measured on days 21 and 42. On day 42, three shrimp per group were selected for further analysis. Results In the growth study, Group 0.10 % displayed significantly improved FBW, WG, SGR, and FCR compared to those in Group 0.00 % on day 42. The qPCR assay showed significantly higher IGF-BP gene expression in Groups 0.05 %, 0.10 %, and 1.00 % compared to Group 0.00 %. In the innate immunity analysis, SOD activity was significantly higher in Groups 0.05 % and 0.50 % compared to that in Group 0.00 %. In the bacterial community analysis, Group 0.10 % exhibited higher Flavobacteriaceae and lower Vibrionaceae at the family level compared to Group 0.00 %. At the genus level, Group 0.10 % showed increased unspecified Flavobacteriaceae and decreased Vibrio compared to Group 0.00 %. Conclusion Adding P. ginseng to the feed enhanced growth, immune response, and microbiome composition in P. vannamei. Further research on refining dosage levels and utilizing red ginseng residues could boost commercial productivity and economic benefits in aquaculture practices.
Collapse
Affiliation(s)
- Bumkeun Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Jin Jeon
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
15
|
Cheng S, Gong X, Xue W, Kardol P, Delgado-Baquerizo M, Ling N, Chen X, Liu M. Evolutionarily conserved core microbiota as an extended trait in nitrogen acquisition strategy of herbaceous species. THE NEW PHYTOLOGIST 2024; 244:1570-1584. [PMID: 39253787 DOI: 10.1111/nph.20118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Microbiota have co-evolved with plants over millions of years and are intimately linked to plants, ranging from symbiosis to pathogenesis. However, our understanding of the existence of a shared core microbiota across phylogenetically diverse plants remains limited. A common garden field experiment was conducted to investigate the rhizosphere microbial communities of phylogenetically contrasting herbaceous families. Through a combination of metagenomic sequencing, analysis of plant economic traits, and soil biochemical properties, we aimed to elucidate the eco-evolutionary role of the core rhizosphere microbiota in light of plant economic strategies. We identified a conserved core microbiota consisting of 278 taxa that was closely associated with the phylogeny of the plants studied. This core microbiota actively participated in multiple nitrogen metabolic processes and showed a strong correlation with the functional potential of rhizosphere nitrogen cycling, thereby serving as an extended trait in the plant nitrogen acquisition. Furthermore, our examination of simulated species loss revealed the crucial role of the core microbiota in maintaining the rhizosphere community's network stability. Our study highlighted that the core microbiota, which exhibited a phylogenetically conserved association with plants, potentially represented an extension of the plant phenotype and played an important role in nitrogen acquisition. These findings held implications for the utilization of microbiota-mediated plant functions.
Collapse
Affiliation(s)
- Saisai Cheng
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Gong
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenfeng Xue
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Paul Kardol
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Science, 75651, Uppsala, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90751, Umeå, Sweden
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, 41012, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Ning Ling
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiaoyun Chen
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manqiang Liu
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
16
|
Chung SSW, Cheung K, Arromrak BS, Li Z, Tse CM, Gaitán-Espitia JD. The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution. ENVIRONMENTAL MICROBIOME 2024; 19:74. [PMID: 39397007 PMCID: PMC11479550 DOI: 10.1186/s40793-024-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world. Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient in Hong Kong.
Collapse
Affiliation(s)
- Sheena Suet-Wah Chung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Bovern Suchart Arromrak
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhenzhen Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Cham Man Tse
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
17
|
Chakraborty N, Hoke A, Campbell R, Holmes-Hampton G, Kumar VP, Moyler C, Gautam A, Hammamieh R, Ghosh SP. Ionizing Radiation Dose Differentially Affects the Host-Microbe Relationship over Time. Microorganisms 2024; 12:1995. [PMID: 39458305 PMCID: PMC11509422 DOI: 10.3390/microorganisms12101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microorganisms that colonize in or on a host play significant roles in regulating the host's immunological fitness and bioenergy production, thus controlling the host's stress responses. Radiation elicits a pro-inflammatory and bioenergy-expensive state, which could influence the gut microbial compositions and, therefore, the host-microbe bidirectional relationship. To test this hypothesis, young adult mice were exposed to total body irradiation (TBI) at doses of 9.5 Gy and 11 Gy, respectively. The irradiated mice were euthanized on days 1, 3, and 9 post TBI, and their descending colon contents (DCCs) were collected. The 16S ribosomal RNAs from the DCCs were screened to find the differentially enriched bacterial taxa due to TBI. Subsequently, these data were analyzed to identify the metagenome-specific biofunctions. The bacterial community of the DCCs showed increased levels of diversity as time progressed following TBI. The abundance profile was the most divergent at day 9 post 11 Gy TBI. For instance, an anti-inflammatory and energy-harvesting bacterium, namely, Firmicutes, became highly abundant and co-expressed in the DCC with pro-inflammatory Deferribacteres at day 9 post 11 Gy TBI. A systems evaluation found a diverging trend in the regulation profiles of the functional networks that were linked to the bacteria and metabolites of the DCCs, respectively. Additionally, the network clusters associated with lipid metabolism and bioenergy synthesis were found to be activated in the DCC bacteria but inhibited in the metabolite space at day 9 post 11 Gy. Taking these results together, the present analysis indicated a disrupted mouse-bacteria symbiotic relationship as time progressed after lethal irradiation. This information can help develop precise interventions to ameliorate the symptoms triggered by TBI.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Allison Hoke
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Ross Campbell
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| | - Vidya P. Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| | - Candace Moyler
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
- The Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (N.C.); (A.H.); (R.C.); (C.M.); (A.G.)
| | - Sanchita P. Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences (USUHS), Bethesda, MD 20889, USA; (G.H.-H.); (V.P.K.)
| |
Collapse
|
18
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
19
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
20
|
Devkota AR, Wilson T, Kaundal A. Soil and root microbiome analysis and isolation of plant growth-promoting bacteria from hybrid buffaloberry ( Shepherdia utahensis 'Torrey') across three locations. Front Microbiol 2024; 15:1396064. [PMID: 39314875 PMCID: PMC11417967 DOI: 10.3389/fmicb.2024.1396064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
The effects of climate change are becoming increasingly hazardous for our ecosystem. Climate resilient landscaping, which promotes the use of native plants, has the potential to simultaneously decrease the rate of climate change, enhance climate resilience, and combat biodiversity losses. Native plants and their associated microbiome form a holo-organism; interaction between plants and microbes is responsible for plants' growth and proper functioning. In this study, we were interested in exploring the soil and root microbiome composition associated with Shepherdia utahensis, a drought hardy plant proposed for low water use landscaping, which is the hybrid between two native hardy shrubs of Utah, S. rotudifolia and S. argentea. The bulk soil, rhizosphere, root, and nodule samples of the hybrid Shepherdia plants were collected from three locations in Utah: the Logan Campus, the Greenville farm, and the Kaysville farm. The microbial diversity analysis was conducted, and plant growth-promoting bacteria were isolated and characterized from the rhizosphere. The results suggest no difference in alpha diversity between the locations; however, the beta diversity analysis suggests the bacterial community composition of bulk soil and nodule samples are different between the locations. The taxonomic classification suggests Proteobacteria and Actinobacteriota are the dominant species in bulk soil and rhizosphere, and Actinobacteriota is solely found in root and nodule samples. However, the composition of the bacterial community was different among the locations. There was a great diversity in the genus composition in bulk soil and rhizosphere samples among the locations; however, Frankia was the dominant genus in root and nodule samples. Fifty-nine different bacteria were isolated from the rhizosphere and tested for seven plant growth-promoting (PGP) traits, such as the ability to fix nitrogen, phosphates solubilization, protease activity, siderophore, Indole Acetic Acid (IAA) and catalase production, and ability to use ACC as nitrogen source. All the isolates produced some amount of IAA. Thirty-one showed at least four PGP traits and belonged to Stenotrophomonas, Chryseobacterium, Massilia, Variovorax, and Pseudomonas. We shortlisted 10 isolates that showed all seven PGP traits and will be tested for plant growth promotion.
Collapse
Affiliation(s)
| | | | - Amita Kaundal
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
21
|
Lipowska MM, Sadowska ET, Kohl KD, Koteja P. Experimental Evolution of a Mammalian Holobiont? Genetic and Maternal Effects on the Cecal Microbiome in Bank Voles Selectively Bred for Herbivorous Capability. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:274-291. [PMID: 39680902 DOI: 10.1086/732781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractMammalian herbivory represents a complex adaptation requiring evolutionary changes across all levels of biological organization, from molecules to morphology to behavior. Explaining the evolution of such complex traits represents a major challenge in biology, as it is simultaneously muddled and enlightened by a growing awareness of the crucial role of symbiotic associations in shaping organismal adaptations. The concept of hologenomic evolution includes the partnered unit of the holobiont, the host with its microbiome, as a selection unit that may undergo adaptation. Here, we test some of the assumptions underlying the concept of hologenomic evolution using a unique experimental evolution model: lines of the bank vole (Myodes [=Clethrionomys] glareolus) selected for increased ability to cope with a low-quality herbivorous diet and unselected control lines. Results from a complex nature-nurture design, in which we combined cross-fostering between the selected and control lines with dietary treatment, showed that the herbivorous voles harbored a cecal microbiome with altered membership and structure and changed abundances of several phyla and genera regardless of the origin of their foster mothers. Although the differences were small, they were statistically significant and partially robust to changes in diet and housing conditions. Microbial characteristics also correlated with selection-related traits at the level of individual variation. Thus, the results support the hypothesis that selection on a host performance trait leads to genetic changes in the host that promote the maintenance of a beneficial microbiome. Such a result is consistent with some of the assumptions underlying the concept of hologenomic evolution.
Collapse
|
22
|
Wei X, Han B, Zhang J, Shao X. Shifts in Structure and Assembly Processes of Root Endophytic Community Caused by Climate Warming and Precipitation Increase in Alpine Grassland. Microorganisms 2024; 12:1780. [PMID: 39338455 PMCID: PMC11434594 DOI: 10.3390/microorganisms12091780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Climate change poses great challenges to the survival of plants. Plant endophytes play important roles in improving plant adaptability. However, our knowledge of the effects of climate change on endophytic community structures is limited. Relying on a field experimental platform simulating climate warming, precipitation increases, and their combination in an alpine grassland, the root endophytic bacterial community structures and assembly processes of three coexisting plant species (Elymus nutans, Kobresia humilis, and Melissilus ruthenicus) were measured. The results indicated that Proteobacteria was the dominant phylum, with a relative abundance ranging from 50% to 80%, followed by Actinobacteria and Bacteroidetes. Bacterial diversity decreased significantly under the combined treatment for all three plant species, with the largest reduction observed in E. nutans. The climate manipulation treatments had a minimal effect on the endophytic bacterial community structures. The relative abundance of Burkholderiaceae increased significantly under the combined treatment for the three plant species. Moreover, the endophytic community assembly processes changed from stochastic dominated under control plots to deterministic dominated under the combined plots for E. nutans, while this shift was reversed for M. ruthenicus. The root endophytic bacterial community was affected by the soil's available nitrogen and stoichiometric ratio. These results revealed that the sensitivity of endophyte community structures to climate change varies with host plant species, which has implications for plant fitness differences.
Collapse
Affiliation(s)
- Xiaoting Wei
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China;
| | - Bing Han
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jinxin Zhang
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China;
| | - Xinqing Shao
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
23
|
Koellsch C, Poulin R, Salloum PM. Microbial artists: the role of parasite microbiomes in explaining colour polymorphism among amphipods and potential link to host manipulation. J Evol Biol 2024; 37:1009-1022. [PMID: 38989853 DOI: 10.1093/jeb/voae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Parasite infections are increasingly reported to change the microbiome of the parasitized hosts, while parasites bring their own microbes to what can be a multi-dimensional interaction. For instance, a recent hypothesis suggests that the microbial communities harboured by parasites may play a role in the well-documented ability of many parasites to manipulate host phenotype, and explain why the degree to which host phenotype is altered varies among conspecific parasites. Here, we explored whether the microbiomes of both hosts and parasites are associated with variation in host manipulation by parasites. Using colour quantification methods applied to digital images, we investigated colour variation among uninfected Transorchestia serrulata amphipods, as well as amphipods infected with Plagiorhynchus allisonae acanthocephalans and with a dilepidid cestode. We then characterized the bacteriota of amphipod hosts and of their parasites, looking for correlations between host phenotype and the bacterial taxa associated with hosts and parasites. We found large variation in amphipod colours, and weak support for a direct impact of parasites on the colour of their hosts. Conversely, and most interestingly, the parasite's bacteriota was more strongly correlated with colour variation among their amphipod hosts, with potential impact of amphipod-associated bacteria as well. Some bacterial taxa found associated with amphipods and parasites may have the ability to synthesize pigments, and we propose they may interact with colour determination in the amphipods. This study provides correlational support for an association between the parasite's microbiome and the evolution of host manipulation by parasites and host-parasite interactions more generally.
Collapse
Affiliation(s)
- Célia Koellsch
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
24
|
Kothe CI, Carøe C, Mazel F, Zilber D, Cruz-Morales P, Mohellibi N, Evans JD. Novel misos shape distinct microbial ecologies: opportunities for flavourful sustainable food innovation. Food Res Int 2024; 189:114490. [PMID: 38876584 DOI: 10.1016/j.foodres.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
Fermentation is resurgent around the world as people seek healthier, more sustainable, and tasty food options. This study explores the microbial ecology of miso, a traditional Japanese fermented paste, made with novel regional substrates to develop new plant-based foods. Eight novel miso varieties were developed using different protein-rich substrates: yellow peas, Gotland lentils, and fava beans (each with two treatments: standard and nixtamalisation), as well as rye bread and soybeans. The misos were produced at Noma, a restaurant in Copenhagen, Denmark. Samples were analysed with biological and technical triplicates at the beginning and end of fermentation. We also incorporated in this study six samples of novel misos produced following the same recipe at Inua, a former affiliate restaurant of Noma in Tokyo, Japan. To analyse microbial community structure and diversity, metabarcoding (16S and ITS) and shotgun metagenomic analyses were performed. The misos contain a greater range of microbes than is currently described for miso in the literature. The composition of the novel yellow pea misos was notably similar to the traditional soybean ones, suggesting they are a good alternative, which supports our culinary collaborators' sensory conclusions. For bacteria, we found that overall substrate had the strongest effect, followed by time, treatment (nixtamalisation), and geography. For fungi, there was a slightly stronger effect of geography and a mild effect of substrate, and no significant effects for treatment or time. Based on an analysis of metagenome-assembled genomes (MAGs), strains of Staphylococccus epidermidis differentiated according to substrate. Carotenoid biosynthesis genes in these MAGs appeared in strains from Japan but not from Denmark, suggesting a possible gene-level geographical effect. The benign and possibly functional presence of S. epidermidis in these misos, a species typically associated with the human skin microbiome, suggests possible adaptation to the miso niche, and the flow of microbes between bodies and foods in certain fermentation as more common than is currently recognised. This study improves our understanding of miso ecology, highlights the potential for developing novel misos using diverse local ingredients, and suggests how fermentation innovation can contribute to studies of microbial ecology and evolution.
Collapse
Affiliation(s)
- Caroline Isabel Kothe
- Sustainable Food Innovation Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | | | - Florent Mazel
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | - David Zilber
- Novonesis, Hørsholm, Denmark; Restaurant Noma, Copenhagen, Denmark
| | - Pablo Cruz-Morales
- Yeast Natural Products, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark
| | - Nacer Mohellibi
- Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, France
| | - Joshua D Evans
- Sustainable Food Innovation Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
25
|
Gilbert SF. Inter-kingdom communication and the sympoietic way of life. Front Cell Dev Biol 2024; 12:1427798. [PMID: 39071805 PMCID: PMC11275584 DOI: 10.3389/fcell.2024.1427798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.
Collapse
Affiliation(s)
- Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Evolutionary Phenomics Group, Biotechnology Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Caetano-Anollés G. Are Viruses Taxonomic Units? A Protein Domain and Loop-Centric Phylogenomic Assessment. Viruses 2024; 16:1061. [PMID: 39066224 PMCID: PMC11281659 DOI: 10.3390/v16071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Virus taxonomy uses a Linnaean-like subsumption hierarchy to classify viruses into taxonomic units at species and higher rank levels. Virus species are considered monophyletic groups of mobile genetic elements (MGEs) often delimited by the phylogenetic analysis of aligned genomic or metagenomic sequences. Taxonomic units are assumed to be independent organizational, functional and evolutionary units that follow a 'natural history' rationale. Here, I use phylogenomic and other arguments to show that viruses are not self-standing genetically-driven systems acting as evolutionary units. Instead, they are crucial components of holobionts, which are units of biological organization that dynamically integrate the genetics, epigenetic, physiological and functional properties of their co-evolving members. Remarkably, phylogenomic analyses show that viruses share protein domains and loops with cells throughout history via massive processes of reticulate evolution, helping spread evolutionary innovations across a wider taxonomic spectrum. Thus, viruses are not merely MGEs or microbes. Instead, their genomes and proteomes conduct cellularly integrated processes akin to those cataloged by the GO Consortium. This prompts the generation of compositional hierarchies that replace the 'is-a-kind-of' by a 'is-a-part-of' logic to better describe the mereology of integrated cellular and viral makeup. My analysis demands a new paradigm that integrates virus taxonomy into a modern evolutionarily centered taxonomy of organisms.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Meng XR, Gan Y, Liao LJ, Li CN, Wang R, Liu M, Deng JY, Chen Y. How the root bacterial community of Ficus tikoua responds to nematode infection: enrichments of nitrogen-fixing and nematode-antagonistic bacteria in the parasitized organs. FRONTIERS IN PLANT SCIENCE 2024; 15:1374431. [PMID: 39006956 PMCID: PMC11239514 DOI: 10.3389/fpls.2024.1374431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
Plant-parasitic nematodes (PPNs) are among the most damaging pathogens to host plants. Plants can modulate their associated bacteria to cope with nematode infections. The tritrophic plant-nematode-microbe interactions are highly taxa-dependent, resulting in the effectiveness of nematode agents being variable among different host plants. Ficus tikoua is a versatile plant with high application potential for fruits or medicines. In recent years, a few farmers have attempted to cultivate this species in Sichuan, China, where parasitic nematodes are present. We used 16S rRNA genes to explore the effects of nematode parasitism on root-associated bacteria in this species. Our results revealed that nematode infection had effects on both endophytic bacterial communities and rhizosphere communities in F. tikoua roots, but on different levels. The species richness increased in the rhizosphere bacterial communities of infected individuals, but the community composition remained similar as compared with that of healthy individuals. Nematode infection induces a deterministic assembly process in the endophytic bacterial communities of parasitized organs. Significant taxonomic and functional changes were observed in the endophytic communities of root knots. These changes were characterized by the enrichment of nitrogen-fixing bacteria, including Bradyrhizobium, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, and nematode-antagonistic bacteria, such as Pseudonocardia, Pseudomonas, Steroidobacter, Rhizobacter, and Ferrovibrio. Our results would help the understanding of the tritrophic plant-nematode-bacterium interactions in host plants other than dominant crops and vegetables and would provide essential information for successful nematode management when F. tikoua were cultivated on large scales.
Collapse
Affiliation(s)
- Xiang-Rui Meng
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Yu Gan
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Li-Jun Liao
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Chao-Nan Li
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Mei Liu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Jun-Yin Deng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yan Chen
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| |
Collapse
|
28
|
Larzul C, Estellé J, Borey M, Blanc F, Lemonnier G, Billon Y, Thiam MG, Quinquis B, Galleron N, Jardet D, Lecardonnel J, Plaza Oñate F, Rogel-Gaillard C. Driving gut microbiota enterotypes through host genetics. MICROBIOME 2024; 12:116. [PMID: 38943206 PMCID: PMC11214205 DOI: 10.1186/s40168-024-01827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/01/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Population stratification based on interindividual variability in gut microbiota composition has revealed the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble enterotypes, and to provide clues on enterotype functional differences and their links with growth traits. RESULTS We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecutive generations. Response to selection across three generations revealed, per line, an increase in the prevalence of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to general nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosynthesis and degradation, respectively. CONCLUSION We experimentally demonstrated that enterotypes are functional ecosystems that can be selected as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, and enterotype functionalities to understand holobiont shaping and adaptation. Video Abstract.
Collapse
Grants
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
Collapse
Affiliation(s)
- Catherine Larzul
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, 31326, France.
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France.
| | - Marion Borey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Gaëtan Lemonnier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | | | - Benoît Quinquis
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, 78350, France
| | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Jérôme Lecardonnel
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | | |
Collapse
|
29
|
Hu B, Wang JM, Zhang QX, Xu J, Xing YN, Wang B, Han SY, He HX. Enterococcus faecalis provides protection during scavenging in carrion crow ( Corvus corone). Zool Res 2024; 45:451-463. [PMID: 38583936 PMCID: PMC11188602 DOI: 10.24272/j.issn.2095-8137.2023.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/29/2023] [Indexed: 04/09/2024] Open
Abstract
The gut microbiota significantly influences host physiology and provides essential ecosystem services. While diet can affect the composition of the gut microbiota, the gut microbiota can also help the host adapt to specific dietary habits. The carrion crow ( Corvus corone), an urban facultative scavenger bird, hosts an abundance of pathogens due to its scavenging behavior. Despite this, carrion crows infrequently exhibit illness, a phenomenon related to their unique physiological adaptability. At present, however, the role of the gut microbiota remains incompletely understood. In this study, we performed a comparative analysis using 16S rRNA amplicon sequencing technology to assess colonic content in carrion crows and 16 other bird species with different diets in Beijing, China. Our findings revealed that the dominant gut microbiota in carrion crows was primarily composed of Proteobacteria (75.51%) and Firmicutes (22.37%). Significant differences were observed in the relative abundance of Enterococcus faecalis among groups, highlighting its potential as a biomarker of facultative scavenging behavior in carrion crows. Subsequently, E. faecalis isolated from carrion crows was transplanted into model mice to explore the protective effects of this bacterial community against Salmonella enterica infection. Results showed that E. faecalis down-regulated the expression of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and interleukin 6 (IL-6), prevented S. enterica colonization, and regulated the composition of gut microbiota in mice, thereby modulating the host's immune regulatory capacity. Therefore, E. faecalis exerts immunoregulatory and anti-pathogenic functions in carrion crows engaged in scavenging behavior, offering a representative case of how the gut microbiota contributes to the protection of hosts with specialized diets.
Collapse
Affiliation(s)
- Bin Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Min Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Xun Zhang
- Beijing Milu Ecological Research Center, Beijing 102600, China
| | - Jing Xu
- Beijing Capital International Airport Co., Ltd., Beijing 101300, China
| | - Ya-Nan Xing
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shu-Yi Han
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xuan He
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| |
Collapse
|
30
|
Nanes Sarfati D, Xue Y, Song ES, Byrne A, Le D, Darmanis S, Quake SR, Burlacot A, Sikes J, Wang B. Coordinated wound responses in a regenerative animal-algal holobiont. Nat Commun 2024; 15:4032. [PMID: 38740753 DOI: 10.1038/s41467-024-48366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Animal regeneration involves coordinated responses across cell types throughout the animal body. In endosymbiotic animals, whether and how symbionts react to host injury and how cellular responses are integrated across species remain unexplored. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis sp. green algae and can regenerate entire bodies from tissue fragments. We show that animal injury causes a decline in the photosynthetic efficiency of the symbiotic algae, alongside two distinct, sequential waves of transcriptional responses in acoel and algal cells. The initial algal response is characterized by the upregulation of a cohort of photosynthesis-related genes, though photosynthesis is not necessary for regeneration. A conserved animal transcription factor, runt, is induced after injury and required for acoel regeneration. Knockdown of Cl-runt dampens transcriptional responses in both species and further reduces algal photosynthetic efficiency post-injury. Our results suggest that the holobiont functions as an integrated unit of biological organization by coordinating molecular networks across species through the runt-dependent animal regeneration program.
Collapse
Affiliation(s)
| | - Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eun Sun Song
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | | | - Daniel Le
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Adrien Burlacot
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - James Sikes
- Department of Biology, University of San Francisco, San Francisco, CA, USA.
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
31
|
Ma ZS, Shi P. Critical complex network structures in animal gastrointestinal tract microbiomes. Anim Microbiome 2024; 6:23. [PMID: 38702785 PMCID: PMC11067214 DOI: 10.1186/s42523-024-00291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 01/21/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Living things from microbes to their hosts (plants, animals and humans) interact with each other, and their relationships may be described with complex network models. The present study focuses on the critical network structures, specifically the core/periphery nodes and backbones (paths of high-salience skeletons) in animal gastrointestinal microbiomes (AGMs) networks. The core/periphery network (CPN) mirrors nearly ubiquitous nestedness in ecological communities, particularly dividing the network as densely interconnected core-species and periphery-species that only sparsely linked to the core. Complementarily, the high-salience skeleton network (HSN) mirrors the pervasive asymmetrical species interactions (strictly microbial species correlations), particularly forming heterogenous pathways in AGM networks with both "backbones" and "rural roads" (regular or weak links). While the cores and backbones can act as critical functional structures, the periphery nodes and weak links may stabilize network functionalities through redundancy. RESULTS Here, we build and analyze 36 pairs of CPN/HSN for the AGMs based on 4903 gastrointestinal-microbiome samples containing 473,359 microbial species collected from 318 animal species covering all vertebrate and four major invertebrate classes. The network analyses were performed at host species, order, class, phylum, kingdom scales and diet types with selected and comparative taxon pairs. Besides diet types, the influence of host phylogeny, measured with phylogenetic (evolutionary) timeline or "age", were integrated into the analyses. For example, it was found that the evolutionary trends of three primary microbial phyla (Bacteroidetes/Firmicutes/Proteobacteria) and their pairwise abundance-ratios in animals do not mirror the patterns in modern humans phylogenetically, although they are consistent in terms of diet types. CONCLUSIONS Overall, the critical network structures of AGMs are qualitatively and structurally similar to those of the human gut microbiomes. Nevertheless, it appears that the critical composition (the three phyla of Bacteroidetes, Firmicutes, and Proteobacteria) in human gut microbiomes has broken the evolutionary trend from animals to humans, possibly attributable to the Anthropocene epoch and reflecting the far-reaching influences of agriculture and industrial revolution on the human gut microbiomes. The influences may have led to the deviations between modern humans and our hunter-gather ancestors and animals.
Collapse
Affiliation(s)
- Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
- Faculty of Arts and Science, Harvard Forest, Harvard University, Cambridge, MA, 02138, USA.
| | - Peng Shi
- Evolutionary and Functional Genomics Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
32
|
Li J, Jin MK, Huang L, Liu ZF, Wang T, Chang RY, Op de Beeck M, Lambers H, Hui D, Xiao KQ, Chen QL, Sardans J, Peñuelas J, Yang XR, Zhu YG. Assembly and succession of the phyllosphere microbiome and nutrient-cycling genes during plant community development in a glacier foreland. ENVIRONMENT INTERNATIONAL 2024; 187:108688. [PMID: 38685158 DOI: 10.1016/j.envint.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The phyllosphere, particularly the leaf surface of plants, harbors a diverse range of microbiomes that play a vital role in the functioning of terrestrial ecosystems. However, our understanding of microbial successions and their impact on functional genes during plant community development is limited. In this study, considering core and satellite microbial taxa, we characterized the phyllosphere microbiome and functional genes in various microhabitats (i.e., leaf litter, moss and plant leaves) across the succession of a plant community in a low-altitude glacier foreland. Our findings indicate that phyllosphere microbiomes and associated ecosystem stability increase during the succession of the plant community. The abundance of core taxa increased with plant community succession and was primarily governed by deterministic processes. In contrast, satellite taxa abundance decreased during plant community succession and was mainly governed by stochastic processes. The abundance of microbial functional genes (such as C, N, and P hydrolysis and fixation) in plant leaves generally increased during the plant community succession. However, in leaf litter and moss leaves, only a subset of functional genes (e.g., C fixation and degradation, and P mineralization) showed a tendency to increase with plant community succession. Ultimately, the community of both core and satellite taxa collaboratively influenced the characteristics of phyllosphere nutrient-cycling genes, leading to the diverse profiles and fluctuating abundance of various functional genes during plant community succession. These findings offer valuable insights into the phyllosphere microbiome and plant-microbe interactions during plant community development, advancing our understanding of the succession and functional significance of the phyllosphere microbial community.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Lijie Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
| | - Zhan-Feng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tao Wang
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Rui-Ying Chang
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Michiel Op de Beeck
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia; Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plan-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Ke-Qing Xiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Raulo A, Bürkner PC, Finerty GE, Dale J, Hanski E, English HM, Lamberth C, Firth JA, Coulson T, Knowles SCL. Social and environmental transmission spread different sets of gut microbes in wild mice. Nat Ecol Evol 2024; 8:972-985. [PMID: 38689017 PMCID: PMC11090834 DOI: 10.1038/s41559-024-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/01/2024] [Indexed: 05/02/2024]
Abstract
Gut microbes shape many aspects of organismal biology, yet how these key bacteria transmit among hosts in natural populations remains poorly understood. Recent work in mammals has emphasized either transmission through social contacts or indirect transmission through environmental contact, but the relative importance of different routes has not been directly assessed. Here we used a novel radio-frequency identification-based tracking system to collect long-term high-resolution data on social relationships, space use and microhabitat in a wild population of mice (Apodemus sylvaticus), while regularly characterizing their gut microbiota with 16S ribosomal RNA profiling. Through probabilistic modelling of the resulting data, we identify positive and statistically distinct signals of social and environmental transmission, captured by social networks and overlap in home ranges, respectively. Strikingly, microorganisms with distinct biological attributes drove these different transmission signals. While the social network effect on microbiota was driven by anaerobic bacteria, the effect of shared space was most influenced by aerotolerant spore-forming bacteria. These findings support the prediction that social contact is important for the transfer of microorganisms with low oxygen tolerance, while those that can tolerate oxygen or form spores may be able to transmit indirectly through the environment. Overall, these results suggest social and environmental transmission routes can spread biologically distinct members of the mammalian gut microbiota.
Collapse
Affiliation(s)
- Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Computing, University of Turku, Turku, Finland.
| | | | - Genevieve E Finerty
- Department of Biology, University of Oxford, Oxford, UK
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behaviour, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| | - Jarrah Dale
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Holly M English
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Curt Lamberth
- Department of Biology, University of Oxford, Oxford, UK
| | - Josh A Firth
- Department of Biology, University of Oxford, Oxford, UK
- School of Biology, University of Leeds, Leeds, UK
| | - Tim Coulson
- Department of Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
34
|
Schwob G, Cabrol L, Saucède T, Gérard K, Poulin E, Orlando J. Unveiling the co-phylogeny signal between plunderfish Harpagifer spp. and their gut microbiomes across the Southern Ocean. Microbiol Spectr 2024; 12:e0383023. [PMID: 38441978 PMCID: PMC10986581 DOI: 10.1128/spectrum.03830-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Understanding the factors that sculpt fish gut microbiome is challenging, especially in natural populations characterized by high environmental and host genomic complexity. However, closely related hosts are valuable models for deciphering the contribution of host evolutionary history to microbiome assembly, through the underscoring of phylosymbiosis and co-phylogeny patterns. Here, we propose that the recent diversification of several Harpagifer species across the Southern Ocean would allow the detection of robust phylogenetic congruence between the host and its microbiome. We characterized the gut mucosa microbiome of 77 individuals from four field-collected species of the plunderfish Harpagifer (Teleostei, Notothenioidei), distributed across three biogeographic regions of the Southern Ocean. We found that seawater physicochemical properties, host phylogeny, and geography collectively explained 35% of the variation in bacterial community composition in Harpagifer gut mucosa. The core microbiome of Harpagifer spp. gut mucosa was characterized by a low diversity, mostly driven by selective processes, and dominated by a single Aliivibrio Operational Taxonomic Unit (OTU) detected in more than 80% of the individuals. Nearly half of the core microbiome taxa, including Aliivibrio, harbored co-phylogeny signal at microdiversity resolution with host phylogeny, indicating an intimate symbiotic relationship and a shared evolutionary history with Harpagifer. The clear phylosymbiosis and co-phylogeny signals underscore the relevance of the Harpagifer model in understanding the role of fish evolutionary history in shaping the gut microbiome assembly. We propose that the recent diversification of Harpagifer may have led to the diversification of Aliivibrio, exhibiting patterns that mirror the host phylogeny. IMPORTANCE Although challenging to detect in wild populations, phylogenetic congruence between marine fish and its microbiome is critical, as it highlights intimate associations between hosts and ecologically relevant microbial symbionts. Our study leverages a natural system of closely related fish species in the Southern Ocean to unveil new insights into the contribution of host evolutionary trajectory on gut microbiome assembly, an underappreciated driver of the global marine fish holobiont. Notably, we unveiled striking evidence of co-diversification between Harpagifer and its microbiome, demonstrating both phylosymbiosis of gut bacterial communities and co-phylogeny of some specific bacterial symbionts, mirroring the host diversification patterns. Given Harpagifer's significance as a trophic resource in coastal areas and its vulnerability to climatic and anthropic pressures, understanding the potential evolutionary interdependence between the hosts and its microbiome provides valuable microbial candidates for future monitoring, as they may play a pivotal role in host species acclimatization to a rapidly changing environment.
Collapse
Affiliation(s)
- Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
| | - Léa Cabrol
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France, Marseille, France
| | - Thomas Saucède
- UMR 6282 Biogeosciences, University Bourgogne Franche-Comté, CNRS, EPHE, Dijon, France
| | - Karin Gérard
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Laboratory of Antarctic and Subantarctic Marine Ecosystems, Faculty of Sciences, University of Magallanes, Punta Arenas, Chile
- Cape Horn International Center, Puerto Williams, Chile
| | - Elie Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
- Institute of Ecology and Biodiversity, Santiago, Chile
| | - Julieta Orlando
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
- Department of Ecological Sciences, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
35
|
Xu W, Sun X, Mi L, Wang K, Gu Z, Wang M, Shu C, Bai X, Zhang J, Geng L. Plants recruit insecticidal bacteria to defend against herbivore attacks. Microbiol Res 2024; 281:127597. [PMID: 38266597 DOI: 10.1016/j.micres.2023.127597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/01/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
Pest feeding affects the rhizobacteria community. The rhizomicrobiota activates salicylic acid and jasmonic acid signaling pathways to help plants deal with pest infestation. However, whether plants can recruit special pesticidal microorganisms to deal with attack from herbivores is unclear. A system composed of peanuts and first-instar larvae of Holotrichia parallela were used to analyze whether peanuts truly enrich the insecticidal bacteria after feeding by larvae, and whether inoculation of the enriched bacteria promotes the resistance of plants to herbivore. In this study, high-throughput sequencing of 16 S rRNA gene amplicons was used to demonstrate that infestation of the subterranean pest H. parallela quickly changed the rhizosphere bacterial community structure within 24 h, and the abundance of Enterobacteriaceae, especially Enterobacter, was manifestly enriched. Root feeding induced rhizobacteria to form a more complex co-occurrence network than the control. Rhizosphere bacteria were isolated, and 4 isolates with high toxicity against H. parallela larvae were obtained by random forest analysis. In a back-inoculation experiment using a split-root system, green fluorescent protein (GFP)-labeled Enterobacter sp. IPPBiotE33 was observed to be enriched in uneaten peanut roots. Additionally, supplementation with IPPBiotE33 alleviated the adverse effects of H. parallela on peanuts. Our findings indicated that herbivore infestation could induce plants to assemble bacteria with specific larvicidal activity to address threats.
Collapse
Affiliation(s)
- Wenyu Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxiao Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Mi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Kui Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ziqiong Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiling Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Bai
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
36
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Chakraborty N. Metabolites: a converging node of host and microbe to explain meta-organism. Front Microbiol 2024; 15:1337368. [PMID: 38505556 PMCID: PMC10949987 DOI: 10.3389/fmicb.2024.1337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, United States
| |
Collapse
|
38
|
Zobel M, Koorem K, Moora M, Semchenko M, Davison J. Symbiont plasticity as a driver of plant success. THE NEW PHYTOLOGIST 2024; 241:2340-2352. [PMID: 38308116 DOI: 10.1111/nph.19566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
We discuss which plant species are likely to become winners, that is achieve the highest global abundance, in changing landscapes, and whether plant-associated microbes play a determining role. Reduction and fragmentation of natural habitats in historic landscapes have led to the emergence of patchy, hybrid landscapes, and novel landscapes where anthropogenic ecosystems prevail. In patchy landscapes, species with broad niches are favoured. Plasticity in the degree of association with symbiotic microbes may contribute to broader plant niches and optimization of symbiosis costs and benefits, by downregulating symbiosis when it is unnecessary and upregulating it when it is beneficial. Plasticity can also be expressed as the switch from one type of mutualism to another, for example from nutritive to defensive mutualism with increasing soil fertility and the associated increase in parasite load. Upon dispersal, wide mutualistic partner receptivity is another facet of symbiont plasticity that becomes beneficial, because plants are not limited by the availability of specialist partners when arriving at new locations. Thus, under conditions of global change, symbiont plasticity allows plants to optimize the activity of mutualistic relationships, potentially allowing them to become winners by maximizing geographic occupancy and local abundance.
Collapse
Affiliation(s)
- Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| |
Collapse
|
39
|
Salse J, Barnard RL, Veneault-Fourrey C, Rouached H. Strategies for breeding crops for future environments. TRENDS IN PLANT SCIENCE 2024; 29:303-318. [PMID: 37833181 DOI: 10.1016/j.tplants.2023.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 10/15/2023]
Abstract
The green revolution successfully increased agricultural output in the early 1960s by relying primarily on three pillars: plant breeding, irrigation, and chemical fertilization. Today, the need to reduce the use of chemical fertilizers, water scarcity, and future environmental changes, together with a growing population, requires innovative strategies to adapt to a new context and prevent food shortages. Therefore, scientists from around the world are directing their efforts to breed crops for future environments to sustainably produce more nutritious food. Herein, we propose scientific avenues to be reinforced in selecting varieties, including crop wild relatives, either for monoculture or mixed cropping systems, taking advantage of plant-microbial interactions, while considering the diversity of organisms associated with crops and unlocking combinatorial nutritional stresses.
Collapse
Affiliation(s)
- Jérôme Salse
- UCA-INRAE UMR 1095 Genetics, Diversity, and Ecophysiology of Cereals (GDEC), 5 Chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Romain L Barnard
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, Unité Mixte de Recherche Interactions Arbres-Microorganismes, F-54000 Nancy, France
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA; The Plant Resilience Institute, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
40
|
von Hoyningen-Huene AJE, Bang C, Rausch P, Rühlemann M, Fokt H, He J, Jensen N, Knop M, Petersen C, Schmittmann L, Zimmer T, Baines JF, Bosch TCG, Hentschel U, Reusch TBH, Roeder T, Franke A, Schulenburg H, Stukenbrock E, Schmitz RA. The archaeome in metaorganism research, with a focus on marine models and their bacteria-archaea interactions. Front Microbiol 2024; 15:1347422. [PMID: 38476944 PMCID: PMC10927989 DOI: 10.3389/fmicb.2024.1347422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.
Collapse
Affiliation(s)
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Hanna Fokt
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jinru He
- Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany
| | - Nadin Jensen
- Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Mirjam Knop
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
| | - Carola Petersen
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Lara Schmittmann
- Research Unit Ocean Dynamics, GEOMAR Helmholtz Institute for Ocean Research Kiel, Kiel, Germany
| | - Thorsten Zimmer
- Institute for General Microbiology, Kiel University, Kiel, Germany
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thomas C. G. Bosch
- Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany
| | - Ute Hentschel
- Marine Evolutionary Ecology, GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Thorsten B. H. Reusch
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic Resistance Group, Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva Stukenbrock
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
41
|
Brealey JC, Kodama M, Rasmussen JA, Hansen SB, Santos-Bay L, Lecaudey LA, Hansen M, Fjære E, Myrmel LS, Madsen L, Bernhard A, Sveier H, Kristiansen K, Gilbert MTP, Martin MD, Limborg MT. Host-gut microbiota interactions shape parasite infections in farmed Atlantic salmon. mSystems 2024; 9:e0104323. [PMID: 38294254 PMCID: PMC10886447 DOI: 10.1128/msystems.01043-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Animals and their associated microbiota share long evolutionary histories. However, it is not always clear how host genotype and microbiota interact to affect phenotype. We applied a hologenomic approach to explore how host-microbiota interactions shape lifetime growth and parasite infection in farmed Atlantic salmon (Salmo salar). Multi-omics data sets were generated from the guts of 460 salmon, 82% of which were naturally infected with an intestinal cestode. A single Mycoplasma bacterial strain, MAG01, dominated the gut metagenome of large, non-parasitized fish, consistent with previous studies showing high levels of Mycoplasma in the gut microbiota of healthy salmon. While small and/or parasitized salmon also had high abundance of MAG01, we observed increased alpha diversity in these individuals, driven by increased frequency of low-abundance Vibrionaceae and other Mycoplasma species that carried known virulence genes. Colonization by one of these cestode-associated Mycoplasma strains was associated with host individual genomic variation in long non-coding RNAs. Integrating the multi-omic data sets revealed coordinated changes in the salmon gut mRNA transcriptome and metabolome that correlated with shifts in the microbiota of smaller, parasitized fish. Our results suggest that the gut microbiota of small and/or parasitized fish is in a state of dysbiosis that partly depends on the host genotype, highlighting the value of using a hologenomic approach to incorporate the microbiota into the study of host-parasite dynamics.IMPORTANCEStudying host-microbiota interactions through the perspective of the hologenome is gaining interest across all life sciences. Intestinal parasite infections are a huge burden on human and animal health; however, there are few studies investigating the role of the hologenome during parasite infections. We address this gap in the largest multi-omics fish microbiota study to date using natural cestode infection of farmed Atlantic salmon. We find a clear association between cestode infection, salmon lifetime growth, and perturbation of the salmon gut microbiota. Furthermore, we provide the first evidence that the genetic background of the host may partly determine how the gut microbiota changes during parasite-associated dysbiosis. Our study therefore highlights the value of a hologenomic approach for gaining a more in-depth understanding of parasitism.
Collapse
Affiliation(s)
- Jaelle C Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren B Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Luisa Santos-Bay
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Laurène A Lecaudey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Aquaculture Department, SINTEF Ocean, Trondheim, Norway
| | - Martin Hansen
- Department of Environmental Science, Environmental Metabolomics Lab, Aarhus University, Roskilde, Denmark
| | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Norway, Bergen, Norway
| | | | | | - Karsten Kristiansen
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences,University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Bringhurst B, Greenwold M, Kellner K, Seal JN. Symbiosis, dysbiosis and the impact of horizontal exchange on bacterial microbiomes in higher fungus-gardening ants. Sci Rep 2024; 14:3231. [PMID: 38332146 PMCID: PMC10853281 DOI: 10.1038/s41598-024-53218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in our understanding of symbiotic stability have demonstrated that microorganisms are key to understanding the homeostasis of obligate symbioses. Fungus-gardening ants are excellent model systems for exploring how microorganisms may be involved in symbiotic homeostasis as the host and symbionts are macroscopic and can be easily experimentally manipulated. Their coevolutionary history has been well-studied; examinations of which have depicted broad clade-to-clade specificity between the ants and fungus. Few studies hitherto have addressed the roles of microbiomes in stabilizing these associations. Here, we quantified changes in microbiome structure as a result of experimentally induced horizontal exchange of symbionts. This was done by performing cross-fostering experiments forcing ants to grow novel fungi and comparing known temporally unstable (undergoing dysbiosis) and stable combinations. We found that fungus-gardening ants alter their unstable, novel garden microbiomes into configurations like those found in native gardens. Patterns of dysbiosis/symbiosis appear to be predictable in that two related species with similar specificity patterns also show similar patterns of microbial change, whereas a species with more relaxed specificity does not show such microbiome change or restructuring when growing different fungi. It appears that clade-to-clade specificity patterns are the outcomes of community-level interactions that promote stability or cause symbiotic collapse.
Collapse
Affiliation(s)
- Blake Bringhurst
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH, 43212, USA
| | - Matthew Greenwold
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Katrin Kellner
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Jon N Seal
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA.
| |
Collapse
|
43
|
González A, Fullaondo A, Odriozola A. Techniques, procedures, and applications in microbiome analysis. ADVANCES IN GENETICS 2024; 111:81-115. [PMID: 38908906 DOI: 10.1016/bs.adgen.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microbiota is a complex community of microorganisms living in a defined environment. Until the 20th century, knowledge of microbiota was partial, as the techniques available for their characterization were primarily based on bacteriological culture. In the last twenty years, the development of DNA sequencing technologies, multi-omics, and bioinformatics has expanded our understanding of microorganisms. We have moved from mainly considering them isolated disease-causing agents to recognizing the microbiota as an essential component of host biology. These techniques have shown that the microbiome plays essential roles in various host phenotypes, influencing development, physiology, reproduction, and evolution. This chapter provides researchers with a summary of the primary concepts, sample collection, experimental techniques, and bioinformatics analysis commonly used in microbiome research. The main features, applications in microbiome studies, and their advantages and limitations are included in each section.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
44
|
Fonseca-García C, Pettinga D, Wilson A, Elmore JR, McClure R, Atim J, Pedraza J, Hutmacher R, Turumtay H, Tian Y, Eudes A, Scheller HV, Egbert RG, Coleman-Derr D. Defined synthetic microbial communities colonize and benefit field-grown sorghum. THE ISME JOURNAL 2024; 18:wrae126. [PMID: 38984785 PMCID: PMC11410050 DOI: 10.1093/ismejo/wrae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
The rhizosphere constitutes a dynamic interface between plant hosts and their associated microbial communities. Despite the acknowledged potential for enhancing plant fitness by manipulating the rhizosphere, the engineering of the rhizosphere microbiome through inoculation has posed significant challenges. These challenges are thought to arise from the competitive microbial ecosystem where introduced microbes must survive, and the absence of adaptation to the specific metabolic and environmental demands of the rhizosphere. Here, we engineered a synthetic rhizosphere community (SRC1) with the anticipation that it would exhibit a selective advantage in colonizing the host Sorghum bicolor, thereby potentially fostering its growth. SRC1 was assembled from bacterial isolates identified either for their potential role in community cohesion through network analysis or for their ability to benefit from host-specific exudate compounds. The growth performance of SRC1 was assessed in vitro on solid media, in planta under gnotobiotic laboratory conditions, and in the field. Our findings reveal that SRC1 cohesion is most robust when cultivated in the presence of the plant host under laboratory conditions, with lineages being lost from the community when grown either in vitro or in a native field setting. We establish that SRC1 effectively promotes the growth of both above- and below-ground plant phenotypes in both laboratory and native field contexts. Furthermore, in laboratory conditions, these growth enhancements correlate with the transcriptional dampening of lignin biosynthesis in the host. Collectively, these results underscore the potential utility of synthetic microbial communities for modulating crop performance in controlled and native environments alike.
Collapse
Affiliation(s)
- Citlali Fonseca-García
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| | - Dean Pettinga
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| | - Andrew Wilson
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Joshua R Elmore
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Ryan McClure
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jackie Atim
- University of California Agriculture and Natural Resources, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, United States
| | - Julie Pedraza
- University of California Agriculture and Natural Resources, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, United States
| | - Robert Hutmacher
- West Side Research and Extension Center, Five Points, CA 93624, United States
| | - Halbay Turumtay
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Karadeniz Technical University, Department of Energy System Engineering, Trabzon, 61830, Turkey
| | - Yang Tian
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aymerick Eudes
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Robert G Egbert
- Biological Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Devin Coleman-Derr
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
45
|
Rolshausen G, Dal Grande F, Otte J, Schmitt I. Lichen holobionts show compositional structure along elevation. Mol Ecol 2023; 32:6619-6630. [PMID: 35398946 DOI: 10.1111/mec.16471] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Holobionts are dynamic ecosystems that may respond to abiotic drivers with compositional changes. Uncovering elevational diversity patterns within these microecosystems can further our understanding of community-environment interactions. Here, we assess how the major components of lichen holobionts-fungal hosts, green algal symbionts, and the bacterial community-collectively respond to an elevational gradient. We analyse populations of two lichen symbioses, Umbilicaria pustulata and U. hispanica, along an elevational gradient spanning 2100 altitudinal metres and covering three major biomes. Our study shows (i) discontinuous genomic variation in fungal hosts with one abrupt genomic differentiation within each of the two host species, (ii) altitudinally structured bacterial communities with pronounced turnover within and between hosts, and (iii) altitude-specific presence of algal symbionts. Alpha diversity of bacterial communities decreased with increasing elevation. A marked turnover in holobiont diversity occurred across two altitudinal belts: at 11°C-13°C average annual temperature (here: 800-1200 m a.s.l.), and at 7°C-9°C average annual temperature (here: 1500-1800 m a.s.l.). The two observed zones mark a clustering of distribution limits and community shifts. The three ensuing altitudinal classes, that is, the most frequent combinations of species in holobionts, approximately correspond to the Mediterranean, cool-temperate, and alpine climate zones. We conclude that multitrophic microecosystems, such as lichen holobionts, respond with concerted compositional changes to climatic factors that also structure communities of macroorganisms, for example, vascular plants.
Collapse
Affiliation(s)
- Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- Center for Wildlife Genetics, Senckenberg Research Institute, Gelnhausen, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- Departement of Biological Sciences, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Peng L, Hoban J, Joffe J, Smith AH, Carpenter M, Marcelis T, Patel V, Lynn-Bell N, Oliver KM, Russell JA. Cryptic community structure and metabolic interactions among the heritable facultative symbionts of the pea aphid. J Evol Biol 2023; 36:1712-1730. [PMID: 37702036 DOI: 10.1111/jeb.14216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
Most insects harbour influential, yet non-essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi-species nature raises intriguing questions on roles for symbiont-symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species-defined symbiont community structure across US populations of the pea aphid, Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co-infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co-infection trends. To test whether within-host metabolic interactions predict common versus rare strain-defined communities, we leveraged the high relatedness of our dominant, community-defined symbiont strains vs. 12 pea aphid-derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts-Serratia symbiotica and Rickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligate Buchnera symbiont genomes, Serratia and Rickettsiella emerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi-party mutualism within their nutrient-limited, phloem-feeding hosts. Recent, complementary gene inactivation, within the biotin pathways of Serratia and Rickettsiella, raises further questions on the origins of mutualisms and host-symbiont interdependencies.
Collapse
Affiliation(s)
- Linyao Peng
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jessica Hoban
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Tracy Marcelis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Bacci G, Meriggi N, Cheng CLY, Ng KH, Iannucci A, Mengoni A, Cavalieri D, Cannicci S, Fratini S. Species-specific gill's microbiome of eight crab species with different breathing adaptations. Sci Rep 2023; 13:21033. [PMID: 38030652 PMCID: PMC10687215 DOI: 10.1038/s41598-023-48308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Transitions to physically different environments, such as the water-to-land transition, proved to be the main drivers of relevant evolutionary events. Brachyuran crabs evolved remarkable morphological, behavioral, and physiological adaptations to terrestrial life. Terrestrial species evolved new respiratory structures devoted to replace or support the gills, a multifunctional organ devoted to gas exchanges, ion-regulation and nitrogen excretion. It was hypothesized that microorganisms associated with respiratory apparatus could have facilitated the processes of osmoregulation, respiration, and elimination of metabolites along this evolutionary transition. To test if crab species with different breathing adaptations may host similar microbial communities on their gills, we performed a comparative targeted-metagenomic analysis, selecting two marine and six terrestrial crabs belonging to different families and characterised by different breathing adaptations. We analysed anterior and posterior gills separately according to their different and specific roles. Regardless of their terrestrial or marine adaptations, microbial assemblages were strongly species-specific indicating a non-random association between the host and its microbiome. Significant differences were found in only two terrestrial species when considering posterior vs. anterior gills, without any association with species-specific respiratory adaptations. Our results suggest that all the selected species are strongly adapted to the ecological niche and specific micro-habitat they colonise.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Christine L Y Cheng
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ka Hei Ng
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China
| | - Alessio Iannucci
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Stefano Cannicci
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy.
- The Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR, People's Republic of China.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Sara Fratini
- Department of Biology, University of Florence, 50019, Sesto Fiorentino, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
48
|
Galià-Camps C, Baños E, Pascual M, Carreras C, Turon X. Multidimensional variability of the microbiome of an invasive ascidian species. iScience 2023; 26:107812. [PMID: 37744040 PMCID: PMC10514470 DOI: 10.1016/j.isci.2023.107812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Animals, including invasive species, are complex entities consisting of a host and its associated symbionts (holobiont). The interaction between the holobiont components is crucial for the host's survival. However, our understanding of how microbiomes of invasive species change across different tissues, localities, and ontogenetic stages, is limited. In the introduced ascidian Styela plicata, we found that its microbiome is highly distinct and specialized among compartments (tunic, gill, and gut). Smaller but significant differences were also found across harbors, suggesting local adaptation, and between juveniles and adults. Furthermore, we found a correlation between the microbiome and environmental trace element concentrations, especially in adults. Functional analyses showed that adult microbiomes possess specific metabolic pathways that may enhance fitness during the introduction process. These findings highlight the importance of integrated approaches in studying the interplay between animals and microbiomes, as a first step toward understanding how it can affect the species' invasive success.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Elena Baños
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Catalonia, Spain
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Carlos Carreras
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Accés Cala Sant Francesc 14, 17300 Blanes, Catalonia, Spain
| |
Collapse
|
49
|
Ochoa-Sánchez M, Acuña Gomez EP, Ramírez-Fenández L, Eguiarte LE, Souza V. Current knowledge of the Southern Hemisphere marine microbiome in eukaryotic hosts and the Strait of Magellan surface microbiome project. PeerJ 2023; 11:e15978. [PMID: 37810788 PMCID: PMC10557944 DOI: 10.7717/peerj.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023] Open
Abstract
Host-microbe interactions are ubiquitous and play important roles in host biology, ecology, and evolution. Yet, host-microbe research has focused on inland species, whereas marine hosts and their associated microbes remain largely unexplored, especially in developing countries in the Southern Hemisphere. Here, we review the current knowledge of marine host microbiomes in the Southern Hemisphere. Our results revealed important biases in marine host species sampling for studies conducted in the Southern Hemisphere, where sponges and marine mammals have received the greatest attention. Sponge-associated microbes vary greatly across geographic regions and species. Nevertheless, besides taxonomic heterogeneity, sponge microbiomes have functional consistency, whereas geography and aging are important drivers of marine mammal microbiomes. Seabird and macroalgal microbiomes in the Southern Hemisphere were also common. Most seabird microbiome has focused on feces, whereas macroalgal microbiome has focused on the epibiotic community. Important drivers of seabird fecal microbiome are aging, sex, and species-specific factors. In contrast, host-derived deterministic factors drive the macroalgal epibiotic microbiome, in a process known as "microbial gardening". In turn, marine invertebrates (especially crustaceans) and fish microbiomes have received less attention in the Southern Hemisphere. In general, the predominant approach to study host marine microbiomes has been the sequencing of the 16S rRNA gene. Interestingly, there are some marine holobiont studies (i.e., studies that simultaneously analyze host (e.g., genomics, transcriptomics) and microbiome (e.g., 16S rRNA gene, metagenome) traits), but only in some marine invertebrates and macroalgae from Africa and Australia. Finally, we introduce an ongoing project on the surface microbiome of key species in the Strait of Magellan. This is an international project that will provide novel microbiome information of several species in the Strait of Magellan. In the short-term, the project will improve our knowledge about microbial diversity in the region, while long-term potential benefits include the use of these data to assess host-microbial responses to the Anthropocene derived climate change.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lia Ramírez-Fenández
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
- Centro de Desarrollo de Biotecnología Industrial y Bioproductos, Antofagasta, Chile
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
50
|
Almanza-Aguilera E, Cano A, Gil-Lespinard M, Burguera N, Zamora-Ros R, Agudo A, Farràs M. Mediterranean diet and olive oil, microbiota, and obesity-related cancers. From mechanisms to prevention. Semin Cancer Biol 2023; 95:103-119. [PMID: 37543179 DOI: 10.1016/j.semcancer.2023.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Olive oil (OO) is the main source of added fat in the Mediterranean diet (MD). It is a mix of bioactive compounds, including monounsaturated fatty acids, phytosterols, simple phenols, secoiridoids, flavonoids, and terpenoids. There is a growing body of evidence that MD and OO improve obesity-related factors. In addition, obesity has been associated with an increased risk for several cancers: endometrial, oesophageal adenocarcinoma, renal, pancreatic, hepatocellular, gastric cardia, meningioma, multiple myeloma, colorectal, postmenopausal breast, ovarian, gallbladder, and thyroid cancer. However, the epidemiological evidence linking MD and OO with these obesity-related cancers, and their potential mechanisms of action, especially those involving the gut microbiota, are not clearly described or understood. The goals of this review are 1) to update the current epidemiological knowledge on the associations between MD and OO consumption and obesity-related cancers, 2) to identify the gut microbiota mechanisms involved in obesity-related cancers, and 3) to report the effects of MD and OO on these mechanisms.
Collapse
Affiliation(s)
- Enrique Almanza-Aguilera
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Ainara Cano
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Mercedes Gil-Lespinard
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Nerea Burguera
- Food Research, AZTI, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Spain
| | - Raul Zamora-Ros
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain; Department of Nutrition, Food Sciences, and Gastronomy, Food Innovation Network (XIA), Institute for Research on Nutrition and Food Safety (INSA), Faculty of Pharmacy and Food Sciences University of Barcelona, Barcelona, Spain.
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Marta Farràs
- Unit of Nutrition and Cancer, Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain.
| |
Collapse
|