1
|
Yang M, Jiang Z, Zhou L, Chen N, He H, Li W, Yu Z, Jiao S, Song D, Wang Y, Jin M, Lu Z. 3'-Sialyllactose and B. infantis synergistically alleviate gut inflammation and barrier dysfunction by enriching cross-feeding bacteria for short-chain fatty acid biosynthesis. Gut Microbes 2025; 17:2486512. [PMID: 40195063 PMCID: PMC11988227 DOI: 10.1080/19490976.2025.2486512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) poses significant threats to human health and quality of life worldwide, as it is a chronic inflammatory bowel disease. 3'-sialyllactose (3'-SL) is a key functional component of milk oligosaccharides. This study systematically evaluates the prebiotic effects of 3'-SL and its therapeutic potential in combination with Bifidobacterium infantis (B. infantis) for UC. The findings reveal that 3'-SL and B. infantis synergistically mitigate intestinal inflammation and barrier dysfunction by promoting the production of short-chain fatty acids (SCFAs) through cross-feeding mechanisms among gut microbiota. Individually, 3'-SL, B. infantis, and the synbiotic treatment all effectively alleviated UC symptoms, including reduced weight loss, improved disease activity scores, and prevention of colon shortening. Histopathological and immunofluorescence analyses further demonstrated that the synbiotic treatment significantly ameliorated colonic injury, enhanced barrier function, restored goblet cell counts, increased glycoprotein content in crypt goblet cells, and upregulated the expression of tight junction proteins (ZO-1, occludin, and claudin-1). Notably, the synbiotic treatment outperformed the individual components by better restoring gut microbiota balance, elevating SCFA levels, and modulating serum cytokine profiles, thereby reducing inflammation. These findings provide mechanistic insights into the protective effects of the synbiotic and underscore its therapeutic potential for UC and other intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Mingzhi Yang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Zipeng Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Lutong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Nana Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Huan He
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Wentao Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Zhixin Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Siming Jiao
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Deguang Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| |
Collapse
|
2
|
Shin S, Chen S, Xie K, Duhun SA, Ortiz-Cerda T. Evaluating the anti-inflammatory and antioxidant efficacy of complementary and alternative medicines (CAM) used for management of inflammatory bowel disease: a comprehensive review. Redox Rep 2025; 30:2471737. [PMID: 40056427 DOI: 10.1080/13510002.2025.2471737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic autoimmune condition whose pathogenesis has not been fully elucidated, and current treatments are not definitive and often carry several side effects. The Complementary and Alternative Medicine (CAM) offers a new approach to conventional medicine. However, their clinical application and mechanisms remain limited.Objective: The aim of this review is to evaluate the anti-inflammatory, impact on microbiota and antioxidant efficacy of currently available CAM for IBD.Methods: The literature collection was obtained from Google Scholar, MEDLINE, PubMed and Web of Science (WOS). Studies in both human and animal models, published in English language between 2018 and 2024, were selected. Sixty-seven studies were included in the current review after inclusion and exclusion screening processes.Results: Mostly, studies showed significant anti-inflammatory, gut microbiota restoring, antioxidant effects of polyphenols, polysaccharides, emodin, short-chain fatty acids (SCFA; including butyrate, propionate and acetate), and probiotics although some contrasting results were noted. Current evidence shows that polyphenols exhibit the most consistent result in alleviating IBD pathophysiology, primarily due to their significant SCFA-elevating effect.Discussion: Future studies may focus on human studies, narrowing down on individual factors which may change natural product's metabolism. Further research studies are also essential to obtain therapeutic recommendations.
Collapse
Affiliation(s)
- Sia Shin
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Siqi Chen
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Kangzhe Xie
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Suehad Abou Duhun
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Tamara Ortiz-Cerda
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Departamento de Citología e Histología Normal y Patológica, Facultad de medicina, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
3
|
Fu Y, Guzior DV, Okros M, Bridges C, Rosset SL, González CT, Martin C, Karunarathne H, Watson VE, Quinn RA. Balance between bile acid conjugation and hydrolysis activity can alter outcomes of gut inflammation. Nat Commun 2025; 16:3434. [PMID: 40210868 PMCID: PMC11985902 DOI: 10.1038/s41467-025-58649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
Conjugated bile acids (BAs) are multi-functional detergents in the gastrointestinal (GI) tract produced by the liver enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT) and by the microbiome from the acyltransferase activity of bile salt hydrolase (BSH). Humans with inflammatory bowel disease (IBD) have an enrichment in both host and microbially conjugated BAs (MCBAs), but their impacts on GI inflammation are not well understood. We investigated the role of host-conjugated BAs in a mouse model of colitis using a BAAT knockout background. Baat-/- KO mice have severe phenotypes in the colitis model that were rescued by supplementation with taurocholate (TCA). Gene expression and histology showed that this rescue was due to an improved epithelial barrier integrity and goblet cell function. However, metabolomics also showed that TCA supplementation resulted in extensive metabolism to secondary BAs. We therefore investigated the BSH activity of diverse gut bacteria on a panel of conjugated BAs and found broad hydrolytic capacity depending on the bacterium and the amino acid conjugate. The complexity of this microbial BA hydrolysis led to the exploration of bsh genes in metagenomic data from human IBD patients. Certain bsh sequences were enriched in people with Crohn's disease particularly that from Ruminococcus gnavus. This study shows that both host and microbially conjugated BAs may provide benefits to those with IBD, but this is dictated by a delicate balance between BA conjugation/deconjugation based on the bsh genes present.
Collapse
Affiliation(s)
- Yousi Fu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Douglas V Guzior
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Maxwell Okros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christopher Bridges
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sabrina L Rosset
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Cely T González
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, USA
| | - Hansani Karunarathne
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Victoria E Watson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Zhao Z, Deng Y, Li L, Zhu L, Wang X, Sun H, Li X, Han X, Li J. Enhancing Akkermansia growth via phytohormones: a strategy to modulate the gut-bone axis in postmenopausal osteoporosis therapy. J Transl Med 2025; 23:410. [PMID: 40205438 PMCID: PMC11984252 DOI: 10.1186/s12967-025-06426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Phytohormones have garnered considerable interest as potential modulators of the gut-bone axis. Denosumab (Deno), a widely utilized therapeutic agent for postmenopausal osteoporosis, has not been previously investigated for its effects on gut health. The objective of this study was to assess the efficacy of isoflavones (SI), naringin (Nar), and Deno in the management of postmenopausal osteoporosis by targeting the gut-bone axis. METHODS The postmenopausal osteoporosis model in mice was established via bilateral oophorectomy. Subsequently, mice in the Deno group received subcutaneous injections of Deno at a dosage of 10 mg/kg, administered twice weekly. In contrast, mice in the SI and Nar groups were subjected to oral gavage with 200 mg/kg/day of SI and Nar, respectively. The treatment period for all groups lasted for 8 weeks. Upon the conclusion of the experiment, a thorough evaluation of the effects of SI, Nar, and Deno on bone and gut health in mice was conducted through immunological, pathological, imaging, and multi-omics methodologies. RESULTS Deno, SI, and Nar significantly alleviated the physical symptoms in postmenopausal mice. However, only SI and Nar significantly modulated the gut microbiota. Akkermansia was significantly enriched after the gavage of SI and Nar. Akkermansia has the capacity to not only augment bone mass and alleviate strength deterioration via extracellular vesicles, but it also influences bone metabolism by diminishing inflammation and modulating lipid metabolism. Notably, no significant changes in the gut microbiota were observed in the Deno group, which may be attributed to the differences in the method of administration, as Deno was administered via subcutaneous injection rather than gavage. CONCLUSION SI and Nar may influence the gut-bone axis through Akkermansia and have the potential of alternative treatment options for postmenopausal osteoporosis. Although the gut microbiota is not significantly affected by the subcutaneous administration of Deno, the long-term management of postmenopausal osteoporosis and the exploration of various management models warrant additional scrutiny. Furthermore, this study has yet to establish a dose-response relationship, indicating that further research is essential to clarify the regulatory effects of varying doses of SI and Nar on postmenopausal osteoporosis especially the modulation of gut microbiota.
Collapse
Affiliation(s)
- Zhiqi Zhao
- State Key Laboratory for Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Yixuan Deng
- School of Medicine, Wenzhou Medical University, Chashan University Town, Wenzhou, 325035, Zhejiang, People's Republic of China
| | - Li Li
- Clinical Medical College, Hangzhou Normal University, Hangzhou, 30021, China
| | - Liying Zhu
- State Key Laboratory for Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xin Wang
- State Key Laboratory for Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haibiao Sun
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China
| | - Xiaoqiong Li
- State Key Laboratory for Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xiaoqiang Han
- Department of Orthopedics, The First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Jinjun Li
- State Key Laboratory for Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
5
|
Liu X, Fang W, Pang S, Song G, Wang Y, Qi W. Total dietary fiber of tartary buckwheat alleviates T2DM through the IRS-1/PI3K/AKT pathway and gut microbiota-bile acids-TGR5/FXR axis in db/db mice. Int J Biol Macromol 2025:142145. [PMID: 40101829 DOI: 10.1016/j.ijbiomac.2025.142145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Buckwheat dietary fiber has good hypoglycemic activity, with its water-soluble parts and modification widely studied, however, the specific effects and mechanisms of action regarding buckwheat total dietary fiber (BDF) to improve T2DM need to be further explored. In this study, we investigated the improvement of diabetes-related symptoms in db/db mice by 10 % BDF and explored the possible mechanisms. The results showed that hyperglycemia, hyperlipemia, insulin resistance, elevated body weight, severe inflammatory response and impaired intestinal function were significantly improved after 8 weeks of BDF intervention. Moreover, BDF was able to ameliorate the distribution of gut microbiota, enhance the bacteria associated with T2DM, and improve glucose metabolism by altering the levels of the metabolites of gut microbiota, bile acids (BAs), and their receptors, TGR5 and FXR. In addition, BDF activated the hepatic IRS-1/PI3K/AKT pathway which can reduce hepatic gluconeogenesis and promoted glycogen synthesis. Taken together, our results suggest that BDF can alleviate T2DM symptoms by activating the IRS-1/PI3K/AKT pathway and the gut microbiota-BAs-TGR5/FXR axis. The results of this study deepen the exploration of the active ingredients of cereals and suggesting a scientific basis for the development of glucose-lowering functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Xinguo Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Fang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shaojie Pang
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Ge Song
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Wentao Qi
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
6
|
Zhang Z, Wang J, Dang S, Liu X, Zhang Y, Zhang H. The worldview of Akkermansia muciniphila, a bibliometric analysis. Front Microbiol 2025; 16:1500893. [PMID: 40104597 PMCID: PMC11913835 DOI: 10.3389/fmicb.2025.1500893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
Akkermansia muciniphila (A. muciniphila), a critical bacterium within the gut microbiota, plays a key role in human health and immunomodulation. Since its identification in 2004, A. muciniphila has emerged as a significant agent in treating metabolic diseases, gastroenterological diseases, and tumor immunotherapy. Its rapid ascent in scientific translation underscores its importance in gut microbiome research. However, there has been a lack of visualization and analysis of the rapidly occurring commercialization in this field, which has critically hindered insights into the current knowledge structure and understanding of the cutting-edge of the discipline. This study employs the Web of Science Core Collection (WOSCC) and Innography platforms to provide the first comprehensive analysis of A. muciniphila's academic progresses and commercialization over the past two decades, highlighting its growing prominence in global health research. Our analysis delineates that, following the academic trajectory, the evolution of A. muciniphila patents from foundational research through to application development and maturity, with particular emphasis on its expansive potential in emerging fields, including gastroenterological disorders, non-alcoholic fatty liver disease, cancer immunotherapy, stress management, and neurodegenerative disease treatment. Concluding, A. muciniphila presents as a next-generation probiotic with vast implications for human health. Our findings provide essential insights for future research and product development, contributing to the advancement of this burgeoning field.
Collapse
Affiliation(s)
- Zhao Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Shaoqing Dang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Liu Y, Li Z, Lee SC, Chen S, Li F. Akkermansia muciniphila: promises and pitfallsfor next-generation beneficial microorganisms. Arch Microbiol 2025; 207:76. [PMID: 40032707 DOI: 10.1007/s00203-025-04263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
Akkermansia muciniphila, a microorganism ubiquitously colonizing the mucosal layer of the human gut, has garnered significant scientific interest as a promising candidate for probiotic therapeutics. Its persistent identification in both laboratory and living organism studies underscores its potential physiological benefits, positioning it as a bacterium of paramount importance in promoting host health. This review examines the diversity and abundance of gut microbiota members, emphasizing the identification of microbial species engaged in cross-feeding networks with A. muciniphila. Insightful exploration into the mechanisms of cross-feeding, including mucin-derived nutrient exchange and metabolite production, unveils the intricate dynamics shaping microbial community stability. Such interactions contribute not only to the availability of essential nutrients within the gut environment but also to the production of metabolites influencing microbial community dynamics and host health. In conclusion, the cumulative evidence from in vitro and in vivo perspectives substantiates the notion that A. muciniphila holds tremendous promise as a next-generation probiotic. By leveraging its unique physiological benefits, particularly in mucosal health and metabolic regulation, A. muciniphila stands poised to revolutionize the landscape of probiotic interventions for enhanced host well-being.
Collapse
Affiliation(s)
- Yantong Liu
- Department of Computer and Information Engineering, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Zonglun Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Sze Ching Lee
- Department of Neurology & Neurosurgery, Mayo clinic, Rochester, MN, 55902, USA
| | - Shurui Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Feifei Li
- Department of Biochemistry and molecular biology, Mayo clinic, 200 First St. SW, Rochester, MN, 55902, USA.
| |
Collapse
|
8
|
Kang N, Fan Z, Yang L, Shen J, Shen Y, Fang Z, Li B, Yang B, Wang J. Camel Milk Protein Ameliorates Ulcerative Colitis by Modulating Gut Microbiota and Amino Acid Metabolism. Nutrients 2025; 17:780. [PMID: 40077650 PMCID: PMC11902107 DOI: 10.3390/nu17050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
The protective effects of the milk fat globule membrane (MFGM) in alleviating inflammation have been reported. However, limited attention has been paid to the key fraction of milk fat globule membrane protein (MFGMP). This study investigated the protective effects of camel MFGMP against dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. The results revealed that administering 50 mg/kg MFGMP significantly alleviated colonic inflammation, as evidenced by a marked decrease in IL-6, IL-1β, and TNF-α levels, along with pathological damage in DSS-induced mice with UC. MFGMP supplementation partially regulated gut microbiota dysbiosis in mice with UC by increasing α-diversity and the relative abundance of beneficial gut bacteria, such as Lactobacillus, while decreasing the abundance of Akkermansia. Additionally, MFGMP treatment exhibited significant regulatory effects on metabolites, particularly amino acid metabolism, in the feces. Specifically, this treatment restored L-valine to normal physiological levels and increased the concentrations of L-leucine, L-lysine, and L-tyrosine to nearly twice their baseline levels, whereas the concentration of L-tryptophan increased threefold. These upregulated amino acids were negatively correlated with pro-inflammatory cytokines and positively correlated with the anti-inflammatory cytokine IL-10, as indicated by Spearman's correlation analysis. Furthermore, the significant reduction in the mRNA expression levels of WNT-1, β-catenin, and Cyclin D1 suggests that MFGMP exerts a positive effect on UC via the Wnt/β-catenin pathway. These findings indicate that MFGMP exerts a protective effect against UC by modulating intestinal microbiota and amino acid metabolism in mice, with potential implications for treating intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Ning Kang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhexin Fan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi University, Shihezi 832000, China
| | - Li Yang
- Alashankou Customs Technology Center, Alashankou 833418, China;
| | - Jie Shen
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yuechenfei Shen
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhifeng Fang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi University, Shihezi 832000, China
| | - Baokun Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi University, Shihezi 832000, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| | - Jiancheng Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China; (N.K.); (Z.F.); (J.S.); (Y.S.); (Z.F.); (B.L.)
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Functional Food Center, Key Laboratory of Xinjiang Medicinal Plant Resources Utilization, Ministry of Education, Shihezi University, Shihezi 832000, China
| |
Collapse
|
9
|
Li J, Li P, Yuan S, Xue JC, Zhang QG, Gao BH. Pulchinenoside B4 alleviates DSS-induced colitis by inhibiting CD1d-dependent NLRP3 inflammasome activation in macrophages. Int Immunopharmacol 2025; 148:114118. [PMID: 39854876 DOI: 10.1016/j.intimp.2025.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Ulcerative colitis (UC) represents a significant challenge to global health, underscoring the importance of developing novel alternative anti-colitis agents. Inhibition of the NLRP3 inflammasome in macrophages has emerged as a potential therapeutic strategy for UC. Pulchinenoside B4 (PB4) is a major component of traditional medicinal plants that demonstrated to possess promising anti-inflammatory properties. The aim of the present study was to assess whether PB4 alleviates dextran sodium sulfate (DSS)-induced colitis by inhibiting the NLRP3 inflammasome in macrophages and its potential molecular mechanism. We constructed DSS-induced colitis in C57BL/6 mice, and isolated mouse intestinal macrophages and epithelial cells to investigate the effect of PB4 on NLRP3 inflammasome, and confirmed our findings in DSS-induced NLRP3-/- mice. In addition, we constructed lipopolysaccharides (LPS)-induced macrophages in vitro and identified the target and molecular mechanism of PB4 through biolayer interference (BLI) and cell thermal migration (CETSA) in conjunction with dss induced macrophage-specific CD1d depletion (CD1d-/-) colitis. This study showed that PB4 had a strong anti-inflammatory effect on WT mice induced by DSS, but the protective effect on NLRP3-/- mice was no longer enhanced. Interestingly, PB4 inhibited the activation of NLRP3 inflammasome in colon macrophages without affecting intestinal epithelial cells. Mechanistically, PB4 may target CD1d, thereby reducing the AKT-STAT1-PRDX1-NF-κB signaling pathway and ultimately inhibiting the activation of the NLRP3 inflammasome. Macrophage-specific CD1d loss has been shown to reverse the protective effects of PB4. These findings have paved the way for the development of CD1d/NLRP3-based novel anti-colitis agents and will facilitate the future clinical translation of the plant-derived drug PB4.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Dextran Sulfate
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Inflammasomes/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Mice
- Colitis/chemically induced
- Colitis/drug therapy
- Colitis/immunology
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Antigens, CD1d/metabolism
- Antigens, CD1d/genetics
- Saponins/pharmacology
- Saponins/therapeutic use
- Signal Transduction/drug effects
- Disease Models, Animal
- Male
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/immunology
- Cells, Cultured
Collapse
Affiliation(s)
- Jiao Li
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Pan Li
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong Special Administrative Region
| | - Shuo Yuan
- Chronic Disease Research Center, Natural Products Provincial Key Innovation Center, Medical College, Dalian University, Dalian, Liaoning 116622, China
| | - Jia-Chen Xue
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Natural Products Provincial Key Innovation Center, Medical College, Dalian University, Dalian, Liaoning 116622, China.
| | - Bi-Hu Gao
- Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
| |
Collapse
|
10
|
Lai Y, Liu J, Hu X, Zeng X, Gao P. N6-methyladenosine (m6A)-forming enzyme METTL3 controls UAF1 stability to promote inflammation in a model of colitis by stimulating NLRP3. Sci Rep 2025; 15:5876. [PMID: 39966502 PMCID: PMC11836354 DOI: 10.1038/s41598-025-88435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The rising incidence of ulcerative colitis (UC) in China poses a noticeable health challenge. This study aimed to assess the pivotal role of USP1-associated factor 1 (UAF1) in colitis. UC was induced in male C57BL/6 mice using 2.0% dextran sulfate sodium (DSS). In an in vitro model, RAW264.7 cells were exposed to 200 ng/ml of LPS + ATP. UAF1 expression level was evaluated in colonic tissues, macrophages, and serum samples using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The study assessed weight, disease activity index (DAI) score, myeloperoxidase (MPO) activity, crypt length, inflammatory factors, and epithelial cell function in a mouse model of colitis treated with a UAF1 inhibitor. Microarray analysis identified potential UAF1 targets. Gene interference investigated NLR family pyrin domain containing 3 (NLRP3) involvement in UAF1-induced colitis inflammation. Immunoprecipitation, ubiquitination, and luciferase assays examined the effects of methyltransferase-like 3 (METTL3) methylation on the expression levels of NLRP3 and UAF1. UAF1 expression level was upregulated in colon tissues, RAW264.7 macrophages, and serum samples of colitis mice (P < 0.01). The UAF1 inhibitor (ML-323) enhanced weight and reduced DAI score in colitis mice (P < 0.01). It also decreased MPO activity and ulcer area, and restored crypt length (P < 0.01). UAF1 inhibitor improved epithelial cell function by suppressing NLRP3 activity (P < 0.01). UAF1 promoted inflammation in RAW264.7 macrophages via NLRP3 inflammasome induction (P < 0.01). UAF1 modulated NLRP3 protein expression, leading to reduced NLRP3 ubiquitination induced by LPS + ATP. The m6A-forming enzyme METTL3 enhanced UAF1 stability (P < 0.01) to facilitate UAF1 expression. The findings suggested that METTL3, as an m6A-forming enzyme, could regulate UAF1 mRNA, promoting inflammation in colitis through NLRP3 induction. Inhibiting UAF1 emerges as a potential therapeutic strategy for colitis.
Collapse
Affiliation(s)
- Yongqiang Lai
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Institute of Chest Wall Surgery, Guangzhou, 510700, China.
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China.
| | - Junhao Liu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| | - Xiao Hu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| | - Xiancheng Zeng
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| | - Peng Gao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| |
Collapse
|
11
|
Lu S, Tao Z, Wang G, Na K, Wu L, Zhang L, Li X, Guo X. Mannuronate Oligosaccharides Ameliorate Experimental Colitis and Secondary Neurological Dysfunction by Manipulating the Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2935-2950. [PMID: 39846727 DOI: 10.1021/acs.jafc.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Microbiota dysfunction induces intestinal disorders and neurological diseases. Mannuronate oligosaccharides (MAOS), a kind of alginate oligosaccharide (AOS), specifically exert efficacy in shaping gut microbiota and relieving cognitive impairment. However, the key regulatory factors involved, such as the specific strains and metabolites as well as their regulatory mechanisms, remain unclear at present. This research investigates how MAOS specifically impact the gut-brain axis in vivo and in vitro. The results showed that pretreatment with MAOS significantly ameliorated dextran sodium sulfate (DSS)-induced colitis and secondary nerve injury. This preventive mechanism operates through the regulation of serum DOPC abundance and the gut-brain axis, achieved by inhibiting the TLR4/MyD88/NF-κB pathway. These findings underscore the crucial role of dietary MAOS in the prevention of colitis and neurological disorders, providing a rationale for the application of MAOS in disease prevention and functional food ingredients.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Zhengxiong Tao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Gan Wang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Lisha Wu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| | - Xiangyu Li
- Hubei Province Nutrition Chemicals Biosynthetic Engineering Technology Research Center, Wuhan 430073, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
12
|
Agudelo C, Kateete DP, Nasinghe E, Kamulegeya R, Lubega C, Mbabazi M, Baker N, Lin KY, Liu CC, Kasambula AS, Kigozi E, Komakech K, Mukisa J, Mulumba K, Mwachan P, Nakalanda BS, Nalubega GP, Nsubuga J, Sitenda D, Ssenfuka H, Cirolia GT, Gustafson JT, Wang R, Nsubuga ML, Yiga F, Stanley SA, Bagaya BS, Elliott A, Joloba M, Wolf AR. Enterococcus and Eggerthella species are enriched in the gut microbiomes of COVID-19 cases in Uganda. Gut Pathog 2025; 17:9. [PMID: 39905557 DOI: 10.1186/s13099-025-00678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Infection with the COVID-19-causing pathogen SARS-CoV-2 is associated with disruption in the human gut microbiome. The gut microbiome enables protection against diverse pathogens and exhibits dysbiosis during infectious and autoimmune disease. Studies based in the United States and China have found that severe COVID-19 cases have altered gut microbiome composition when compared to mild COVID-19 cases. We present the first study to investigate the gut microbiome composition of COVID-19 cases in a population from Sub-Saharan Africa. Given the impact of geography and cultural traditions on microbiome composition, it is important to investigate the microbiome globally and not draw broad conclusions from homogenous populations. RESULTS We used stool samples in a Ugandan biobank collected from COVID-19 cases during 2020-2022. We profiled the gut microbiomes of 83 symptomatic individuals who tested positive for SARS-CoV-2 along with 43 household contacts who did not present any symptoms of COVID-19. The inclusion of healthy controls enables us to generate hypotheses about bacterial strains potentially related to susceptibility to COVID-19 disease, which is highly heterogeneous. Comparison of the COVID-19 patients and their household contacts revealed decreased alpha diversity and blooms of Enterococcus and Eggerthella in COVID-19 cases. CONCLUSIONS Our study finds that the microbiome of COVID-19 individuals is more likely to be disrupted, as indicated by decreased diversity and increased pathobiont levels. This is either a consequence of the disease or may indicate that certain microbiome states increase susceptibility to COVID-19 disease. Our findings enable comparison with cohorts previously published in the Global North, as well as support new hypotheses about the interaction between the gut microbiome and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carolina Agudelo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Emmanuel Nasinghe
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Rogers Kamulegeya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Christopher Lubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Monica Mbabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Noah Baker
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kathryn Y Lin
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chang C Liu
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Arthur Shem Kasambula
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kevin Komakech
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - John Mukisa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kassim Mulumba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Patricia Mwachan
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Brenda Sharon Nakalanda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Gloria Patricia Nalubega
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Julius Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Diana Sitenda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Henry Ssenfuka
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Giana T Cirolia
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Biophysics PhD Program, University of California, Berkeley, Berkeley, CA, USA
| | - Jeshua T Gustafson
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Ruohong Wang
- College of Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Moses Luutu Nsubuga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Fahim Yiga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Sarah A Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda
| | - Alison Elliott
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Moses Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda.
- Integrated Biorepository of H3Africa Uganda (IBRH3AU), Kampala, Uganda.
| | - Ashley R Wolf
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
13
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2025; 68:179-200. [PMID: 38462039 PMCID: PMC11785574 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
14
|
Qin L, Lv W. Dietary content and eating behavior in ulcerative colitis: a narrative review and future perspective. Nutr J 2025; 24:12. [PMID: 39849464 PMCID: PMC11755847 DOI: 10.1186/s12937-025-01075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Ulcerative colitis (UC) has experienced a steady increase in global incidence and prevalence recently. Current research into UC pathogenesis focuses on the complex interplay of genetic and environmental factors with the immune system and gut microbiome, leading to disruption of the intestinal barrier. Normally, the microbiome, intestinal epithelium, and immune system interact to maintain intestinal homeostasis. However, when this equilibrium is disturbed, a harmful cycle of dysbiosis, immune dysregulation, and inflammation emerges, resulting in intestinal barrier dysfunction and UC progression. Among various risk factors, diet significantly influences epithelial barrier integrity and architectural stability through both direct and indirect mechanisms, shaping the entire UC continuum from pre-clinical prevention to active phase treatment and remission maintenance. This review provides insights into the impact of dietary content and eating behaviors on UC, focusing on specific food, food groups, nutrients, and intermittent fasting, while providing a detailed explanation of why the gut microbiota may mediate the sustained effects of diet across all stages of UC. Additionally, it addresses the limitations of current studies, explores underexamined areas in UC dietary research and proposes potential directions for future research and expansion.
Collapse
Affiliation(s)
- Lingxi Qin
- Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wenliang Lv
- Clinical College, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Zhang L, Wang J, Xu Y, Wei K, Lin W, Hu H, Liu Y. Akkermansia muciniphila relieves inflammatory response in DSS-induced ulcerative colitis in mice through regulating macrophage polarization via SCFAs-SLC52A2/FFAR2 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03787-8. [PMID: 39841217 DOI: 10.1007/s00210-025-03787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025]
Abstract
Ulcerative colitis (UC) remains an intractable and relapsing disease featured by intestinal inflammation. The anti-UC activity of Akkermansia muciniphila (AKK), an intestinal microorganism, has been widely investigated. The current work is to explore the impacts of AKK on UC and its possible reaction mechanism. In vivo UC model was induced by dextran sulfate sodium (DSS) and phorbol-12-myristate-13-acetate (PMA)-induced THP-1-M0 and raw264.7 macrophages were treated by lipopolysaccharide (LPS). H&E staining evaluated tissue damage. Inflammatory and oxidative stress levels were assessed by relevant kits. The high-throughput analysis of fatty acids was performed by the LC/MS method. RT-qPCR and Western blot detected related gene expression. Flow cytometry measured cell apoptosis and macrophage polarization. Energy metabolism was detected by ELISA, related assay kits, JC-1 staining, and Western blot. AKK reduced the pathological damage of mice colon tissues, alleviated oxidative stress and inflammatory response, upregulated the expression of Occludin-1 and SCFAs receptors, and stimulated M1 to M2 macrophage polarization in vivo. After FFAR2 was silenced, the promoting role of AKK in the viability and M1 to M2 macrophage polarization and the inhibitory role in oxidative stress, inflammation, apoptosis, energy metabolism disorder, necroptosis, and pyroptosis were both reverted. Conclusively, AKK might mediate SCFAs-SLC52A2/FFAR2 pathways to exert protective activities against intestinal inflammatory response in UC, suggesting that AKK might represent a novel and promising candidate for UC therapy.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China
| | - Junxi Wang
- Endoscope Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Ye Xu
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Kaiyan Wei
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Wei Lin
- Endoscope Center, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Huixiang Hu
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China
| | - Yijuan Liu
- The First Clinical College of Medicine, Fujian Medical University, Fuzhou, 350005, China.
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China.
- Department of Gastroenterology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| |
Collapse
|
16
|
Xie K, Cai W, Li L, Yu B, Luo Y, Huang Z, Mao X, Yu J, Zheng P, Yan H, Li H, He J. Probiotic administration aggravates dextran sulfate sodium salt-induced inflammation and intestinal epithelium disruption in weaned pig. Anim Microbiome 2025; 7:8. [PMID: 39819657 PMCID: PMC11740613 DOI: 10.1186/s42523-024-00375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND A. muciniphila (AKK) has attracted extensive research interest as a potential next-generation probiotics, but its role in intestinal pathology is remains unclear. Herein, this study was conducted to investigate the effects of A. muciniphila DSM 22,959 on growth performance, intestinal barrier function, microecology and inflammatory response of weaned piglets stimulated by dextran sulfate sodium salt (DSS). METHOD Twenty-four Duroc × Landrace × Yorkshire (DLY) weaned piglets used for a 2 × 2 factorial arrangement of treatments were divided into four groups with six piglets in each group. From 1 to 15 d, the CA and DA groups were orally fed with 1.0 × 1011 colony-forming units A. muciniphila per day, while the CON and DCON groups were received gastric infusion of anaerobic sterile saline per day. The pigs were orally challenged (DCON, DA) or not (CON, CA) with DSS from day 9 to the end of the experiment and slaughtered on day 16. RESULTS Presence of A. muciniphila in DSS-challenged weaned pigs resulted in numerically increased diarrhea rate, blood neutrophilic granulocyte, serum C-reactive protein and immunoglobulin M levels, and numerically reduced final weight, average daily feed intake and average daily gain. The decrease in intestinal villus height, villous height: crypt depth ratio and digestibility was accompanied by lower expression of ZO1, ZO2, Claudin1, DMT1, CAT1, SGLT1 and PBD114 genes, as well as decreased enzyme activities of intestinal alkaline phosphatase, lactase, sucrase and maltase of piglets in DA group compared to piglets in DCON group. The abundance of Bifdobacterium, Lactobacillus, A. muciniphila, Ruminococcus gnavus was numerically higher in digesta of pigs in DA group than those in DCON group. The inflammatory responses of piglets were dramatically changed by the simultaneous presence of A. muciniphila and DSS: expression level of IL17A, IL17F, IL23, RORγt, Stat3 was elevated in DA pigs compared to the other pig groups. CONCLUSIONS Our result showed that the oral A. muciniphila aggravates DSS-induced health damage of weaned piglet, which may attribute to the deteriorating intestinal morphology, dysbiosis of microbiota and inflammatory response disorders.
Collapse
Affiliation(s)
- Kunhong Xie
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Weidong Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Lingjie Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China.
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
17
|
Sun X, Yun L, Xie K, Liu R, Ren X, Zeng B, Cao X, Li Z, Zhou G, Liu B, Peng L, Yuan L. Probiotic Bacillus pumilus LV149 enhances gut repair, modulates microbiota, and alters transcriptome in DSS-induced colitis mice. Front Microbiol 2025; 15:1507979. [PMID: 39845056 PMCID: PMC11753000 DOI: 10.3389/fmicb.2024.1507979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose Gut microbiota dysbiosis significantly impacts ulcerative colitis (UC) progression and exacerbation. Probiotics show promise in UC management. This study evaluated the effects of different doses of Bacillus pumilus LV149, an aquatic-derived probiotic, on gut injury repair in male C57BL/6 mice with dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) and investigated the underlying mechanisms. Methods UC was induced by allowing mice free access to a 3% DSS solution for 7 days, with concurrent daily oral gavage of either a low (LV149-L, 1 × 108 CFU/day/mouse) or high (LV149-H, 1 × 109 CFU/day/mouse) dose of LV149. The effects were assessed through physiological parameters, intestinal barrier integrity, inflammation, gut microbiota composition, and transcriptomic changes. Results LV149 significantly improved pathological symptoms, including weight loss and disease activity index (DAI), and reduced colon shortening in a dose-dependent manner and inflammatory damage. The intervention also restored gut barrier function by upregulating mucins, goblet cell counts, and tight junction proteins (ZO-1, occludin, and claudin-1) in colonic tissue, along with reducing serum lipopolysaccharide (LPS) levels. Notably, only the LV149-H significantly decreased the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, while both doses increased the expression of the anti-inflammatory cytokine IL-10 in a dose-dependent in colonic tissue. LV149 further modulated the gut microbiota, increasing beneficial bacteria and reducing pathogenic populations. Transcriptomic analysis indicated that LV149-L may exert gut repair effects via the IL-17 signaling pathway, whereas LV149-H appears to act through the JAK-STAT signaling pathway. Conclusion This study demonstrated that LV149, particularly at a higher dose, effectively mitigated DSS-induced colonic injury by modulating gut microbiota, enhancing gut barrier integrity, and reducing inflammation. The dose-dependent effects underscored LV149-H's potential as a therapeutic agent for UC due to its stronger anti-inflammatory properties and gut-protective effects.
Collapse
Affiliation(s)
- Xinyu Sun
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Long Yun
- Huzhou Key Laboratory of Translational Medicine, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Keming Xie
- Medical College of Jiaying University, Jiaying University, Meizhou, China
| | - Renhui Liu
- School of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Xinyue Ren
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bokun Zeng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Zhi Li
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Guihao Zhou
- Division of Medicine, University College London, London, United Kingdom
| | - Bang Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Luo Peng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lihong Yuan
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
18
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
19
|
Guo Y, Wu X, Wang Y, Zeqian Y, Cao L, Zhu F. Prediction of early remission after infliximab in Crohn's disease using baseline microbiome and metabolomics. J Pharm Biomed Anal 2024; 251:116424. [PMID: 39180897 DOI: 10.1016/j.jpba.2024.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
To characterize the microbiome and metabolic profile in Crohn's disease (CD) patients with different outcome after infliximab (IFX) treatment. The clinical data of a cohort of 35 patients with moderate-to-severe CD admitted at Jinling hospital between Oct 2022 and Dec 2023 were collected. Stool samples at baseline were collected to perform 16SrRNA and ITS2 sequencing and LC-MS untargeted metabolomics. Of these, seven discontinued IFX and underwent surgery during the induction period, and 28 received IFX at weeks 0, 2, and 6, each administered intravenously. Clinical remission was assessed based on the clinical symptoms and HBI at baseline and week 14. Baseline microbial richness and evenness was not significantly different between remission and non-remission group. The taxonomic community analysis identified decrease of Ruminococcus, Lachnoclostridium, Akkermansia in bacterial community and decrease of Asterotremella and Wallemia in fungal community in the non-remission group. LC-MS analysis showed that histamine, creatinine and L-proline significantly increased in remission group, while androsterone, berberine and episterol significantly decreased. The combined prediction model of histamine, androsterone, and episterol demonstrated a high predictive value of remission in patients after IFX treatment (AUC=0.898, p<0.001). Together, these data might facilitate a priori determination of optimal therapeutics for CD patients.
Collapse
Affiliation(s)
- Yanzhe Guo
- Department of general surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Xianhai Wu
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, PR China; Department of Anorectum, Shandong Second Provincial General Hospital, PR China
| | - Yixiao Wang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, PR China
| | - Yu Zeqian
- Department of general surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China
| | - Lei Cao
- Department of general surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| | - Feng Zhu
- Department of general surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, PR China.
| |
Collapse
|
20
|
Shen XH, Guan J, Lu DP, Hong SC, Yu L, Chen X. Peptostreptococcus Anaerobius enhances dextran sulfate sodium-induced colitis by promoting nf-κB-NLRP3-Dependent macrophage pyroptosis. Virulence 2024; 15:2435391. [PMID: 39611567 PMCID: PMC11610558 DOI: 10.1080/21505594.2024.2435391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/22/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
Evidence indicates that gut microbiota is crucial in ulcerative colitis (UC) development. Increased Peptostreptococcus species abundance is linked to UC, but its role and mechanisms in intestinal inflammation are not well understood. This study used a dextran sulfate sodium (DSS)-induced colitis model in mice, and different bacterial strains were administered via gavage. We assessed clinical manifestations, colonic barrier function, gut microbiota composition, and levels of inflammatory cytokines, NOD-like receptor family pyrin domain-containing 3 (NLRP3) signaling molecules, and pyroptosis-related proteins. Mouse bone marrow-derived macrophages (BMDMs) were infected with Peptostreptococcus anaerobius at different time points and multiplicities of infection (MOI). Cell viability and the expression of NLRP3 signaling molecules and pyroptosis-associated proteins were assessed. The inhibitors C29, TAK-242, and MCC950 were employed for Toll-like receptor (TLR) and NLRP3 signaling pathways. It was observed that P. anaerobius exacerbated intestinal inflammation and barrier injury in DSS-induced colitis in mice. Additionally, P. anaerobius contributed to gut microbiota dysbiosis during colitis progression. P. anaerobius induced the expression of NLRP3 signaling molecules and pyroptosis-associated proteins in mouse colitis tissues. In vitro assays demonstrated that P. anaerobius activated NLRP3 inflammasome and evoked gasdermin D-mediated pyroptosis and interleukin (IL)-1β secretion in macrophages. Furthermore, TLR2 and TLR4 were identified as key mediators of P. anaerobius-induced macrophage pyroptosis via activation of the Nuclear Factor-kappa B (NF-κB)-NLRP3 pathway. In conclusion, P. anaerobius promotes macrophage pyroptosis and IL-1β secretion through the TLR2/4-NF-κB-NLRP3 signaling axis, thereby aggravating colitis. P. anaerobius may represent a potential risk factor for UC development.
Collapse
Affiliation(s)
- Xu-Hang Shen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Guan
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De-Peng Lu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shao-Cheng Hong
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yu
- Anhui Provincial Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Xi Chen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Yang X, Zhang X, Ma Y, Li S, Wang Q, Hong JS, Yu G, Qi B, Wang J, Liu C, Shang Q, Wu X, Zhao J. Fucoidan ameliorates rotenone-induced Parkinsonism in mice by regulating the microbiota-gut-brain axis. Int J Biol Macromol 2024; 283:137373. [PMID: 39521225 DOI: 10.1016/j.ijbiomac.2024.137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Microbiota-gut-brain axis, the bidirectional relationship between the gut microbiota and the brain, has been increasingly appreciated in the pathogenesis of Parkinson's disease (PD). Fucoidan, a sulphate-rich polysaccharide, has been shown to be neuroprotective by reducing oxidative stress in PD models. However, the role of microbiota-gut-brain axis in the neuroprotective activity of fucoidan has not been revealed. In this study, the therapeutic effects of fucoidan and involvement of microbiota-gut-brain axis in rotenone (ROT)-induced PD were investigated. The results showed that fucoidan gavage attenuated neuroinflammation, dopamine neuronal damage and motor dysfunction in ROT-induced PD mice. In addition, fucoidan treatment ameliorated gut dysfunction, intestinal inflammation and disruption of the intestinal barrier in PD mice. Fucoidan also affected the composition of gut microbiota in PD mice, indicated particularly by decreased abundance of Akkermansia muciniphila and Lactobacillus johnsonii and increased abundance of Lactobacillus murinus. Mechanistic studies showed that fecal microbiota transplantation (FMT) from the fucoidan-treated mice and probiotic Lactobacillus murinus supplement are as potent as fucoidan treatment in attenuating peripheral and central inflammation and ameliorating dopamine neuronal damage, which might be attributed to the downregulation of LPS/TLR4/NF-κB signaling pathway. Our study suggests that fucoidan might be potential candidates for the treatment of PD.
Collapse
Affiliation(s)
- Xiaojing Yang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Xuan Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Yufang Ma
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Bing Qi
- Department of Medical Physiology, Dalian Medical University, Dalian 116044, China
| | - Jie Wang
- Department of Medical Physiology, Dalian Medical University, Dalian 116044, China
| | - Chengkang Liu
- Department of Medical Physiology, Dalian Medical University, Dalian 116044, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xuefei Wu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China; Department of Medical Physiology, Dalian Medical University, Dalian 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
22
|
Zhang H, Pan Y, Jiang Y, Chen M, Ma X, Yu X, Ren D, Jiang B. Akkermansia muciniphila ONE effectively ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. NPJ Sci Food 2024; 8:97. [PMID: 39562574 PMCID: PMC11576909 DOI: 10.1038/s41538-024-00339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Akermansia muciniphila shows promise as a next-generation probiotic, however, its beneficial regulatory effects on mice ulcerative colitis (UC) has not been extensively investigated. We used an Akkermansia muciniphila strain (AKK ONE) isolated from healthy human feces to study its effect on DSS-induced colitis in mice. Our results demonstrate that AKK ONE supplementation significantly improves food intake, weight, colon length, disease activity index (DAI) score, organ index, and tissue damage of colitis mice. AKK ONE notably improved intestinal barrier integrity by significantly enhancing expression of occludin and claudin-1. Additionally, AKK ONE reduced inflammation by down-regulating IL-1β, IL-6, and TNF-α, and up-regulating IL-10. In addition to reducing excessive inflammation, AKK ONE also increased the abundance of Akkermansia and decreased the abundance of Bacteroides. Furthermore, the AKK ONE intervention markedly increased SCFAs in cecal contents. AKK ONE may be a potential therapeutic agent for improving UC, based on the findings of this study.
Collapse
Affiliation(s)
- Hongyan Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yue Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Ying Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Mengling Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Xin Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xueping Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China.
| | - Bin Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, China.
| |
Collapse
|
23
|
Yang C, Chen J, Zhao Y, Wu J, Xu Y, Xu J, Chen F, Chen Y, Chen N. Salivary exosomes exacerbate colitis by bridging the oral cavity and intestine. iScience 2024; 27:111061. [PMID: 39759079 PMCID: PMC11700645 DOI: 10.1016/j.isci.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 09/24/2024] [Indexed: 01/07/2025] Open
Abstract
Inflammatory bowel disease (IBD) presents a range of extraintestinal manifestations, notably including oral cavity involvement. The mechanisms underlying oral-gut crosstalk in IBD are not fully understood. Exosomes, found in various body fluids such as saliva, play an unclear role in IBD that requires further exploration. In the dextran sulfate sodium (DSS) mouse model, salivary exosomes from patients with active IBD (active IBD-Sexos) exacerbated colitis, while those from IBD patients in remission (remission IBD-Sexos) did not. Possible reasons may include the regulation of macrophage polarization, disruption of intestinal epithelial function, and alteration of the intestinal flora. During co-culture with active IBD-Sexos, THP-1 cells exhibited inflammatory responses, while Caco-2 cells showed reduced tight junction protein expression. Additionally, 35 differentially expressed miRNAs were identified in active IBD-Sexos. In brief, our findings substantiate an intriguing phenomenon whereby active IBD-Sexos exacerbate colitis by bridging the oral cavity and intestine.
Collapse
Affiliation(s)
- Congyi Yang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Jingyi Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Yuzheng Zhao
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Jushan Wu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Yalan Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
| | - Feng Chen
- Central Laboratory, Peking University School of Stomatology, Beijing 100081, China
| | - Yang Chen
- Center for Precision Medicine Multi-Omics Research, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
24
|
Gofron K, Berezowski A, Gofron M, Borówka M, Dziedzic M, Kazimierczak W, Kwiatkowski M, Gofron M, Nowaczyk Z, Małgorzewicz S. Akkermansia muciniphila - impact on the cardiovascular risk, the intestine inflammation and obesity. Acta Biochim Pol 2024; 71:13550. [PMID: 39611203 PMCID: PMC11602308 DOI: 10.3389/abp.2024.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Contemporary scientific discussions are increasingly focusing on Akkermansia muciniphila due to its complex influence on intestinal physiology. This article provides a comprehensive analysis of the various effects Akkermansia muciniphila has on intestinal inflammation, while also exploring its potential associations with obesity and cardiovascular diseases. A systematic literature search was conducted using PubMed, Google Scholar, and ResearchGate with the following keywords: Akkermansia muciniphila, obesity, cardiovascular risk, and inflammatory bowel diseases. The aim of our mini-review was to examine the impact of Akkermansia bacteria on the intestines, cardiovascular system, and its relationship with obesity. Through a detailed review of current literature, the article seeks to elucidate the complex interactions of Akkermansia muciniphila within the human body, highlighting its potential contributions to health improvement and medical interventions. Research indicates that Akkermansia muciniphila positively correlates with maintaining intestinal health, modulating the cardiovascular system, and aiding in weight management. However, the number of studies available is small, and the effects of Akkermansia muciniphila on human health require further research.
Collapse
Affiliation(s)
- Krzysztof Gofron
- Students’ Circle of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Adam Berezowski
- Department of Urology and Kidney Transplantation, Nikolay Pirogov Provincial Specialist Hospital, Łódź, Poland
| | - Maksymilian Gofron
- Urology Department, Municipal Teaching Hospital in Częstochowa, Częstochowa, Poland
| | - Małgorzata Borówka
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical University of Łódź, Łódź, Poland
| | - Michał Dziedzic
- Students’ Circle of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Kazimierczak
- Students’ Circle of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Kwiatkowski
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Warszawa, Poland
| | - Maria Gofron
- Students’ Circle of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Zuzanna Nowaczyk
- Students’ Circle of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
25
|
Jeong JS, Baek GH, Kim JW, Kim JH, Chung EH, Ko JW, Kwon MJ, Kim SK, Lee SH, Kim JS, Kim TW. Korean Red Ginseng alleviates dextran sodium sulfate-induced colitis through gut microbiota modulation in mice. J Ginseng Res 2024; 48:581-591. [PMID: 39583173 PMCID: PMC11584195 DOI: 10.1016/j.jgr.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 11/26/2024] Open
Abstract
Background There is a growing interest in understanding the association between the gut microbiota and inflammatory bowel disease (IBD). Natural compounds, such as Korean Red Ginseng (KRG), show promise for IBD treatment because of their ability to influence gut microbiota. This study explored the effects of KRG on gut microbiota modulation and subsequent intestinal epithelial cell regeneration in an experimental colitis model. Method Using a mouse model of colitis induced by 2 % dextran sodium sulfate, the study administered 200 or 400 mg/kg/day of KRG to evaluate its biological effects. Colitis symptoms were assessed through body weight, disease activity index, colon length, and histological analysis. The microbial composition in the fecal was determined using 16S rRNA sequencing. To evaluate regeneration signals in the colon, western blotting and immunohistochemistry assays were conducted. Result Administration of KRG effectively mitigated colitis symptoms in mice, as indicated by histological examination showing alleviated epithelial damage and inflammation, along with increased mucus production. Microbiota analysis showed that KRG significantly altered microbial diversity, favoring beneficial taxa and suppressing harmful taxa. Moreover, ameliorated β-catenin/transcription factor-4 protein expression, a key signal associated with epithelial cell regeneration, was observed in the KRG treated groups, accompanied by improved intestinal linings. Conclusion These findings suggest that KRG exerts biological effects in colitis by modulating gut microbiota and creating a favorable intestinal environment, thereby reducing regenerative signals. Further research is warranted to elucidate the cellular and molecular mechanisms underlying the interaction of KRG with gut microbiota and pave the way for effective IBD therapies.
Collapse
Affiliation(s)
- Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Ga-Hyeon Baek
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Hye Chung
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| | - Mi-Jin Kwon
- R&D Headquarters, Korea Ginseng Corporation, Gwacheon, Republic of Korea
| | - Sang-Kyu Kim
- R&D Headquarters, Korea Ginseng Corporation, Gwacheon, Republic of Korea
| | - Seung-Ho Lee
- R&D Headquarters, Korea Ginseng Corporation, Gwacheon, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
26
|
Ozaka S, Sonoda A, Kudo Y, Ito K, Kamiyama N, Sachi N, Chalalai T, Kagoshima Y, Soga Y, Ekronarongchai S, Ariki S, Mizukami K, Ishizawa S, Nishiyama M, Murakami K, Takeda K, Kobayashi T. Daikenchuto, a Japanese herbal medicine, ameliorates experimental colitis in a murine model by inducing secretory leukocyte protease inhibitor and modulating the gut microbiota. Front Immunol 2024; 15:1457562. [PMID: 39524440 PMCID: PMC11543465 DOI: 10.3389/fimmu.2024.1457562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a refractory inflammatory disorder of the intestine, which is probably triggered by dysfunction of the intestinal epithelial barrier. Secretory leukocyte protease inhibitor (SLPI) secreted by colon epithelial cells protects against intestinal inflammation by exerting anti-protease and anti-microbial activities. Daikenchuto (DKT) is one of the most commonly prescribed Japanese traditional herbal medicines for various digestive diseases. Although several animal studies have revealed that DKT exerts anti-inflammatory effects, its detailed molecular mechanism is unclear. This study aimed to clarify the anti-inflammatory mechanism of DKT using a murine colitis model, and to evaluate its potential as a therapeutic agent for IBD. Methods Experimental colitis was induced in wild-type (WT) mice and SLPI-deficient (KO) mice by dextran sulfate sodium (DSS) after oral administration of DKT. The resultant clinical symptoms, histological changes, and pro-inflammatory cytokine levels in the colon were assessed. Expression of SLPI in the colon was detected by Western blotting and immunohistochemistry. Composition of the gut microbiota was analyzed by 16S rRNA metagenome sequencing and intestinal metabolites were measured by gas chromatography-mass spectrometry analysis. Intestinal epithelial barrier function was assessed by oral administration of FITC-dextran and immunostaining of tight junction proteins (TJPs). Results Oral administration of DKT increased the number of butyrate-producing bacteria, such as Parabacteroides, Allobaculum, and Akkermansia, enhanced the levels of short-chain fatty acids, including butyrate, in the colon, induced SLPI expression, and ameliorated DSS-induced colitis in WT mice. We found that mouse colon carcinoma cell line treatment with either DKT or butyrate significantly enhanced the expression of SLPI. Moreover, supplementation of DKT protected the intestinal epithelial barrier with augmented expression of TJPs in WT mice, but not in KO mice. Finally, the composition of the gut microbiota was changed by DKT in WT mice, but not in KO mice, suggesting that DKT alters the colonic bacterial community in an SLPI-dependent manner. Conclusion These results indicate that DKT exerts anti-inflammatory effects on the intestinal epithelial barrier by SLPI induction, due, at least in part, to increased butyrate-producing bacteria and enhanced butyrate levels in the colon. These results provide insight into the mechanism of the therapeutic effects of DKT on IBD.
Collapse
Affiliation(s)
- Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoko Kudo
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kanako Ito
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Thanyakorn Chalalai
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yomei Kagoshima
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yasuhiro Soga
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | | | - Shimpei Ariki
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shiori Ishizawa
- Tsumura Advanced Technology Research Laboratories, Research and Development Division, Tsumura & Co., Inashiki, Japan
| | - Mitsue Nishiyama
- Tsumura Advanced Technology Research Laboratories, Research and Development Division, Tsumura & Co., Inashiki, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
- Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Japan
| |
Collapse
|
27
|
Wang L, Tang D. Akkermania muciniphila: a rising star in tumor immunology. Clin Transl Oncol 2024; 26:2418-2430. [PMID: 38653927 DOI: 10.1007/s12094-024-03493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Tumor is accompanied by complex and dynamic microenvironment development, and the interaction of all its components influences disease progression and response to treatment. Once the tumor microenvironment has been eradicated, various mechanisms can induce the tumors. Microorganisms can maintain the homeostasis of the tumor microenvironment through immune regulation, thereby inhibiting tumor development. Akkermania muciniphila (A. muciniphila), an anaerobic bacterium, can induce tumor immunity, regulate the gastrointestinal microenvironment through metabolites, outer membrane proteins, and some cytokines, and enhance the curative effect through combined immunization. Therefore, a comprehensive understanding of the complex interaction between A. muciniphila and human immunity will facilitate the development of immunotherapeutic strategies in the future and enable patients to obtain a more stable clinical response. This article reviews the most recent developments in the tumor immunity of A. muciniphila.
Collapse
Affiliation(s)
- Leihan Wang
- Clinical Medical College, Yangzhou University, Yangzhou, People's Republic of China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
28
|
Lei L, Deng D, Xu W, Yue M, Wu D, Fu K, Shi Z. Increased intestinal permeability and lipopolysaccharide contribute to swainsonine-induced systemic inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116912. [PMID: 39181073 DOI: 10.1016/j.ecoenv.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Long-term consumption of swainsonine could be poisonous to livestock, including facilitating apoptosis by impairing lysosomal function and inhibiting autophagic degradation, leading to liver inflammation and even death in livestock. However, the mechanism by swainsonine induced systemic inflammatory responses remained unclear, especially the effects of swainsonine on intestinal permeability, lipopolysaccharide (LPS) level and oxidative stress response were unknown. In this study, swainsonine increased intestinal permeability as evidenced by the significant down-regulation of colonic goblet cells, Akkermansia muciniphila and intestinal tight junction protein Occludin, Claudin 1 and ZO-1, and the significant up-regulation of mRNA expression level of the intestinal permeability indicator protein tyrosine phosphatase receptor type H (Ptprh) in the ileum of mice. Simultaneously, the elevated LPS biosynthetic genes in intestinal microbiota and increased intestinal permeability facilitated more bacterial endotoxin LPS to enter the blood. High concentration of free-form LPS induced high levels of proinflammatory cytokines and oxidative stress response, thereby causing the systemic inflammation. These findings provided a new perspective on swainsonine-induced systemic inflammation, suggesting that intestinal permeability and free-form LPS level may be the potential trigger factors.
Collapse
Affiliation(s)
- Ling Lei
- Clinical Psychology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Dazhi Deng
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Wenqian Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Mingyuan Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
29
|
Wang Z, Yang L, Feng Y, Duan B, Zhang H, Tang Y, Zhang C, Yang J. Isoorientin Alleviates DSS-Treated Acute Colitis in Mice by Regulating Intestinal Epithelial P-Glycoprotein (P-gp) Expression. DNA Cell Biol 2024; 43:520-536. [PMID: 39180442 DOI: 10.1089/dna.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024] Open
Abstract
Isoorientin (ISO) is a naturally occurring flavonoid with diverse functional properties that mitigate the risk of diseases stemming from oxidation, inflammation, and cancer cell proliferation. P-glycoprotein (P-gp) is a vital component of the intestinal epithelium and may play a role in the onset of intestinal inflammatory conditions, such as inflammatory bowel disease (IBD). Recent studies have suggested that short-chain fatty acids (SCFAs) and secondary bile acids (SBAs) produced by the gut microbiota stimulate the increase of P-gp expression, alleviating excessive inflammation and thereby preservation of intestinal homeostasis. ISO has been shown to improve colon health and modulate the gut microbiota. In this study, we aimed to explore whether ISO can modulate the microbes and their metabolites to influence P-gp expression to alleviate IBD. First, the impact of ISO on dextran sulfate sodium (DSS)-treated colitis in mice was investigated. Second, 16S rRNA gene sequencing was conducted. The present study indicated that ISO mitigated the symptoms and pathological damage associated with DSS-treated colitis in mice. Western blot analysis revealed ISO upregulated P-gp in colon tissues, suggesting the critical role of P-gp protein in intestinal epithelial cells. 16S microbial diversity sequencing revealed ISO restored the richness and variety of intestinal microorganisms in colitis-bearing mice and enriched SCFA-producing bacteria, such as Lachnospiraceae_NK4A136_group. The experiments also revealed that the ISO fecal microbiota transplantation (FMT) inoculation of DSS-treated mice had similarly beneficial results. FMT mice showed a reduction in colitis symptoms, which was more pronounced in ISO-FMT than in CON-FMT mice. Meanwhile, ISO-FMT expanded the abundance of beneficial microorganisms, increased the expression of metabolites, such as SCFAs and total SBAs, and significantly upregulated the expression of P-gp protein. In addition, Spearman's correlation analysis demonstrated a positive correlation between the production of SCFAs and SBAs and the expression of P-gp. The present study identified that ISO increases the expression of P-gp in the intestinal epithelium by regulating intestinal microorganisms and their metabolites, which maintains colonic homeostasis, improves the integrity of the colonic epithelium, and alleviates colitis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lanzhu Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yun Feng
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bensong Duan
- Department of Gastroenterology Shanghai East Hospital, School of Medicine, Endoscopy Center, Tongji University, Shanghai, China
| | - Haibin Zhang
- Department of Gastroenterology Shanghai East Hospital, School of Medicine, Endoscopy Center, Tongji University, Shanghai, China
| | - Yanru Tang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Caihang Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingya Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
30
|
Miao Y, Wang M, Sun H, Zhang Y, Zhou W, Yang W, Duan L, Niu L, Li Z, Chen J, Li Y, Fan A, Xie Q, Wei S, Bai H, Wang C, Chen Q, Wang X, Li Y, Liu J, Han Y, Fan D, Hong L. Akkermansia muciniphila ameliorates colonic injury in mice with DSS-induced acute colitis by blocking macrophage pro-inflammatory phenotype switching via the HDAC5/DAB2 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119751. [PMID: 38776988 DOI: 10.1016/j.bbamcr.2024.119751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Akkermansia muciniphila (A. muciniphila), a probiotic, has been linked to macrophage phenotypic polarization in different diseases. However, the role and mechanisms of A. muciniphila in regulating macrophage during ulcerative colitis (UC) are not clear. This research aimed to examine the impact of A. muciniphila on dextran sulfate sodium (DSS)-induced acute colitis and elucidate the underlying mechanism related to macrophage phenotypic polarization. A. muciniphila inhibited weight loss, increased disease activity index, and ameliorated inflammatory injury in colonic tissues in mice induced with DSS. Furthermore, A. muciniphila reduced macrophage M1 polarization and ameliorated epithelial barrier damage in colonic tissues of DSS-induced mice through inhibition of histone deacetylase 5 (HDAC5). In contrast, the effect of A. muciniphila was compromised by HDAC5 overexpression. HDAC5 deacetylated H3K9ac modification of the disabled homolog 2 (DAB2) promoter, which led to repressed DAB2 expression. DAB2 overexpression blocked HDAC5-induced pro-inflammatory polarization of macrophages, whereas knockdown of DAB2 resulted in the loss of effects of A. muciniphila against colonic injury in DSS-induced mice. Taken together, A. muciniphila-induced loss of HDAC5 hampered the deacetylation of DAB2 and enhanced the expression of DAB2. Our findings propose that A. muciniphila may be a possible probiotic agent for alleviating DSS-induced acute colitis.
Collapse
Affiliation(s)
- Yan Miao
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Mian Wang
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Hao Sun
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi'an Medical University, Xi'an 710032, Shaanxi, PR China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Wanli Yang
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Zhenshun Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Junfeng Chen
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yiding Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Qibin Xie
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Siyu Wei
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Han Bai
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Chenyang Wang
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Qian Chen
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Xiangjie Wang
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Jinqiang Liu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, PR China; State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an 710032, Shaanxi, PR China.
| |
Collapse
|
31
|
Kropp C, Tambosco K, Chadi S, Langella P, Claus SP, Martin R. Christensenella minuta protects and restores intestinal barrier in a colitis mouse model by regulating inflammation. NPJ Biofilms Microbiomes 2024; 10:88. [PMID: 39294159 PMCID: PMC11411060 DOI: 10.1038/s41522-024-00540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/23/2024] [Indexed: 09/20/2024] Open
Abstract
Christensenella minuta DSM 22607 has recently been suggested as a potential microbiome-based therapy for inflammatory bowel disease (IBD) because it displays strong anti-inflammatory effects both in vitro and in vivo. Here, we aimed to decipher the mechanism(s) underlying the DSM 22607-mediated beneficial effects on the host in a mouse model of chemically induced acute colitis. We observed that C. minuta plays a key role in the preservation of the epithelial barrier and the management of DNBS-induced inflammation by inhibiting interleukin (IL)-33 and Tumor necrosis factor receptor superfamily member 8 (Tnfrsf8) gene expression. We also showed that DSM 22607 abundance was positively correlated with Akkermansia sp. and Dubosiella sp. and modulated microbial metabolites in the cecum. These results offer new insights into the biological and molecular mechanisms underlying the beneficial effects of C. minuta DSM 22607 by protecting the intestinal barrier integrity and regulating inflammation.
Collapse
Affiliation(s)
- Camille Kropp
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
- YSOPIA Bioscience, 33076, Bordeaux, France
| | - Kevin Tambosco
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
| | - Sead Chadi
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
| | | | - Rebeca Martin
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France.
| |
Collapse
|
32
|
Lai S, Shen N, Zhou C, Lai X, Wang Y, Shen L, Jia Y. Saponins alleviate intestinal inflammation and regulate intestinal metabolic disorders induced by dextran sulfate sodium: TNF-α protein action. Int J Biol Macromol 2024; 280:135728. [PMID: 39293632 DOI: 10.1016/j.ijbiomac.2024.135728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Intestinal inflammation is a common feature of many digestive diseases, and intestinal metabolic disorders further aggravate the pathological state. The aim of this study was to investigate the regulatory effect of saponins on TNF-α protein and its effect on intestinal metabolism in the model of intestinal inflammation induced by sodium dextran sulfate. Through cell culture and biochemical detection, appropriate cell lines were selected to simulate intestinal inflammatory environment, induce inflammatory response, observe cell morphological changes and growth status, and evaluate the protective effect of TNF-α protein on cells. The level of TNF-α protein was quantitatively determined by biochemical assay, and the effect of saponins on its secretion and activity was investigated. Saponin treatment can restore the expression of intestinal metabolism-related enzymes and improve metabolic disorders. Therefore, by regulating the expression of TNF-α protein and its signaling pathway, saponins show a alleviating effect on intestinal inflammation and help restore intestinal metabolic balance.
Collapse
Affiliation(s)
- Shu Lai
- Department of Pharmacy, Jiulongpo District People's Hospital of Chongqing, Chongqing 400050, China
| | - Neng Shen
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Chunyan Zhou
- Department of Pharmacy, Kashgar Prefecture Second People's Hospital, Xinjiang 844000, China
| | - Xiangyu Lai
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yiming Wang
- Department of Medical oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Lili Shen
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Yimin Jia
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, China.
| |
Collapse
|
33
|
Oguri N, Miyoshi J, Nishinarita Y, Wada H, Nemoto N, Hibi N, Kawamura N, Miyoshi S, Lee STM, Matsuura M, Osaki T, Hisamatsu T. Akkermansia muciniphila in the small intestine improves liver fibrosis in a murine liver cirrhosis model. NPJ Biofilms Microbiomes 2024; 10:81. [PMID: 39285193 PMCID: PMC11405509 DOI: 10.1038/s41522-024-00564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Recent evidence indicates that liver cirrhosis (LC) is a reversible condition, but there is no established intervention against liver fibrosis. Although the gut microbiota is considered involved in the pathogenesis of LC, the underlying mechanisms remain unclear. Although the antibiotic, rifaximin (RFX), is effective for hepatic encephalopathy (HE) with LC, the impact of RFX on intestinal bacteria is unknown. We investigated the bacterial compositions along the GI tract under RFX treatment using a murine LC model. RFX improved liver fibrosis and hyperammonemia and altered the bacterial composition in the small intestine. The efficacy of RFX was associated with increases in specific bacterial genera, including Akkermansia. Administration of a commensal strain of Akkermansia muciniphila improved liver fibrosis and hyperammonemia with changing bacterial composition in the small intestine. This study proposed a new concept "small intestine-liver axis" in the pathophysiology of LC and oral A. muciniphila administration is a promising microbial intervention.
Collapse
Affiliation(s)
- Noriaki Oguri
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | - Yuu Nishinarita
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Haruka Wada
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Nobuki Nemoto
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Noritaka Hibi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Naohiro Kawamura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Sawako Miyoshi
- Department of Preventive Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Sonny T M Lee
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| |
Collapse
|
34
|
Hsu CY, Mustafa MA, Moath Omar T, Taher SG, Ubaid M, Gilmanova NS, Nasrat Abdulraheem M, Saadh MJ, Athab AH, Mirzaei R, Karampoor S. Gut instinct: harnessing the power of probiotics to tame pathogenic signaling pathways in ulcerative colitis. Front Med (Lausanne) 2024; 11:1396789. [PMID: 39323474 PMCID: PMC11422783 DOI: 10.3389/fmed.2024.1396789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) marked by persistent inflammation of the mucosal lining of the large intestine, leading to debilitating symptoms and reduced quality of life. Emerging evidence suggests that an imbalance of the gut microbiota plays a crucial role in UC pathogenesis, and various signaling pathways are implicated in the dysregulated immune response. Probiotics are live microorganisms that confer health benefits to the host, have attracted significant attention for their potential to restore gut microbial balance and ameliorate inflammation in UC. Recent studies have elucidated the mechanisms by which probiotics modulate these signaling pathways, often by producing anti-inflammatory molecules and promoting regulatory immune cell function. For example, probiotics can inhibit the nuclear factor-κB (NF-κB) pathway by stabilizing Inhibitor of kappa B alpha (IκBα), dampening the production of proinflammatory cytokines. Similarly, probiotics can modulate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway, suppressing the activation of STAT1 and STAT3 and thus reducing the inflammatory response. A better understanding of the underlying mechanisms of probiotics in modulating pathogenic signaling pathways in UC will pave the way for developing more effective probiotic-based therapies. In this review, we explore the mechanistic role of probiotics in the attenuation of pathogenic signaling pathways, including NF-κB, JAK/STAT, mitogen-activated protein kinases (MAPKs), Wnt/β-catenin, the nucleotide-binding domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLRP3) inflammasome, Toll-like receptors (TLRs), interleukin-23 (IL-23)/IL-17 signaling pathway in UC.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq
| | - Sada Gh Taher
- Department of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Department of MTL, Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Nataliya S Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Aya H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Wang Y, Li C, Li J, Zhang S, Zhang Q, Duan J, Guo J. Abelmoschus manihot polysaccharide fortifies intestinal mucus barrier to alleviate intestinal inflammation by modulating Akkermansia muciniphila abundance. Acta Pharm Sin B 2024; 14:3901-3915. [PMID: 39309495 PMCID: PMC11413673 DOI: 10.1016/j.apsb.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 09/25/2024] Open
Abstract
The intestinal mucus barrier is an important line of defense against gut pathogens. Damage to this barrier brings bacteria into close contact with the epithelium, leading to intestinal inflammation. Therefore, its restoration is a promising strategy for alleviating intestinal inflammation. This study showed that Abelmoschus manihot polysaccharide (AMP) fortifies the intestinal mucus barrier by increasing mucus production, which plays a crucial role in the AMP-mediated amelioration of colitis. IL-10-deficient mouse models demonstrated that the effect of AMP on mucus production is dependent on IL-10. Moreover, bacterial depletion and replenishment confirmed that the effects of AMP on IL-10 secretion and mucus production were mediated by Akkermansia muciniphila. These findings suggest that plant polysaccharides fortify the intestinal mucus barrier by maintaining homeostasis in the gut microbiota. This demonstrates that targeting mucus barrier is a promising strategy for treating intestinal inflammation.
Collapse
Affiliation(s)
- Yumeng Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chengxi Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianping Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shu Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinyu Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
36
|
Zhang LL, Xu JY, Xing Y, Wu P, Jin YW, Wei W, Zhao L, Yang J, Chen GC, Qin LQ. Lactobacillus rhamnosus GG alleviates radiation-induced intestinal injury by modulating intestinal immunity and remodeling gut microbiota. Microbiol Res 2024; 286:127821. [PMID: 38941923 DOI: 10.1016/j.micres.2024.127821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Radiation injury to the intestine is one of the most common complications in patients undergoing abdominal or pelvic cavity radiotherapy. In this study, we investigated the potential protective effect of Lactobacillus rhamnosus GG (LGG) on radiation-induced intestinal injury and its underlying mechanisms. Mice were assigned to a control group, a 10 Gy total abdominal irradiation (TAI) group, or a group pretreated with 108 CFU LGG for three days before TAI. Small intestine and gut microbiota were analyzed 3.5 days post-exposure. LGG intervention improved intestinal structure, reduced jejunal DNA damage, and inhibited the inflammatory cGAS/STING pathway. Furthermore, LGG reduced M1 proinflammatory macrophage and CD8+ T cell infiltration, restoring the balance between Th17 and Treg cells in the inflamed jejunum. LGG also partially restored the gut microbiota. These findings suggest the possible therapeutic radioprotective effect of probiotics LGG in alleviating radiation-induced intestinal injury by maintaining immune homeostasis and reshaping gut microbiota.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yifei Xing
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Pengcheng Wu
- Zhangjiagang Center for Disease Control and Prevention, 18 Zhizhong Road, Zhangjiagang 215600, China
| | - Yi-Wen Jin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Wei Wei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Jing Yang
- Department of Clinical Nutrition, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
| |
Collapse
|
37
|
Khalili L, Park G, Nagpal R, Salazar G. The Role of Akkermansia muciniphila on Improving Gut and Metabolic Health Modulation: A Meta-Analysis of Preclinical Mouse Model Studies. Microorganisms 2024; 12:1627. [PMID: 39203469 PMCID: PMC11356609 DOI: 10.3390/microorganisms12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Akkermansia muciniphila (A. muciniphila) and its derivatives, including extracellular vesicles (EVs) and outer membrane proteins, are recognized for enhancing intestinal balance and metabolic health. However, the mechanisms of Akkermansia muciniphila's action and its effects on the microbiome are not well understood. In this study, we examined the influence of A. muciniphila and its derivatives on gastrointestinal (GI) and metabolic disorders through a meta-analysis of studies conducted on mouse models. A total of 39 eligible studies were identified through targeted searches on PubMed, Web of Science, Science Direct, and Embase until May 2024. A. muciniphila (alive or heat-killed) and its derivatives positively affected systemic and gut inflammation, liver enzyme level, glycemic response, and lipid profiles. The intervention increased the expression of tight-junction proteins in the gut, improving gut permeability in mouse models of GI and metabolic disorders. Regarding body weight, A. muciniphila and its derivatives prevented weight loss in animals with GI disorders while reducing body weight in mice with metabolic disorders. Sub-group analysis indicated that live bacteria had a more substantial effect on most analyzed biomarkers. Gut microbiome analysis using live A. muciniphila identified a co-occurrence cluster, including Desulfovibrio, Family XIII AD3011 group, and Candidatus Saccharimonas. Thus, enhancing the intestinal abundance of A. muciniphila and its gut microbial clusters may provide more robust health benefits for cardiometabolic, and age-related diseases compared with A. muciniphila alone. The mechanistic insight elucidated here will pave the way for further exploration and potential translational applications in human health.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gwoncheol Park
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Ravinder Nagpal
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
| | - Gloria Salazar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306, USA; (L.K.); (G.P.); (R.N.)
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
38
|
Mo C, Lou X, Xue J, Shi Z, Zhao Y, Wang F, Chen G. The influence of Akkermansia muciniphila on intestinal barrier function. Gut Pathog 2024; 16:41. [PMID: 39097746 PMCID: PMC11297771 DOI: 10.1186/s13099-024-00635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/20/2024] [Indexed: 08/05/2024] Open
Abstract
Intestinal barriers play a crucial role in human physiology, both in homeostatic and pathological conditions. Disruption of the intestinal barrier is a significant factor in the pathogenesis of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. The profound influence of the gut microbiota on intestinal diseases has sparked considerable interest in manipulating it through dietary interventions, probiotics, and fecal microbiota transplantation as potential approaches to enhance the integrity of the intestinal barrier. Numerous studies have underscored the protective effects of specific microbiota and their associated metabolites. In recent years, an increasing body of research has demonstrated that Akkermansia muciniphila (A. muciniphila, Am) plays a beneficial role in various diseases, including diabetes, obesity, aging, cancer, and metabolic syndrome. It is gaining popularity as a regulator that influences the intestinal flora and intestinal barrier and is recognized as a 'new generation of probiotics'. Consequently, it may represent a potential target and promising therapy option for intestinal diseases. This article systematically summarizes the role of Am in the gut. Specifically, we carefully discuss key scientific issues that need resolution in the future regarding beneficial bacteria represented by Am, which may provide insights for the application of drugs targeting Am in clinical treatment.
Collapse
Affiliation(s)
- Chunyan Mo
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Xiran Lou
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Kunming, 650500, China
| | - Zhuange Shi
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Yifang Zhao
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People's Hospital of Yunnan Province, 157 Jinbi Road, Xishan District, Kunming, 650034, China.
| |
Collapse
|
39
|
Hu Y, Tang J, Xie Y, Xu W, Zhu W, Xia L, Fang J, Yu D, Liu J, Zheng Z, Zhou Q, Shou Q, Zhang W. Gegen Qinlian decoction ameliorates TNBS-induced ulcerative colitis by regulating Th2/Th1 and Tregs/Th17 cells balance, inhibiting NLRP3 inflammasome activation and reshaping gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117956. [PMID: 38428658 DOI: 10.1016/j.jep.2024.117956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1β, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iβ, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1β, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1β. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.
Collapse
Affiliation(s)
- Yingnan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingyi Tang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongfeng Xie
- Department of Burn Plastic Surgery, Huai'an Hospital Affiliated to Xuzhou Medical University, Jiangsu, 223001, China
| | - Wenjun Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weihan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Linying Xia
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jintao Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dian Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingjing Liu
- Department of General Surgery, Haining City Central Hospital, Jiaxing, 314408, China
| | - Zhipeng Zheng
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Qiujing Zhou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Qiyang Shou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| | - Wei Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
40
|
Geerlings SY, van der Ark K, Nijsse B, Boeren S, van Loosdrecht M, Belzer C, de Vos WM. Omics-based analysis of Akkermansia muciniphila cultivation in food-grade media. MICROBIOME RESEARCH REPORTS 2024; 3:36. [PMID: 39421255 PMCID: PMC11480725 DOI: 10.20517/mrr.2024.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 10/19/2024]
Abstract
Background and Aim: Over the past years, the gut microbiota and its correlation to health and disease has been studied extensively. In terms of beneficial microbes, an increased interest in Akkermansia muciniphila (A. muciniphila) has been observed since its discovery. Direct evidence for the role of A. muciniphila in host health has been provided in both mice and human studies. However, for human interventions with A. muciniphila cells, industrial-scale fermentations are needed, and hence, the used cultivation media should be free of animal-derived components, food-grade, non-allergenic and allow for efficient growth to high densities to provide cost-effective production platforms. In this study, we assessed the growth and performance of A. muciniphila in batch bioreactors using newly developed plant-based media. Methods: The bioreactors were supplemented with varying carbon sources, including different ratios of N-acetylglucosamine (GlcNAc) and glucose. We monitored the growth of A. muciniphila in the plant-based medium using optical density (OD600) measurements and microscopy. In addition, we used a combination of biochemical analysis as well as transcriptional and proteomics analysis to gain detailed insight into the physiology. Results: Comparisons between growth on these media and that on mucin revealed differences at both transcriptome and proteome levels, including differences in the expression of glycosyltransferases, signaling proteins, and stress response. Furthermore, elongated cells and higher OD600 values were observed using the plant-based media as compared to cultivation media containing mucin. Conclusion: These differences do not hamper growth, and therefore, our data suggest that the food-grade medium composition described here could be used to produce A. muciniphila with high yields for therapeutic purposes.
Collapse
Affiliation(s)
- Sharon Y. Geerlings
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Kees van der Ark
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Delft 2629 HZ, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
41
|
Wu P, Li W, Xie Y, Guan W, Yang S, Li J, Zhao Y. An insight into the gut microbiota after Schistosoma japonicum eggs immunization in an experimental ulcerative colitis model. FASEB J 2024; 38:e23721. [PMID: 38822662 DOI: 10.1096/fj.202302576rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Schistosome infection and schistosome-derived products have been implicated in the prevention and alleviation of inflammatory bowel disease by manipulating the host immune response, whereas the role of gut microbiota in this protective effect remains poorly understood. In this study, we found that the intraperitoneal immunization with Schistosoma japonicum eggs prior to dextran sulfate sodium (DSS) application significantly ameliorated the symptoms of DSS-induced acute colitis, which was characterized by higher body weight, lower disease activity index score and macroscopic inflammatory scores. We demonstrated that the immunomodulatory effects of S. japonicum eggs were accompanied by an influence on gut microbiota composition, abundance, and diversity, which increased the abundance of genus Turicibacter, family Erysipelotrichaceae, phylum Firmicutes, and decreased the abundance of genus Odoribacter, family Marinifilaceae, order Bacteroidales, class Bacteroidia, phylum Bacteroidota. In addition, Lactobacillus was identified as a biomarker that distinguishes healthy control mice from DSS-induced colitis mice. The present study revealed the importance of the gut microbiota in S. japonicum eggs exerting protective effects in an experimental ulcerative colitis (UC) model, providing an alternative strategy for the discovery of UC prevention and treatment drugs.
Collapse
Affiliation(s)
- Peng Wu
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Wenhao Li
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Yiting Xie
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Wei Guan
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Yanqing Zhao
- Department of Human Parasitology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
- Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
42
|
Flinn H, Marshall A, Holcomb M, Cruz L, Soriano S, Treangen TJ, Villapol S. Antibiotic treatment induces microbiome dysbiosis and reduction of neuroinflammation following traumatic brain injury in mice. RESEARCH SQUARE 2024:rs.3.rs-4475195. [PMID: 38946944 PMCID: PMC11213166 DOI: 10.21203/rs.3.rs-4475195/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background The gut microbiome is linked to brain pathology in cases of traumatic brain injury (TBI), yet the specific bacteria that are implicated are not well characterized. To address this gap, in this study, we induced traumatic brain injury (TBI) in male C57BL/6J mice using the controlled cortical impact (CCI) injury model. After 35 days, we administered a broad-spectrum antibiotics (ABX) cocktail (ampicillin, gentamicin, metronidazole, vancomycin) through oral gavage for 2 days to diminish existing microbiota. Subsequently, we inflicted a second TBI on the mice and analyzed the neuropathological outcomes five days later. Results Longitudinal analysis of the microbiome showed significant shifts in the diversity and abundance of bacterial genera during both acute and chronic inflammation. These changes were particularly dramatic following treatment with ABX and after the second TBI. ABX treatment did not affect the production of short-chain fatty acids (SCFA) but did alter intestinal morphology, characterized by reduced villus width and a lower count of goblet cells, suggesting potential negative impacts on intestinal integrity. Nevertheless, diminishing the intestinal microbiome reduced cortical damage, apoptotic cell density, and microglial/macrophage activation in the cortical and thalamic regions of the brain. Conclusions Our findings suggest that eliminating colonized gut bacteria via broad-spectrum ABX reduces neuroinflammation and enhances neurological outcomes in TBI despite implications to gut health.
Collapse
|
43
|
He Q, Zhang T, Zhang W, Feng C, Kwok LY, Zhang H, Sun Z. Administering Lactiplantibacillus fermentum F6 decreases intestinal Akkermansia muciniphila in a dextran sulfate sodium-induced rat colitis model. Food Funct 2024; 15:5882-5894. [PMID: 38727176 DOI: 10.1039/d4fo00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Probiotics are increasingly used to manage gut dysbiosis-related conditions due to their robust ability to manipulate the gut microbial community. However, few studies have reported that probiotics can specifically modulate individual gut microbes. This study demonstrated that administering the probiotic, Lactiplantibacillus fermentum F6, could ameliorate dextran sulfate sodium-induced colitis in a rat model, evidenced by the decreases in the disease activity index score, histopathology grading, and serum pro-inflammatory cytokine levels, as well as the increase in the serum anti-inflammatory cytokine levels. Shotgun metagenomics revealed that the fecal metagenomic of colitis rats receiving the probiotic intervention contained substantially fewer Akkermansia muciniphila than the dextran sulfate sodium group. Thus, the probiotic mechanism might be exerted by reducing specific gut microbial species associated with disease pathogenesis. A new paradigm for designing probiotics that manage diseases through direct and precise manipulation of gut microbes has been provided through this study.
Collapse
Affiliation(s)
- Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Weiqin Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Cuijiao Feng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
44
|
Calvo A, Pastor Y, Rosas-Val P, Gamazo C. Unveiling the immunomodulatory effect of the novel probiotic Akkermansia muciniphila and its protective effect in vitro. Microbiol Res 2024; 283:127677. [PMID: 38490028 DOI: 10.1016/j.micres.2024.127677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
Akkermansia muciniphila, a bacterium found in the human microbiota, has gained interest due to its potential health benefits. Previous studies have linked its absence to inflammatory disorders, while also suggesting its role in maintaining a healthy gut barrier. However, there is limited information on its specific effects on the immune system. Therefore, the aim of this research was to analyze the in vitro response triggered by A. muciniphila employing RAW 264.7 macrophages. The study focused on investigating the production of cytokines and nitric oxide, along with evaluating the expression of inflammatory surface cellular markers. Additionally, we assessed its potential to protect against intestinal infections, using Salmonella enterica serovar Enteritidis as a model. Our findings reveal a modulation effect of A. muciniphila with pro-inflammatory features, including the release of pro-inflammatory cytokines and upregulation of CD40 and CD80 surface markers, in contrast with previous reported data. Importantly, A. muciniphila could protect against Salmonella infection by promoting macrophage activation, appearing as a promising probiotic candidate for the control of intestinal infections.
Collapse
Affiliation(s)
- Alba Calvo
- Department of Microbiology and Parasitology, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Yadira Pastor
- Department of Microbiology and Parasitology, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Pablo Rosas-Val
- Department of Microbiology and Parasitology, University of Navarra, Pamplona 31008, Spain
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain.
| |
Collapse
|
45
|
Li R, Yang P, Liu B, Ye Z, Zhang P, Li M, Gong Y, Huang Y, Yang L, Li M. Lycium barbarum polysaccharide remodels colon inflammatory microenvironment and improves gut health. Heliyon 2024; 10:e30594. [PMID: 38774318 PMCID: PMC11107222 DOI: 10.1016/j.heliyon.2024.e30594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Aim Disturbed intestinal microbiota has been implicated in the inflammatory microenvironment of the colon, which usually results in ulcerative colitis (UC). Given the limitations of these drugs, it is important to explore alternative means of protecting the gut health from UC. This study aimed to investigate the potential of polysaccharides as beneficial nutrients in the regulation of the gut microbiota, which determines the inflammatory microenvironment of the colon. Materials and methods Mice were treated with dextran sulfate sodium (DSS) to evaluate the effects and mechanisms of Lycium barbarum polysaccharide (LBP) in remodeling the inflammatory microenvironment and improving gut health. Body weight and disease activity indices were monitored daily. Hematoxylin and eosin staining was used to analyze colon dynamics. The levels of inflammatory indicators and expression of MUC-2, claudin-1, ZO-1, and G-protein-coupled receptor 5 (TGR5) were determined using assay kits and immunohistochemistry, respectively. 16S rRNA high-throughput sequencing of the intestinal microbiota and liquid chromatography-tandem mass spectrometry for related bile acids were used. Results LBP significantly improved the colonic tissue structure by upregulating MUC-2, claudin-1, and ZO-1 protein expression. The bacterial genus Dubosiella was dominant in healthy mice, but significantly decreased in mice treated with DSS. LBP rehabilitated Dubosiella in the sick guts of DSS mice to a level close to that of healthy mice. The levels of other beneficial bacterial genera Akkermansia and Bifidobacterium were also increased, whereas those of the harmful bacterial genera Turicibacter, Clostridium_sensu_stricto_1, Escherichia-Shigella, and Faecalibaculum decreased. The activity of beneficial bacteria promoted the bile acids lithocholic and deoxycholic acids in mice with UC, which improved the gut barrier function through the upregulation of TGR5. Conclusion The inflammatory microenvironment in the gut is determined by the balance of the gut microbiota. LBP showed great potential as a beneficial nutrient for rehabilitating Dubosiella which is dominant in the gut of healthy mice. Nutrient-related LBP may play an important role in gut health management.
Collapse
Affiliation(s)
- Rong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ping Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Bowen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ziru Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Puyue Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Mingjian Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yong Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Lan Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Min Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| |
Collapse
|
46
|
Luo Y, Fu S, Liu Y, Kong S, Liao Q, Lin L, Li H. Banxia Xiexin decoction modulates gut microbiota and gut microbiota metabolism to alleviate DSS-induced ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117990. [PMID: 38423412 DOI: 10.1016/j.jep.2024.117990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin decoction (BXD) is a classic traditional Chinese medicine prescription for treating ulcerative colitis (UC). However, its potential mechanism of action is still unclear. AIM OF THE STUDY Reveal the correlation between the beneficial impacts of BXD on UC and the composition of the gut microbiota. MATERIALS AND METHODS The major constituents of BXD were identified using the HPLC-DAD technique. An experimental model of UC was induced in male C57BL/6 mice by administering dextran sodium sulfate (DSS). A total of 48 mice were divided into different groups, including control, model, high-dose BXD treatment, medium-dose BXD treatment, low-dose BXD treatment, and a group treated with 5-amino acid salicylic acid (5-ASA). Body weight changes and disease activity index (DAI) scores were documented; colon length, colon index, spleen index, and thymus index scores were determined; myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) activities were assessed; and histological staining with hematoxylin-eosin and alcian blue/phosphate Schiff was performed. The immunofluorescence technique was employed to examine the presence of ZO-1 and occludin in the colon tissue. 16S rRNA sequencing was employed to assess the gut microbiota's diversity and metabolomics was utilized to examine alterations in metabolites within the gut microbiota. The impact of BXD on the gut microbiota was confirmed through fecal microbiota transplantation (FMT). RESULTS BXD exhibited a positive impact on UC mice, particularly in the high-dose BXD treatment group. The BXD group experienced weight recovery, decreased DAI scores, improved colon length, and restored of spleen and thymus index scores compared to the DSS group. Additionally, BXD alleviated colon damage and the inflammatory response while restoring intestinal barrier function. FMT in BXD-treated mice also showed therapeutic effects in UC mice. At the phylum level, the relative abundance of Desulfobacterota, Deferribacterota and Actinobacteriota increased; at the genus level, g__norank__f__Muribaculaceae, Dubosiella, Akkermansia, and Lactobacillus increased, whereas Faecalibaculum, Alloprevotella, Turicibacter, and g_Paraprevotella decreased. g__norank_f__Muribaculaceae was positively correlated with body weight and colon length and negatively with colon index scores, splenic index scores, and MPO levels; Alloprevotella was positively correlated with splenic index scores, histological scores, and TNF-α levels and negatively with thymus index scores and thymus index scores. Faecalibaculum was positively correlated with colon index scores and MPO levels. Metabolic investigations revealed 58 potential indicators, primarily associated with the metabolism of amino acids, purines, and lipids. Alloprevotella, g_Paraprevotella, and Bifidobacterium were strongly associated with metabolic pathways. CONCLUSION BXD showed beneficial therapeutic effects in UC mice. The mechanism may be by promoting the balance and variety of gut microbiota, as well as regulating the metabolism of amino acids, purines, and lipids.
Collapse
Affiliation(s)
- Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Sai Fu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shasha Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qian Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, 330000, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, 330000, China.
| |
Collapse
|
47
|
Wu Y, Fu H, Xu X, Jin H, Kao QJ, Teng WL, Wang B, Zhao G, Pi XE. Intervention with fructooligosaccharides, Saccharomyces boulardii, and their combination in a colitis mouse model. Front Microbiol 2024; 15:1356365. [PMID: 38835484 PMCID: PMC11148295 DOI: 10.3389/fmicb.2024.1356365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Objective To examine the effects of an intervention with fructooligosaccharides (FOS), Saccharomyces boulardii, and their combination in a mouse model of colitis and to explore the mechanisms underlying these effects. Methods The effects of FOS, S. boulardii, and their combination were evaluated in a DSS-induced mouse model of colitis. To this end, parameters such as body weight, the disease activity index (DAI), and colon length were examined in model mice. Subsequently, ELISA was employed to detect the serum levels of proinflammatory cytokines. Histopathological analysis was performed to estimate the progression of inflammation in the colon. Gas chromatography was used to determine the content of short-chain fatty acids (SCFAs) in the feces of model mice. Finally, 16S rRNA sequencing technology was used to analyze the gut microbiota composition. Results FOS was slight effective in treating colitis and colitis-induced intestinal dysbiosis in mice. Meanwhile, S. boulardii could significantly reduced the DAI, inhibited the production of IL-1β, and prevented colon shortening. Nevertheless, S. boulardii treatment alone failed to effectively regulate the gut microbiota. In contrast, the combined administration of FOS/S. boulardii resulted in better anti-inflammatory effects and enabled microbiota regulation. The FOS/S. boulardii combination (109 CFU/ml and 107 CFU/ml) significantly reduced the DAI, inhibited colitis, lowered IL-1β and TNF-α production, and significantly improved the levels of butyric acid and isobutyric acid. However, FOS/S. boulardii 109 CFU/ml exerted stronger anti-inflammatory effects, inhibited IL-6 production and attenuated colon shortening. Meanwhile, FOS/S. boulardii 107 CFU/ml improved microbial regulation and alleviated the colitis-induced decrease in microbial diversity. The combination of FOS and S. boulardii significantly increased the abundance of Parabacteroides and decreased the abundance of Escherichia-Shigella. Additionally, it promoted the production of acetic acid and propionic acid. Conclusion Compared with single administration, the combination can significantly increase the abundance of beneficial bacteria such as lactobacilli and Bifidobacteria and effectively regulate the gut microbiota composition. These results provide a scientific rationale for the prevention and treatment of colitis using a FOS/S. boulardii combination. They also offer a theoretical basis for the development of nutraceutical preparations containing FOS and S. boulardii.
Collapse
Affiliation(s)
- Yan Wu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Hao Fu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xu Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Hui Jin
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Qing-Jun Kao
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Wei-Lin Teng
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Bing Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Gang Zhao
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiong-E Pi
- Institute of Rural Development, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
48
|
Wang X, Huang J, Liu J, Sun Y, Feng X, Jin Y, Zhou W. Silencing ANGPT2 alleviates ulcerative colitis by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway. Braz J Med Biol Res 2024; 57:e13379. [PMID: 38808888 PMCID: PMC11136490 DOI: 10.1590/1414-431x2024e13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Laboratory Medicine, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Jian Huang
- Suzhou Key Laboratory for Medical Biotechnology, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - Jia Liu
- Department of Gastroenterology, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Yujie Sun
- Department of Gastroenterology, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Xinyi Feng
- Department of Gastroenterology, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Yansheng Jin
- Department of Laboratory Medicine, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| | - Weigang Zhou
- Department of Laboratory Medicine, Suzhou Wuzhong People's Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
49
|
Huang Z, Huang X, Huang Y, Liang K, Chen L, Zhong C, Chen Y, Chen C, Wang Z, He F, Qin M, Long C, Tang B, Huang Y, Wu Y, Mo X, Weizhong T, Liu J. Identification of KRAS mutation-associated gut microbiota in colorectal cancer and construction of predictive machine learning model. Microbiol Spectr 2024; 12:e0272023. [PMID: 38572984 PMCID: PMC11064510 DOI: 10.1128/spectrum.02720-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Gut microbiota has demonstrated an increasingly important role in the onset and development of colorectal cancer (CRC). Nonetheless, the association between gut microbiota and KRAS mutation in CRC remains enigmatic. We conducted 16S rRNA sequencing on stool samples from 94 CRC patients and employed the linear discriminant analysis effect size algorithm to identify distinct gut microbiota between KRAS mutant and KRAS wild-type CRC patients. Transcriptome sequencing data from nine CRC patients were transformed into a matrix of immune infiltrating cells, which was then utilized to explore KRAS mutation-associated biological functions, including Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways. Subsequently, we analyzed the correlations among these KRAS mutation-associated gut microbiota, host immunity, and KRAS mutation-associated biological functions. At last, we developed a predictive random forest (RF) machine learning model to predict the KRAS mutation status in CRC patients, based on the gut microbiota associated with KRAS mutation. We identified a total of 26 differential gut microbiota between both groups. Intriguingly, a significant positive correlation was observed between Bifidobacterium spp. and mast cells, as well as between Bifidobacterium longum and chemokine receptor CX3CR1. Additionally, we also observed a notable negative correlation between Bifidobacterium and GOMF:proteasome binding. The RF model constructed using the KRAS mutation-associated gut microbiota demonstrated qualified efficacy in predicting the KRAS phenotype in CRC. Our study ascertained the presence of 26 KRAS mutation-associated gut microbiota in CRC and speculated that Bifidobacterium may exert an essential role in preventing CRC progression, which appeared to correlate with the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:proteasome binding. Furthermore, the RF model constructed on the basis of KRAS mutation-associated gut microbiota exhibited substantial potential in predicting KRAS mutation status in CRC patients.IMPORTANCEGut microbiota has emerged as an essential player in the onset and development of colorectal cancer (CRC). However, the relationship between gut microbiota and KRAS mutation in CRC remains elusive. Our study not only identified a total of 26 gut microbiota associated with KRAS mutation in CRC but also unveiled their significant correlations with tumor-infiltrating immune cells, immune-related genes, and biological pathways (Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways). We speculated that Bifidobacterium may play a crucial role in impeding CRC progression, potentially linked to the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:Proteasome binding. Furthermore, based on the KRAS mutation-associated gut microbiota, the RF model exhibited promising potential in the prediction of KRAS mutation status for CRC patients. Overall, the findings of our study offered fresh insights into microbiological research and clinical prediction of KRAS mutation status for CRC patients.
Collapse
Affiliation(s)
- Zigui Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yili Huang
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Kunmei Liang
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Lei Chen
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Chuzhuo Zhong
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Yingxin Chen
- College of Oncology, Guangxi Medical University, Nanning, China
| | - Chuanbin Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhen Wang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fuhai He
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Mingjian Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Binzhe Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongqi Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yongzhi Wu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tang Weizhong
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
50
|
Li H, Feng J, Liu C, Hou S, Meng J, Liu JY, Zilong S, Chang MC. Polysaccharides from an edible mushroom, Hericium erinaceus, alleviate ulcerative colitis in mice by inhibiting the NLRP3 inflammasomes and reestablish intestinal homeostasis. Int J Biol Macromol 2024; 267:131251. [PMID: 38556226 DOI: 10.1016/j.ijbiomac.2024.131251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
This study aimed to assess the effects of polysaccharides extracted from Hericium erinaceus fruiting bodies (HEFPs) on the inflammatory response to oxidative stress in a mouse model of ulcerative colitis (UC) induced by ingestion of dextran sodium sulfate. The results indicated reduced oxidative damage in the HEFPs groups, as evidenced by significantly decreased malondialdehyde levels and significantly increased levels of the antioxidant enzymes superoxide dismutase and catalase in colon homogenates, compared with those in the Model Control (MC) group. Additionally, compared with the levels in the MC group, the levels of the pro-inflammatory factors IL-6, IL-1β, and TNF-α in the positive-control (PC) and HEFPs groups were significantly lower, and that of the anti-inflammatory factor IL-10 was significantly higher. qRT-PCR analyses revealed that the colon expression patterns of IL-6, IL-1β, TNF-α, and IL-18 were consistent with the serum levels. Western-blotting results indicated significantly lower levels of NLRP3, ASC, and caspase 1 P20 in the HEFPs and PC groups than in the MC group. These findings suggest that HEFPs alleviate UC by suppressing the NLRP3 inflammasome/Caspase-1 pathway. Lachnospiraceae, Clostridiales, Parabacteroides, Oscillibacter, and Clostridium XlVa genera were more abundant in the gut microbiota of the HEFPs group than that of the MC group.
Collapse
Affiliation(s)
- Hao Li
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Jiaxin Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Chang Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Shuting Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China
| | - Jing-Yu Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China.
| | - Sun Zilong
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Ming-Chang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China.
| |
Collapse
|