1
|
Qu J, Yin L, Qin S, Sun X, Gong X, Li S, Pan X, Jin Y, Cheng Z, Jin S, Wu W. Identification of the Pseudomonas aeruginosa AgtR-CspC-RsaL pathway that controls Las quorum sensing in response to metabolic perturbation and Staphylococcus aureus. PLoS Pathog 2025; 21:e1013054. [PMID: 40198682 PMCID: PMC12051497 DOI: 10.1371/journal.ppat.1013054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/21/2025] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
Environmental metabolites and metabolic pathways significantly influence bacterial pathogenesis and interspecies competition. We previously discovered that a mutation in the triosephosphate isomerase gene, tpiA, in Pseudomonas aeruginosa led to defective type III secretion and increased susceptibility to aminoglycoside antibiotics. In this study, we found that the tpiA mutation enhances the Las quorum sensing system due to reduced translation of the negative regulator RsaL. Further investigations demonstrated an upregulation of CspC, a CspA family protein that represses rsaL translation. DNA pull-down assay, along with genetic studies, revealed the role of AgtR in regulating cspC transcription. AgtR is known to regulate pyocyanin production in response to N-acetylglucosamine (GlcNAc), contributing to competition against Staphylococcus aureus. We demonstrated that CspC activates the Las quorum sensing system and subsequent pyocyanin production in response to GlcNAc and S. aureus. Overall, our results elucidate the AgtR-CspC-RsaL-LasI pathway that regulates bacterial virulence factors and its role in competition against S. aureus.
Collapse
Affiliation(s)
- Junze Qu
- Department of Microbiology, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Liwen Yin
- Department of Microbiology, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shanhua Qin
- Department of Microbiology, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaomeng Sun
- Department of Microbiology, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xuetao Gong
- Department of Microbiology, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouyi Li
- Pancreas Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, National Key laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key laboratory of Digestive Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Xiaolei Pan
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yongxin Jin
- Department of Microbiology, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- Department of Microbiology, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- Department of Microbiology, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- Department of Microbiology, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Guo L, Ruan Q, Ma D, Wen J. Revealing quorum-sensing networks in Pseudomonas aeruginosa infections through internal and external signals to prevent new resistance trends. Microbiol Res 2024; 289:127915. [PMID: 39342746 DOI: 10.1016/j.micres.2024.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
In the context of growing antibiotic resistance in bacteria, the quorum-sensing (QS) system of Pseudomonas aeruginosa (P. aeruginosa) has become a target for new therapeutic strategies. QS is a crucial communication process and an essential pathogenic mechanism. This comprehensive review explores the critical role of QS in the pathogenesis of P. aeruginosa infections, including lung, burn, bloodstream, gastrointestinal, corneal, and urinary tract infections. In addition, this review delves into the complexity of the bacterial QS communication network and highlights the intricate mechanisms underlying these pathological processes. Notably, in addition to the four main QS systems, bacterial QS can interact with various external and internal signaling networks, such as host environments and nutrients in the external microbiome, as well as internal virulence regulation systems within bacteria. These elements can significantly influence the behavior and virulence of microbial communities. Therefore, this review reveals that inhibitors targeting singular QS pathways may inadvertently promote virulence in other pathways, leading to new trends in drug resistance. In response to evolving resistance challenges, this study proposes more cautious treatment strategies, including multitarget interventions and combination therapies, aimed at combating the escalating issue of resistance.
Collapse
Affiliation(s)
- Li Guo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiao Ruan
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Wen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Bisht K, Elmassry MM, Mahmud HA, Bhattacharjee S, Deonarine A, Black C, Francisco MJS, Hamood AN, Wakeman CA. Malonate is relevant to the lung environment and induces genome-wide stress responses in Pseudomonas aeruginosa. RESEARCH SQUARE 2024:rs.3.rs-4870062. [PMID: 39315254 PMCID: PMC11419262 DOI: 10.21203/rs.3.rs-4870062/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Versatility in carbon source utilization is a major contributor to niche adaptation in Pseudomonas aeruginosa. Malonate is among the abundant carbon sources in the lung airways, yet it is understudied. Recently, we characterized how malonate impacts quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa. Herein, we show that malonate as a carbon source supports more robust growth in comparison to glycerol in several cystic fibrosis isolates of P. aeruginosa. Furthermore, we show phenotypic responses to malonate were conserved among clinical strains, i.e., formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin. Moreover, we explored transcriptional adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate versus glycerol as a sole carbon source using transcriptomics. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. We identified several genes that were required for optimal growth of P. aeruginosa in malonate. Our findings reveal important remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to the accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation.
Collapse
|
4
|
Bisht K, Elmassry MM, Al Mahmud H, Bhattacharjee S, Deonarine A, Black C, San Francisco MJ, Hamood AN, Wakeman CA. Global stress response in Pseudomonas aeruginosa upon malonate utilization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586813. [PMID: 38585990 PMCID: PMC10996706 DOI: 10.1101/2024.03.26.586813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Versatility in carbon source utilization assists Pseudomonas aeruginosa in its adaptation to various niches. Recently, we characterized the role of malonate, an understudied carbon source, in quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa . These results indicate that global responses to malonate metabolism remain to be uncovered. We leveraged a publicly available metabolomic dataset on human airway and found malonate to be as abundant as glycerol, a common airway metabolite and carbon source for P. aeruginosa . Here, we explored and compared adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate or glycerol as a sole carbon source using transcriptomics and phenotypic assays. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. Some induced genes were required for optimal growth of P. aeruginosa in malonate. To assess the conservation of malonate-associated responses among P. aeruginosa strains, we compared our findings in strain PA14 with other lab strains and cystic fibrosis isolates of P. aeruginosa . Most strains grew on malonate as a sole carbon source as efficiently as or better than glycerol. While not all responses to malonate were conserved among strains, formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin were the most frequently observed phenotypes. Our findings reveal global remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation. Importance Pseudomonas aeruginosa is a notorious pathogen that causes local and systemic infections in immunocompromised individuals. Different carbon sources can uniquely modulate metabolic and virulence pathways in P. aeruginosa , highlighting the importance of the environment that the pathogen occupies. In this work, we used a combination of transcriptomic analysis and phenotypic assays to determine how malonate utilization impacts P. aeruginosa, as recent evidence indicates this carbon source may be relevant to certain niches associated within the human host. We found that malonate utilization can induce global stress responses, alter metabolic circuits, and influence various phenotypes of P. aeruginosa that could influence host colonization. Investigating the metabolism of malonate provides insight into P. aeruginosa adaptations to specific niches where this substrate is abundant, and how it can be leveraged in the development of much-needed antimicrobial agents or identification of new therapeutic targets of this difficult-to-eradicate pathogen.
Collapse
|
5
|
Bogiel T, Depka D, Rzepka M, Mikucka A. Decoding Genetic Features and Antimicrobial Susceptibility of Pseudomonas aeruginosa Strains Isolated from Bloodstream Infections. Int J Mol Sci 2022; 23:ijms23169208. [PMID: 36012468 PMCID: PMC9409454 DOI: 10.3390/ijms23169208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative rod and an etiological factor of opportunistic infections. The infections of this etiology appear mostly among hospitalized patients and are relatively hard to treat due to widespread antimicrobial resistance. Many virulence factors are involved in the pathogenesis of P. aeruginosa infection, the coexistence of which have a significant impact on the course of an infection with a particular localization. The aim of this study was to assess the antimicrobial susceptibility profiles and the frequency of genes encoding selected virulence factors in clinical P. aeruginosa strains isolated from bloodstream infections (BSIs). The following genes encoding virulence factors of enzymatic activity were assessed: lasB, plC H, plC N, nan1, nan2, aprA and phzM. The frequency of the genes encoding the type III secretion system effector proteins (exoU and exoS) and the genes encoding pilin structural subunits (pilA and pilB) were also investigated. The occurrence of virulence-factor genes was assessed using polymerase chain reactions, each in a separate reaction. Seventy-one P. aeruginosa strains, isolated from blood samples of patients with confirmed bacteremia hospitalized at the University Hospital No. 1 of Dr. Antoni Jurasz in Bydgoszcz, Poland, were included in the study. All the investigated strains were susceptible to colistin, while the majority of the strains presented resistance to ticarcillin/clavulanate (71.8%), piperacillin (60.6 %), imipenem (57.7%) and piperacillin/tazobactam (52.1%). The presence of the lasB and plC H genes was noted in all the tested strains, while the plC N, nan2, aprA, phzM and nan1 genes were identified in 68 (95.8%), 66 (93.0%), 63 (88.7%), 55 (77.5%) and 34 (47.9%) isolates, respectively. In 44 (62.0%) and 41 (57.7%) strains, the presence of the exoU and exoS genes was confirmed, while the pilA and pilB genes were noted only in 14 (19.7%) and 3 (4.2%) isolates, respectively. This may be due to the diverse roles of these proteins in the development and maintenance of BSIs. Statistically significant correlations were observed between particular gene pairs’ coexistence (e.g., alkaline protease and neuraminidase 2). Altogether, twenty-seven distinctive genotypes were observed among the studied strains, indicating the vast variety of genetic compositions of P. aeruginosa strains causing BSIs.
Collapse
|
6
|
Maunders EA, Ngu DHY, Ganio K, Hossain SI, Lim BYJ, Leeming MG, Luo Z, Tan A, Deplazes E, Kobe B, McDevitt CA. The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis. Front Microbiol 2022; 13:903146. [PMID: 35685933 PMCID: PMC9171197 DOI: 10.3389/fmicb.2022.903146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Acquisition of the trace-element molybdenum via the high-affinity ATP-binding cassette permease ModABC is essential for Pseudomonas aeruginosa respiration in anaerobic and microaerophilic environments. This study determined the X-ray crystal structures of the molybdenum-recruiting solute-binding protein ModA from P. aeruginosa PAO1 in the metal-free state and bound to the group 6 metal oxyanions molybdate, tungstate, and chromate. Pseudomonas aeruginosa PAO1 ModA has a non-contiguous dual-hinged bilobal structure with a single metal-binding site positioned between the two domains. Metal binding results in a 22° relative rotation of the two lobes with the oxyanions coordinated by four residues, that contribute six hydrogen bonds, distinct from ModA orthologues that feature an additional oxyanion-binding residue. Analysis of 485 Pseudomonas ModA sequences revealed conservation of the metal-binding residues and β-sheet structural elements, highlighting their contribution to protein structure and function. Despite the capacity of ModA to bind chromate, deletion of modA did not affect P. aeruginosa PAO1 sensitivity to chromate toxicity nor impact cellular accumulation of chromate. Exposure to sub-inhibitory concentrations of chromate broadly perturbed P. aeruginosa metal homeostasis and, unexpectedly, was associated with an increase in ModA-mediated molybdenum uptake. Elemental analyses of the proteome from anaerobically grown P. aeruginosa revealed that, despite the increase in cellular molybdenum upon chromate exposure, distribution of the metal within the proteome was substantially perturbed. This suggested that molybdoprotein cofactor acquisition may be disrupted, consistent with the potent toxicity of chromate under anaerobic conditions. Collectively, these data reveal a complex relationship between chromate toxicity, molybdenum homeostasis and anaerobic respiration.
Collapse
Affiliation(s)
- Eve A. Maunders
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Dalton H. Y. Ngu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sheikh I. Hossain
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bryan Y. J. Lim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Michael G. Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Aimee Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Boštjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Transcriptional Profiling of Pseudomonas aeruginosa Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:303-323. [DOI: 10.1007/978-3-031-08491-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Li J, Wu Z, Wu C, Chen DD, Zhou Y, Zhang YA. VasH Contributes to Virulence of Aeromonas hydrophila and Is Necessary to the T6SS-mediated Bactericidal Effect. Front Vet Sci 2021; 8:793458. [PMID: 34966816 PMCID: PMC8710571 DOI: 10.3389/fvets.2021.793458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Aeromonas hydrophila is a Gram-negative bacterium that is commonly distributed in aquatic surroundings and has been considered as a pathogen of fish, amphibians, reptiles, and mammals. In this study, a virulent strain A. hydrophila GD18, isolated from grass carp (Ctenopharyngodon idella), was characterized to belong to a new sequence type ST656. Whole-genome sequencing and phylogenetic analysis showed that GD18 was closer to environmental isolates, however distantly away from the epidemic ST251 clonal group. The type VI secretion system (T6SS) was known to target both eukaryotic and prokaryotic cells by delivering various effector proteins in diverse niches by Gram-negative bacteria. Genome-wide searching and hemolysin co-regulated protein (Hcp) expression test showed that GD18 possessed a functional T6SS and is conditionally regulated. Further analysis revealed that VasH, a σ54-transcriptional activator, was strictly required for the functionality of T6SS in A. hydrophila GD18. Mutation of vasH gene by homologous recombination significantly abolished the bactericidal property. Then the virulence contribution of VasH was characterized in both in vitro and in vivo models. The results supported that VasH not only contributed to the bacterial cytotoxicity and resistance against host immune cleaning, but also was required for virulence and systemic dissemination of A. hydrophila GD18. Taken together, these findings provide a perspective for understanding the VasH-mediated regulation mechanism and T6SS-mediated virulence and bactericidal effect of A. hydrophila.
Collapse
Affiliation(s)
- Jihong Li
- Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhihao Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Changsong Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences (CAS), Wuhan, China.,State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
9
|
Elmassry MM, Bisht K, Colmer-Hamood JA, Wakeman CA, San Francisco MJ, Hamood AN. Malonate utilization by Pseudomonas aeruginosa affects quorum-sensing and virulence and leads to formation of mineralized biofilm-like structures. Mol Microbiol 2021; 116:516-537. [PMID: 33892520 DOI: 10.1111/mmi.14729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that uses malonate among its many carbon sources. We recently reported that, when grown in blood from trauma patients, P. aeruginosa expression of malonate utilization genes was upregulated. In this study, we explored the role of malonate utilization and its contribution to P. aeruginosa virulence. We grew P. aeruginosa strain PA14 in M9 minimal medium containing malonate (MM9) or glycerol (GM9) as a sole carbon source and assessed the effect of the growth on quorum sensing, virulence factors, and antibiotic resistance. Growth of PA14 in MM9, compared to GM9, reduced the production of elastases, rhamnolipids, and pyoverdine; enhanced the production of pyocyanin and catalase; and increased its sensitivity to norfloxacin. Growth in MM9 decreased extracellular levels of N-acylhomoserine lactone autoinducers, an effect likely associated with increased pH of the culture medium; but had little effect on extracellular levels of PQS. At 18 hr of growth in MM9, PA14 formed biofilm-like structures or aggregates that were associated with biomineralization, which was related to increased pH of the culture medium. These results suggest that malonate significantly impacts P. aeruginosa pathogenesis by influencing the quorum sensing systems, the production of virulence factors, biofilm formation, and antibiotic resistance.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jane A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Michael J San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Honors College, Texas Tech University, Lubbock, TX, USA
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
10
|
Prevalence of the Genes Associated with Biofilm and Toxins Synthesis amongst the Pseudomonas aeruginosa Clinical Strains. Antibiotics (Basel) 2021; 10:antibiotics10030241. [PMID: 33670887 PMCID: PMC7997207 DOI: 10.3390/antibiotics10030241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most commonly isolated bacteria from clinical specimens, with an increasing isolation frequency in nosocomial outbreaks. The hypothesis tested was whether carbapenem-resistant P. aeruginosa strains display an altered carriage of the virulence factor genes, depending on the type of carbapenem resistance. The aim of the study was to investigate, by PCR, the frequency of 10 chosen virulence factors genes (phzM, phzS, exoT, exoY, exoU, toxA, exoS, algD, pilA and pilB) and the genotype distribution in 107 non-duplicated carbapenem-resistant P. aeruginosa isolates. P. aeruginosa genes involved in phenazine dyes and exoenzyme T synthesis were noted with the highest frequency (100%). Fimbriae-encoding genes were detected with the lowest incidence: 15.9% and 4.7% for pilin A and B, respectively. The differences observed between the exoS gene prevalence amongst the carbapenemase-positive and the carbapenemase-negative strains and the pilA gene prevalence amongst the strains of different origins were statistically significant. Virulence genes’ prevalence and the genotype distribution vary amongst P. aeruginosa strains resistant to carbapenems, especially in terms of their carbapenemase synthesis ability and the strain origin.
Collapse
|
11
|
Askarian F, Uchiyama S, Masson H, Sørensen HV, Golten O, Bunæs AC, Mekasha S, Røhr ÅK, Kommedal E, Ludviksen JA, Arntzen MØ, Schmidt B, Zurich RH, van Sorge NM, Eijsink VGH, Krengel U, Mollnes TE, Lewis NE, Nizet V, Vaaje-Kolstad G. The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection. Nat Commun 2021; 12:1230. [PMID: 33623002 PMCID: PMC7902821 DOI: 10.1038/s41467-021-21473-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/29/2021] [Indexed: 12/20/2022] Open
Abstract
The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions.
Collapse
Affiliation(s)
- Fatemeh Askarian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Satoshi Uchiyama
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Helen Masson
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | | | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anne Cathrine Bunæs
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sophanit Mekasha
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Benjamin Schmidt
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Raymond H Zurich
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen TREC, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Department of Immunology, Oslo University Hospital, and K.G. Jebsen IRC, University of Oslo, Oslo, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan E Lewis
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Victor Nizet
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, USA.
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
12
|
Carbapenem-Resistant Pseudomonas aeruginosa Strains-Distribution of the Essential Enzymatic Virulence Factors Genes. Antibiotics (Basel) 2020; 10:antibiotics10010008. [PMID: 33374121 PMCID: PMC7823804 DOI: 10.3390/antibiotics10010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most commonly isolated bacteria from clinical specimens, with increasing isolation frequency in nosocomial infections. Herein, we investigated whether antimicrobial-resistant P. aeruginosa strains, e.g., metallo-beta-lactamase (MBL)-producing isolates, may possess a reduced number of virulence genes, resulting from appropriate genome management to adapt to a changing hospital environment. Hospital conditions, such as selective pressure, may lead to the replacement of virulence genes by antimicrobial resistance genes that are crucial to survive under current conditions. The study aimed to compare, using PCR, the frequency of the chosen enzymatic virulence factor genes (alkaline protease-aprA, elastase B-lasB, neuraminidases-nan1 and nan2, and both variants of phospholipase C-plcH and plcN) to MBL distribution among 107 non-duplicated carbapenem-resistant P. aeruginosa isolates. The gene encoding alkaline protease was noted with the highest frequency (100%), while the neuraminidase-1 gene was observed in 37.4% of the examined strains. The difference in lasB and nan1 prevalence amongst the MBL-positive and MBL-negative strains, was statistically significant. Although P. aeruginosa virulence is generally more likely determined by the complex regulation of the virulence gene expression, herein, we found differences in the prevalence of various virulence genes in MBL-producers.
Collapse
|
13
|
Beasley KL, Cristy SA, Elmassry MM, Dzvova N, Colmer-Hamood JA, Hamood AN. During bacteremia, Pseudomonas aeruginosa PAO1 adapts by altering the expression of numerous virulence genes including those involved in quorum sensing. PLoS One 2020; 15:e0240351. [PMID: 33057423 PMCID: PMC7561203 DOI: 10.1371/journal.pone.0240351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that produces numerous virulence factors and causes serious infections in trauma patients and patients with severe burns. We previously showed that the growth of P. aeruginosa in blood from severely burned or trauma patients altered the expression of numerous genes. However, the specific influence of whole blood from healthy volunteers on P. aeruginosa gene expression is not known. Transcriptome analysis of P. aeruginosa grown for 4 h in blood from healthy volunteers compared to that when grown in laboratory medium revealed that the expression of 1085 genes was significantly altered. Quorum sensing (QS), QS-related, and pyochelin synthesis genes were downregulated, while genes of the type III secretion system and those for pyoverdine synthesis were upregulated. The observed effect on the QS and QS-related genes was shown to reside within serum fraction: growth of PAO1 in the presence of 10% human serum from healthy volunteers significantly reduced the expression of QS and QS-regulated genes at 2 and 4 h of growth but significantly enhanced their expression at 8 h. Additionally, the production of QS-regulated virulence factors, including LasA and pyocyanin, was also influenced by the presence of human serum. Serum fractionation experiments revealed that part of the observed effect resides within the serum fraction containing <10-kDa proteins. Growth in serum reduced the production of many PAO1 outer membrane proteins but enhanced the production of others including OprF, a protein previously shown to play a role in the regulation of QS gene expression. These results suggest that factor(s) within human serum: 1) impact P. aeruginosa pathogenesis by influencing the expression of different genes; 2) differentially regulate the expression of QS and QS-related genes in a growth phase- or time-dependent mechanism; and 3) manipulate the production of P. aeruginosa outer membrane proteins.
Collapse
Affiliation(s)
- Kellsie L. Beasley
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
| | - Shane A. Cristy
- Honors College, Texas Tech University, Lubbock, Texas, Untied States of America
| | - Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, Untied States of America
| | - Nyaradzo Dzvova
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
| | - Jane A. Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, Untied States of America
- * E-mail:
| |
Collapse
|
14
|
Elmassry MM, Piechulla B. Volatilomes of Bacterial Infections in Humans. Front Neurosci 2020; 14:257. [PMID: 32269511 PMCID: PMC7111428 DOI: 10.3389/fnins.2020.00257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Sense of smell in humans has the capacity to detect certain volatiles from bacterial infections. Our olfactory senses were used in ancient medicine to diagnose diseases in patients. As humans are considered holobionts, each person's unique odor consists of volatile organic compounds (VOCs, volatilome) produced not only by the humans themselves but also by their beneficial and pathogenic micro-habitants. In the past decade it has been well documented that microorganisms (fungi and bacteria) are able to emit a broad range of olfactory active VOCs [summarized in the mVOC database (http://bioinformatics.charite.de/mvoc/)]. During microbial infection, the equilibrium between the human and its microbiome is altered, followed by a change in the volatilome. For several decades, physicians have been trying to utilize these changes in smell composition to develop fast and efficient diagnostic tools, particularly because volatiles detection is non-invasive and non-destructive, which would be a breakthrough in many therapies. Within this review, we discuss bacterial infections including gastrointestinal, respiratory or lung, and blood infections, focusing on the pathogens and their known corresponding volatile biomarkers. Furthermore, we cover the potential role of the human microbiota and their volatilome in certain diseases such as neurodegenerative diseases. We also report on discrete mVOCs that affect humans.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
15
|
Elmassry MM, Mudaliar NS, Colmer-Hamood JA, San Francisco MJ, Griswold JA, Dissanaike S, Hamood AN. New markers for sepsis caused by Pseudomonas aeruginosa during burn infection. Metabolomics 2020; 16:40. [PMID: 32170472 PMCID: PMC7223005 DOI: 10.1007/s11306-020-01658-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/05/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Sepsis is a leading cause of mortality in burn patients. One of the major causes of sepsis in burn patients is Pseudomonas aeruginosa. We hypothesized that during dissemination from infected burn wounds and subsequent sepsis, P. aeruginosa affects the metabolome of the blood resulting in changes to specific metabolites that would serve as biomarkers for early diagnosis of sepsis caused by P. aeruginosa. OBJECTIVES To identify specific biomarkers in the blood after sepsis caused by P. aeruginosa infection of burns. METHODS Gas chromatography with time-of-flight mass spectrometry was used to compare the serum metabolome of mice that were thermally injured and infected with P. aeruginosa (B-I) to that of mice that were neither injured nor infected, mice that were injured but not infected, and mice that were infected but not injured. RESULTS Serum levels of 19 metabolites were significantly increased in the B-I group compared to controls while levels of eight metabolites were significantly decreased. Thymidine, thymine, uridine, and uracil (related to pyrimidine metabolism), malate and succinate (a possible sign of imbalance in the tricarboxylic acid cycle), 5-oxoproline (related to glutamine and glutathione metabolism), and trans-4-hydroxyproline (a major component of the protein collagen) were increased. Products of amino acid metabolism were significantly decreased in the B-I group, including methionine, tyrosine, indole-3-acetate, and indole-3-propionate. CONCLUSION In all, 26 metabolites were identified, including a unique combination of five metabolites (trans-4-hydroxyproline, 5-oxoproline, glycerol-3-galactoside, indole-3-acetate, and indole-3-propionate) that could serve as a set of biomarkers for early diagnosis of sepsis caused by P. aeruginosa in burn patients.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Nithya S Mudaliar
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Caris Life Sciences, Phoenix, AZ, USA
| | - Jane A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Michael J San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Honors College, Texas Tech University, Lubbock, TX, USA
| | - John A Griswold
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sharmila Dissanaike
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Abdul N Hamood
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|