1
|
Arredondo-Alonso S, Pöntinen AK, Gama JA, Gladstone RA, Harms K, Tonkin-Hill G, Thorpe HA, Simonsen GS, Samuelsen Ø, Johnsen PJ, Corander J. Plasmid-driven strategies for clone success in Escherichia coli. Nat Commun 2025; 16:2921. [PMID: 40180894 PMCID: PMC11968864 DOI: 10.1038/s41467-025-57940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Escherichia coli is the most widely studied microbe in history, but the population structure and evolutionary trends of its extrachromosomal elements known as plasmids remain poorly delineated. Here we used long-read technology to high-resolution sequence the entire plasmidome and the corresponding host chromosomes from an unbiased longitudinal survey covering two decades and over 2000 E. coli isolates. We find that some plasmids have persisted in lineages even for centuries, demonstrating strong plasmid-lineage associations. Our analysis provides a detailed map of recent vertical and horizontal evolutionary events involving plasmids with key antibiotic resistance, competition and virulence determinants. We present genomic evidence of both chromosomal and plasmid-driven success strategies adopted by distant lineages by independently inheriting the same genomic elements. Further, we use in vitro experiments to verify the importance of key bacteriocin-producing plasmids for clone success. Our study has general implications for understanding plasmid biology and bacterial evolutionary strategies.
Collapse
Affiliation(s)
| | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - João A Gama
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | | | - Klaus Harms
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gerry Tonkin-Hill
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Harry A Thorpe
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Gunnar S Simonsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway.
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK.
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Finton MD, Meisal R, Porcellato D, Brandal LT, Lindstedt BA. Comparative genomics of clinical hybrid Escherichia coli strains in Norway. Int J Med Microbiol 2025; 318:151651. [PMID: 40058154 DOI: 10.1016/j.ijmm.2025.151651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/18/2025] Open
Abstract
The global rise of hybrid Escherichia coli (E. coli) is a major public health concern, as enhanced virulence from multiple pathotypes complicates the traditional E. coli classification system and challenges clinical diagnostics. Hybrid strains are particularly concerning as they can infect both intestinal and extraintestinal sites, complicating treatment and increasing the risk of severe disease. This study analyzed virulence-associated genes (VAGs) in 13 E. coli isolates from fecal samples of patients with symptoms of gastrointestinal (GI) infection in Norwegian hospitals and clinics. Whole genome sequencing (WGS) was conducted using Oxford Nanopore's MinION and Illumina's MiSeq platforms. Eleven strains harbored molecular diagnostic markers of atypical enteropathogenic E. coli (aEPEC), enteroinvasive E. coli (EIEC), Shiga toxin-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), or typical enteropathogenic E. coli (tEPEC). Two of those isolates were identified as triple intestinal hybrids with molecular diagnostic markers for aEPEC, EIEC, and STEC. Notably, two isolates lacked any IPEC-specific molecular diagnostic markers, yet were suspected of causing the patient's GI infection. Furthermore, genes associated with extraintestinal pathogenic E. coli (ExPEC)-including adhesins, toxins, protectins, siderophores, iron acquisition systems, and invasins-were identified in all the isolates. Thus, most of the isolates were classified as hybrid aEPEC/ExPEC, STEC/ExPEC, tEPEC/ExPEC, or aEPEC/EIEC/STEC/ExPEC. These findings emphasize the genomic plasticity of E. coli and highlight the need to revise the classification system for enteric pathogens.
Collapse
Affiliation(s)
- Misti D Finton
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Roger Meisal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lin T Brandal
- Department of Zoonotic, Food, and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørn-Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
3
|
Sridhar S, Worby CJ, Bronson RA, Turbett SE, Oliver EH, Shea T, Rao SR, Sanchez V, Becker MV, Kogut L, Slater D, Harris JB, Walters MS, Walker AT, Knouse MC, Leung DT, Kelly P, Ryan ET, LaRocque RC, Earl AM. Insights into global antimicrobial resistance dynamics through the sequencing of enteric bacteria from U.S. international travelers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635056. [PMID: 39974885 PMCID: PMC11838388 DOI: 10.1101/2025.01.27.635056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Antimicrobial resistance (AMR) is an urgent threat to public health, but gaps in surveillance limit the detection of emergent novel threats and knowledge about the global distribution of AMR genes. International travelers frequently acquire AMR organisms, and thus may provide a window into AMR dynamics in otherwise poorly monitored regions and environments. To assess the utility of travelers as global AMR sentinels, we collected pre- and post-travel stool samples from 608 travelers, which were screened for the presence of extended-spectrum beta-lactamase producing Enterobacterales, carbapenem-resistant Enterobacterales, and mcr-mediated colistin-resistant Enterobacterales. A total of 307 distinct AMR organisms were sequenced in order to determine genotypic patterns and their association with travel region and behavior. Travel-associated AMR organisms were overwhelmingly E. coli, which exhibited considerable phylogenetic diversity regardless of travel region. However, the prevalence of resistance genes varied by region, with bla CTX-M-55 and bla CTX-M-27 significantly more common in travelers returning from South America and South-Eastern Asia, respectively. Hybrid assembly and plasmid reconstruction revealed the genomic neighborhood of bla CTX-M-55 frequently matched a motif previously linked to animal populations. Contact with animals was also associated with virulence factors in acquired AMR organisms, including carriage of the ColV plasmid, a driver of avian pathogenic E. coli. We identified novel variants of the mcr-1 gene in strains acquired from Western Africa, highlighting the potential for traveler surveillance to detect emerging clinical threats. Ongoing efforts to track travel-acquired organisms could complement existing global AMR surveillance frameworks.
Collapse
Affiliation(s)
- Sushmita Sridhar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Colin J Worby
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ryan A Bronson
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sarah E Turbett
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Elizabeth H Oliver
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Terrance Shea
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sowmya R Rao
- MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA
- Department of Global Health, Boston University School of Public Health, Boston, MA
| | - Vanessa Sanchez
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Margaret V Becker
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Lucyna Kogut
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Damien Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Maroya Spalding Walters
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Disease, Centers for Disease Control and Prevention, Atlanta, GA
| | - Allison Taylor Walker
- Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, GA
| | - Mark C Knouse
- Division of Infectious Diseases, Lehigh Valley Health Network, Allentown, PA, USA
| | - Daniel T Leung
- Division of Infectious Diseases, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA
| | - Paul Kelly
- Division of Infectious Diseases, Bronx Care Center, Bronx, NY, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Travelers’ Advice and Immunization Center, Massachusetts General Hospital, Boston, MA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Travelers’ Advice and Immunization Center, Massachusetts General Hospital, Boston, MA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
4
|
Reid CJ, Cummins ML, Djordjevic SP. Major F plasmid clusters are linked with ColV and pUTI89-like marker genes in bloodstream isolates of Escherichia coli. BMC Genomics 2025; 26:57. [PMID: 39838323 PMCID: PMC11748317 DOI: 10.1186/s12864-025-11226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND F plasmids are abundant in E. coli, carrying a variety of genetic cargo involved in fitness, pathogenicity, and antimicrobial resistance. ColV and pUTI89-like plasmids have drawn attention for their potential roles in various forms of extra-intestinal pathogenicity. However, the rates of their carriage and the overall diversity of F plasmids in E. coli bloodstream infections (BSI E. coli) remain unknown. METHODS We performed a t-SNE-based cluster analysis of predicted F plasmids from a collection of 4711 BSI E. coli draft genomes to describe their diversity and abundance. We also screened them for markers of ColV and pUTI89-like plasmids, F plasmid replicon sequence types (RST) and E. coli sequence types (ST) to understand how genetic features were related to plasmid clusters. RESULTS Predicted F plasmids in BSI E. coli draft genomes were embedded within five major clusters based on a model of complete F plasmid sequences. Nearly half of the clustered sequences belonged to two major clusters, which were associated with ColV and pUTI89-like marker genes, respectively. Genomes from the ColV cluster featured F2:A-:B1 and F24:A-B1 RSTs in association with ST95, ST58 and ST88, whilst the pUTI89-like cluster was mostly F29:A-:B10 linked to ST73, ST69, ST95 and ST131. Plasmids associated with different lineages of ST131 formed additional major clusters, whilst F51:A-:B10 plasmids in ST73 were also common. CONCLUSIONS ColV and pUTI89-like plasmid markers are predominant in BSI E. coli that carry F plasmids. These markers are associated with distinct clusters of plasmids across diverse sequence types of E. coli. We hypothesise that their abundance in BSI E. coli is partially driven by carriage of backbone genes previously shown to contribute to virulence in models of bloodstream infection. Their carriage by pandemic E. coli STs suggests clonal expansion also plays a role in their success in BSI. Ecological pathways via which these plasmids evolve, and spread are likely to be distinct as other studies show ColV is strongly associated with poultry and food animal production, whereas pUTI89-like plasmids appear to be mostly human-restricted.
Collapse
Affiliation(s)
- Cameron J Reid
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment Research Unit, Urrbrae, SA, Australia
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
5
|
Watt AE, Cummins ML, Donato CM, Wirth W, Porter AF, Andersson P, Donner E, Jennison AV, Seemann T, Djordjevic SP, Howden BP. Parameters for one health genomic surveillance of Escherichia coli from Australia. Nat Commun 2025; 16:17. [PMID: 39747833 PMCID: PMC11696363 DOI: 10.1038/s41467-024-55103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Genomics is a cornerstone of modern pathogen epidemiology yet demonstrating transmission in a One Health context is challenging, as strains circulate and evolve within and between diverse hosts and environments. To identify phylogenetic linkages and better define relevant measures of genomic relatedness in a One Health context, we collated 5471 Escherichia coli genome sequences from Australia originating from humans (n = 2996), wild animals (n = 870), livestock (n = 649), companion animals (n = 375), environmental sources (n = 292) and food (n = 289) spanning over 36 years. Of the 827 multi-locus sequence types (STs) identified, 10 STs were commonly associated with cross-source genomic clusters, including the highly clonal ST131, pandemic zoonotic lineages such as ST95, and emerging human ExPEC ST1193. Here, we show that assessing genomic relationships at ≤ 100 SNP threshold enabled detection of cross-source linkage otherwise obscured when applying typical outbreak-oriented relatedness thresholds ( ≤ 20 SNPs) and should be considered in interrogation of One Health genomic datasets.
Collapse
Affiliation(s)
- Anne E Watt
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Celeste M Donato
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wytamma Wirth
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ashleigh F Porter
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patiyan Andersson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), Mawson Lakes, South Australia, Australia
| | - Amy V Jennison
- Public Health Microbiology, Public and Environmental Health, Pathology Queensland, Queensland Department of Health, Brisbane, Queensland, Australia
| | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, New South Wales, Australia.
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia.
| |
Collapse
|
6
|
Shindou J, Hayashi W, Kayama S, Yu L, Zuo H, Sugawara Y, Sugai M. First detection of VEB-1 extended-spectrum β-lactamase-producing Escherichia coli clinical isolate in Japan. Microbiol Spectr 2024; 12:e0052324. [PMID: 39287461 PMCID: PMC11537020 DOI: 10.1128/spectrum.00523-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The extended-spectrum β-lactamase (ESBL) gene, blaVEB-1, was identified for the first time in an Escherichia coli clinical isolate, JARB-RN-0061, from blood cultures in a Japanese general hospital in 2021. The isolate exhibited high resistance to broad-spectrum cephalosporins, including ceftazidime (MIC >128 mg/L) and cefepime (MIC = 16 mg/L). blaVEB-1 was identified during whole-genome sequencing and characterization of the isolate. JARB-RN-0061 belonged to the B2-O2:K1:H7-ST95-fimH41 lineage and was classified as presumptive extraintestinal pathogenic E. coli (ExPEC) and uropathogenic E. coli (UPEC). Moreover, the strain harbored multiple virulence genes on the chromosome. The Col156/IncFIB(AP001918)/IncFII(29)-type plasmid (114,216 bp), with clbB and tcpC genes involved in bacteremia, was unique to the fimH41 subclone. The blaVEB-1 gene was located on a non-typeable and non-conjugative plasmid, pJARB-RN-0061_VEB-1 (17,093 bp). It was embedded in the class 1 integron In1883-like, with multidrug resistance gene cassettes for aacA4, aadB, cmlA5, qnrVC4, and dfrA14. Notably, comparative analysis of the complete sequence of plasmid pJARB-RN-0061_VEB-1 revealed that it was highly homologous to the blaVEB-1-harboring plasmid, pMS2H7VEB-1 (100% coverage and 99.99% identity), except for the Tn3 family transposon (4,931 bp) and the plasmid pRHBSTW-00138_5 (97% coverage and 100% identity) harbored by Klebsiella quasipneumoniae subsp. similipneumoniae strains from hospital sewage in Japan and wastewater influent in the United Kingdom, respectively. The emergence of a human pathogenic E. coli clinical isolate with the blaVEB-1-carrying plasmid in the B2-ST95 worldwide pandemic lineage, characterized by the virulence potential of ExPEC or UPEC but a low prevalence of antimicrobial resistance, would raise public health concerns. IMPORTANCE ESBLs are plasmid-mediated enzymes that confer resistance to clinically significant antimicrobial agents, such as broad-spectrum cephalosporins. Recently, the rapid spread of CTX-M-type ESBL-producing E. coli has become a global issue, including in Japan, where ESBL production in human pathogenic E. coli, such as the ExPEC and UPEC lineages, which typically harbor several virulence genes, is a severe public health concern. To date, VEB (Vietnamese extended-spectrum β-lactamase) producers have been found only in hospital wastewater and rivers in Japan. Thus, we describe the first detection of a very rare human-derived blaVEB-1 gene in the E. coli B2-ST95 pandemic clonal lineage that is highly associated with ExPEC and UPEC in a Japanese clinical setting. Furthermore, we characterized the genomic features of plasmids harboring the class 1 integron-borne blaVEB-1. Our findings highlight the significance of closely monitoring ESBL-producing E. coli isolates to prevent the potential dissemination of this resistance determinant in Japan.
Collapse
Affiliation(s)
- Junko Shindou
- Department of Laboratory Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Wataru Hayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
7
|
Saidenberg ABS, Edslev SM, Hallstrøm S, Rasmussen A, Park DE, Aziz M, Dos Santos Queiroz B, Baptista AAS, Barbosa F, Rocha VGP, van Vliet AHM, Dalsgaard A, Price LB, Knöbl T, Stegger M. Escherichia coli ST117: exploring the zoonotic hypothesis. Microbiol Spectr 2024; 12:e0046624. [PMID: 39235965 PMCID: PMC11448156 DOI: 10.1128/spectrum.00466-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/04/2024] [Indexed: 09/07/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) can lead to severe infections, with additional risks of increasing antimicrobial resistance rates. Genotypic similarities between ExPEC and avian pathogenic E. coli (APEC) support a possible role for a poultry meat reservoir in human disease. Some genomic studies have been done on the ST117 lineage which contaminates poultry meat, carries multidrug resistance, can be found in the human intestinal microbiota, and causes human extraintestinal disease. This study analyzed the genomes of 61 E. coli from Brazilian poultry outbreaks focusing on ST117, to further define its possible zoonotic characteristics by genotypic and phylogenomic analyses, along with 1,699 worldwide ST117 isolates originating from human, animal, and environment sources. A predominance of ST117 was detected in the Brazilian isolates (n = 20/61) frequently carrying resistance to critical antibiotics (>86%) linked to IncFII, IncI1, or IncX4 replicons. High similarities were found between IncX4 from Brazilian outbreaks and those from E. coli recovered from imported Brazilian poultry meat and human clinical cases. The ST117 phylogeny showed non-specificity according to host and continent and an AMR index score indicated the highest resistance in Asia and South America, with the latter statistically more resistant and overrepresented with resistance to extended-spectrum beta-lactamases (ESBL). Most ST117 human isolates were predicted to have a poultry origin (93%, 138/148). In conclusion, poultry is a likely source for zoonotic ExPEC strains, particularly the ST117 lineage which can also serve as a reservoir for resistance determinants against critical antibiotics encoded on highly transmissible plasmids. IMPORTANCE Certain extraintestinal pathogenic Escherichia coli (ExPEC) are particularly important as they affect humans and animals. Lineages, such as ST117, are predominant in poultry and frequent carriers of antibiotic resistance, presenting a risk to humans handling or ingesting poultry products. We analyzed ExPEC isolates causing outbreaks in Brazilian poultry, focusing on the ST117 as the most detected lineage. Genomic comparisons with international isolates from humans and animals were performed describing the potential zoonotic profile. The Brazilian ST117 isolates carried resistance determinants against critical antibiotics, mainly on plasmids, in some cases identical to those carried by international isolates. South American ST117 isolates from all sources generally exhibit more resistance, including to critical antibiotics, and worldwide, the vast majority of human isolates belonging to this lineage have a predicted poultry origin. As the world's largest poultry exporter, Brazil has an important role in developing strategies to prevent the dissemination of multidrug-resistant zoonotic ExPEC strains.
Collapse
Affiliation(s)
- A B S Saidenberg
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- School of Veterinary Medicine and Animal Science, São Paulo, Brazil
- Section for Food Safety and Zoonoses, Institute for Veterinary and Companion Animal Science, Københavns Universitet, Copenhagen, Denmark
| | - S M Edslev
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - S Hallstrøm
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - A Rasmussen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - D E Park
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - M Aziz
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | | | - A A S Baptista
- Preventive Veterinary Medicine Department, State University of Londrina, Parana, Brazil
| | - F Barbosa
- School of Veterinary Medicine and Animal Science, São Paulo, Brazil
| | - V G P Rocha
- School of Veterinary Medicine and Animal Science, São Paulo, Brazil
| | - Arnoud H M van Vliet
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - A Dalsgaard
- Section for Food Safety and Zoonoses, Institute for Veterinary and Companion Animal Science, Københavns Universitet, Copenhagen, Denmark
| | - L B Price
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - T Knöbl
- School of Veterinary Medicine and Animal Science, São Paulo, Brazil
| | - M Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antibiotic Resistance Action Center, Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| |
Collapse
|
8
|
Nhu NTK, Rahman MA, Goh KGK, Kim SJ, Phan MD, Peters KM, Alvarez-Fraga L, Hancock SJ, Ravi C, Kidd TJ, Sullivan MJ, Irvine KM, Beatson SA, Sweet MJ, Irwin AD, Vukovic J, Ulett GC, Hasnain SZ, Schembri MA. A convergent evolutionary pathway attenuating cellulose production drives enhanced virulence of some bacteria. Nat Commun 2024; 15:1441. [PMID: 38383596 PMCID: PMC10881479 DOI: 10.1038/s41467-024-45176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Bacteria adapt to selective pressure in their immediate environment in multiple ways. One mechanism involves the acquisition of independent mutations that disable or modify a key pathway, providing a signature of adaptation via convergent evolution. Extra-intestinal pathogenic Escherichia coli (ExPEC) belonging to sequence type 95 (ST95) represent a global clone frequently associated with severe human infections including acute pyelonephritis, sepsis, and neonatal meningitis. Here, we analysed a publicly available dataset of 613 ST95 genomes and identified a series of loss-of-function mutations that disrupt cellulose production or its modification in 55.3% of strains. We show the inability to produce cellulose significantly enhances ST95 invasive infection in a rat model of neonatal meningitis, leading to the disruption of intestinal barrier integrity in newborn pups and enhanced dissemination to the liver, spleen and brain. Consistent with these observations, disruption of cellulose production in ST95 augmented innate immune signalling and tissue neutrophil infiltration in a mouse model of urinary tract infection. Mutations that disrupt cellulose production were also identified in other virulent ExPEC STs, Shigella and Salmonella, suggesting a correlative association with many Enterobacteriaceae that cause severe human infection. Together, our findings provide an explanation for the emergence of hypervirulent Enterobacteriaceae clones.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - M Arifur Rahman
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Brisbane QLD, Australia
| | - Kelvin G K Goh
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Seung Jae Kim
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Kate M Peters
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Laura Alvarez-Fraga
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, Narbonne, 11100, France
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Chitra Ravi
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Katharine M Irvine
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Adam D Irwin
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- University of Queensland Centre for Clinical Research, Brisbane, Australia
- Queensland Children's Hospital, Brisbane, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.
| | - Sumaira Z Hasnain
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Kujat Choy S, Neumann EM, Romero-Barrios P, Tamber S. Contribution of Food to the Human Health Burden of Antimicrobial Resistance. Foodborne Pathog Dis 2024; 21:71-82. [PMID: 38099924 PMCID: PMC10877391 DOI: 10.1089/fpd.2023.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
The impact of foodborne antimicrobial resistance (AMR) on the human health burden of AMR infections is unknown. The aim of this review was to evaluate and summarize the scientific literature investigating all potential sources of human AMR infections related to food. A literature search was conducted in Embase (Ovid) and MEDLINE (Ovid) databases to identify appropriate studies published between 2010 and 2023. The results of the search were reviewed and categorized based on the primary subject matter. Key concepts from each category are described from the perspective of food safety as a public health objective. The search yielded 3457 references, 1921 remained after removal of duplicates, abstracts, editorials, comments, notes, retractions, and errata. No properly designed source attribution studies were identified, but 383 journal articles were considered relevant and were classified into eight subcategories and discussed in the context of four streams of evidence: prevalence data, epidemiological studies, outbreak investigations and human health impact estimates. There was sufficient evidence to conclude that AMR genes, whether present in pathogenic or nonpathogenic bacteria, constitute a foodborne hazard. The level of consumer risk owing to this hazard cannot be accurately estimated based on the data summarized here. Key gaps in the literature are noted.
Collapse
Affiliation(s)
- Sonya Kujat Choy
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Eva-Marie Neumann
- Library Services Division, Corporate Services Branch, Health Canada, Ottawa, Canada
| | - Pablo Romero-Barrios
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Sandeep Tamber
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| |
Collapse
|
10
|
Djordjevic SP, Jarocki VM, Seemann T, Cummins ML, Watt AE, Drigo B, Wyrsch ER, Reid CJ, Donner E, Howden BP. Genomic surveillance for antimicrobial resistance - a One Health perspective. Nat Rev Genet 2024; 25:142-157. [PMID: 37749210 DOI: 10.1038/s41576-023-00649-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.
Collapse
Affiliation(s)
- Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia.
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia.
| | - Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Torsten Seemann
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Anne E Watt
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Barbara Drigo
- UniSA STEM, University of South Australia, Adelaide, South Australia, Australia
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Cameron J Reid
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), Adelaide, South Australia, Australia
| | - Benjamin P Howden
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Barbosa FB, Santos BQ, Rocha VGP, Franco LS, Saidenberg ABS, Moreno AM, Knöbl T. Detection of high-risk Avian Pathogenic Escherichia coli (APEC) isolated from broilers in São Paulo, Brazil. Braz J Microbiol 2023; 54:2471-2475. [PMID: 37341945 PMCID: PMC10485226 DOI: 10.1007/s42770-023-01023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Some high-risk Avian Pathogenic Escherichia coli (APEC) clones have been associated with increased economic losses caused by avian colibacillosis. They may represent an additional food consumption concern due to the potential zoonotic role causing urinary tract infections mainly related to E. coli ST73 and ST95 lineages. This study aimed to characterize APEC isolated from slaughterhouse carcasses presenting lesions compatible with avian colibacillosis. We analyzed about 6500 broilers carcasses, and 48 showed lesions consistent with colibacillosis. Forty-four strains of E. coli were isolated, with 77.27% (n = 34/44) classified as APEC. The isolates belonged to the phylogenetic groups B2 (41.17%, n = 14/34), G (20.59%, n = 7/34), A (17.65%, n = 6/34), B1 (8.82%, n = 3/34), and E (5.88%, n = 2/34). Determining the phylogenetic group of 5.88% (n = 2/34) of the strains was impossible. Moreover, 20.59% (n = 7/34) were positive to the clonal groups ST117, 8.82% (n = 3/34) to ST95, and 8.82% (n = 3/34) were classified as belonging to serogroup O78 by PCR screening. Strains of APEC from O78 serogroup and ST117 are considered high-risk clones for poultry, and our data reinforced the need for surveillance of these pathogens in poultry farms and slaughterhouses.
Collapse
Affiliation(s)
- F B Barbosa
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - B Q Santos
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - V G P Rocha
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - L S Franco
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - A B S Saidenberg
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - A M Moreno
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - T Knöbl
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Royer G, Clermont O, Marin J, Condamine B, Dion S, Blanquart F, Galardini M, Denamur E. Epistatic interactions between the high pathogenicity island and other iron uptake systems shape Escherichia coli extra-intestinal virulence. Nat Commun 2023; 14:3667. [PMID: 37339949 DOI: 10.1038/s41467-023-39428-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
The intrinsic virulence of extra-intestinal pathogenic Escherichia coli is associated with numerous chromosomal and/or plasmid-borne genes, encoding diverse functions such as adhesins, toxins, and iron capture systems. However, the respective contribution to virulence of those genes seems to depend on the genetic background and is poorly understood. Here, we analyze genomes of 232 strains of sequence type complex STc58 and show that virulence (quantified in a mouse model of sepsis) emerged in a sub-group of STc58 due to the presence of the siderophore-encoding high-pathogenicity island (HPI). When extending our genome-wide association study to 370 Escherichia strains, we show that full virulence is associated with the presence of the aer or sit operons, in addition to the HPI. The prevalence of these operons, their co-occurrence and their genomic location depend on strain phylogeny. Thus, selection of lineage-dependent specific associations of virulence-associated genes argues for strong epistatic interactions shaping the emergence of virulence in E. coli.
Collapse
Affiliation(s)
- Guilhem Royer
- Université Paris Cité, IAME, INSERM, Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France
- EERA Unit "Ecology and Evolution of Antibiotics Resistance," Institut Pasteur-Assistance Publique/Hôpitaux de Paris-Université Paris-Saclay, Paris, France
- UMR CNRS, 3525, Paris, France
| | | | - Julie Marin
- Université Paris Cité, IAME, INSERM, Paris, France
- Université Sorbonne Paris Nord, IAME, INSERM, Bobigny, France
| | | | - Sara Dion
- Université Paris Cité, IAME, INSERM, Paris, France
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Erick Denamur
- Université Paris Cité, IAME, INSERM, Paris, France.
- AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France.
| |
Collapse
|
13
|
Rodrigues C, Lanza VF, Peixe L, Coque TM, Novais Â. Phylogenomics of Globally Spread Clonal Groups 14 and 15 of Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0339522. [PMID: 37098951 PMCID: PMC10269502 DOI: 10.1128/spectrum.03395-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/26/2023] [Indexed: 04/27/2023] Open
Abstract
Klebsiella pneumoniae sequence type 14 (ST14) and ST15 caused outbreaks of CTX-M-15 and/or carbapenemase producers worldwide, but their phylogeny and global dynamics remain unclear. We clarified the evolution of K. pneumoniae clonal group 14 (CG14) and CG15 by analyzing the capsular locus (KL), resistome, virulome, and plasmidome of public genomes (n = 481) and de novo sequences (n = 9) representing main sublineages circulating in Portugal. CG14 and CG15 evolved independently within 6 main subclades defined according to the KL and the accessory genome. The CG14 (n = 65) clade was structured in two large monophyletic subclades, CG14-I (KL2, 86%) and CG14-II (KL16, 14%), whose emergences were dated to 1932 and 1911, respectively. Genes encoding extended-spectrum β-lactamase (ESBL), AmpC, and/or carbapenemases were mostly observed in CG14-I (71% versus 22%). CG15 clade (n = 170) was segregated into subclades CG15-IA (KL19/KL106, 9%), CG15-IB (variable KL types, 6%), CG15-IIA (KL24, 43%) and CG15-IIB (KL112, 37%). Most CG15 genomes carried specific GyrA and ParC mutations and emerged from a common ancestor in 1989. CTX-M-15 was especially prevalent in CG15 (68% CG15 versus 38% CG14) and in CG15-IIB (92%). Plasmidome analysis revealed 27 predominant plasmid groups (PG), including particularly pervasive and recombinant F-type (n = 10), Col (n = 10), and new plasmid types. While blaCTX-M-15 was acquired multiple times by a high diversity of F-type mosaic plasmids, other antibiotic resistance genes (ARGs) were dispersed by IncL (blaOXA-48) or IncC (blaCMY/TEM-24) plasmids. We first demonstrate an independent evolutionary trajectory for CG15 and CG14 and how the acquisition of specific KL, quinolone-resistance determining region (QRDR) mutations (CG15), and ARGs in highly recombinant plasmids could have shaped the expansion and diversification of particular subclades (CG14-I and CG15-IIA/IIB). IMPORTANCE Klebsiella pneumoniae represents a major threat in the burden of antibiotic resistance (ABR). Available studies to explain the origin, the diversity, and the evolution of certain ABR K. pneumoniae populations have mainly been focused on a few clonal groups (CGs) using phylogenetic analysis of the core genome, the accessory genome being overlooked. Here, we provide unique insights into the phylogenetic evolution of CG14 and CG15, two poorly characterized CGs which have contributed to the global dissemination of genes responsible for resistance to first-line antibiotics such as β-lactams. Our results point out an independent evolution of these two CGs and highlight the existence of different subclades structured by the capsular type and the accessory genome. Moreover, the contribution of a turbulent flux of plasmids (especially multireplicon F type and Col) and adaptive traits (antibiotic resistance and metal tolerance genes) to the pangenome reflect the exposure and adaptation of K. pneumoniae under different selective pressures.
Collapse
Affiliation(s)
- Carla Rodrigues
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Val F. Lanza
- Unidad de Genómica Traslacional Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
- CIBER en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Luísa Peixe
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa M. Coque
- CIBER en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Ângela Novais
- UCIBIO, Applied Molecular Biosciences Unit, Department of Biological Sciences, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Davidova-Gerzova L, Lausova J, Sukkar I, Nesporova K, Nechutna L, Vlkova K, Chudejova K, Krutova M, Palkovicova J, Kaspar J, Dolejska M. Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli. Front Cell Infect Microbiol 2023; 13:1184081. [PMID: 37256105 PMCID: PMC10225658 DOI: 10.3389/fcimb.2023.1184081] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Hospitals and wastewater are recognized hot spots for the selection and dissemination of antibiotic-resistant bacteria to the environment, but the total participation of hospitals in the spread of nosocomial pathogens to municipal wastewater treatment plants (WWTPs) and adjacent rivers had not previously been revealed. Methods We used a combination of culturing and whole-genome sequencing to explore the transmission routes of Escherichia coli from hospitalized patients suffering from urinary tract infections (UTI) via wastewater to the environment. Samples were collected in two periods in three locations (A, B, and C) and cultured on selective antibiotic-enhanced plates. Results In total, 408 E. coli isolates were obtained from patients with UTI (n=81), raw hospital sewage (n=73), WWTPs inflow (n=96)/outflow (n=106), and river upstream (n=21)/downstream (n=31) of WWTPs. The majority of the isolates produced extended-spectrum beta-lactamase (ESBL), mainly CTX-M-15, and showed multidrug resistance (MDR) profiles. Seven carbapenemase-producing isolates with GES-5 or OXA-244 were obtained in two locations from wastewater and river samples. Isolates were assigned to 74 different sequence types (ST), with the predominance of ST131 (n=80) found in all sources including rivers. Extraintestinal pathogenic lineages frequently found in hospital sewage (ST10, ST38, and ST69) were also found in river water. Despite generally high genetic diversity, phylogenetic analysis of ST10, ST295, and ST744 showed highly related isolates (SNP 0-18) from different sources, providing the evidence for the transmission of resistant strains through WWTPs to surface waters. Discussion Results of this study suggest that 1) UTI share a minor participation in hospitals wastewaters; 2) a high diversity of STs and phylogenetic groups in municipal wastewaters derive from the urban influence rather than hospitals; and 3) pathogenic lineages and bacteria with emerging resistance genotypes associated with hospitals spread into surface waters. Our study highlights the contribution of hospital and municipal wastewater to the transmission of ESBL- and carbapenemase-producing E. coli with MDR profiles to the environment.
Collapse
Affiliation(s)
- Lenka Davidova-Gerzova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jarmila Lausova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Kristina Nesporova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Lucie Nechutna
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Katerina Vlkova
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Katerina Chudejova
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jana Palkovicova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jakub Kaspar
- Center of Cardiovascular and Transplant Surgery, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czechia
| |
Collapse
|
15
|
Tiwari SK, van der Putten BCL, Fuchs TM, Vinh TN, Bootsma M, Oldenkamp R, La Ragione R, Matamoros S, Hoa NT, Berens C, Leng J, Álvarez J, Ferrandis-Vila M, Ritchie JM, Fruth A, Schwarz S, Domínguez L, Ugarte-Ruiz M, Bethe A, Huber C, Johanns V, Stamm I, Wieler LH, Ewers C, Fivian-Hughes A, Schmidt H, Menge C, Semmler T, Schultsz C. Genome-wide association reveals host-specific genomic traits in Escherichia coli. BMC Biol 2023; 21:76. [PMID: 37038177 PMCID: PMC10088187 DOI: 10.1186/s12915-023-01562-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Escherichia coli is an opportunistic pathogen which colonizes various host species. However, to what extent genetic lineages of E. coli are adapted or restricted to specific hosts and the genomic determinants of such adaptation or restriction is poorly understood. RESULTS We randomly sampled E. coli isolates from four countries (Germany, UK, Spain, and Vietnam), obtained from five host species (human, pig, cattle, chicken, and wild boar) over 16 years, from both healthy and diseased hosts, to construct a collection of 1198 whole-genome sequenced E. coli isolates. We identified associations between specific E. coli lineages and the host from which they were isolated. A genome-wide association study (GWAS) identified several E. coli genes that were associated with human, cattle, or chicken hosts, whereas no genes associated with the pig host could be found. In silico characterization of nine contiguous genes (collectively designated as nan-9) associated with the human host indicated that these genes are involved in the metabolism of sialic acids (Sia). In contrast, the previously described sialic acid regulon known as sialoregulon (i.e. nanRATEK-yhcH, nanXY, and nanCMS) was not associated with any host species. In vitro growth experiments with a Δnan-9 E. coli mutant strain, using the sialic acids 5-N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) as sole carbon source, showed impaired growth behaviour compared to the wild-type. CONCLUSIONS This study provides an extensive analysis of genetic determinants which may contribute to host specificity in E. coli. Our findings should inform risk analysis and epidemiological monitoring of (antimicrobial resistant) E. coli.
Collapse
Affiliation(s)
- Sumeet K Tiwari
- Robert Koch Institute, Genome Sequencing and Genomic Epidemiology, Berlin, Germany
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Program, Norwich Research Park, Norwich, UK
| | - Boas C L van der Putten
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Thilo M Fuchs
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Trung N Vinh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | | | - Rik Oldenkamp
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Roberto La Ragione
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Sebastien Matamoros
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ngo T Hoa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Tropical medicine and global health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Microbiology- Parasitology Unit, Biomedical Research Center and Microbiology Department, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Joy Leng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Julio Álvarez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Jenny M Ritchie
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Angelika Fruth
- Robert Koch Institute, Enteropathogenic Bacteria and Legionella, Wernigerode, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Lucas Domínguez
- Tropical medicine and global health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Microbiology- Parasitology Unit, Biomedical Research Center and Microbiology Department, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - María Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Charlotte Huber
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Vanessa Johanns
- Robert Koch Institute, Advanced Light and Electron Microscopy, Berlin, Germany
| | - Ivonne Stamm
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Kornwestheim, Germany
| | | | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Giessen, Germany
| | - Amanda Fivian-Hughes
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, UK
| | - Herbert Schmidt
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Stuttgart, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Torsten Semmler
- Robert Koch Institute, Genome Sequencing and Genomic Epidemiology, Berlin, Germany.
| | - Constance Schultsz
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
16
|
Elankumuran P, Browning GF, Marenda MS, Kidsley A, Osman M, Haenni M, Johnson JR, Trott DJ, Reid CJ, Djordjevic SP. Identification of genes influencing the evolution of Escherichia coli ST372 in dogs and humans. Microb Genom 2023; 9:mgen000930. [PMID: 36752777 PMCID: PMC9997745 DOI: 10.1099/mgen.0.000930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/10/2022] [Indexed: 02/09/2023] Open
Abstract
ST372 are widely reported as the major Escherichia coli sequence type in dogs globally. They are also a sporadic cause of extraintestinal infections in humans. Despite this, it is unknown whether ST372 strains from dogs and humans represent shared or distinct populations. Furthermore, little is known about genomic traits that might explain the prominence of ST372 in dogs or presence in humans. To address this, we applied a variety of bioinformatics analyses to a global collection of 407 ST372 E. coli whole-genome sequences to characterize their epidemiological features, population structure and associated accessory genomes. We confirm that dogs are the dominant host of ST372 and that clusters within the population structure exhibit distinctive O:H types. One phylogenetic cluster, 'cluster M', comprised almost half of the sequences and showed the divergence of two human-restricted clades that carried different O:H types to the remainder of the cluster. We also present evidence supporting transmission between dogs and humans within different clusters of the phylogeny, including M. We show that multiple acquisitions of the pdu propanediol utilization operon have occurred in clusters dominated by isolates of canine source, possibly linked to diet, whereas loss of the pdu operon and acquisition of K antigen virulence genes characterize human-restricted lineages.
Collapse
Affiliation(s)
- Paarthiphan Elankumuran
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Amanda Kidsley
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement, Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Marisa Haenni
- ANSES, Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | | | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia
| | - Cameron J. Reid
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
17
|
Wyrsch ER, Bushell RN, Marenda MS, Browning GF, Djordjevic SP. Global Phylogeny and F Virulence Plasmid Carriage in Pandemic Escherichia coli ST1193. Microbiol Spectr 2022; 10:e0255422. [PMID: 36409140 PMCID: PMC9769970 DOI: 10.1128/spectrum.02554-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Lower urinary tract, renal, and bloodstream infections caused by phylogroup B2 extraintestinal pathogenic Escherichia coli (ExPEC) are a leading cause of morbidity and mortality. ST1193 is a phylogroup B2, multidrug-resistant sequence type that has risen to prominence globally, but a comprehensive analysis of the F virulence plasmids it carries is lacking. We performed a phylogenomic analysis of ST1193 (n = 707) whole-genome sequences from EnteroBase using entries with comprehensive isolation metadata. The data set comprised isolates from humans (n = 634 [90%]), including 339 (48%) from extraintestinal infection sites, and isolates from companion animals, wastewater, and wildlife. Phylogenetic analyses combined with gene detection and genotyping resolved an ST1193 clade structure segregated by serotype and F plasmid carriage. Most F plasmids fell into one of three related plasmid subtypes: F-:A1:B10 (n = 444 [65.97%]), F-:A1:B1 (n = 84 [12.48%]), and F-:A1:B20 (n = 80 [11.89%]), all of which carry the virulence genes cjrABC colocalized with senB (cjrABC-senB), a trademark signature of F29:A-:B10 subtype plasmids (pUTI89). To examine the phylogenetic relationship of these plasmids with pUTI89, complete sequences of F-:A1:B1 and F-:1:B20 plasmids were resolved. Unlike pUTI89, the most dominant and widely disseminated F plasmid that carries cjrABC-senB, F plasmids in ST1193 often carry a complex resistance region with an integron truncation (intI1Δ745) signature embedded within a structure assembled by IS26. Plasmid analysis shows that ST1193 has F plasmids that carry cjrABC-senB and ARG-encoding genes but lack tra regions and are likely derivatives of pUTI89. Further epidemiological investigation of ST1193 should seek to confirm its presence in human-associated environments and identify any potential agricultural links, which are currently lacking. IMPORTANCE We have generated an updated ST1193 phylogeny using publicly available sequences, reinforcing previous assertions that Escherichia coli ST1193 is a human-associated lineage, with many examples sourced from human extraintestinal infections. ST1193 from urban-adapted birds, wastewater, and companion animals are frequent, but isolates from animal agriculture are notably absent. Phylogenomic analysis identified several clades segregated by serogroup, all noted to carry highly similar F plasmids and antimicrobial resistance (AMR) signatures. Investigation of these plasmids revealed virulence regions with similarity to pUTI89, a key F virulence plasmid among dominant pandemic extraintestinal pathogenic E. coli lineages, and encoding a complex antibiotic resistance structure mobilized by IS26. This work has uncovered a series of F virulence plasmids in ST1193 and shows that the lineage mimics the host range and virulence attributes of other E. coli strains that carry pUTI89. These observations have significant ramifications for epidemiological source tracking of emerging and established pandemic ExPEC lineages.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Rhys N. Bushell
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
18
|
Emergence and Dissemination of Extraintestinal Pathogenic High-Risk International Clones of Escherichia coli. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122077. [PMID: 36556442 PMCID: PMC9780897 DOI: 10.3390/life12122077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Multiresistant Escherichia coli has been disseminated worldwide, and it is one of the major causative agents of nosocomial infections. E. coli has a remarkable and complex genomic plasticity for taking up and accumulating genetic elements; thus, multiresistant high-risk clones can evolve. In this review, we summarise all available data about internationally disseminated extraintestinal pathogenic high-risk E. coli clones based on whole-genome sequence (WGS) data and confirmed outbreaks. Based on genetic markers, E. coli is clustered into eight phylogenetic groups. Nowadays, the E. coli ST131 clone from phylogenetic group B2 is the predominant high-risk clone worldwide. Currently, strains of the C1-M27 subclade within clade C of ST131 are circulating and becoming prominent in Canada, China, Germany, Hungary and Japan. The C1-M27 subclade is characterised by blaCTX-M-27. Recently, the ST1193 clone has been reported as an emerging high-risk clone from phylogenetic group B2. ST38 clone carrying blaOXA-244 (a blaOXA-48-like carbapenemase gene) caused several outbreaks in Germany and Switzerland. Further high-risk international E. coli clones include ST10, ST69, ST73, ST405, ST410, ST457. High-risk E. coli strains are present in different niches, in the human intestinal tract and in animals, and persist in environment. These strains can be transmitted easily within the community as well as in hospital settings. WGS analysis is a useful tool for tracking the dissemination of resistance determinants, the emergence of high-risk mulitresistant E. coli clones and to analyse changes in the E. coli population on a genomic level.
Collapse
|
19
|
Vanstokstraeten R., Crombé F., Piérard D., Castillo Moral A., Wybo I., De Geyter D., Janssen T., Caljon B., Demuyser T.. Molecular characterization of extraintestinal and diarrheagenic Escherichia coli blood isolates. Virulence 2022; 13:2032-2041. [PMID: 36397646 PMCID: PMC9704385 DOI: 10.1080/21505594.2022.2147735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic E. coli strains can be classified into two major groups, based on the presence of specific virulence factors: extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC). Several case reports describe that DEC can cause bloodstream infections in some rare cases. This mainly concerns a few specific sequence types that express virulence factors from both ExPEC and DEC. In this study, we retrospectively analysed 234 E. coli blood isolates with whole genome sequencing (WGS). WGS was performed on an Illumina NovaSeq6000. Genotyping was performed using BioNumerics software. The presence of genes was determined with a minimum percentage sequence identity (ID) threshold of 95% and a minimum length for sequence coverage of 95%. Three of the 234 (1.28%) isolates were defined as DEC, 182 (77.78%) as ExPEC, and 49 (20.94%) did not carry pathotype-associated virulence genes. We identified 112 different virulence genes, 48 O-antigens, and 28 H-antigens 82 STs, among the 234 analyzed isolates. ST131 and ST88 were related to healthcare-associated infections. This study provides insight into the prevalence of virulence factors in a large set of E. coli blood isolates from the UZ Brussel. It illustrates high diversity in virulence profiles and highlights the potential of DEC to carry virulence factors associated with extraintestinal infections, making it possible for unusual pathotypes to invade and survive in the bloodstream causing bacteraemia. Diarrheagenic strains causing bacteremia are rare and presently underreported, but modern sequencing techniques will better underscore their importance.
Collapse
Affiliation(s)
- Vanstokstraeten R.
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis, Brussels, Belgium,CONTACT Vanstokstraeten R.
| | - Crombé F.
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis, Brussels, Belgium
| | - Piérard D.
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis, Brussels, Belgium
| | - Castillo Moral A.
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis, Brussels, Belgium
| | - Wybo I.
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis, Brussels, Belgium
| | - De Geyter D.
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis, Brussels, Belgium
| | - Janssen T.
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis, Brussels Interuniversity Genomics High Throughput core (BRIGHTcore) platform, Brussels, Belgium
| | - Caljon B.
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis, Brussels Interuniversity Genomics High Throughput core (BRIGHTcore) platform, Brussels, Belgium
| | - Demuyser T.
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis, Brussels, Belgium
| |
Collapse
|
20
|
Hammad AM, Gonzalez-Escalona N, El Tahan A, Abbas NH, Koenig SSK, Allué-Guardia A, Eppinger M, Hoffmann M. Pathogenome comparison and global phylogeny of Escherichia coli ST1485 strains. Sci Rep 2022; 12:18495. [PMID: 36323726 PMCID: PMC9630279 DOI: 10.1038/s41598-022-20342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 01/06/2023] Open
Abstract
Escherichia coli ST1485 strains belong to the clinically important phylogroup F and have disseminated worldwide in humans, animals, and the environment. Here, we elucidated the pathogenome of a global collection of E. coli ST1485 isolates from diverse sources retrieved from public databases and a high-quality sequenced complete genome of colistin-resistant E. coli strain CFSAN061771 isolated from raw milk cheese which designated as a reference strain. CFSAN061771 belongs to O83:H42-ST1485 pathotype and carries a conjugative ColV plasmid, pCFSAN061771_01, combining extraintestinal virulence genes (ompt, sitA, iroN, etsC, traT, cvaC, hylF, iss, tsh, mchf, iucC, iutA) with a multidrug resistance island (blaTEM-1, aph(6)-Id, aph(3″)-Ib, sul2, dfrA14). Comparative genomic analysis revealed a high frequency of pCFSAN061771_01-like plasmids in E. coli ST1485. A notable evolutionary genetic event in E. coli ST1485 strains is the acquisition of a pCFSAN061771_02-like plasmid, which confers resistance to several antimicrobials, tellurium, and quaternary ammonium compounds. The identical virulence and antibiotic resistance profiles identified in some human and animal strains are worrisome. This is the first study to emphasize the significance of E. coli ST1485 as a global high-risk virulent and multidrug-resistant clone with zoonotic potential.
Collapse
Affiliation(s)
- Ahmed M Hammad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Amira El Tahan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Nasser H Abbas
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Sara S K Koenig
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
21
|
Wyrsch ER, Dolejska M, Djordjevic SP. Genomic Analysis of an I1 Plasmid Hosting a sul3-Class 1 Integron and blaSHV-12 within an Unusual Escherichia coli ST297 from Urban Wildlife. Microorganisms 2022; 10:microorganisms10071387. [PMID: 35889108 PMCID: PMC9319951 DOI: 10.3390/microorganisms10071387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Wild birds, particularly silver gulls (Chroicocephalus novaehollandiae) that nest near anthropogenic sites, often harbour bacteria resistant to multiple antibiotics, including those considered of clinical importance. Here, we describe the whole genome sequence of Escherichia coli isolate CE1867 from a silver gull chick sampled in 2012 that hosted an I1 pST25 plasmid with blaSHV-12, a β-lactamase gene that encodes the ability to hydrolyze oxyimino β-lactams, and other antibiotic resistance genes. Isolate CE1867 is an ST297 isolate, a phylogroup B1 lineage, and clustered with a large ST297 O130:H11 clade, which carry Shiga toxin genes. The I1 plasmid belongs to plasmid sequence type 25 and is notable for its carriage of an atypical sul3-class 1 integron with mefB∆260, a structure most frequently reported in Australia from swine. This integron is a typical example of a Tn21-derived element that captured sul3 in place of the standard sul1 structure. Interestingly, the mercury resistance (mer) module of Tn21 is missing and has been replaced with Tn2-blaTEM-1 and a blaSHV-12 encoding module flanked by direct copies of IS26. Comparisons to similar plasmids, however, demonstrate a closely related family of ARG-carrying plasmids that all host variants of the sul3-associated integron with conserved Tn21 insertion points and a variable presence of both mer and mefB truncations, but predominantly mefB∆260.
Collapse
Affiliation(s)
- Ethan R. Wyrsch
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Monika Dolejska
- CEITEC VETUNI, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic;
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, University Hospital Brno, 62500 Brno, Czech Republic
| | - Steven P. Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Correspondence:
| |
Collapse
|
22
|
Interspecies Transmission of CMY-2-Producing Escherichia coli Sequence Type 963 Isolates between Humans and Gulls in Australia. mSphere 2022; 7:e0023822. [PMID: 35862807 PMCID: PMC9429958 DOI: 10.1128/msphere.00238-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have provided the first comprehensive genomic study of
E. coli
ST963 by analyzing various genomic and phenotypic data sets of isolates from Australian silver gulls and comparison with genomes from geographically dispersed regions of human and animal origin. Our study suggests the emergence of a specific
bla
CMY-2
-carrying
E. coli
ST963 clone in Australia that is widely spread across the continent by humans and birds.
Collapse
|
23
|
Elankumaran P, Cummins ML, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. Genomic and Temporal Trends in Canine ExPEC Reflect Those of Human ExPEC. Microbiol Spectr 2022; 10:e0129122. [PMID: 35674442 PMCID: PMC9241711 DOI: 10.1128/spectrum.01291-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
Companion animals and humans are known to share extraintestinal pathogenic Escherichia coli (ExPEC), but the extent of E. coli sequence types (STs) that cause extraintestinal diseases in dogs is not well understood. Here, we generated whole-genome sequences of 377 ExPEC collected by the University of Melbourne Veterinary Hospital from dogs over an 11-year period from 2007 to 2017. Isolates were predominantly from urogenital tract infections (219, 58.1%), but isolates from gastrointestinal specimens (51, 13.5%), general infections (72, 19.1%), and soft tissue infections (34, 9%) were also represented. A diverse collection of 53 STs were identified, with 18 of these including at least five sequences. The five most prevalent STs were ST372 (69, 18.3%), ST73 (31, 8.2%), ST127 (22, 5.8%), ST80 (19, 5.0%), and ST58 (14, 3.7%). Apart from ST372, all of these are prominent human ExPEC STs. Other common ExPEC STs identified included ST12, ST131, ST95, ST141, ST963, ST1193, ST88, and ST38. Virulence gene profiles, antimicrobial resistance carriage, and trends in plasmid carriage for specific STs were generally reflective of those seen in humans. Many of the prominent STs were observed repetitively over an 11-year time span, indicating their persistence in the dogs in the community, which is most likely driven by household sharing of E. coli between humans and their pets. The case of ST372 as a dominant canine lineage observed sporadically in humans is flagged for further investigation. IMPORTANCE Pathogenic E. coli that causes extraintestinal infections (ExPEC) in humans and canines represents a significant burden in hospital and veterinary settings. Despite the obvious interrelationship between dogs and humans favoring both zoonotic and anthropozoonotic infections, whole-genome sequencing projects examining large numbers of canine-origin ExPEC are lacking. In support of anthropozoonosis, we found that most STs from canine infections are dominant human ExPEC STs (e.g., ST73, ST127, ST131) with similar genomic traits, such as plasmid carriage and virulence gene burden. In contrast, we identified ST372 as the dominant canine ST and a sporadic cause of infection in humans, supporting zoonotic transfer. Furthermore, we highlight that, as is the case in humans, STs in canine disease are consistent over time, implicating the gastrointestinal tract as the major community reservoir, which is likely augmented by exposure to human E. coli via shared diet and proximity.
Collapse
Affiliation(s)
- Paarthiphan Elankumaran
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Max L. Cummins
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Cameron J. Reid
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology and Infection, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
24
|
Reid CJ, Cummins ML, Börjesson S, Brouwer MSM, Hasman H, Hammerum AM, Roer L, Hess S, Berendonk T, Nešporová K, Haenni M, Madec JY, Bethe A, Michael GB, Schink AK, Schwarz S, Dolejska M, Djordjevic SP. A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58. Nat Commun 2022; 13:683. [PMID: 35115531 PMCID: PMC8813906 DOI: 10.1038/s41467-022-28342-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli ST58 has recently emerged as a globally disseminated uropathogen that often progresses to sepsis. Unlike most pandemic extra-intestinal pathogenic E. coli (ExPEC), which belong to pathogenic phylogroup B2, ST58 belongs to the environmental/commensal phylogroup B1. Here, we present a pan-genomic analysis of a global collection of 752 ST58 isolates from diverse sources. We identify a large ST58 sub-lineage characterized by near ubiquitous carriage of ColV plasmids, which carry genes encoding virulence factors, and by a distinct accessory genome including genes typical of the Yersiniabactin High Pathogenicity Island. This sub-lineage includes three-quarters of all ExPEC sequences in our study and has a broad host range, although poultry and porcine sources predominate. By contrast, strains isolated from cattle often lack ColV plasmids. Our data indicate that ColV plasmid acquisition contributed to the divergence of the major ST58 sub-lineage, and different sub-lineages inhabit poultry, swine and cattle.
Collapse
Affiliation(s)
- Cameron J Reid
- iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Max L Cummins
- iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stefan Börjesson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), 75189, Uppsala, Sweden
- Department of Microbiology, Public Health Agency of Sweden, 17182, Solna, Sweden
| | | | - Henrik Hasman
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Anette M Hammerum
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Louise Roer
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen S, Denmark
| | - Stefanie Hess
- Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | - Thomas Berendonk
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Kristina Nešporová
- CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Disease, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Marisa Haenni
- Université de Lyon-ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- Université de Lyon-ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Geovana B Michael
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Anne-Kathrin Schink
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Monika Dolejska
- CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Biology and Wildlife Disease, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czech Republic
- Biomedical Center, Charles University, Charles, Czech Republic
| | - Steven P Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
25
|
Elankumaran P, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. Close genetic linkage between human and companion animal extraintestinal pathogenic Escherichia coli ST127. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100106. [PMID: 35128493 PMCID: PMC8803956 DOI: 10.1016/j.crmicr.2022.100106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Escherichia coli ST127, a recently emerged global pathogen noted for high virulence gene carriage, is a leading cause of urinary tract and blood stream infections. ST127 is frequently isolated from humans and companion animals; however, it is unclear if they are distinct or related populations of ST127. We performed a phylogenomic analysis of 299 E. coli ST127 of diverse epidemiological origin to characterize their population structure, genetic determinants of virulence, antimicrobial resistance, and repertoire of mobile genetic elements with a focus on plasmids. The core gene phylogeny was divided into 13 clusters, the largest of which (BAP4) contained the majority of human and companion animal origin isolates. This dominant cluster displayed genetic differences to the remainder of the phylogeny, most notably alternative gene alleles encoding important virulence factors including lipid A, flagella, and K capsule. Furthermore, numerous close genetic linkages (<30 SNPs) between human and companion animal isolates were observed within the cluster. Carriage of antimicrobial resistance genes in the collection was limited, but virulence gene carriage was extensive. We found evidence of pUTI89-like virulence plasmid carriage in over a third of isolates, localised to four of the major phylogenetic clusters. Our study supports global scale repetitive transfer of E. coli ST127 lineages between humans and companion animals, particularly within the dominant BAP4 cluster.
Collapse
Affiliation(s)
- Paarthiphan Elankumaran
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville and Werribee, Victoria, Australia
| | - Cameron J. Reid
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P. Djordjevic
- iThree Institute, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|