1
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025; 999:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations and clinical observations to provide a comprehensive view of the mechanisms causing pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis, delineating approaches for treatment of SSc patients by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128, Trieste, Italy; Public Health Unit, University Health Agency Giuliano-Isontina (ASUGI), 34148, Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
2
|
Khanna D, de Vries-Bouwstra J, Hoffmann-Vold AM, Kuwana M, Low AHL, Proudman S, Flack M, Kukreja A, Fagan N, Distler O. A Phase II study of avenciguat, a novel soluble guanylate cyclase activator, in patients with systemic sclerosis: Study design and rationale of the VITALISScE™ study. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024:23971983241291923. [PMID: 39544899 PMCID: PMC11559521 DOI: 10.1177/23971983241291923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/17/2024]
Abstract
Introduction Systemic sclerosis is a rare autoimmune connective tissue disease characterised by (1) microvasculopathy; (2) immune dysregulation; and (3) progressive fibrosis of the skin and internal organs. Soluble guanylate cyclase plays an important role in maintaining vascular and immunological homeostasis and preventing organ fibrosis. Pharmacological modulation of soluble guanylate cyclase with soluble guanylate cyclase stimulators has shown anti-inflammatory and antifibrotic effects in animal models of systemic sclerosis, with a trend towards clinical efficacy in a Phase II study (RISE-SSc). However, the efficacy of soluble guanylate cyclase stimulators may be reduced under conditions of hypoxia and oxidative stress. Soluble guanylate cyclase activators have the potential to overcome this limitation. This paper describes the study design of VITALISScE™, a Phase II clinical trial assessing the efficacy, safety and tolerability of avenciguat, a novel soluble guanylate cyclase activator in patients with active systemic sclerosis at risk of progression. Methods The VITALISScE™ study (NCT05559580) is evaluating the action of avenciguat on all three aspects of systemic sclerosis pathophysiology. The primary endpoint is the rate of decline in forced vital capacity (mL) over 48 weeks. Secondary endpoints include absolute change from baseline at Week 48 in modified Rodnan skin score, Health Assessment Questionnaire Disability Index score and the proportion of responders based on the revised Composite Response Index in Systemic Sclerosis. Additional endpoints include a composite assessment of Raynaud's phenomenon, digital ulcer burden, functional outcomes and quality of life, safety, pharmacokinetics, and biomarkers associated with systemic sclerosis and the mechanism of action of avenciguat. Results VITALISScE™ is an ongoing, multicentre (180 sites; 38 countries), placebo-controlled, double-blind, parallel-group, Phase II clinical study. Recruitment is currently ongoing. Conclusions The VITALISScE™ study is assessing the efficacy, safety and tolerability of avenciguat in patients with active systemic sclerosis at risk of progression. Results will inform further development of avenciguat. Trial Registration VITALISScE™; EU CT No. 2022-500332-11-00; Clinicaltrials.gov: NCT05559580 (https://www.clinicaltrials.gov/study/NCT05559580).
Collapse
Affiliation(s)
- Dinesh Khanna
- Department of Internal Medicine, University of Michigan Scleroderma Clinic, Ann Arbor, MI, USA
| | | | - Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Andrea Hsiu Ling Low
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore
- Duke-National University of Singapore Medical School, Singapore
| | - Susanna Proudman
- Discipline of Medicine, University of Adelaide and Rheumatology Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Mary Flack
- TA Inflammation Medicine, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Anjli Kukreja
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Nora Fagan
- Global Biostatistics & Data Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Fioretto BS, Rosa I, Andreucci E, Mencucci R, Marini M, Romano E, Manetti M. Pharmacological Stimulation of Soluble Guanylate Cyclase Counteracts the Profibrotic Activation of Human Conjunctival Fibroblasts. Cells 2024; 13:360. [PMID: 38391973 PMCID: PMC10887040 DOI: 10.3390/cells13040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Conjunctival fibrosis is a serious clinical concern implicated in a wide spectrum of eye diseases, including outcomes of surgery for pterygium and glaucoma. It is mainly driven by chronic inflammation that stimulates conjunctival fibroblasts to differentiate into myofibroblasts over time, leading to abnormal wound healing and scar formation. Soluble guanylate cyclase (sGC) stimulation was found to suppress transforming growth factor β (TGFβ)-induced myofibroblastic differentiation in various stromal cells such as skin and pulmonary fibroblasts, as well as corneal keratocytes. Here, we evaluated the in vitro effects of stimulation of the sGC enzyme with the cell-permeable pyrazolopyridinylpyrimidine compound BAY 41-2272 in modulating the TGFβ1-mediated profibrotic activation of human conjunctival fibroblasts. Cells were pretreated with the sGC stimulator before challenging with recombinant human TGFβ1, and subsequently assayed for viability, proliferation, migration, invasiveness, myofibroblast marker expression, and contractile properties. Stimulation of sGC significantly counteracted TGFβ1-induced cell proliferation, migration, invasiveness, and acquisition of a myofibroblast-like phenotype, as shown by a significant downregulation of FAP, ACTA2, COL1A1, COL1A2, FN1, MMP2, TIMP1, and TIMP2 mRNA levels, as well as by a significant reduction in α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein expression. In addition, pretreatment with the sGC stimulator was capable of significantly dampening TGFβ1-induced acquisition of a contractile phenotype by conjunctival fibroblasts, as well as phosphorylation of Smad3 and release of the proinflammatory cytokines IL-1β and IL-6. Taken together, our findings are the first to demonstrate the effectiveness of pharmacological sGC stimulation in counteracting conjunctival fibroblast-to-myofibroblast transition, thus providing a promising scientific background to further explore the feasibility of sGC stimulators as potential new adjuvant therapeutic compounds to treat conjunctival fibrotic conditions.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Elena Andreucci
- Section of Experimental Pathology and Oncology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Rita Mencucci
- Eye Clinic, Careggi Hospital, Department of Neurosciences, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; (B.S.F.); (I.R.); (M.M.)
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
4
|
Chaturvedi S, Singh H, Agarwal V, Jaiswal A, Prasad N. Unravelling the role of Sildenafil and SB204741 in suppressing fibrotic potential of peritoneal fibroblasts obtained from PD patients. Front Pharmacol 2024; 14:1279330. [PMID: 38322704 PMCID: PMC10844479 DOI: 10.3389/fphar.2023.1279330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024] Open
Abstract
Introduction: Peritoneal fibrosis (PF) results in technique failure in peritoneal dialysis (PD) patients. Peritoneal fibroblasts are characterized by increase in the ACTA2 gene, responsible for alpha smooth muscle actin (α-SΜΑ), extracellular matrix (ECM) production, and inflammatory cytokines production, which are the are key mediators in the pathogenesis of PF. 5-hydroxytryptamine (5-HT; serotonin) induces ECM synthesis in fibroblasts in a transforming growth factor-beta 1 (TGF-β1) dependent manner. The purpose of our study was to identify the potential mechanism and role of sildenafil and 5HT2B receptor inhibitor (SB204741) combination in attenuating PD-associated peritoneal fibrosis. Methods: Studies were performed to determine the effect of TGF-β1, sildenafil, and SB204741 on human peritoneal fibroblasts (HPFBs) isolated from the parietal peritoneum of patients in long-term PD patients (n = 6) and controls (n = 6). HPFBs were incubated with TGF-β1 (10 ng/mL) for 1 h and later with TGF-β1 (10 ng/mL)/[sildenafil (10 µM) or SB204741 (1 µM)] and their combination for 24 h (post-treatment strategy). In the pre-treatment strategy, HPFBs were pre-treated with sildenafil (10 µM) or SB204741 (1 µM) and a combination of the two for 1 h and later with only TGF-β1 (10 ng/mL) for 24 h. Results: The anti-fibrotic effects of the combination of sildenafil and SB204741 were greater than that of each drug alone. In TGF-β1-stimulated HPFBs, pro-fibrotic genes (COL1A1, COL1A2, ACTA2, CTGF, FN1, and TGFB1) exhibited higher expression than in controls, which are crucial targets of sildenafil and SB204741 against peritoneal fibrosis. The synergistic approach played an anti-fibrotic role by regulating the pro- and anti-fibrotic gene responses as well as inflammatory cytokine responses. The combination treatment significantly attenuated peritoneal fibrosis, as evident by the almost complete amelioration of ACTA2 expression, restoration of anti-fibrotic genes (MMP2/TIMP1), and, at least, by reducing the expression of pro-inflammatory cytokines (IFN-γ, IL-4, IL-17, IL-1β, IL-6, TNF-α, and TGF-β1) along with an increase in IL-10 levels. Discussion: Taken together, the above research evidences that the combination of sildenafil and SB204741 may have therapeutic potential in suppressing peritoneal fibrosis due to peritoneal dialysis.
Collapse
Affiliation(s)
- Saurabh Chaturvedi
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Harshit Singh
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
- Immuno Biology Lab, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Akhilesh Jaiswal
- Department of Nephrology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Narayan Prasad
- Department of Nephrology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Romano E, Rosa I, Fioretto BS, Giuggioli D, Manetti M, Matucci-Cerinic M. Soluble guanylate cyclase stimulation fosters angiogenesis and blunts myofibroblast-like features of systemic sclerosis endothelial cells. Rheumatology (Oxford) 2023; 62:SI125-SI137. [PMID: 35900177 DOI: 10.1093/rheumatology/keac433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES In SSc, angiogenesis impairment advances in parallel with the development of fibrosis orchestrated by myofibroblasts originating from different sources, including endothelial-to-mesenchymal transition (EndoMT). Soluble guanylate cyclase (sGC) stimulation has shown antifibrotic effects in SSc skin fibroblasts and mouse models. Here, we investigated the effects of pharmacological sGC stimulation on impaired angiogenesis and myofibroblast-like features of SSc dermal microvascular endothelial cells (SSc-MVECs). METHODS To determine whether sGC stimulation affected cell viability/proliferation, SSc-MVECs and healthy dermal MVECs (H-MVECs) were challenged with the sGC stimulator (sGCS) MK-2947 and assayed by annexin V/propidium iodide flow cytometry and the water-soluble tetrazolium salt (WST-1) assay. To study angiogenesis and EndoMT, MK-2947-treated SSc-MVECs were subjected to wound healing and capillary morphogenesis assays and analysed for the expression of endothelial/myofibroblast markers and contractile ability. RESULTS MK-2947 treatment did not affect H-MVEC viability/proliferation, while it significantly increased SSc-MVEC proliferation, wound healing capability and angiogenic performance. After MK-2947 treatment, SSc-MVECs exhibited significantly increased proangiogenic MMP9 and decreased antiangiogenic MMP12 and PTX3 gene expression. A significant increase in the expression of CD31 and vascular endothelial cadherin paralleled by a decrease in α-smooth muscle actin, S100A4, type I collagen and Snail1 mesenchymal markers was also found in MK-2947-treated SSc-MVECs. Furthermore, stimulation of sGC with MK-2947 significantly counteracted the intrinsic ability of SSc-MVECs to contract collagen gels and reduced phosphorylated-extracellular signal-regulated kinases 1 and 2 protein levels. CONCLUSION These findings demonstrate for the first time that pharmacological sGC stimulation effectively ameliorates the angiogenic performance and blunts the myofibroblast-like profibrotic phenotype of SSc-MVECs, thus providing new evidence for repurposing sGCSs for SSc.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology.,Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence
| | - Dilia Giuggioli
- Department of Medical and Surgical Sciences for Children and Adults, Scleroderma Unit, University of Modena and Reggio Emilia, Modena
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
6
|
Alkhamees F, Hoi Yun Yu O, Wang M, Hudson M. Occupation as a gendered-role and outcome in systemic sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2022. [DOI: 10.1177/23971983221143599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: Sex and gender are of growing scientific interest in disease onset and course. While sex differences have been shown to exist in systemic sclerosis, there is a paucity of data on gender. Our objective was to examine the association between occupation, a gender-related role and outcomes in systemic sclerosis. Methods: An occupation score ranging from 0 to 100, with lower scores representing occupations traditionally held by men and higher scores traditionally held by women, was constructed using the National Occupational Classification 2016 and data from Statistics Canada. Subjects in the Canadian Scleroderma Research Group registry were assigned an occupation score based on self-reported occupation. Multivariate models, adjusted for sex, age, smoking and education were used to estimate the independent effect of occupation score on systemic sclerosis outcomes. Results: We included 1104 subjects, of which 961 were females (87%) and 143 (13%) males. There were differences between females versus males: disease duration (9.9 vs 7.6 years, p = 0.002), diffuse disease (35% vs 54%, p < 0.001), interstitial lung disease (28% vs 37%, p = 0.021) and pulmonary hypertension (10% vs 4%, p = 0.033), but not pain, response to treatment and mortality. The median occupation scores differed between females and males (84.3 (interquartile range 56.8, 89.4) vs 24.9 (4.3, 54.1), p < 0.001). The Spearman correlation between sex and occupation score was 0.44, indicating a weak correlation. In adjusted analyses, occupation score was not an independent predictor of disease subset (diffuse vs limited), interstitial lung disease, pulmonary hypertension, pain, response to treatment or mortality. Conclusion: We did not find independent associations between an occupation score, a gender-related role and outcomes in systemic sclerosis. These results should be interpreted with caution as occupation may be a poor measure of gender. Future research using a validated measure of gender will be needed to generate robust data on the effect of gender in systemic sclerosis.
Collapse
Affiliation(s)
- Fatema Alkhamees
- Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Oriana Hoi Yun Yu
- Jewish General Hospital, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Mianbo Wang
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Marie Hudson
- Jewish General Hospital, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
| |
Collapse
|
7
|
The Soluble Guanylate Cyclase Stimulator BAY 41-2272 Attenuates Transforming Growth Factor β1-Induced Myofibroblast Differentiation of Human Corneal Keratocytes. Int J Mol Sci 2022; 23:ijms232315325. [PMID: 36499651 PMCID: PMC9737374 DOI: 10.3390/ijms232315325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/07/2022] Open
Abstract
Corneal transparency, necessary for vision and depending on the high organization of stromal extracellular matrix, is maintained by keratocytes. Severe or continuous corneal injuries determine exaggerated healing responses resulting in the formation of irreversible fibrotic scars and vision impairment. Soluble guanylate cyclase (sGC) stimulation demonstrated antifibrotic effects in both experimental fibrosis and human lung and skin fibroblasts. Here, we assessed whether sGC stimulation with BAY 41-2272 could attenuate transforming growth factor β1 (TGFβ1)-induced myofibroblast differentiation of human corneal keratocytes. Cells were challenged with TGFβ1, with/without BAY 41-2272 preincubation, and subsequently assessed for viability, proliferation, migration, chemoinvasion, as well for the expression of myofibroblast/fibroblast activation markers and contractile abilities. Treatment with BAY 41-2272 did not affect keratocyte viability, while preincubation of cells with the sGC stimulator was able to inhibit TGFβ1-induced proliferation, wound healing capacity, and invasiveness. BAY 41-2272 was also able to attenuate TGFβ1-induced myofibroblast-like profibrotic phenotype of keratocytes, as demonstrated by the significant decrease in ACTA2, COL1A1, COL1A2, FN1 and PDPN gene expression, as well as in α-smooth muscle actin, α-1 chain of type I collagen, podoplanin, vimentin and N-cadherin protein expression. Finally, BAY 41-2272 significantly counteracted the TGFβ1-induced myofibroblast-like ability of keratocytes to contract collagen gels, reduced phosphorylated Smad3 protein levels, and attenuated gene expression of proinflammatory cytokines. Collectively, our data show for the first time that BAY 41-2272 is effective in counteracting keratocyte-to-myofibroblast transition, thus providing the rationale for the development of sGC stimulators as novel promising modulators of corneal scarring and fibrosis.
Collapse
|
8
|
Mihalek AD, Scott CD, Mazimba S. Evaluating Riociguat in the Treatment of Pulmonary Arterial Hypertension: A Real-World Perspective. Vasc Health Risk Manag 2022; 18:823-832. [PMID: 36299800 PMCID: PMC9590350 DOI: 10.2147/vhrm.s383572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Pulmonary hypertension (PH) is a broad term describing the mean pulmonary artery pressure, as measured by right heart catheterization, exceeds 20mmHg. Pulmonary arterial hypertension (PAH) exists when PH is accompanied by a normal wedge pressure and elevated pulmonary vascular resistance. PAH is typified by dysmorphic and dysfunctional pulmonary arterial vasculature. Attempting to restore the functionality of the pulmonary artery is a hallmark of care to the PAH patient. Riociguat is a powerful stimulator of soluble guanylate cyclase and increases blood flow through the pulmonary arteries by dilating vascular smooth muscle cells. This review examines the pharmacology of riociguat, the fundamental clinical trials applying it to PAH patients, practical aspects when selecting its use, and future directions for its utilization.
Collapse
Affiliation(s)
- Andrew D Mihalek
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA,Correspondence: Andrew D Mihalek, University of Virginia Division of Pulmonary and Critical Care Medicine, 1215 Lee Street, Charlottesville, VA, 22903, Tel +1 (434) 243-1000, Fax +1 (434) 924-9720, Email
| | - Christopher D Scott
- Division of Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Sula Mazimba
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Roh JS, Jeong H, Lee B, Song BW, Han SJ, Sohn DH, Lee SG. Mirodenafil ameliorates skin fibrosis in bleomycin-induced mouse model of systemic sclerosis. Anim Cells Syst (Seoul) 2021; 25:387-395. [PMID: 35059138 PMCID: PMC8765282 DOI: 10.1080/19768354.2021.1995486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by fibrosis of the skin and internal organs. Despite the recent advances in the pathogenesis and treatment of SSc, effective therapies for fibrosis caused by SSc have not yet been established. In this study, we investigated the potential role of mirodenafil, a potent phosphodiesterase 5 (PDE5) inhibitor, in the treatment of fibrosis in SSc. We used a bleomycin (BLM)-induced SSc mouse model to mimic the typical features of fibrosis in human SSc and examined the dermal thickness to assess the degree of skin fibrosis after staining with hematoxylin and eosin or Masson’s trichrome stains. The effect of mirodenafil on the expression of profibrotic genes was also analyzed by treating fibroblasts with transforming growth factor (TGF)-β and mirodenafil. We showed that mirodenafil ameliorated dermal fibrosis and downregulated the protein levels of fibrosis markers including COL1A1 and α-SMA in the BLM-induced SSc mouse model. Further, using mouse embryonic fibroblasts and human lung fibroblasts, we demonstrated that the expression of collagen and profibrotic genes was reduced by treatment with mirodenafil. Finally, we showed that mirodenafil inhibited TGF-β-induced phosphorylation of Smad2/3 in fibroblasts, which suggested that this drug may ameliorate fibrosis by suppressing the TGF-β/Smad signaling pathway. Our findings suggest that mirodenafil possesses a therapeutic potential for treating fibrosis in SSc.
Collapse
Affiliation(s)
- Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Byung Wook Song
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Seung Jin Han
- Department of Biotechnology, Inje University, Gimhae, Republic of Korea
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seung-Geun Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
10
|
Györfi AH, Matei AE, Fuchs M, Liang C, Rigau AR, Hong X, Zhu H, Luber M, Bergmann C, Dees C, Ludolph I, Horch RE, Distler O, Wang J, Bengsch B, Schett G, Kunz M, Distler JH. Engrailed 1 coordinates cytoskeletal reorganization to induce myofibroblast differentiation. J Exp Med 2021; 218:e20201916. [PMID: 34259830 PMCID: PMC8288503 DOI: 10.1084/jem.20201916] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/05/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a key mediator of fibroblast activation in fibrotic diseases, including systemic sclerosis. Here we show that Engrailed 1 (EN1) is reexpressed in multiple fibroblast subpopulations in the skin of SSc patients. We characterize EN1 as a molecular amplifier of TGFβ signaling in myofibroblast differentiation: TGFβ induces EN1 expression in a SMAD3-dependent manner, and in turn, EN1 mediates the profibrotic effects of TGFβ. RNA sequencing demonstrates that EN1 induces a profibrotic gene expression profile functionally related to cytoskeleton organization and ROCK activation. EN1 regulates gene expression by modulating the activity of SP1 and other SP transcription factors, as confirmed by ChIP-seq experiments for EN1 and SP1. Functional experiments confirm the coordinating role of EN1 on ROCK activity and the reorganization of cytoskeleton during myofibroblast differentiation, in both standard fibroblast culture systems and in vitro skin models. Consistently, mice with fibroblast-specific knockout of En1 demonstrate impaired fibroblast-to-myofibroblast transition and are partially protected from experimental skin fibrosis.
Collapse
Affiliation(s)
- Andrea-Hermina Györfi
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Alexandru-Emil Matei
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Maximilian Fuchs
- Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Chunguang Liang
- Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Aleix Rius Rigau
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Xuezhi Hong
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Markus Luber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Ingo Ludolph
- Department of Plastic and Hand Surgery, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital of Zurich, Zurich, Switzerland
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Human Phenome Institute, Fudan University, Shanghai, P.R. China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, P.R. China
| | - Bertram Bengsch
- Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, Freiburg, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Meik Kunz
- Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg H.W. Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
Zehender A, Li YN, Lin NY, Stefanica A, Nüchel J, Chen CW, Hsu HH, Zhu H, Ding X, Huang J, Shen L, Györfi AH, Soare A, Rauber S, Bergmann C, Ramming A, Plomann M, Eckes B, Schett G, Distler JHW. TGFβ promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy. Nat Commun 2021; 12:4404. [PMID: 34285225 PMCID: PMC8292318 DOI: 10.1038/s41467-021-24601-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Activation of fibroblasts is essential for physiological tissue repair. Uncontrolled activation of fibroblasts, however, may lead to tissue fibrosis with organ dysfunction. Although several pathways capable of promoting fibroblast activation and tissue repair have been identified, their interplay in the context of chronic fibrotic diseases remains incompletely understood. Here, we provide evidence that transforming growth factor-β (TGFβ) activates autophagy by an epigenetic mechanism to amplify its profibrotic effects. TGFβ induces autophagy in fibrotic diseases by SMAD3-dependent downregulation of the H4K16 histone acetyltransferase MYST1, which regulates the expression of core components of the autophagy machinery such as ATG7 and BECLIN1. Activation of autophagy in fibroblasts promotes collagen release and is both, sufficient and required, to induce tissue fibrosis. Forced expression of MYST1 abrogates the stimulatory effects of TGFβ on autophagy and re-establishes the epigenetic control of autophagy in fibrotic conditions. Interference with the aberrant activation of autophagy inhibits TGFβ-induced fibroblast activation and ameliorates experimental dermal and pulmonary fibrosis. These findings link uncontrolled TGFβ signaling to aberrant autophagy and deregulated epigenetics in fibrotic diseases and may contribute to the development of therapeutic interventions in fibrotic diseases.
Collapse
Affiliation(s)
- Ariella Zehender
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Yi-Nan Li
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Neng-Yu Lin
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Adrian Stefanica
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Julian Nüchel
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Hsiao-Han Hsu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Honglin Zhu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Ding
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Jingang Huang
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Lichong Shen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Simon Rauber
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Markus Plomann
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Faculty of Medicine, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
12
|
Štorkánová H, Štorkánová L, Navrátilová A, Bečvář V, Hulejová H, Oreská S, Heřmánková B, Špiritović M, Bečvář R, Pavelka K, Vencovský J, Distler JHW, Šenolt L, Tomčík M. Inhibition of Hsp90 Counteracts the Established Experimental Dermal Fibrosis Induced by Bleomycin. Biomedicines 2021; 9:650. [PMID: 34200311 PMCID: PMC8226767 DOI: 10.3390/biomedicines9060650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Our previous study demonstrated that heat shock protein 90 (Hsp90) is overexpressed in the involved skin of patients with systemic sclerosis (SSc) and in experimental dermal fibrosis. Pharmacological inhibition of Hsp90 prevented the stimulatory effects of transforming growth factor-beta on collagen synthesis and the development of dermal fibrosis in three preclinical models of SSc. In the next step of the preclinical analysis, herein, we aimed to evaluate the efficacy of an Hsp90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), in the treatment of established experimental dermal fibrosis induced by bleomycin. Treatment with 17-DMAG demonstrated potent antifibrotic and anti-inflammatory properties: it decreased dermal thickening, collagen content, myofibroblast count, expression of transforming growth factor beta receptors, and pSmad3-positive cell counts, as well as leukocyte infiltration and systemic levels of crucial cytokines/chemokines involved in the pathogenesis of SSc, compared to vehicle-treated mice. 17-DMAG effectively prevented further progression and may induce regression of established bleomycin-induced dermal fibrosis to an extent comparable to nintedanib. These findings provide further evidence of the vital role of Hsp90 in the pathophysiology of SSc and characterize it as a potential target for the treatment of fibrosis with translational implications due to the availability of several Hsp90 inhibitors in clinical trials for other indications.
Collapse
Affiliation(s)
- Hana Štorkánová
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Lenka Štorkánová
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
| | - Adéla Navrátilová
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Viktor Bečvář
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
| | - Hana Hulejová
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
| | - Sabína Oreská
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Barbora Heřmánková
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, 16252 Prague, Czech Republic;
| | - Maja Špiritović
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Physiotherapy, Faculty of Physical Education and Sport, Charles University, 16252 Prague, Czech Republic;
| | - Radim Bečvář
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Jiří Vencovský
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Jörg H. W. Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Ladislav Šenolt
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| | - Michal Tomčík
- Institute of Rheumatology, 12800 Prague, Czech Republic; (H.Š.); (L.Š.); (A.N.); (V.B.); (H.H.); (S.O.); (M.Š.); (R.B.); (K.P.); (J.V.); (L.Š.)
- Department of Rheumatology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic
| |
Collapse
|
13
|
Nathan SD, Cottin V, Behr J, Hoeper MM, Martinez FJ, Corte TJ, Keogh AM, Leuchte H, Mogulkoc N, Ulrich S, Wuyts WA, Yao Z, Ley-Zaporozhan J, Müller-Lisse UG, Scholle FD, Brüggenwerth G, Busse D, Nikkho S, Wells AU. Impact of lung morphology on clinical outcomes with riociguat in patients with pulmonary hypertension and idiopathic interstitial pneumonia: A post hoc subgroup analysis of the RISE-IIP study. J Heart Lung Transplant 2021; 40:494-503. [PMID: 33744088 DOI: 10.1016/j.healun.2021.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Riociguat in Patients with Symptomatic Pulmonary Hypertension associated with Idiopathic Interstitial Pneumonias (RISE-IIP), a randomized, controlled, phase 2b trial of riociguat for pulmonary hypertension associated with idiopathic interstitial pneumonia, was terminated early due to increased mortality in riociguat-treated patients. Baseline characteristics of enrolled patients demonstrated a low diffusing capacity of the lung for carbon monoxide (DLCO) with preserved lung volumes at baseline, suggesting the presence of combined pulmonary fibrosis and emphysema (CPFE) in some patients. This post hoc analysis of RISE-IIP was undertaken to explore lung morphology, assessed by high-resolution computed tomography, and associated clinical outcomes. METHODS Available baseline/pre-baseline high-resolution computed tomography scans were reviewed centrally by 2 radiologists. The extent of emphysema and fibrosis was retrospectively scored and combined to provide the total CPFE score. RESULTS Data were available for 65/147 patients (44%), including 15/27 fatal cases (56%). Of these, 41/65 patients (63%) had CPFE. Mortality was higher in patients with CPFE (12/41; 29%) than those without (3/24; 13%). Fourteen patients with CPFE had emphysema > fibrosis (4 died). No relationship was observed between CPFE score, survival status, and treatment assignment. A low DLCO, short 6-min walking distance, and high forced vital capacity:DLCO ratio at baseline also appeared to be risk factors for mortality. CONCLUSIONS High parenchymal lung disease burden and the presence of more emphysema than fibrosis might have predisposed patients with pulmonary hypertension associated with idiopathic interstitial pneumonia to poor outcomes in RISE-IIP. Future studies of therapy for group 3 pulmonary hypertension should include centrally adjudicated imaging for morphologic phenotyping and disease burden evaluation during screening.
Collapse
Affiliation(s)
- Steven D Nathan
- Advanced Lung Disease and Transplant Program, Inova Heart and Vascular Institute, Falls Church, Virginia.
| | - Vincent Cottin
- National Reference Centre for Rare Pulmonary Diseases, Department of Respiratory Medicine, Louis Pradel Hospital, Lyon, France; Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Juergen Behr
- Department of Internal Medicine V, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich, Germany
| | - Marius M Hoeper
- Clinic for Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Fernando J Martinez
- Department of Medicine, Weill Cornell Medical College, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | - Tamera J Corte
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - Anne M Keogh
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia; St Vincent's Hospital, Sydney, Australia
| | - Hanno Leuchte
- Department of Internal Medicine II, Neuwittelsbach Academic Hospital, Ludwig Maximilian University, Munich, Germany
| | - Nesrin Mogulkoc
- Department of Pulmonology, Ege University Hospital, Izmir, Turkey
| | - Silvia Ulrich
- Clinic of Pulmonology, University Hospital Zürich, Zürich, Switzerland
| | - Wim A Wuyts
- Unit for Interstitial Lung Diseases, University Hospitals of Leuven, Leuven, Belgium
| | - Zhen Yao
- Bayer Healthcare Company Ltd., Beijing, China
| | | | | | | | | | | | | | - Athol U Wells
- Interstitial Lung Disease Unit, Royal Brompton Hospital, London, United Kingdom
| |
Collapse
|
14
|
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble Guanylate Cyclase Stimulators and Activators. Handb Exp Pharmacol 2021; 264:355-394. [PMID: 30689085 DOI: 10.1007/164_2018_197] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
When Furchgott, Murad, and Ignarro were honored with the Nobel prize for the identification of nitric oxide (NO) in 1998, the therapeutic implications of this discovery could not be fully anticipated. This was due to the fact that available therapeutics like NO donors did not allow a constant and long-lasting cyclic guanylyl monophosphate (cGMP) stimulation and had a narrow therapeutic window. Now, 20 years later, the stimulator of soluble guanylate cyclase (sGC), riociguat, is on the market and is the only drug approved for the treatment of two forms of pulmonary hypertension (PAH/CTEPH), and a variety of other sGC stimulators and sGC activators are in preclinical and clinical development for additional indications. The discovery of sGC stimulators and sGC activators is a milestone in the field of NO/sGC/cGMP pharmacology. The sGC stimulators and sGC activators bind directly to reduced, heme-containing and oxidized, heme-free sGC, respectively, which results in an increase in cGMP production. The action of sGC stimulators at the heme-containing enzyme is independent of NO but is enhanced in the presence of NO whereas the sGC activators interact with the heme-free form of sGC. These highly innovative pharmacological principles of sGC stimulation and activation seem to have a very broad therapeutic potential. Therefore, in both academia and industry, intensive research and development efforts have been undertaken to fully exploit the therapeutic benefit of these new compound classes. Here we summarize the discovery of sGC stimulators and sGC activators and the current developments in both compound classes, including the mode of action, the chemical structures, and the genesis of the terminology and nomenclature. In addition, preclinical studies exploring multiple aspects of their in vitro, ex vivo, and in vivo pharmacology are reviewed, providing an overview of multiple potential applications. Finally, the clinical developments, investigating the treatment potential of these compounds in various diseases like heart failure, diabetic kidney disease, fibrotic diseases, and hypertension, are reported. In summary, sGC stimulators and sGC activators have a unique mode of action with a broad treatment potential in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany. .,Department of Pharmacology, Hannover Medical School, Hannover, Germany.
| | | | | | - Markus Follmann
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany
| | - Adrian Hobbs
- Barts and the London School of Medicine and Dentistry QMUL, London, UK
| | - Johannes-Peter Stasch
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, Wuppertal, Germany.,Institute of Pharmacy, University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
15
|
Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021; 30:121-131. [PMID: 32931037 DOI: 10.1111/exd.14193] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
The activation of fibroblasts is required for physiological tissue remodelling such as wound healing. However, when the regulatory mechanisms are disrupted and fibroblasts remain persistently activated, the progressive deposition of extracellular matrix proteins leads to tissue fibrosis, which results in dysfunction or even loss of function of the affected organ. Although fibrosis has been recognized as a major cause of morbidity and mortality in modern societies, there are only few treatment options available that directly disrupt the release of extracellular matrix from fibroblasts. Intensive research in recent years, however, identified several pathways as core fibrotic mechanisms that are shared across different fibrotic diseases and organs. We discuss herein selection of those core pathways, especially downstream of the profibrotic TGF-β pathway, which are druggable and which may be transferable from bench to bedside.
Collapse
Affiliation(s)
- Clara Dees
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Debomita Chakraborty
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
16
|
Roofeh D, Lescoat A, Khanna D. Emerging drugs for the treatment of scleroderma: a review of recent phase 2 and 3 trials. Expert Opin Emerg Drugs 2020; 25:455-466. [PMID: 33054463 PMCID: PMC7770026 DOI: 10.1080/14728214.2020.1836156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) has the highest case-specific mortality of all connective tissue diseases. Its underlying disease mechanism affects several organs and remains incompletely understood. Ongoing work clarifying its etiopathogenesis is helping to develop targeted therapy. AREAS COVERED Several clinical trials have evaluated the safety and efficacy of agents targeting different mechanisms of this disease. This review article reviews those mechanisms and surveys four key recent phase II or III clinical trials that are contributing to the landscape of SSc therapy. The reported trials primarily focus on patients with systemic sclerosis in the early phase of disease. EXPERT OPINION Traditional therapies for SSc center on immunosuppressive and cytotoxic agents. A new cadre of therapies is borne from improved understandings of SSc pathobiology and target the inflammatory-fibrotic pathways. Scleroderma trials have entered the initial phase of personalized medicine, recognizing molecular subsets that will improve upon cohort enrichment and maximize the measurable benefit of future therapies.
Collapse
Affiliation(s)
| | - Alain Lescoat
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | | |
Collapse
|
17
|
Khanna D, Allanore Y, Denton CP, Kuwana M, Matucci-Cerinic M, Pope JE, Atsumi T, Bečvář R, Czirják L, Hachulla E, Ishii T, Ishikawa O, Johnson SR, De Langhe E, Stagnaro C, Riccieri V, Schiopu E, Silver RM, Smith V, Steen V, Stevens W, Szücs G, Truchetet ME, Wosnitza M, Laapas K, de Oliveira Pena J, Yao Z, Kramer F, Distler O. Riociguat in patients with early diffuse cutaneous systemic sclerosis (RISE-SSc): randomised, double-blind, placebo-controlled multicentre trial. Ann Rheum Dis 2020; 79:618-625. [PMID: 32299845 PMCID: PMC7213318 DOI: 10.1136/annrheumdis-2019-216823] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Riociguat is approved for pulmonary arterial hypertension and has antiproliferative, anti-inflammatory and antifibrotic effects in animal models of tissue fibrosis. We evaluated the efficacy and safety of riociguat in patients with early diffuse cutaneous systemic sclerosis (dcSSc) at high risk of skin fibrosis progression. METHODS In this randomised, double-blind, placebo-controlled, phase IIb trial, adults with dcSSc of <18 months' duration and a modified Rodnan skin score (mRSS) 10-22 units received riociguat 0.5 mg to 2.5 mg orally three times daily (n=60) or placebo (n=61). The primary endpoint was change in mRSS from baseline to week 52. RESULTS At week 52, change from baseline in mRSS units was -2.09±5.66 (n=57) with riociguat and -0.77±8.24 (n=52) with placebo (difference of least squares means -2.34 (95% CI -4.99 to 0.30; p=0.08)). In patients with interstitial lung disease, forced vital capacity declined by 2.7% with riociguat and 7.6% with placebo. At week 14, average Raynaud's condition score had improved ≥50% in 19 (41.3%)/46 patients with riociguat and 13 (26.0%)/50 patients with placebo. Safety assessments showed no new signals with riociguat and no treatment-related deaths. CONCLUSIONS Riociguat did not significantly benefit mRSS versus placebo at the predefined p<0.05. Secondary and exploratory analyses showed potential efficacy signals that should be tested in further trials. Riociguat was well tolerated.
Collapse
Affiliation(s)
- Dinesh Khanna
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yannick Allanore
- Rheumatology A department, Cochin Hospital, APHP, Paris Descartes University, Paris, France
| | - Christopher P Denton
- Division of Medicine, Centre for Rheumatology, University College London, London, UK
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Janet E Pope
- Schulich School of Medicine, Division of Rheumatology, The University of Western Ontario, London, Ontario, Canada
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Radim Bečvář
- Institute of Rheumatology, Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - László Czirják
- Department of Rheumatology and Immunology, University of Pécs, Pécs, Hungary
| | - Eric Hachulla
- Department of Internal Medicine and Clinical Immunology, Claude Huriez Hospital, Lille University School of Medicine, Lille, France
| | - Tomonori Ishii
- Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Postgraduate School of Medicine, Maebashi, Japan
| | - Sindhu R Johnson
- Division of Rheumatology, Department of Medicine, Toronto Western Hospital, University Health Network, Mount Sinai Hospital, University of Toronto, Toronto Scleroderma Research Program, Toronto, Ontario, Canada
| | - Ellen De Langhe
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Chiara Stagnaro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Valeria Riccieri
- Department of Clinical Medicine and Therapy, University of Rome La Sapienza, Rome, Italy
| | - Elena Schiopu
- Division of Rheumatology, Department of Internal Medicine, Michigan Medicine University Hospitals, Ann Arbor, Michigan, USA
| | - Richard M Silver
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Vanessa Smith
- Department of Rheumatology and Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Virginia Steen
- Division of Rheumatology, Georgetown University Medical Center, Washington, DC, USA
| | - Wendy Stevens
- Department of Rheumatology, St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Gabriella Szücs
- Division of Rheumatology, Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | - Zhen Yao
- Bayer Healthcare, Beijing, China
| | - Frank Kramer
- Research & Development, Bayer AG, Wuppertal, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital, Zurich, Switzerland
| |
Collapse
|
18
|
Kania G, Rudnik M, Distler O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol 2020; 15:288-302. [PMID: 30953037 DOI: 10.1038/s41584-019-0212-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disease of unknown aetiology that is characterized by vascular changes in the skin and visceral organs. Autologous haematopoietic stem cell transplantation can improve skin and organ fibrosis in patients with progressive disease and a high risk of organ failure, indicating that cells originating in the bone marrow are important contributors to the pathogenesis of SSc. Animal studies also indicate a pivotal function of myeloid cells in the development of fibrosis leading to changes in the tissue architecture and dysfunction in multiple organs such as the heart, lungs, liver and kidney. In this Review, we summarize current knowledge about the function of myeloid cells in fibrogenesis that occurs in patients with SSc. Targeted therapies currently in clinical studies for SSc might affect myeloid cell-related pathways. Therefore, myeloid cells might be used as cellular biomarkers of disease through the application of high-dimensional techniques such as mass cytometry and single-cell RNA sequencing.
Collapse
Affiliation(s)
- Gabriela Kania
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Michal Rudnik
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Lee MH, Bull TM. The role of pulmonary arterial hypertension-targeted therapy in systemic sclerosis. F1000Res 2019; 8:F1000 Faculty Rev-2124. [PMID: 32025283 PMCID: PMC6971837 DOI: 10.12688/f1000research.20313.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension, categorized as group 1 pulmonary hypertension by the World Health Organization classification system, represents a major complication of systemic sclerosis resulting from pulmonary vascular involvement of the disease. The high mortality seen in systemic sclerosis-associated pulmonary arterial hypertension is likely due to the impairment of right ventricular systolic function and the coexistence of other non-group-1 pulmonary hypertension phenotypes that may negatively impact clinical response to pulmonary arterial hypertension-targeted therapy. This review highlights two areas of recent advances regarding the management of systemic sclerosis patients with pulmonary hypertension: the tolerability of pulmonary arterial hypertension-targeted therapy in the presence of mild to moderate interstitial lung disease and the potential clinical significance of the antifibrotic effect of soluble guanylate cyclase stimulators demonstrated in preclinical studies.
Collapse
Affiliation(s)
- Michael H Lee
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Colorado, USA
| | - Todd M Bull
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Colorado, USA
| |
Collapse
|
20
|
Xiao S, Li Q, Hu L, Yu Z, Yang J, Chang Q, Chen Z, Hu G. Soluble Guanylate Cyclase Stimulators and Activators: Where are We and Where to Go? Mini Rev Med Chem 2019; 19:1544-1557. [PMID: 31362687 DOI: 10.2174/1389557519666190730110600] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023]
Abstract
Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.
Collapse
Affiliation(s)
- Sijia Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University Kitashirakawa- Oiwakecho, Sakyo-Ku, kyoto, Japan
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
21
|
Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 2019; 15:705-730. [PMID: 31712723 DOI: 10.1038/s41584-019-0322-7] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
|
22
|
Nagaraja V, Spino C, Bush E, Tsou PS, Domsic RT, Lafyatis R, Frech T, Gordon JK, Steen VD, Khanna D. A multicenter randomized, double-blind, placebo-controlled pilot study to assess the efficacy and safety of riociguat in systemic sclerosis-associated digital ulcers. Arthritis Res Ther 2019; 21:202. [PMID: 31481106 PMCID: PMC6724329 DOI: 10.1186/s13075-019-1979-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/16/2019] [Indexed: 11/10/2022] Open
Abstract
Background To determine the effect of riociguat, an oral, selective soluble guanylate cyclase stimulator, on the net digital ulcer (DU) burden in systemic sclerosis (SSc). Methods Participants with SSc-related active or painful indeterminate DUs were recruited in a multicenter, double-blind, randomized, placebo-controlled, proof-of-concept trial. Eligible participants were required to have at least one visible, active ischemic DU or painful indeterminate DU at screening, located at or distal to the proximal interphalangeal joint and that developed or worsened within 8 weeks prior to screening. Participants were randomized 1:1 to placebo or riociguat in individualized doses (maximum of 2.5 mg three times daily) during an 8-week titration period, followed by an 8-week stable dosing period. This was followed by an optional 16-week open-label extension phase for participants with active DU/reoccurrence of DUs within 1 month of the end of the main treatment phase. The primary endpoint was the change from baseline to week 16 in net ulcer burden (NUB), analyzed using ANCOVA. Other endpoints included plasma biomarkers and proportion of participants with treatment-emergent adverse events (AEs). Results Seventeen participants (eight placebo, nine riociguat) were randomized at five centers. Six participants in each group transitioned to the open-label extension. Baseline characteristics were comparable between the treatment groups, except participants randomized to placebo were older and had longer disease duration (p < 0.05). At baseline, the mean (SD) NUB was 2.5 (2.0) in the placebo and 2.4 (1.4) in the riociguat. No significant treatment difference was observed in the change from baseline to 16 weeks in NUB (adjusted mean treatment difference − 0.24, 95% CI (− 1.46, 0.99), p = 0.70). Four participants experienced five serious AE (four in riociguat and one in placebo); none was considered related to study medication. Statistically significant elevation of cGMP was observed at 16 weeks in the riociguat group (p = 0.05); no other biomarkers showed significant changes. In the open-label extension, participants in the riociguat-riociguat arm had complete healing of their DUs. Conclusion In participants with SSc-DU, treatment with riociguat did not reduce the number of DU net burden compared with placebo at 16 weeks. Open-label extension suggests that longer duration is needed to promote DU healing, which needs to be confirmed in a new trial. Trial registration ClinicalTrials.gov, NCT02915835. Registered on September 27, 2016. Electronic supplementary material The online version of this article (10.1186/s13075-019-1979-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vivek Nagaraja
- Division of Rheumatology/Department of Internal Medicine, University of Michigan Scleroderma Program, Suite 7C27, 300 North Ingalls Street, SPC 5422, Ann Arbor, MI, 48109, USA
| | - Cathie Spino
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Erica Bush
- Division of Rheumatology/Department of Internal Medicine, University of Michigan Scleroderma Program, Suite 7C27, 300 North Ingalls Street, SPC 5422, Ann Arbor, MI, 48109, USA
| | - Pei-Suen Tsou
- Division of Rheumatology/Department of Internal Medicine, University of Michigan Scleroderma Program, Suite 7C27, 300 North Ingalls Street, SPC 5422, Ann Arbor, MI, 48109, USA
| | - Robyn T Domsic
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Tracy Frech
- Division of Rheumatology, University of Utah, Salt Lake City, UT, USA
| | - Jessica K Gordon
- Division of Rheumatology, Hospital of Special Surgery, New York, NY, USA
| | - Virginia D Steen
- Division of Rheumatology, Georgetown University Medical Center, Washington, DC, USA
| | - Dinesh Khanna
- Division of Rheumatology/Department of Internal Medicine, University of Michigan Scleroderma Program, Suite 7C27, 300 North Ingalls Street, SPC 5422, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
[Updates in systemic sclerosis pathogenesis: Toward new therapeutic opportunities]. Rev Med Interne 2019; 40:654-663. [PMID: 31301944 DOI: 10.1016/j.revmed.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/04/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023]
Abstract
Systemic sclerosis is a rare connective tissue disease characterized by skin and several internal organ fibrosis, systemic vasculopathy and immune abnormalities. Even if fibroblasts and endothelial cells dysfunction, as well as lymphocytes and other immune cells implication are now well described, the exact origin and chronology of the disease pathogenesis remain unclear. Oxidative stress, influenced by genetic and environmental factors, seems to play a key role. Indeed, it seems to be implicated in the early phases of fibrosis development, vasculopathy and in immune tolerance abnormalities shared by all patients, although disease expression is heterogeneous. To date, no curative treatment is available. Even if immunosuppressive treatment or drugs acting on vascular system are proposed for some patients, overall, treatment efficiency remains modest. Only autologous hematopoietic stem cells transplantation, reserved for patients with severe or rapidly progressive fibrosis, has recently demonstrated efficiency, with lasting regression of fibrosis. Nevertheless, this treatment can expose to important, life-threatening toxicity. In the last decade, new mechanisms implicated in the pathogenesis of systemic sclerosis have been unraveled, bringing new therapeutic opportunities. In this review, we offer to focus on recent insights in the knowledge of systemic sclerosis pathogenesis and its implication in current and future medical care.
Collapse
|
24
|
Zigrino P, Sengle G. Fibrillin microfibrils and proteases, key integrators of fibrotic pathways. Adv Drug Deliv Rev 2019; 146:3-16. [PMID: 29709492 DOI: 10.1016/j.addr.2018.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
Supramolecular networks composed of multi-domain ECM proteins represent intricate cellular microenvironments which are required to balance tissue homeostasis and direct remodeling. Structural deficiency in ECM proteins results in imbalances in ECM-cell communication resulting often times in fibrotic reactions. To understand how individual components of the ECM integrate communication with the cell surface by presenting growth factors or providing fine-tuned biomechanical properties is mandatory for gaining a better understanding of disease mechanisms in the quest for new therapeutic approaches. Here we provide an overview about what we can learn from inherited connective tissue disorders caused primarily by mutations in fibrillin-1 and binding partners as well as by altered ECM processing leading to defined structural changes and similar functional knock-in mouse models. We will utilize this knowledge to propose new molecular hypotheses which should be tested in future studies.
Collapse
|
25
|
Elgert C, Rühle A, Sandner P, Behrends S. A novel soluble guanylyl cyclase activator, BR 11257, acts as a non-stabilising partial agonist of sGC. Biochem Pharmacol 2019; 163:142-153. [DOI: 10.1016/j.bcp.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
|
26
|
Distler JHW, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ. Review: Frontiers of Antifibrotic Therapy in Systemic Sclerosis. Arthritis Rheumatol 2019; 69:257-267. [PMID: 27636741 DOI: 10.1002/art.39865] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Alina Soare
- University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yoshihide Asano
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
27
|
Sandner P. From molecules to patients: exploring the therapeutic role of soluble guanylate cyclase stimulators. Biol Chem 2019; 399:679-690. [PMID: 29604206 DOI: 10.1515/hsz-2018-0155] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) signaling represents one of the major regulatory pathways for cardiovascular function. After the discovery of NO, awarded with the Nobel Prize in 1998, this signaling cascade was stepwise clarified. We now have a good understanding of NO production and NO downstream targets such as the soluble guanylyl cyclases (sGCs) which catalyze cGMP production. Based on the important role of NO-signaling in the cardiovascular system, intense research and development efforts are currently ongoing to fully exploit the therapeutic potential of cGMP increase. Recently, NO-independent stimulators of sGC (sGC stimulators) were discovered and characterized. This new compound class has a unique mode of action, directly binding to sGC and triggering cGMP production. The first sGC stimulator made available to patients is riociguat, which was approved in 2013 for the treatment of different forms of pulmonary hypertension (PH). Besides riociguat, other sGC stimulators are in clinical development, with vericiguat in phase 3 clinical development for the treatment of chronic heart failure (HF). Based on the broad impact of NO/cGMP signaling, sGC stimulators could have an even broader therapeutic potential beyond PH and HF. Within this review, the NO/sGC/cGMP/PKG/PDE-signaling cascade and the major pharmacological intervention sites are described. In addition, the discovery and mode of action of sGC stimulators and the clinical development in PH and HF is covered. Finally, the preclinical and clinical evidence and treatment approaches for sGC stimulators beyond these indications and the cardiovascular disease space, like in fibrotic diseases as in systemic sclerosis (SSc), are reviewed.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer AG, Drug-Discovery, Pharma Research Center Wuppertal, Aprather Weg 18a, D-42069 Wuppertal, Germany.,Hannover Medical School, Department of Pharmacology, Hannover, Germany
| |
Collapse
|
28
|
Combined Activation of Guanylate Cyclase and Cyclic AMP in Lung Fibroblasts as a Novel Therapeutic Concept for Lung Fibrosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1345402. [PMID: 30984775 PMCID: PMC6431482 DOI: 10.1155/2019/1345402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Remodelling of the peripheral lung tissue and fibrotic foci are the main pathologies of idiopathic pulmonary fibrosis (IPF), a disease that is difficult to treat. TGF-β activation of peripheral lung fibroblasts is indicated as the major cause of tissue remodelling in IPF and is resulting in fibroblast hyperplasia and deposition of extracellular matrix. Soluble guanylate cyclase (sGC) stimulators combined with cyclic AMP (cAMP) activators have been reported to reduce proliferation and matrix deposition in other conditions than IPF. Therefore, this drug combination may present a novel therapeutic concept for IPF. This study investigated the effect of BAY 41-2272 and forskolin on remodelling parameters in primary human lung fibroblasts. The study determined TGF-β induced proliferation by direct cell counts after 3 days; and deposition of collagen type-I, type III, and fibronectin. BAY 41-2272 significantly reduced TGF-β induced fibroblast proliferation, but did not reduce viability. This inhibitory effect was further supported by forskolin. Both BAY 41-2272 and forskolin alone reduced TGF-β induced collagen and fibronectin de novo synthesis as well as deposition. This effect was significantly stronger when the two compounds were combined. Furthermore, the TGF-β induced expression of fibrilar α-smooth muscle actin was reduced by BAY 41-2272 and this effect was strengthened by forskolin. In addition, BAY 41-2272 and forskolin reduced TGF-β induced β-catenin. All effects of BAY 41-2272 were concentration dependent. The findings suggest that BAY 41-2272 in combination with cAMP stimulation may present a novel therapeutic strategy to reduce tissue remodelling in IPF.
Collapse
|
29
|
Discovery and development of next generation sGC stimulators with diverse multidimensional pharmacology and broad therapeutic potential. Nitric Oxide 2018; 78:72-80. [PMID: 29859918 DOI: 10.1016/j.niox.2018.05.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO)-sensitive soluble guanylyl cyclase (sGC), an enzyme that catalyzes the conversion of guanosine-5'-triphosphate (GTP) to cyclic guanosine-3',5'-monophophate (cGMP), transduces many of the physiological effects of the gasotransmitter NO. Upon binding of NO to the prosthetic heme group of sGC, a conformational change occurs, resulting in enzymatic activation and increased production of cGMP. cGMP modulates several downstream cellular and physiological responses, including but not limited to vasodilation. Impairment of this signaling system and altered NO-cGMP homeostasis have been implicated in cardiovascular, pulmonary, renal, gastrointestinal, central nervous system, and hepatic pathologies. sGC stimulators, small molecule drugs that synergistically increase sGC enzyme activity with NO, have shown great potential to treat a variety of diseases via modulation of NO-sGC-cGMP signaling. Here, we give an overview of novel, orally available sGC stimulators that Ironwood Pharmaceuticals is developing. We outline the non-clinical and clinical studies, highlighting pharmacological and pharmacokinetic (PK) profiles, including pharmacodynamic (PD) effects, and efficacy in a variety of disease models.
Collapse
|
30
|
Discovery and development of sGC stimulators for the treatment of pulmonary hypertension and rare diseases. Nitric Oxide 2018; 77:88-95. [PMID: 29738821 DOI: 10.1016/j.niox.2018.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022]
Abstract
The NO/sGC/cGMP signaling cascade plays a pivotal role in regulation of cardiovascular, cardiopulmonary and cardiorenal diseases and impairment of this cascade results in severe pathologies. Therefore, pharmacological interventions, targeting this pathway are promising strategies for treating a variety of diseases. Nitrates, supplementing NO and, PDE5 inhibitors preventing cGMP degradation, are used for angina pectoris treatment and the treatment of pulmonary arterial hypertension (PAH), respectively. More recently, a new class of drugs which directly stimulate the sGC enzyme and trigger NO-independent cGMP production was introduced and termed sGC stimulators. In 2013, the first sGC stimulator, riociguat, was approved for the treatment of PAH and chronic thromboembolic pulmonary hypertension (CTEPH). Since cGMP targets multiple intracellular downstream targets, sGC stimulators have shown - beyond the well characterized vasodilatation - anti-fibrotic, anti-inflammatory and anti-proliferative effects. These additional modes of action might extend the therapeutic potential of this drug class substantially. This review summarizes the NO/sGC/cGMP signaling cascades, the discovery and the mode of action of sGC stimulators. Furthermore, the preclinical evidence and development of riociguat for the treatment of PAH and CTEPH is reviewed. Finally, a summary of the antifibrotic effects of sGC stimulators, especially the most recent finding for skin fibrosis are included which may indicate efficacy in fibrotic diseases like Systemic Sclerosis (SSc).
Collapse
|
31
|
Matei AE, Beyer C, Györfi AH, Soare A, Chen CW, Dees C, Bergmann C, Ramming A, Friebe A, Hofmann F, Distler O, Schett G, Distler JHW. Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Ann Rheum Dis 2018; 77:459. [PMID: 29311148 DOI: 10.1136/annrheumdis-2017-212489] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Stimulators of soluble guanylate cyclase (sGC) are currently investigated in clinical trials for the treatment of fibrosis in systemic sclerosis (SSc). In this study, we aim to investigate the role of protein kinases G (PKG) as downstream mediators of sGC-cyclic guanosine monophosphate (cGMP) in SSc. METHODS Mice with combined knockout of PKG1 and 2 were challenged with bleomycin and treated with the sGC stimulator BAY 41-2272. Fibroblasts were treated with BAY 41-2272 and with the PKG inhibitor KT 5823. RESULTS PKG1 and 2 are upregulated in SSc in a transforming growth factor-β1 (TGFβ1)-dependent manner, as an attempt to compensate for the decreased signalling through the sGC-cGMP-PKG pathway. Inhibition or knockout of PKG1 and 2 abrogates the inhibitory effects of sGC stimulation on fibroblast activation in a SMAD-independent, but extracellular signal-regulated kinase (ERK)-dependent manner. In vivo, sGC stimulation fails to prevent bleomycin-induced fibrosis in PKG1 and 2 knockout mice. CONCLUSIONS Our data provide evidence that PKGs are essential mediators of the antifibrotic effects of sGC stimulators through interfering with non-canonical TGFβ signalling. TGFβ1 promotes its profibrotic effects through inhibition of sGC-cGMP-PKG signalling, sGC stimulation exerts its antifibrotic effects by inhibition of TGFβ1-induced ERK phosphorylation.
Collapse
Affiliation(s)
- Alexandru-Emil Matei
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Beyer
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Friebe
- Institute for Physiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Franz Hofmann
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
32
|
Sömmer A, Sandner P, Behrends S. BAY 60–2770 activates two isoforms of nitric oxide sensitive guanylyl cyclase: Evidence for stable insertion of activator drugs. Biochem Pharmacol 2018; 147:10-20. [DOI: 10.1016/j.bcp.2017.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
|
33
|
Zhang Y, Liang R, Chen CW, Mallano T, Dees C, Distler A, Reich A, Bergmann C, Ramming A, Gelse K, Mielenz D, Distler O, Schett G, Distler JHW. JAK1-dependent transphosphorylation of JAK2 limits the antifibrotic effects of selective JAK2 inhibitors on long-term treatment. Ann Rheum Dis 2017; 76:1467-1475. [PMID: 28478401 DOI: 10.1136/annrheumdis-2016-210911] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/28/2017] [Accepted: 04/09/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Janus kinase 2 (JAK2) has recently been described as a novel downstream mediator of the pro-fibrotic effects of transforming growth factor-β. Although JAK2 inhibitors are in clinical use for myelodysplastic syndromes, patients often rapidly develop resistance. Tumour cells can escape the therapeutic effects of selective JAK2 inhibitors by mutation-independent transactivation of JAK2 by JAK1. Here, we used selective JAK2 inhibition as a model to test the hypothesis that chronic treatment may provoke resistance by facilitating non-physiological signalling pathways in fibroblasts. METHODS The antifibrotic effects of long-term treatment with selective JAK2 inhibitors and reactivation of JAK2 signalling by JAK1-dependent transphosphorylation was analysed in cultured fibroblasts and experimental dermal and pulmonary fibrosis. Combined JAK1/JAK2 inhibition and co-treatment with an HSP90 inhibitor were evaluated as strategies to overcome resistance. RESULTS The antifibrotic effects of selective JAK2 inhibitors on fibroblasts decreased with prolonged treatment as JAK2 signalling was reactivated by JAK1-dependent transphosphorylation of JAK2. This reactivation could be prevented by HSP90 inhibition, which destabilised JAK2 protein, or with combined JAK1/JAK2 inhibitors. Treatment with combined JAK1/JAK2 inhibitors or with JAK2 inhibitors in combination with HSP90 inhibitors was more effective than monotherapy with JAK2 inhibitors in bleomycin-induced pulmonary fibrosis and in adTBR-induced dermal fibrosis. CONCLUSION Fibroblasts can develop resistance to chronic treatment with JAK2 inhibitors by induction of non-physiological JAK1-dependent transactivation of JAK2 and that inhibition of this compensatory signalling pathway, for example, by co-inhibition of JAK1 or HSP90 is important to maintain the antifibrotic effects of JAK2 inhibition with long-term treatment.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Ruifang Liang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Tatjana Mallano
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Alfiya Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Adam Reich
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Wrocław, Poland
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oliver Distler
- Division of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
34
|
Raina A, Benza RL, Farber HW. Replacing a phosphodiesterase-5 inhibitor with riociguat in patients with connective tissue disease-associated pulmonary arterial hypertension: a case series. Pulm Circ 2017; 7:741-746. [PMID: 28671485 PMCID: PMC5841890 DOI: 10.1177/2045893217721694] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/15/2017] [Indexed: 11/15/2022] Open
Abstract
Patients with pulmonary arterial hypertension associated with connective tissue disease (PAH-PAH-CTD) such as systemic sclerosis (SSc) have a poorer response to treatment and increased mortality compared with patients with idiopathic PAH. Current treatment options for PAH-CTD include prostanoids, phosphodiesterase type-5 inhibitors (PDE-5i), endothelin receptor antagonists, and the soluble guanylate cyclase stimulator riociguat. In this case series, we describe three patients with PAH-CTD related to limited scleroderma who were switched from a PDE-5i to riociguat due to insufficient clinical response. The switch to riociguat was associated with an improvement in respiratory and hemodynamic parameters and a favorable tolerability profile. These cases demonstrate that switching to riociguat is a therapeutic option in patients with PAH-CTD who have not achieved a satisfactory clinical response to a PDE-5i.
Collapse
Affiliation(s)
- Amresh Raina
- Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, USA
| | - Raymond L. Benza
- Cardiovascular Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA, USA
| | | |
Collapse
|
35
|
Maier C, Ramming A, Bergmann C, Weinkam R, Kittan N, Schett G, Distler JHW, Beyer C. Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages. Ann Rheum Dis 2017; 76:1133-1141. [PMID: 28209630 DOI: 10.1136/annrheumdis-2016-210189] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/16/2016] [Accepted: 01/21/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To investigate the disease-modifying effects of phosphodiesterase 4 (PDE4) inhibition in preclinical models of systemic sclerosis (SSc). METHODS We studied the effects of PDE4 inhibition in a prevention and a treatment model of bleomycin-induced skin fibrosis, in the topoisomerase mouse model as well as in a model of sclerodermatous chronic graft-versus-host disease. To better understand the mode of action of PDE4 blockade in preclinical models of SSc, we investigated fibrosis-relevant mediators in fibroblasts and macrophages from healthy individuals and patients suffering from diffuse-cutaneous SSc on blockade of PDE4. RESULTS Specific inhibition of PDE4 by rolipram and apremilast had potent antifibrotic effects in bleomycin-induced skin fibrosis models, in the topoisomerase I mouse model and in murine sclerodermatous chronic graft-versus-host disease. Fibroblasts were not the direct targets of the antifibrotic effects of PDE4 blockade. Reduced leucocyte infiltration in lesional skin on PDE4 blockade suggested an immune-mediated mechanism. Further analysis revealed that PDE4 inhibition decreased the differentiation of M2 macrophages and the release of several profibrotic cytokines, resulting in reduced fibroblast activation and collagen release. Within these profibrotic mediators, interleukin-6 appeared to play a central role. CONCLUSIONS PDE4 inhibition reduces inflammatory cell activity and the release of profibrotic cytokines from M2 macrophages, leading to decreased fibroblast activation and collagen release. Importantly, apremilast is already approved for the treatment of psoriasis and psoriatic arthritis. Therefore, PDE4 inhibitors might be further developed as potential antifibrotic therapies for patients with SSc. Our findings suggest that particularly patients with inflammation-driven fibrosis might benefit from PDE4 blockade.
Collapse
Affiliation(s)
- Christiane Maier
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rita Weinkam
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nicolai Kittan
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Beyer
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
36
|
Liang R, Šumová B, Cordazzo C, Mallano T, Zhang Y, Wohlfahrt T, Dees C, Ramming A, Krasowska D, Michalska-Jakubus M, Distler O, Schett G, Šenolt L, Distler JHW. The transcription factor GLI2 as a downstream mediator of transforming growth factor-β-induced fibroblast activation in SSc. Ann Rheum Dis 2017; 76:756-764. [PMID: 27793816 DOI: 10.1136/annrheumdis-2016-209698] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/25/2016] [Accepted: 10/09/2016] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Hedgehog signalling plays a critical role during the pathogenesis of fibrosis in systemic sclerosis (SSc). Besides canonical hedgehog signalling with smoothened (SMO)-dependent activation of GLI transcription factors, GLI can be activated independently of classical hedgehog ligands and receptors (so-called non-canonical pathways). Here, we aimed to evaluate the role of non-canonical hedgehog signalling in SSc and to test the efficacy of direct GLI inhibitors that target simultaneously canonical and non-canonical hedgehog pathways. METHODS The GLI inhibitor GANT-61 was used to inhibit canonical as well as non-canonical hedgehog signalling, while the SMO inhibitor vismodegib was used to selectively target canonical hedgehog signalling. Furthermore, GLI2 was selectively depleted in fibroblasts using the Cre-LoxP system. The effects of pharmacological or genetic of GLI2 on transforming growth factor-β (TGF-β) signalling were analysed in cultured fibroblasts, in bleomycin-induced pulmonary fibrosis and in mice with overexpression of a constitutively active TGF-β receptor I. RESULTS TGF-β upregulated GLI2 in a Smad3-dependent manner and induced nuclear accumulation and DNA binding of GLI2. Fibroblast-specific knockout of GLI2 protected mice from TBRact-induced fibrosis. Combined targeting of canonical and non-canonical hedgehog signalling with direct GLI inhibitors exerted more potent antifibrotic effects than selective targeting of canonical hedgehog signalling with SMO inhibitors in experimental dermal and pulmonary fibrosis. CONCLUSIONS Our data demonstrate that hedgehog pathways and TGF-β signalling both converge to GLI2 and that GLI2 integrates those signalling to promote tissue fibrosis. These findings may have translational implications as non-selective inhibitors of GLI2 are in clinical use and selective molecules are currently in development.
Collapse
Affiliation(s)
- Ruifang Liang
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Barbora Šumová
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Clinical and Experimental Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Cinzia Cordazzo
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- Dipartimento Cardiotoracico e Vascolare, Laboratory of Respiratory Cell Biology, University of Pisa, Pisa, Italy
| | - Tatjana Mallano
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yun Zhang
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Wohlfahrt
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Poland
| | | | - Oliver Distler
- Rheumaklinik, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ladislav Šenolt
- Department of Clinical and Experimental Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Jörg H W Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
37
|
Bruni C, Praino E, Allanore Y, Distler O, Gabrielli A, Iannone F, Matucci-Cerinic M. Use of biologics and other novel therapies for the treatment of systemic sclerosis. Expert Rev Clin Immunol 2016; 13:469-482. [PMID: 27899043 DOI: 10.1080/1744666x.2017.1263153] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by vasculopathy, inflammation and fibrosis. These three main disease-determining pathways are the target of the currently available treatments used to possibly modify the progression of disease-related manifestations, although this synergy has not been fully applied on SSc joint, skin or lung involvement yet. Areas covered: we describe the current status of SSc treatment/therapy performing a literature search in MEDLINE/Pubmed and Thomson Reuter's Web of Science for articles published until March 2016. Moreover, ongoing registered clinical trials (RCTs) on SSc were searched through clinicaltrials.gov website. Expert commentary: presently, promising drugs are under evaluation to target the different pathogenic pathways of systemic sclerosis: Tocilizumab and Abatacept for skin and lung fibrosis; Riociguat and Selexipag are approved for pulmonary arterial hypertension but promising anti-fibrotic effects are now being studied. Finally, several anti-fibrotic molecules are currently involved in RCTs, such as Nintedanib, IVA-337, Terguride.
Collapse
Affiliation(s)
- Cosimo Bruni
- a Department of Experimental and Clinical Medicine, Division of Rheumatology AOUC , University of Firenze , Firenze , Italy
| | - Emanuela Praino
- a Department of Experimental and Clinical Medicine, Division of Rheumatology AOUC , University of Firenze , Firenze , Italy.,b Interdisciplinary Dept of Medicine, division of Rheumatology , University of Bari , Bari , Italy
| | - Yannick Allanore
- c Department of Rheumatology A and INSERM U1016 , Paris Descartes University, Cochin Hospital , Paris , France
| | - Oliver Distler
- d Department of Rheumatology , University Hospital Zurich , Zurich , Switzerland
| | - Armando Gabrielli
- e Department Of Clinical and Molecular Sciences, Clinica Medica , University 'Politecnica delle Marche' , Ancona , Italy
| | - Florenzo Iannone
- b Interdisciplinary Dept of Medicine, division of Rheumatology , University of Bari , Bari , Italy
| | - Marco Matucci-Cerinic
- a Department of Experimental and Clinical Medicine, Division of Rheumatology AOUC , University of Firenze , Firenze , Italy
| |
Collapse
|
38
|
Abstract
Targeted therapies use an understanding of the pathophysiology of a disease in an individual patient. Although targeted therapy for systemic sclerosis (SSc, scleroderma) has not yet reached the level of patient-specific treatments, recent developments in the understanding of the global pathophysiology of the disease have led to new treatments based on the cells and pathways that have been shown to be involved in the disease pathogenesis. The presence of a B cell signature in skin biopsies has led to the trial of rituximab, an anti-CD20 antibody, in SSc. The well-known properties of transforming growth factor (TGF)-β in promoting collagen synthesis and secretion has led to a small trial of fresolimumab, a human IgG4 monoclonal antibody capable of neutralizing TGF-β. Evidence supporting important roles for interleukin-6 in the pathogenesis of SSc have led to a large trial of tocilizumab in SSc. Soluble guanylate cyclase (sGC) is an enzyme that catalyzes the production of cyclic guanosine monophosphate (cGMP) upon binding of nitric oxide (NO) to the sGC molecule. Processes such as cell growth and proliferation are regulated by cGMP. Evidence that sGC may play a role in SSc has led to a trial of riociguat, a molecule that sensitizes sGC to endogenous NO. Tyrosine kinases (TKs) are involved in a wide variety of physiologic and pathological processes including vascular remodeling and fibrogenesis such as occurs in SSc. This has led to a trial of nintedanib, a next-generation tyrosine-kinase (TK) inhibitor which targets multiple TKs, in SSc.
Collapse
Affiliation(s)
- Murray Baron
- Chief Division of Rheumatology, Jewish General Hospital, Montreal, Quebec, Canada; and Professor of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
39
|
Distler O, Pope J, Denton C, Allanore Y, Matucci-Cerinic M, de Oliveira Pena J, Khanna D. RISE-SSc: Riociguat in diffuse cutaneous systemic sclerosis. Respir Med 2016; 122 Suppl 1:S14-S17. [PMID: 27746061 DOI: 10.1016/j.rmed.2016.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
Abstract
RISE-SSc is a randomized, double-blind, placebo-controlled phase 2 study investigating the efficacy and safety of riociguat in patients with diffuse cutaneous systemic sclerosis (dcSSc). Based on positive results from riociguat trials in patients with pulmonary hypertension and chronic thromboembolic pulmonary hypertension in combination with the known antiproliferative and antifibrotic effects seen in animal models, patients with SSc may benefit from treatment with riociguat. Patients with SSc meeting the ACR/EULAR systemic sclerosis classification criteria with diffuse cutaneous SSc (dcSSc) subset per LeRoy criteria, and a disease duration of less than or equal to 18 months will be randomized to placebo or riociguat 0.5 mg (up-titrated to a maximum dose of 2.5 mg TID over 10 weeks) and maintained on therapy for a total of 52 weeks. During the first 10 weeks of the long-term extension phase, placebo subjects will be up-titrated on riociguat, and all patients will be followed for up to 6 years. The primary endpoint of change in modified Rodnan skin score (mRSS) from baseline will be assessed at 52 weeks, as will be secondary endpoints such as mRSS progression and regression rates, patient quality of life, digital ulcer burden, and change in forced vital capacity and carbon monoxide diffusing capacity. This review will further define the clinical rationale for the use of riociguat in the treatment of SSc and provide details on study protocol, design, and outcome reporting. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT02283762.
Collapse
Affiliation(s)
- Oliver Distler
- Division of Rheumatology, University Hospital, Zurich, Switzerland
| | - Janet Pope
- University of Western Ontario, London, ON, Canada
| | - Chris Denton
- University College London, London, England, United Kingdom
| | | | | | | | - Dinesh Khanna
- Scleroderma Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Sandner P, Stasch JP. Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Respir Med 2016; 122 Suppl 1:S1-S9. [PMID: 28341058 DOI: 10.1016/j.rmed.2016.08.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022]
Abstract
It is now well established that the NO-sGC-cGMP signal transduction system mediates many different physiological functions in almost every conceivable organ system; this has been best characterized in the cardiovascular system where NO-driven cGMP production exerts a plethora of cytoprotective and anti-atherogenic effects, including dilatation, inhibition of vascular smooth muscle proliferation, blockade of leukocyte recruitment, and anti-platelet activity. Accordingly, dysfunctional NO-sGC-cGMP mediated signaling is perceived as the underlying pathophysiological cause of many cardiovascular and non-cardiovascular diseases. Due to the fundamental role of sGC in the signaling pathways triggered by NO, novel sGC 'modulators' have been identified that directly stimulate both heme-containing as well as heme-free sGC, the so-called 'sGC activators' and 'sGC stimulators', respectively. The beneficial effects of this new family of sGC 'modulators' extend beyond vasodilation, and their potential in other cardiovascular diseases aside from pulmonary arterial hypertension is promising. In animal models of hypertension and heart failure, reno-protective effects, attenuated cardiac fibrosis, and attenuated hypertrophy independent of hemodynamic effects have been shown. During recent years it has become obvious that cGMP increase by sGC modulators exerts direct antifibrotic efficacy in various organs as well as the skin. This review will provide an overview of the preclinical in vitro and in vivo studies for different fibrotic disorders including chronic renal, cardiac, liver, and lung fibrosis, as well as sclerosis and wound healing. Moreover, this review provides evidence for a new mode of action of sGC 'modulators' and its implication for clinical investigations in the treatment of fibrotic disorders such as pulmonary fibrosis and skin fibrosis.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer HealthCare AG, Drug Discovery, Wuppertal, Germany; Institute of Pharmacology, Hannover Medical School, Hannover, Germany.
| | - Johannes Peter Stasch
- Bayer HealthCare AG, Drug Discovery, Wuppertal, Germany; Institute of Pharmacy, University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
41
|
Abstract
Systemic sclerosis is a heterogeneous condition characterized by microvascular damage, dysregulation of the immune system, and progressive fibrosis affecting skin and internal organs. Currently, there are no approved disease-modifying therapies, and management mostly involves treatment of organ-specific complications. In recent years, major advances have greatly improved our understanding of the disease process, especially the molecular mechanisms by which fibrosis becomes self-sustaining. We discuss selected aspects of these mechanisms with a focus on those relevant to ongoing efforts to develop disease-modifying therapies. We also discuss advances in identification of patient subtypes, and selected examples of potential disease-modifying therapies in clinical development.
Collapse
|
42
|
Nakai T, Perl NR, Barden TC, Carvalho A, Fretzen A, Germano P, Im GYJ, Jin H, Kim C, Lee TWH, Long K, Moore J, Rohde JM, Sarno R, Segal C, Solberg EO, Tobin J, Zimmer DP, Currie MG. Discovery of IWP-051, a Novel Orally Bioavailable sGC Stimulator with Once-Daily Dosing Potential in Humans. ACS Med Chem Lett 2016; 7:465-9. [PMID: 27190594 DOI: 10.1021/acsmedchemlett.5b00479] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/24/2016] [Indexed: 01/16/2023] Open
Abstract
In recent years, soluble guanylate cyclase (sGC, EC 4.6.1.2) has emerged as an attractive therapeutic target for treating cardiovascular diseases and diseases associated with fibrosis and end-organ failure. Herein, we describe our design and synthesis of a series of 4-hydroxypyrimidine sGC stimulators starting with an internally discovered lead. Our efforts have led to the discovery of IWP-051, a molecule that achieves good alignment of potency, stability, selectivity, and pharmacodynamic effects while maintaining favorable pharmacokinetic properties with once-daily dosing potential in humans.
Collapse
Affiliation(s)
- Takashi Nakai
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Nicholas R. Perl
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Timothy C. Barden
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Andrew Carvalho
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Angelika Fretzen
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Peter Germano
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - G-Yoon J. Im
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Hong Jin
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Charles Kim
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Thomas W.-H. Lee
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Kimberly Long
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Joel Moore
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Jason M. Rohde
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Renee Sarno
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Chrissie Segal
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Erik O. Solberg
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Jenny Tobin
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Daniel P. Zimmer
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| | - Mark G. Currie
- Ironwood Pharmaceuticals, Inc. 301
Binney Street Cambridge, Massachusetts 02142 United States
| |
Collapse
|
43
|
Morrisroe K, Frech T, Schniering J, Maurer B, Nikpour M. Systemic sclerosis: The need for structured care. Best Pract Res Clin Rheumatol 2016; 30:3-21. [PMID: 27421213 DOI: 10.1016/j.berh.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoimmune connective tissue diseases (CTDs) have a propensity to affect multiple organ systems as well as physical function, quality of life, and survival. Their clinical heterogeneity, multisystem involvement, and low worldwide prevalence present challenges for researchers to establish a study design to help better understand the course and outcomes of CTDs. Systemic sclerosis (SSc) is a notable example of a CTD, wherein longitudinal cohort studies (LCS) have enabled us to elucidate disease manifestations, disease course, and risk and prognostic factors for clinically important outcomes, by embedding research in clinical practice. Nevertheless, further efforts are needed to better understand SSc especially with regard to recognizing organ involvement early, developing new therapies, optimizing the use of existing therapies, and defining treatment targets. The heterogeneous multi-organ nature of SSc would lend itself well to a structured model of care, wherein step-up treatment algorithms are used with the goal of attaining a prespecified treatment target. In this chapter, we discuss the rationale for a structured treatment approach in SSc and propose possible treatment algorithms for three of the more common disease manifestations, namely skin involvement, digital ulcers and gastrointestinal tract involvement. We discuss possible strategies for evaluating and implementing these algorithms in the setting of LCS. We conclude by presenting a research agenda for the development of structured models of care in SSc.
Collapse
Affiliation(s)
- Kathleen Morrisroe
- Department of Medicine, The University of Melbourne at St. Vincent's Hospital, Melbourne, VIC, Australia; Department of Rheumatology, The University of Melbourne at St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Tracy Frech
- Division of Rheumatology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA; Salt Lake Regional Veterans Affair Medical Center, Salt Lake City, UT, USA
| | - Janine Schniering
- Division of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Britta Maurer
- Division of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Mandana Nikpour
- Department of Medicine, The University of Melbourne at St. Vincent's Hospital, Melbourne, VIC, Australia; Department of Rheumatology, The University of Melbourne at St. Vincent's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
44
|
Tomcik M, Palumbo-Zerr K, Zerr P, Sumova B, Avouac J, Dees C, Distler A, Becvar R, Distler O, Schett G, Senolt L, Distler JHW. Tribbles homologue 3 stimulates canonical TGF-β signalling to regulate fibroblast activation and tissue fibrosis. Ann Rheum Dis 2016; 75:609-16. [PMID: 25603829 DOI: 10.1136/annrheumdis-2014-206234] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 01/06/2015] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Tribbles homologue 3 (TRB3) is a pseudokinase that modifies the activation of various intracellular signalling pathways to control fundamental processes extending from mitosis and cell activation to apoptosis and modulation of gene expression. Here, we aimed to analyse the role of TRB3 in fibroblast activation in systemic sclerosis (SSc). METHODS The expression of TRB3 was quantified by quantitative PCR, western blot and immunohistochemistry. The role of TRB3 was analysed in cultured fibroblasts and in experimental fibrosis using small interfering RNA (siRNA)-mediated knockdown and overexpression of TRB3. RESULTS TRB3 expression was increased in fibroblasts of patients with SSc and in murine models of SSc in a transforming growth factor-β (TGF-β)/Smad-dependent manner. Overexpression of TRB3 stimulated canonical TGF-β signalling and induced an activated phenotype in resting fibroblasts. In contrast, knockdown of TRB3 reduced the profibrotic effects of TGF-β and decreased the collagen synthesis. Moreover, siRNA-mediated knockdown of TRB3 exerted potent antifibrotic effects and ameliorated bleomycin as well as constitutively active TGF-β receptor I-induced fibrosis with reduced dermal thickening, decreased hydroxyproline content and impaired myofibroblast differentiation. CONCLUSIONS The present study characterises TRB3 as a novel profibrotic mediator in SSc. TGF-β induces TRB3, which in turn activates canonical TGF-β/Smad signalling and stimulates the release of collagen, thereby inducing a positive feedback loop that may contribute to aberrant TGF-β signalling in SSc.
Collapse
Affiliation(s)
- Michal Tomcik
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Katrin Palumbo-Zerr
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Pawel Zerr
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Barbora Sumova
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Jerome Avouac
- Rheumatology A Department, Paris Descartes University, Cochin Hospital, Paris, France
| | - Clara Dees
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alfiya Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Radim Becvar
- Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Oliver Distler
- Center of Experimental Rheumatology and Zurich Center of Integrative Human Physiology, University Hospital, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ladislav Senolt
- Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Jörg H W Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
45
|
Mallano T, Palumbo-Zerr K, Zerr P, Ramming A, Zeller B, Beyer C, Dees C, Huang J, Hai T, Distler O, Schett G, Distler JHW. Activating transcription factor 3 regulates canonical TGFβ signalling in systemic sclerosis. Ann Rheum Dis 2016; 75:586-92. [PMID: 25589515 DOI: 10.1136/annrheumdis-2014-206214] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/20/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element binding (CREB) family of transcription factors, regulates cellular response to stress including oxidative stress. The aim of this study was to analyse the role of ATF3 in fibroblast activation in systemic sclerosis (SSc). METHODS ATF3 was analysed by reverse transcription quantitative PCR, western blot and immunohistochemistry. ATF3 knockout fibroblasts and mice were used to study the functional role of ATF3. Knockdown experiments, reporter assays and coimmunoprecipitation were performed to study the effects of ATF3 on Smad and activation protein 1 (AP-1) signalling. The role of c-Jun was analysed by costaining, specific inactivation and coimmunoprecipitation. RESULTS Transforming growth factor-β (TGFβ) upregulates the expression of ATF3 in SSc fibroblasts. ATF3-deficient fibroblasts were less sensitive to TGFβ, whereas ectopic expression of ATF3 enhanced the profibrotic effects of TGFβ. Mechanistically, ATF3 interacts with Smad3 directly on stimulation with TGFβ and regulates Smad activity in a c-Jun-dependent manner. Knockout of ATF3 protected mice from bleomycin-induced fibrosis and fibrosis induced by overexpression of a constitutively active TGFβ receptor I. Reporter assays and analyses of the expression of Smad target genes demonstrated that binding of ATF3 regulates the transcriptional activity of Smad3. CONCLUSIONS We demonstrate for the first time a key role for ATF3 in fibrosis. Knockout of the ATF3 gene reduced the stimulatory effect of TGFβ on fibroblasts by interfering with canonical Smad signalling and protected the mice from experimental fibrosis in two different models. ATF3 might thus be a candidate for molecular targeted therapies for SSc.
Collapse
Affiliation(s)
- Tatjana Mallano
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Palumbo-Zerr
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Pawel Zerr
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Barbara Zeller
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Beyer
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jingang Huang
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tsonwin Hai
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Oliver Distler
- Rheumaklinik, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
46
|
Zerr P, Palumbo-Zerr K, Huang J, Tomcik M, Sumova B, Distler O, Schett G, Distler JHW. Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis 2016; 75:226-33. [PMID: 25180292 DOI: 10.1136/annrheumdis-2014-205740] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/10/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sirt1 is a member of the sirtuin family of proteins. Sirt1 is a class III histone deacetylase with important regulatory roles in transcription, cellular differentiation, proliferation and metabolism. As aberrant epigenetic modifications have been linked to the pathogenesis of systemic sclerosis (SSc), we aimed to investigate the role of Sirt1 in fibroblast activation. METHODS Sirt1 expression was analysed by real-time PCR, western blot and immunohistochemistry. Sirt1 signalling was modulated with the Sirt1 agonist resveratrol and by fibroblast-specific knockout. The role of Sirt1 was evaluated in bleomycin-induced skin fibrosis and in mice overexpressing a constitutively active transforming growth fac-tor-β (TGF-β) receptor I (TBRIact). RESULTS The expression of Sirt1 was decreased in patients with SSc and in experimental fibrosis in a TGF-β-dependent manner. Activation of Sirt1 potentiated the profibrotic effects of TGF-β with increased Smad reporter activity, elevated transcription of TGF-β target genes and enhanced release of collagen. In contrast, knockdown of Sirt1 inhibited TGF-β/SMAD signalling and reduced release of collagen in fibroblasts. Consistently, mice with fibroblast-specific knockdown of Sirt1 were less susceptible to bleomycin- or TBRIact-induced fibrosis. CONCLUSIONS We identified Sirt1 as a crucial regulator of TGF-β/Smad signalling in SSc. Although Sirt1 is downregulated, this decrease is not sufficient to counterbalance the excessive activation of TGF-β signalling in SSc. However, augmentation of this endogenous regulatory mechanism, for example, by knockdown of Sirt1, can effectively inhibit TGF-β signalling and exerts potent antifibrotic effects. Sirt1 may thus be a key regulator of fibroblast activation in SSc.
Collapse
Affiliation(s)
- Pawel Zerr
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Palumbo-Zerr
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jingang Huang
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michal Tomcik
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Barbora Sumova
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany Department of Rheumatology, 1st Faculty of Medicine, Institute of Rheumatology, Charles University, Prague, Czech Republic
| | - Oliver Distler
- Center of Experimental Rheumatology and Zurich Center of Integrative Human Physiology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
47
|
Sulica R, Fenton R, Cefali F. Early Observations on the Use of Riociguat in a Large, Metropolitan Pulmonary Arterial Hypertension/Chronic Thromboembolic Pulmonary Hypertension Treatment Center. Cardiol Ther 2015; 4:209-18. [PMID: 26411969 PMCID: PMC4675747 DOI: 10.1007/s40119-015-0046-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are rare, life-threatening diseases in which chronically elevated pressure in the pulmonary arteries results in vascular remodeling and right heart failure. Treatment goals are to improve patient functioning, exercise capacity, and symptoms; delay disease progression; normalize the right ventricular function; and, ultimately, improve survival. Therapeutic management centers on the affected physiologic pathways and includes endothelin receptor antagonists, phosphodiesterase-5 inhibitors, and prostacyclins. Recently, riociguat, a novel therapeutic agent that stimulates soluble guanylate cyclase via the nitric oxide pathway, was approved for the treatment of both PAH and CTEPH. Clinical trial data show that riociguat significantly improves exercise capacity as well as hemodynamic parameters in PAH/CTEPH. METHODS We report on the early use of riociguat at our center-a large, metropolitan pulmonary hypertension treatment facility that cares for >250 patients with PAH/CTEPH. Through our initial clinical experience, we offer evidence on the benefits of riociguat in three patients with PAH associated with different etiologies, symptoms, and treatment goals. RESULTS Overall, patients at our center who have received riociguat have experienced clinical benefits, including improvement in symptomatic and hemodynamic parameters, increase in 6-min walk distance, and improvement or stabilization of World Health Organization functional class. In several cases, initial response to riociguat has been encouraging and has helped patients reach their treatment goals. Riociguat appears to be well tolerated, with only one patient experiencing mild, self-limiting side effects. CONCLUSION Novel agents are continuously being introduced into the PAH/CTEPH armamentarium, and clinicians must decide how best to integrate them into their existing treatment algorithms. This case series offers initial evidence from our practice on the benefits of riociguat in optimizing hemodynamic and functional parameters. These benefits have been observed in PAH associated with different etiologies and functional status, and in both first-line and combination use. FUNDING Bayer HealthCare Pharmaceuticals.
Collapse
Affiliation(s)
- Roxana Sulica
- Pulmonary Hypertension Program, Mount Sinai Beth Israel, New York, NY, USA.
| | - Rebecca Fenton
- Pulmonary Hypertension Program, Mount Sinai Beth Israel, New York, NY, USA
| | - Frank Cefali
- Pulmonary Hypertension Program, Mount Sinai Beth Israel, New York, NY, USA
| |
Collapse
|
48
|
Distler O, Cozzio A. Systemic sclerosis and localized scleroderma--current concepts and novel targets for therapy. Semin Immunopathol 2015; 38:87-95. [PMID: 26577237 DOI: 10.1007/s00281-015-0551-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 11/28/2022]
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease with a high morbidity and mortality. Skin and organ fibrosis are key manifestations of SSc, for which no generally accepted therapy is available. Thus, there is a high unmet need for novel anti-fibrotic therapeutic strategies in SSc. At the same time, important progress has been made in the identification and characterization of potential molecular targets in fibrotic diseases over the recent years. In this review, we have selected four targeted therapies, which are tested in clinical trials in SSc, for in depths discussion of their preclinical characterization. Soluble guanylate cyclase (sGC) stimulators such as riociguat might target both vascular remodeling and tissue fibrosis. Blockade of interleukin-6 might be particularly promising for early inflammatory stages of SSc. Inhibition of serotonin receptor 2b signaling links platelet activation to tissue fibrosis. Targeting simultaneously multiple key molecules with the multityrosine kinase-inhibitor nintedanib might be a promising approach in complex fibrotic diseases such as SSc, in which many partially independent pathways are activated. Herein, we also give a state of the art overview of the current classification, clinical presentation, diagnostic approach, and treatment options of localized scleroderma. Finally, we discuss whether the novel targeted therapies currently tested in SSc could be used for localized scleroderma.
Collapse
Affiliation(s)
- Oliver Distler
- Division of Rheumatology, University Hospital Zurich, Gloriastr. 25, 8091, Zurich, Switzerland.
| | - Antonio Cozzio
- Division of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Activators and stimulators of soluble guanylate cyclase counteract myofibroblast differentiation of prostatic and dermal stromal cells. Exp Cell Res 2015; 338:162-9. [PMID: 26410556 DOI: 10.1016/j.yexcr.2015.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fibrotic diseases encompass numerous systemic and organ-specific disorders characterized by the development and persistence of myofibroblasts. TGFβ1 is considered the key inducer of fibrosis and drives myofibroblast differentiation in cells of diverse histological origin by a pro-oxidant shift in redox homeostasis associated with decreased nitric oxide (NO)/cGMP signaling. Thus, enhancement of NO/cGMP represents a potential therapeutic strategy to target myofibroblast activation and therefore fibrosis. METHODS Myofibroblast differentiation was induced by TGFβ1 in human primary prostatic (PrSCs) and normal dermal stromal cells (NDSCs) and monitored by α smooth muscle cell actin (SMA) and IGF binding protein 3 (IGFBP3) mRNA and protein levels. The potential of enhanced cGMP production by the sGC stimulator BAY 41-2272 or the sGC activator BAY 60-2770 to inhibit and revert myofibroblast differentiation in vitro was analyzed. Moreover, potential synergisms of BAY 41-2272 or BAY 60-2770 and inhibition of cGMP degradation by the PDE5 inhibitor vardenafil were investigated. RESULTS BAY 41-2272 and BAY 60-2770 at doses of 30µM significantly inhibited induction of SMA and IGFBP3 levels in PrSCs and reduced myofibroblast marker levels in TGFβ1-predifferentiated cells. At lower concentrations (3 and 10µM) only BAY 41-2272 but not BAY 60-2770 significantly inhibited and reverted myofibroblast differentiation. In NDSCs both substances significantly inhibited differentiation at all concentrations tested. Attenuation of SMA expression was more pronounced in NDSCs whereas reduction of IGFBP3 levels by BAY 41-2272 appeared more efficient in PrSCs. Moreover, administration of BAY 41-2272 or BAY 60-2770 enhanced the efficiency of the PDE5 inhibitor vardenafil to inhibit and revert myofibroblast differentiation in vitro. CONCLUSIONS Increase of cGMP by sGC stimulation/activation significantly inhibited and reverted myofibroblast differentiation. This effect was even more pronounced when a combination treatment with a PDE5 inhibitor was applied. Thus, enhancement of NO/cGMP-signaling by sGC stimulation/activation is a promising strategy for the treatment of fibrotic diseases. Whereas, in NDSCs BAY 60-2770 and BAY 41-2272 exerted similar effects on myofibroblast differentiation, higher potency of BAY 41-2272 was observed in PrSCs, indicating phenotypical differences between fibroblasts form different organs that should be taken into account in the search for antifibrotic therapies.
Collapse
|
50
|
Higuchi T, Kawaguchi Y, Takagi K, Tochimoto A, Ota Y, Katsumata Y, Ichida H, Hanaoka M, Kawasumi H, Tochihara M, Yamanaka H. Sildenafil attenuates the fibrotic phenotype of skin fibroblasts in patients with systemic sclerosis. Clin Immunol 2015; 161:333-8. [PMID: 26387628 DOI: 10.1016/j.clim.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/22/2023]
Abstract
Systemic sclerosis (SSc) is a multi-organ fibrotic disease that affects the skin and various internal organs. Therapeutic strategies for tissue fibrosis have not been established; however, aberrantly activated fibroblasts in affected lesions are key targets for modulating fibrosis. Recently, increased intracellular cyclic GMP (cGMP) levels were demonstrated to improve fibrosis levels in various diseases. The purpose of this study was to assess the anti-fibrotic properties of cGMP in cultured fibroblasts from patients with SSc. The phosphodiesterase (PDE) 5 inhibitor sildenafil increased the intracellular cGMP levels in skin fibroblasts in a dose-dependent manner. Sildenafil treatment also significantly decreased the expression of several pro-fibrotic factors that were upregulated by TGF-β1 treatment in SSc skin fibroblasts. These inhibitory effects occurred via non-canonical TGF-β signaling. Our findings revealed that sildenafil might be a novel strategy to treat tissue fibrosis and vasculopathy in SSc.
Collapse
Affiliation(s)
- Tomoaki Higuchi
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Yasushi Kawaguchi
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan.
| | - Kae Takagi
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Akiko Tochimoto
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Yuko Ota
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Yasuhiro Katsumata
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Hisae Ichida
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Masanori Hanaoka
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Hidenaga Kawasumi
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Mari Tochihara
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| | - Hisashi Yamanaka
- Institute of Rheumatology, Tokyo Women's Medical University, 10-22 Kawada-cho, Shinjuku-ku, Tokyo 162-0054, Japan
| |
Collapse
|