1
|
Yang C, Qu J, Wu J, Cai S, Liu W, Deng Y, Meng Y, Zheng L, Zhang L, Wang L, Guo X. Single-cell dissection reveals immunosuppressive F13A1+ macrophage as a hallmark for multiple primary lung cancers. Clin Transl Med 2024; 14:e70091. [PMID: 39601163 PMCID: PMC11600049 DOI: 10.1002/ctm2.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The increasing prevalence of multiple primarylung cancers (MPLCs) presents challenges to current diagnostic and clinicalmanagement approaches. However, the molecular mechanisms driving MPLCdevelopment and distinguishing it from solitary primary lung cancers (SPLCs)remain largely unexplored. METHODS We performed a comparative single-cell RNAsequencing (scRNA-seq) analysis on tumour and adjacent para-tumour tissues fromMPLC and SPLC patients to comparatively evaluate their immunological landscapes.Additionally, multiplex immunofluorescence (mIF) staining and independentvalidation datasets were used to confirm findings. RESULTS MPLCs and SPLCs share significant similarities in genetic, transcriptomic and immune profiles, suggesting common therapeutic strategies such as EGFR-TKIs andICIs. Notably, an immunosuppressive macrophage subtype, F13A1+ Macrophage (Mϕ), is specifically enriched in MPLCs. This subtype overexpresses M2 macrophagemarkers and exhibits up-regulation of SPP1-CD44/CCL13-ACKR1 interactions, indicatingits role in shaping the immunosuppressive tumour microenvironment and promotingtumour growth in MPLCs. CONCLUSIONS This study unveils shared molecular mechanismsbetween MPLCs and SPLCs, while identifying MPLC-specific cellular and molecularfeatures, such as the role of F13A1+ macrophages. The findings provide novelinsights into MPLC pathogenesis, supporting the development of targetedtherapeutic strategies. KEY POINTS Comparative scRNA-seq analysis reveals significant similarities in genetic, transcriptomicand immune profiles between MPLCs and SPLCs. Identification of a unique immunosuppressive F13A1+ macrophage subtype, preferentially enriched in MPLCs, linked to immune evasion and tumourprogression. SPP1-CD44/CCL13-ACKR1 interactions are crucial in MPLC tumour microenvironment, indicating potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chenglin Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Jiahao Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
- Southern University of Science and TechnologyShenzhen CityGuangdong ProvinceChina
| | - Jingting Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Songhua Cai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Wenyi Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Youjun Deng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yiran Meng
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Liuqing Zheng
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Lishen Zhang
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Li Wang
- Department of R&DHangzhou Repugene Technology Co., Ltd.HangzhouChina
| | - Xiaotong Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| |
Collapse
|
2
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Su X, Yu H, Lei Q, Chen X, Tong Y, Zhang Z, Yang W, Guo Y, Lin L. Systemic lupus erythematosus: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:54. [PMID: 39472388 PMCID: PMC11522254 DOI: 10.1186/s43556-024-00217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multifaceted autoimmune disorder characterized by dysregulated immune responses and autoantibody production, which affects multiple organs and varies in clinical presentation and disease severity. The development of SLE is intricate, encompassing dysregulation within the immune system, a collapse of immunological tolerance, genetic susceptibilities to the disease, and a variety of environmental factors that can act as triggers. This review provides a comprehensive discussion of the pathogenesis and treatment strategies of SLE and focuses on the progress and status of traditional and emerging treatment strategies for SLE. Traditional treatment strategies for SLE have mainly employed non-specific approaches, including cytotoxic and immunosuppressive drugs, antimalarials, glucocorticoids, and NSAIDs. These strategies are effective in mitigating the effects of the disease, but they are not a complete cure and are often accompanied by adverse reactions. Emerging targeted therapeutic drugs, on the other hand, aim to control and treat SLE by targeting B and T cells, inhibiting their activation and function, as well as the abnormal activation of the immune system. A deeper understanding of the pathogenesis of SLE and the exploration of new targeted treatment strategies are essential to advance the treatment of this complex autoimmune disease.
Collapse
Affiliation(s)
- Xu Su
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Hui Yu
- Department of Urology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China
| | - Qingqiang Lei
- Center of Bone Metabolism and Repair, Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xuerui Chen
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yanli Tong
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, Paris, F-75015, France
| | - Zhongyang Zhang
- Department of Health Technology, The Danish National Research Foundation and Villum Foundation's Center IDUN, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Wenyong Yang
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Neurosurgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610014, China.
| | - Yuanbiao Guo
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Liangbin Lin
- Medical Research Center, College of Medicine, The Third People's Hospital of Chengdu (Affiliated Hospital of Southwest Jiaotong University, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
4
|
Li Z, Lu Q. The role of neutrophils in autoimmune diseases. Clin Immunol 2024; 266:110334. [PMID: 39098706 DOI: 10.1016/j.clim.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.
Collapse
Affiliation(s)
- Zhuoshu Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences &Peking Union Medical College, Nanjing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
5
|
Fazel-Najafabadi M, Looger LL, Rallabandi HR, Nath SK. A Multilayered Post-Genome-Wide Association Study Analysis Pipeline Defines Functional Variants and Target Genes for Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:1071-1084. [PMID: 38369936 PMCID: PMC11213670 DOI: 10.1002/art.42829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE), an autoimmune disease with incompletely understood etiology, has a strong genetic component. Although genome-wide association studies (GWASs) have revealed multiple SLE susceptibility loci and associated single-nucleotide polymorphisms (SNPs), the precise causal variants, target genes, cell types, tissues, and mechanisms of action remain largely unknown. METHODS Here, we report a comprehensive post-GWAS analysis using extensive bioinformatics, molecular modeling, and integrative functional genomic and epigenomic analyses to optimize fine-mapping. We compile and cross-reference immune cell-specific expression quantitative trait loci (cis- and trans-expression quantitative trait loci) with promoter capture high-throughput capture chromatin conformation (PCHi-C), allele-specific chromatin accessibility, and massively parallel reporter assay data to define predisposing variants and target genes. We experimentally validate a predicted locus using CRISPR/Cas9 genome editing, quantitative polymerase chain reaction, and Western blot. RESULTS Anchoring on 452 index SNPs, we selected 9,931 high linkage disequilibrium (r2 > 0.8) SNPs and defined 182 independent non-human leukocyte antigen (HLA) SLE loci. The 3,746 SNPs from 143 loci were identified as regulating 564 unique genes. Target genes are enriched in lupus-related tissues and associated with other autoimmune diseases. Of these, 329 SNPs (106 loci) showed significant allele-specific chromatin accessibility and/or enhancer activity, indicating regulatory potential. Using CRISPR/Cas9, we validated reference SNP identifier 57668933 (rs57668933) as a functional variant regulating multiple targets, including SLE-risk gene ELF1 in B cells. CONCLUSION We demonstrate and validate post-GWAS strategies for using multidimensional data to prioritize likely causal variants with cognate gene targets underlying SLE pathogenesis. Our results provide a catalog of significantly SLE-associated SNPs and loci, target genes, and likely biochemical mechanisms to guide experimental characterization.
Collapse
Affiliation(s)
- Mehdi Fazel-Najafabadi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Loren L. Looger
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92121, USA
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92121, USA
| | - Harikrishna Reddy Rallabandi
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Yu J, Li H, Wu Y, Luo M, Chen S, Shen G, Wei X, Shao B. Inhibition of NLRP3 inflammasome activation by A20 through modulation of NEK7. Proc Natl Acad Sci U S A 2024; 121:e2316551121. [PMID: 38865260 PMCID: PMC11194493 DOI: 10.1073/pnas.2316551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/24/2024] [Indexed: 06/14/2024] Open
Abstract
The NLRP3 inflammasome, a pivotal component of innate immunity, has been implicated in various inflammatory disorders. The ubiquitin-editing enzyme A20 is well known to regulate inflammation and maintain homeostasis. However, the precise molecular mechanisms by which A20 modulates the NLRP3 inflammasome remain poorly understood. Here, our study revealed that macrophages deficient in A20 exhibit increased protein abundance and elevated mRNA level of NIMA-related kinase 7 (NEK7). Importantly, A20 directly binds with NEK7, mediating its K48-linked ubiquitination, thereby targeting NEK7 for proteasomal degradation. Our results demonstrate that A20 enhances the ubiquitination of NEK7 at K189 and K293 ubiquitinated sites, with K189 playing a crucial role in the binding of NEK7 to A20, albeit not significantly influencing the interaction between NEK7 and NLRP3. Furthermore, A20 disrupts the association of NEK7 with the NLRP3 complex, potentially through the OTU domain and/or synergistic effect of ZnF4 and ZnF7 motifs. Significantly, NEK7 deletion markedly attenuates the activation of the NLRP3 inflammasome in A20-deficient conditions, both in vitro and in vivo. This study uncovers a mechanism by which A20 inhibits the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jiayun Yu
- Department of Radiotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu610041, China
| | - Hanwen Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
| | - Min Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Siyuan Chen
- Department of Radiotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu610041, China
| | - Guobo Shen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, Chengdu610041, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu610041, China
| |
Collapse
|
7
|
Kommer A, Meineck M, Classen P, Weinmann-Menke J. A20 in Kidney Transplantation and Autoimmunity. Int J Mol Sci 2024; 25:6628. [PMID: 38928333 PMCID: PMC11203976 DOI: 10.3390/ijms25126628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
A20, the central inhibitor of NFκB, has multiple anti-inflammatory properties, making it an interesting target in kidney autoimmune disease and transplant biology. It has been shown to be able to inhibit inflammatory functions in macrophages, dendritic cells, T cells, and B cells in various ways, leading to less tissue damage and better graft outcomes. In this review, we will discuss the current literature regarding A20 in kidney transplantation and autoimmunity. Future investigations on animal models and in existing immunosuppressive therapies are needed to establish A20 as a therapeutic target in kidney transplantation and autoimmunity. Cell-based therapies, modified viruses or RNA-based therapies could provide a way for A20 to be utilized as a promising mediator of inflammation and tissue damage.
Collapse
Affiliation(s)
- Andreas Kommer
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (M.M.); (P.C.)
| | | | | | | |
Collapse
|
8
|
Zhang ML, Li HB, Jin Y. Application and perspective of CRISPR/Cas9 genome editing technology in human diseases modeling and gene therapy. Front Genet 2024; 15:1364742. [PMID: 38666293 PMCID: PMC11043577 DOI: 10.3389/fgene.2024.1364742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) mediated Cas9 nuclease system has been extensively used for genome editing and gene modification in eukaryotic cells. CRISPR/Cas9 technology holds great potential for various applications, including the correction of genetic defects or mutations within the human genome. The application of CRISPR/Cas9 genome editing system in human disease research is anticipated to solve a multitude of intricate molecular biology challenges encountered in life science research. Here, we review the fundamental principles underlying CRISPR/Cas9 technology and its recent application in neurodegenerative diseases, cardiovascular diseases, autoimmune related diseases, and cancer, focusing on the disease modeling and gene therapy potential of CRISPR/Cas9 in these diseases. Finally, we provide an overview of the limitations and future prospects associated with employing CRISPR/Cas9 technology for diseases study and treatment.
Collapse
Affiliation(s)
- Man-Ling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong-Bin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
9
|
Zhang G, Xu J, Du D, Liu Y, Dai L, Zhao Y. Diagnostic values, association with disease activity and possible risk factors of anti-PAD4 in rheumatoid arthritis: a meta-analysis. Rheumatology (Oxford) 2024; 63:914-924. [PMID: 37824204 DOI: 10.1093/rheumatology/kead545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVE Anti-peptidyl arginine deaminase 4 (anti-PAD4) antibody has been a subject of investigation in RA in the last two decades. This meta-analysis investigated the diagnostic values, association with disease activity and possible risk factors of anti-PAD4 antibody in rheumatoid arthritis. METHOD We searched studies from five databases up to 1 December 2022. Bivariate mixed-effect models were used to pool the diagnostic accuracy indexes, and the summary receiver operating characteristics (SROC) curve was plotted. The quality of diagnostic studies was assessed using QUADAS-2. Non-diagnostic meta-analyses were conducted using the random-effects model. Sensitivity analysis, meta-regression, subgroup analyses and Deeks' funnel plot asymmetry test were used to address heterogeneity. RESULT Finally, 24 journal articles and one letter were included. Anti-PAD4 antibody had a good diagnostic value between RA and healthy individuals, but it might be lower between RA and other rheumatic diseases. Moreover, anti-PAD4 could slightly enhance RA diagnostic sensitivity with a combination of ACPA or ACPA/RF. Anti-PAD4 antibody was positively correlated with HLA-SE and negatively correlated with ever or current smoking in patients with RA. RA patients with anti-PAD4 antibody had higher DAS28, ESR, swollen joint count (SJC) and the possibility of having interstitial lung disease (ILD) and pulmonary fibrosis compared with those without. CONCLUSION Our study suggests that anti-PAD4 antibody is a potentially useful diagnostic biomarker and clinical indicator for RA. Further mechanistic studies are required to understand the impact of HLA-SE and smoking on the production of anti-PAD4 antibody.
Collapse
Affiliation(s)
- Guangyue Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiayi Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongru Du
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
- Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Karri U, Harasimowicz M, Carpio Tumba M, Schwartz DM. The Complexity of Being A20: From Biological Functions to Genetic Associations. J Clin Immunol 2024; 44:76. [PMID: 38451381 DOI: 10.1007/s10875-024-01681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet's disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.
Collapse
Affiliation(s)
- Urekha Karri
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Magdalena Harasimowicz
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Manuel Carpio Tumba
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA
| | - Daniella M Schwartz
- Departments of Medicine and Immunology, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA, 15213, USA.
| |
Collapse
|
11
|
Bravo-Villagra KM, Muñoz-Valle JF, Baños-Hernández CJ, Cerpa-Cruz S, Navarro-Zarza JE, Parra-Rojas I, Aguilar-Velázquez JA, García-Arellano S, López-Quintero A. STAT4 Gene Variant rs7574865 Is Associated with Rheumatoid Arthritis Activity and Anti-CCP Levels in the Western but Not in the Southern Population of Mexico. Genes (Basel) 2024; 15:241. [PMID: 38397230 PMCID: PMC10887563 DOI: 10.3390/genes15020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a multifactorial autoimmune disease. Currently, several genes play an important role in the development of the disease. The objective was to evaluate the association of the STAT4 rs7574865 and rs897200 gene variants with RA susceptibility, DAS28, RF, and anti-CCP in Western and Southern Mexico populations. Genotyping was performed on 476 samples (cases = 240; controls = 236) using the Taqman® system and qPCR probes. Disease activity was assessed using DAS28 and HAQ DI. CRP, ESR, RF, and anti-CCP were determined for clinical assessment. Our study showed there is a statistically significant association with susceptibility to RA for the rs7574865 variant in the Western population for the GT and TT genotypes. The same genotypes also showed a moderate-to-high activity according to DAS28 and positive anti-CCP compared to the control group. This association was not found in the Southern population. This work confirms the association of the rs7574865 variant with RA, as well as a moderate-to-high activity and positive anti-CCP in the Western population but not in the Southern population. No association of the rs897200 variant was found in any of the studied populations.
Collapse
Affiliation(s)
- Karla Mayela Bravo-Villagra
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Sergio Cerpa-Cruz
- Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44200, Mexico;
| | | | - Isela Parra-Rojas
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de Bravo 39086, Mexico;
| | - José Alonso Aguilar-Velázquez
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico; (J.F.M.-V.); (C.J.B.-H.); (S.G.-A.)
| | - Andres López-Quintero
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdeG), Guadalajara 44340, Mexico;
| |
Collapse
|
12
|
WANG WEIXUE, WANG TONGTONG, ZHANG YAN, DENG TING, ZHANG HAIYANG, BA YI. Gastric cancer secreted miR-214-3p inhibits the anti-angiogenesis effect of apatinib by suppressing ferroptosis in vascular endothelial cells. Oncol Res 2024; 32:489-502. [PMID: 38370339 PMCID: PMC10874472 DOI: 10.32604/or.2023.046676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 02/20/2024] Open
Abstract
Different from necrosis, apoptosis, autophagy and other forms of cell death, ferroptosis is a mechanism that catalyzes lipid peroxidation of polyunsaturated fatty acids under the action of iron divalent or lipoxygenase, leading to cell death. Apatinib is currently used in the third-line standard treatment of advanced gastric cancer, targeting the anti-angiogenesis pathway. However, Apatinib-mediated ferroptosis in vascular endothelial cells has not been reported yet. Tumor-secreted exosomes can be taken up into target cells to regulate tumor development, but the mechanism related to vascular endothelial cell ferroptosis has not yet been discovered. Here, we show that exosomes secreted by gastric cancer cells carry miR-214-3p into vascular endothelial cells and directly target zinc finger protein A20 to negatively regulate ACSL4, a key enzyme of lipid peroxidation during ferroptosis, thereby inhibiting ferroptosis in vascular endothelial cells and reducing the efficiency of Apatinib. In conclusion, inhibition of miR-214-3p can increase the sensitivity of vascular endothelial cells to Apatinib, thereby promoting the antiangiogenic effect of Apatinib, suggesting a potential combination therapy for advanced gastric cancer.
Collapse
Affiliation(s)
| | | | - YAN ZHANG
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - TING DENG
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - HAIYANG ZHANG
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - YI BA
- Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| |
Collapse
|
13
|
Montúfar-Robles I, Barbosa-Cobos RE, Romero-Díaz J, Valencia-Pacheco G, Cabello-Gutiérrez C, Ramírez-Bello J. The functional TNFAIP3 rs2230926T/G (Phe127Cys) variant confers risk to systemic lupus erythematosus in a Latin American population. Hum Immunol 2024; 85:110736. [PMID: 38042682 DOI: 10.1016/j.humimm.2023.110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
TNFAIP3 is a classical systemic lupus erythematosus (SLE)-associated risk locus identified by genome-wide association studies (GWASs) and replicated by candidate gene association studies primarily in Caucasians and Asians. However, in Latin American populations, its role on SLE susceptibility is not known. We conducted a case-control study to evaluate whether the TNFAIP3 rs2230926T/G (Phe127Cys) variant is associated with risk of developing SLE in a cohort of Mexican patients. The TNFAIP3 rs2230926T/G variant was analyzed in 561 patients with SLE and 499 control subjects, using TaqMan probes. We found that the G allele was associated with susceptibility to SLE under the allelic (OR 2.09, p = 0.005) and genotypic (OR 2.14, p = 0.004) models. In conclusion, our results show that TNFAIP3 rs2230926T/G is a risk factor for the development of SLE in the Mexican population.
Collapse
Affiliation(s)
| | | | - Juanita Romero-Díaz
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guillermo Valencia-Pacheco
- Laboratorio de Hematología Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán, Yucatán, Mexico
| | - Carlos Cabello-Gutiérrez
- Departamento de Investigación en Virología y Micología, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Julian Ramírez-Bello
- Subdirección de Investigación Clínica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
14
|
Ishqi HM, Ali M, Dawra R. Recent advances in the role of neutrophils and neutrophil extracellular traps in acute pancreatitis. Clin Exp Med 2023; 23:4107-4122. [PMID: 37725239 DOI: 10.1007/s10238-023-01180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Pancreatitis is an inflammatory disease, which is triggered by adverse events in acinar cells of the pancreas. After the initial injury, infiltration of neutrophils in pancreas is observed. In the initial stages of pancreatitis, the inflammation is sterile. It has been shown that the presence of neutrophils at the injury site can modulate the disease. Their depletion in experimental animal models of the acute pancreatitis has been shown to be protective. But information on mechanism of contribution to inflammation by neutrophils at the injury site is not clear. Once at injury site, activated neutrophils release azurophilic granules containing proteolytic enzymes and generate hypochlorous acid which is a strong microbicidal agent. Additionally, emerging evidence shows that neutrophil extracellular traps (NETs) are formed which consist of decondensed DNA decorated with histones, proteases and granular and cytosolic proteins. NETs are considered mechanical traps for microbes, but there is preliminary evidence to indicate that NETs, which constitute a special mechanism of the neutrophil defence system, play an adverse role in pancreatitis by contributing to the pancreatic inflammation and distant organ injury. This review presents the overall current information about neutrophils and their role including NETs in acute pancreatitis (AP). It also highlights current gaps in knowledge which should be explored to fully elucidate the role of neutrophils in AP and for therapeutic gains.
Collapse
Affiliation(s)
- Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Misha Ali
- Department of Radiation Oncology and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rajinder Dawra
- Department of Surgery and Sylvester Comprehensive Cancer Centre, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
15
|
Van Damme KFA, Hertens P, Martens A, Gilis E, Priem D, Bruggeman I, Fossoul A, Declercq J, Aegerter H, Wullaert A, Hochepied T, Hoste E, Vande Walle L, Lamkanfi M, Savvides SN, Elewaut D, Lambrecht BN, van Loo G. Protein citrullination and NET formation do not contribute to the pathology of A20/TNFAIP3 mutant mice. Sci Rep 2023; 13:17992. [PMID: 37865713 PMCID: PMC10590390 DOI: 10.1038/s41598-023-45324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
A20 serves as a critical brake on NF-κB-dependent inflammation. In humans, polymorphisms in or near the TNFAIP3/A20 gene have been linked to various inflammatory disorders, including systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Experimental gene knockout studies in mice have confirmed A20 as a susceptibility gene for SLE and RA. Here, we examine the significance of protein citrullination and NET formation in the autoimmune pathology of A20 mutant mice because autoimmunity directed against citrullinated antigens released by neutrophil extracellular traps (NETs) is central to the pathogenesis of RA and SLE. Furthermore, genetic variants impairing the deubiquitinase (DUB) function of A20 have been shown to contribute to autoimmune susceptibility. Our findings demonstrate that genetic disruption of A20 DUB function in A20 C103R knockin mice does not result in autoimmune pathology. Moreover, we show that PAD4 deficiency, which abolishes protein citrullination and NET formation, does not prevent the development of autoimmunity in A20 deficient mice. Collectively, these findings provide experimental confirmation that PAD4-dependent protein citrullination and NET formation do not serve as pathogenic mechanisms in the development of RA and SLE pathology in mice with A20 mutations.
Collapse
Affiliation(s)
- Karel F A Van Damme
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9052, Ghent, Belgium
| | - Pieter Hertens
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Arne Martens
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Elisabeth Gilis
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Dario Priem
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Inge Bruggeman
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Amelie Fossoul
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Jozefien Declercq
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9052, Ghent, Belgium
| | - Helena Aegerter
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9052, Ghent, Belgium
| | - Andy Wullaert
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Laboratory of Proteinscience, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Tino Hochepied
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Esther Hoste
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | | | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, 9052, Ghent, Belgium
| | - Savvas N Savvides
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9052, Ghent, Belgium
| | - Dirk Elewaut
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Rheumatology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Bart N Lambrecht
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, 9052, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Geert van Loo
- VIB, Center for Inflammation Research, Technologiepark 71, 9052, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
16
|
Fazel-Najafabadi M, Looger LL, Reddy-Rallabandi H, Nath SK. A multilayered post-GWAS analysis pipeline defines functional variants and target genes for systemic lupus erythematosus (SLE). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.07.23288295. [PMID: 37066327 PMCID: PMC10104240 DOI: 10.1101/2023.04.07.23288295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Objectives Systemic lupus erythematosus (SLE), an autoimmune disease with incompletely understood etiology, has a strong genetic component. Although genome-wide association studies (GWAS) have revealed multiple SLE susceptibility loci and associated single nucleotide polymorphisms (SNPs), the precise causal variants, target genes, cell types, tissues, and mechanisms of action remain largely unknown. Methods Here, we report a comprehensive post-GWAS analysis using extensive bioinformatics, molecular modeling, and integrative functional genomic and epigenomic analyses to optimize fine-mapping. We compile and cross-reference immune cell-specific expression quantitative trait loci ( cis - and trans -eQTLs) with promoter-capture Hi-C, allele-specific chromatin accessibility, and massively parallel reporter assay data to define predisposing variants and target genes. We experimentally validate a predicted locus using CRISPR/Cas9 genome editing, qPCR, and Western blot. Results Anchoring on 452 index SNPs, we selected 9,931 high-linkage disequilibrium (r 2 >0.8) SNPs and defined 182 independent non-HLA SLE loci. 3,746 SNPs from 143 loci were identified as regulating 564 unique genes. Target genes are enriched in lupus-related tissues and associated with other autoimmune diseases. Of these, 329 SNPs (106 loci) showed significant allele-specific chromatin accessibility and/or enhancer activity, indicating regulatory potential. Using CRISPR/Cas9, we validated rs57668933 as a functional variant regulating multiple targets, including SLE risk gene ELF1 , in B-cells. Conclusion We demonstrate and validate post-GWAS strategies for utilizing multi-dimensional data to prioritize likely causal variants with cognate gene targets underlying SLE pathogenesis. Our results provide a catalog of significantly SLE-associated SNPs and loci, target genes, and likely biochemical mechanisms, to guide experimental characterization.
Collapse
|
17
|
Lu X, Jin H. A Review of CRISPR-Based Advances in Dermatological Diseases. Mol Diagn Ther 2023; 27:445-456. [PMID: 37041404 DOI: 10.1007/s40291-023-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 04/13/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) has revolutionized biomedical research by offering novel approaches to genetic and epigenetic manipulation. In dermatology, it has significantly promoted our understanding of complex diseases, and shown great potential in therapeutic applications. In this review, we introduce the adoption of CRISPR technology as a tool to study different types of skin disorders, including monogenic genodermatoses, inflammatory disorders, and cutaneous infections. We highlight the promising preclinical results of CRISPR-mediated treatment and important mechanic discoveries in investigative studies. Future opportunities and remaining challenges are also discussed. We predict that CRISPR will be more extensively used for dermatological research and even be accessible to patients in the future.
Collapse
Affiliation(s)
- Xinyi Lu
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China.
| |
Collapse
|
18
|
Huang SUS, Kulatunge O, O'Sullivan KM. Deciphering the Genetic Code of Autoimmune Kidney Diseases. Genes (Basel) 2023; 14:genes14051028. [PMID: 37239388 DOI: 10.3390/genes14051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Autoimmune kidney diseases occur due to the loss of tolerance to self-antigens, resulting in inflammation and pathological damage to the kidneys. This review focuses on the known genetic associations of the major autoimmune kidney diseases that result in the development of glomerulonephritis: lupus nephritis (LN), anti-neutrophil cytoplasmic associated vasculitis (AAV), anti-glomerular basement disease (also known as Goodpasture's disease), IgA nephropathy (IgAN), and membranous nephritis (MN). Genetic associations with an increased risk of disease are not only associated with polymorphisms in the human leukocyte antigen (HLA) II region, which governs underlying processes in the development of autoimmunity, but are also associated with genes regulating inflammation, such as NFkB, IRF4, and FC γ receptors (FCGR). Critical genome-wide association studies are discussed both to reveal similarities in gene polymorphisms between autoimmune kidney diseases and to explicate differential risks in different ethnicities. Lastly, we review the role of neutrophil extracellular traps, critical inducers of inflammation in LN, AAV, and anti-GBM disease, where inefficient clearance due to polymorphisms in DNase I and genes that regulate neutrophil extracellular trap production are associated with autoimmune kidney diseases.
Collapse
Affiliation(s)
- Stephanie U-Shane Huang
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| | - Oneli Kulatunge
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| | - Kim Maree O'Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
19
|
Kostopoulou M, Fanouriakis A, Bertsias G, Boumpas DT. Annals of the Rheumatic Diseases collection on lupus nephritis (2019-2022): novel insights and advances in therapy. Ann Rheum Dis 2023; 82:729-733. [PMID: 37094880 DOI: 10.1136/ard-2023-223880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/17/2023] [Indexed: 04/26/2023]
Abstract
No single organ has received as much attention in systemic lupus erythematosus (SLE) as the kidneys. During the period 2019-2022, the Annals of the Rheumatic Diseases published several original papers, brief reports and letters that further elucidate the pathogenesis and advance the management of LN. A selection of representative original papers is highlighted in this review.
Collapse
Affiliation(s)
- Myrto Kostopoulou
- Rheumatology and Clinical Immunology, National and Kapodistrian University, Athens, Greece
| | - Antonis Fanouriakis
- Rheumatology and Clinical Immunology, National and Kapodistrian University, Athens, Greece
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University, Athens, Greece
| | - George Bertsias
- Rheumatology, University of Crete School of Medicine, Iraklio, Greece
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Dimitrios T Boumpas
- Rheumatology and Clinical Immunology, National and Kapodistrian University, Athens, Greece
- Laboratory of Autoimmunity and Inflammation, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
20
|
Accapezzato D, Caccavale R, Paroli MP, Gioia C, Nguyen BL, Spadea L, Paroli M. Advances in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:6578. [PMID: 37047548 PMCID: PMC10095030 DOI: 10.3390/ijms24076578] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a genetically predisposed, female-predominant disease, characterized by multiple organ damage, that in its most severe forms can be life-threatening. The pathogenesis of SLE is complex and involves cells of both innate and adaptive immunity. The distinguishing feature of SLE is the production of autoantibodies, with the formation of immune complexes that precipitate at the vascular level, causing organ damage. Although progress in understanding the pathogenesis of SLE has been slower than in other rheumatic diseases, new knowledge has recently led to the development of effective targeted therapies, that hold out hope for personalized therapy. However, the new drugs available to date are still an adjunct to conventional therapy, which is known to be toxic in the short and long term. The purpose of this review is to summarize recent advances in understanding the pathogenesis of the disease and discuss the results obtained from the use of new targeted drugs, with a look at future therapies that may be used in the absence of the current standard of care or may even cure this serious systemic autoimmune disease.
Collapse
Affiliation(s)
- Daniele Accapezzato
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Gioia
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Bich Lien Nguyen
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
21
|
Sadeghi M, Dehnavi S, Jamialahmadi T, Johnston TP, Sahebkar A. Neutrophil extracellular trap: A key player in the pathogenesis of autoimmune diseases. Int Immunopharmacol 2023; 116:109843. [PMID: 36764274 DOI: 10.1016/j.intimp.2023.109843] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Numerous studies suggest that neutrophils might have a crucial role in the pathogenesis of systemic autoimmune diseases through neutrophil extracellular trap (NET) formation, production of pro-inflammatory cytokines, and organ destruction. NET components that are released into extracellular spaces can be considered autoantigens, which contribute to causing a break in self-tolerance. Subsequently, this leads to the development of autoimmune responses in predisposed individuals. Additionally, an imbalance between NET formation and NET degradation may prolong immune system contact with these modified autoantigens and enhance NET-induced tissue damage. In this review, we discuss the generation and clearance of the NET, as well as the role of NETosis in the pathogenesis of autoimmune disorders, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV), multiple sclerosis (MS), psoriasis, antiphospholipid syndrome (APS), and Type-1 diabetes mellitus (T1DM).
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Poli V, Zanoni I. Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease. Trends Microbiol 2023; 31:280-293. [PMID: 36344311 PMCID: PMC9974585 DOI: 10.1016/j.tim.2022.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Neutrophil extracellular traps (NETs) evolved to protect the host against microbial infections and are formed by a web-like structure of DNA that is decorated with antimicrobial effectors. Due to their potent inflammatory functions, NETs also cause tissue damage and can favor and/or aggravate inflammatory diseases. This multipronged activity of NETs requires that the induction, release, and degradation of NETs are tightly regulated. Here we describe the key pathways that are intrinsic to neutrophils and regulate NETosis, and we review the most recent findings on how neutrophil extrinsic factors participate in the formation of NETs. In particular, we emphasize how bystander cells contribute to modifying the capacity of neutrophils to undergo NETosis. Finally, we discuss how these neutrophil extrinsic processes can be harnessed to protect the host against the excessive inflammation elicited by uncontrolled NET release.
Collapse
Affiliation(s)
- Valentina Poli
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, Boston, MA, USA
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, Boston, MA, USA.
| |
Collapse
|
23
|
Zhu C, Liu C, Chai Z. Role of the PADI family in inflammatory autoimmune diseases and cancers: A systematic review. Front Immunol 2023; 14:1115794. [PMID: 37020554 PMCID: PMC10067674 DOI: 10.3389/fimmu.2023.1115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
The peptidyl arginine deiminase (PADI) family is a calcium ion-dependent group of isozymes with sequence similarity that catalyze the citrullination of proteins. Histones can serve as the target substrate of PADI family isozymes, and therefore, the PADI family is involved in NETosis and the secretion of inflammatory cytokines. Thus, the PADI family is associated with the development of inflammatory autoimmune diseases and cancer, reproductive development, and other related diseases. In this review, we systematically discuss the role of the PADI family in the pathogenesis of various diseases based on studies from the past decade to provide a reference for future research.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| |
Collapse
|
24
|
Fidan K, Koçak S, Söylemezoğlu O, Atak Yücel A, Atak Yucel A. A Well-Intentioned Enemy in Autoimmune and Autoinflammatory Diseases: NETosis. Turk Arch Pediatr 2023; 58:10-19. [PMID: 36598206 PMCID: PMC9885828 DOI: 10.5152/turkarchpediatr.2022.22292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neutrophils are an essential member of the innate immune system derived from the myeloid stem cell series and develop in the bone marrow. The action of neutrophils defined in immune response includes phagocytosis, degranulation, cytokine production, and neutrophil extracellular traps. The success of the host immune defense depends on effective neutrophil activation. Recent studies have shown that neutrophils that have completed their task in the field of inflammation rejoin circulation. Uncontrolled inflammatory response and dysregulated immune responses to the host are important factors in the development of acute and chronic diseases. Neutrophils are the first cells to be drawn into the field at the time of inflammation. They have developed response strategies that produce proinflammatory cytokines and are known as neutrophil extracellular traps since they create mesh-like structures with their DNA contents into the external environment and release their granular proteins in this way. This article summarizes numerous recent studies and reviews the role of neutrophil extracellular traps in autoimmune and autoinflammatory diseases in the hope, that this will lead to the development of more effective treatments. In addition, in this review, the role of neutrophil extracellular trap formation in some pediatric autoimmune diseases is emphasized.
Collapse
Affiliation(s)
- Kibriya Fidan
- Department of Pediatric Nephrology, Gazi University, Faculty of Medicine, Ankara, Turkey,Corresponding author:Kibriya Fidan✉
| | - Senem Koçak
- Ankara University, Biotechnology Institute, Ankara, Turkey
| | - Oğuz Söylemezoğlu
- Department of Pediatric Nephrology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Ayşegül Atak Yücel
- Department of Immunology, Gazi University, Faculty of Medicine, Ankara, Turkey
| | | | | | | | | |
Collapse
|
25
|
Xiao X, Liu Z, Su G, Liu H, Yin W, Guan Y, Jing S, Du L, Li F, Li N, Yang P. A novel uveitis model induced by lipopolysaccharide in zebrafish. Front Immunol 2022; 13:1042849. [PMID: 36532084 PMCID: PMC9751191 DOI: 10.3389/fimmu.2022.1042849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Endotoxin-induced uveitis (EIU) is an important tool for human uveitis study. This study was designed to develop a novel EIU model in zebrafish. Methods An EIU model in zebrafish was induced by intravitreal lipopolysaccharide (LPS) injection and was assessed dynamically. Optical coherence tomography (OCT) was used to assess infiltrating cells in the vitreous body. The histological changes wereevaluated using HE staining and immune cells were measured by immunofluorescence. The retinal RNA Sequencing (RNA-Seq) was used to explore the transcriptional changes during inflammation. RNA-Seq data were analyzed using time-course sequencing data analysis (TCseq), ClueGO plugin in Cytoscape, and Gene Set Enrichment Analysis (GSEA) software. Flow cytometry and retinal flat mounts were used to dynamically quantify the immune cells. Results EIU was successfully induced in zebrafish following intravitreal LPS injection. Inflammation appeared at 4 hours post injection (hpi), reached its peak at 24 hpi, and then resolved at 72 hpi. Immunofluorescence confirmed that massive influx ofneutrophils into the iris and vitreous body, and activation of microglia as evidenced by ameboid-shaped appearance in the retina. Retinal RNA-seq during the EIU course identified four gene clusters with distinct expression characteristics related to Toll-likereceptor signaling pathway, cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, and extracellular matrix (ECM)-receptor interaction, respectively. Prednisone immersion inhibited the inflammatory response of EIU in zebrafish, whichwas confirmed by decreased neutrophils detected in flow cytometry and retinal flat mounts. Conclusions We developed a novel EIU model in zebrafish, which may be particularly useful for gene-editing and high-throughput screening of new drugs for the prevention and treatment of uveitis.
Collapse
Affiliation(s)
- Xiao Xiao
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangluxi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Huan Liu
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenhui Yin
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuxuan Guan
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixiang Jing
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Du
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuzhen Li
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Li
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peizeng Yang
- Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Henan Province Eye Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China,*Correspondence: Peizeng Yang,
| |
Collapse
|
26
|
Knopf J, Sjöwall J, Frodlund M, Hinkula J, Herrmann M, Sjöwall C. NET Formation in Systemic Lupus Erythematosus: Changes during the COVID-19 Pandemic. Cells 2022; 11:cells11172619. [PMID: 36078028 PMCID: PMC9455008 DOI: 10.3390/cells11172619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
The severity of the coronavirus disease in 2019 (COVID-19) is strongly linked to a dysregulated immune response. This fuels the fear of severe disease in patients with autoimmune disorders continuously using immunosuppressive/immunomodulating medications. One complication of COVID-19 is thromboembolism caused by intravascular aggregates of neutrophil extracellular traps (NETs) occluding the affected vessels. Like COVID-19, systemic lupus erythematosus (SLE) is characterized by, amongst others, an increased risk of thromboembolism. An imbalance between NET formation and clearance is suggested to play a prominent role in exacerbating autoimmunity and disease severity. Serologic evidence of exposure to SARS-CoV-2 has a minor impact on the SLE course in a Swedish cohort reportedly. Herein, we assessed NET formation in patients from this cohort by neutrophil elastase (NE) activity and the presence of cell-free DNA, MPO-DNA, and NE-DNA complexes and correlated the findings to the clinical parameters. The presence of NE-DNA complexes and NE activity differed significantly in pre-pandemic versus pandemic serum samples. The latter correlated significantly with the hemoglobin concentration, blood cell counts, and complement protein 3 and 4 levels in the pre-pandemic but only with the leukocyte count and neutrophil levels in the pandemic serum samples. Taken together, our data suggest a change, especially in the NE activity independent of exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Correspondence:
| | - Johanna Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Infectious Diseases, Linköping University, SE-581 85 Linköping, Sweden
| | - Martina Frodlund
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, SE-581 85 Linköping, Sweden
| | - Jorma Hinkula
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, SE-581 85 Linköping, Sweden
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
27
|
Lecerf K, Koboldt DC, Kuehn HS, Jayaraman V, Lee K, Mihalic Mosher T, Yonkof JR, Mori M, Hickey SE, Franklin S, Drew J, Akoghlanian S, Sivaraman V, Rosenzweig SD, Wilson RK, Abraham RS. Case report and review of the literature: immune dysregulation in a large familial cohort due to a novel pathogenic RELA variant. Rheumatology (Oxford) 2022; 62:347-359. [PMID: 35412596 PMCID: PMC9960492 DOI: 10.1093/rheumatology/keac227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To explore and define the molecular cause(s) of a multi-generational kindred affected by Bechet's-like mucocutaneous ulcerations and immune dysregulation. METHODS Whole genome sequencing and confirmatory Sanger sequencing were performed. Components of the NFκB pathway were quantified by immunoblotting, and function was assessed by cytokine production (IL-6, TNF-α, IL-1β) after lipopolysaccharide (LPS) stimulation. Detailed immunophenotyping of T-cell and B-cell subsets was performed in four patients from this cohort. RESULTS A novel variant in the RELA gene, p. Tyr349LeufsTer13, was identified. This variant results in premature truncation of the protein before the serine (S) 536 residue, a key phosphorylation site, resulting in enhanced degradation of the p65 protein. Immunoblotting revealed significantly decreased phosphorylated [p]p65 and pIκBα. The decrease in [p]p65 may suggest reduced heterodimer formation between p50/p65 (NFκB1/RelA). Immunophenotyping revealed decreased naïve T cells, increased memory T cells, and expanded senescent T-cell populations in one patient (P1). P1 also had substantially higher IL-6 and TNF-α levels post-stimulation compared with the other three patients. CONCLUSION Family members with this novel RELA variant have a clinical phenotype similar to other reported RELA cases with predominant chronic mucocutaneous ulceration; however, the clinical phenotype broadens to include Behçet's syndrome and IBD. Here we describe the clinical, immunological and genetic evaluation of a large kindred to further expand identification of patients with autosomal dominant RELA deficiency, facilitating earlier diagnosis and intervention. The functional impairment of the canonical NFκB pathway suggests that this variant is causal for the clinical phenotype in these patients.
Collapse
Affiliation(s)
- Kelsey Lecerf
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital,Division of Allergy and Immunology, Department of Otolaryngology, The Ohio State University Wexner Medical Center
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Hye Sun Kuehn
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Vijayakumar Jayaraman
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH,Department of Pathology, The Ohio State University Wexner College of Medicine, Columbus, OH
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH,Ambry Genetics, Aliso Viejo, CA
| | | | - Mari Mori
- Division of Genetic and Genomic Medicine
| | | | - Samuel Franklin
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Joanne Drew
- Division of Pediatric Rheumatology, Department of Pediatrics
| | | | - Vidya Sivaraman
- Division of Pediatric Rheumatology, Department of Pediatrics
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Roshini S Abraham
- Correspondence to: Roshini S. Abraham, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH-43205, USA. E-mail:
| |
Collapse
|
28
|
Yang L, Yan Y. Emerging Roles of Post-Translational Modifications in Skin Diseases: Current Knowledge, Challenges and Future Perspectives. J Inflamm Res 2022; 15:965-975. [PMID: 35177923 PMCID: PMC8846607 DOI: 10.2147/jir.s339296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins represent as a key step in regulating their biological functions and dynamic interaction with other players. This process is fine-tuned by a myriad of enzymes named “writers, readers and erasers” whose actions are precisely controlled. Either the mutation, aberration in the expression of the aforementioned enzymes or their substrates have shown to participate in the pathogenesis of various skin diseases such as melanoma, vitiligo, psoriasis, eczema, atopic dermatitis and inherited dermatological diseases. It is becoming increasingly clear that key transcriptional factors, inflammation-related molecules are prone to PTMs. Despite their importance in regulating key processes including inflammation, keratinocyte apoptosis, proliferation and differentiation, PTMs have received less attention due to the challenges involved. Here in this review we summarize the role of the most common types and the newly discovered PTMs, including acetylation, glycosylation, citrullination, PARylation and sumoylation in dermatoses and surveys the recent progress in PTM-based therapeutic approaches in skin diseases.
Collapse
Affiliation(s)
- Luting Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
- Correspondence: Luting Yang; Yaping Yan, Email ;
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|
29
|
Lee MH, Shin JI, Yang JW, Lee KH, Cha DH, Hong JB, Park Y, Choi E, Tizaoui K, Koyanagi A, Jacob L, Park S, Kim JH, Smith L. Genome Editing Using CRISPR-Cas9 and Autoimmune Diseases: A Comprehensive Review. Int J Mol Sci 2022; 23:1337. [PMID: 35163260 PMCID: PMC8835887 DOI: 10.3390/ijms23031337] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Autoimmune diseases are disorders that destruct or disrupt the body's own tissues by its own immune system. Several studies have revealed that polymorphisms of multiple genes are involved in autoimmune diseases. Meanwhile, gene therapy has become a promising approach in autoimmune diseases, and clustered regularly interspaced palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) has become one of the most prominent methods. It has been shown that CRISPR-Cas9 can be applied to knock out proprotein convertase subtilisin/kexin type 9 (PCSK9) or block PCSK9, resulting in lowering low-density lipoprotein cholesterol. In other studies, it can be used to treat rare diseases such as ornithine transcarbamylase (OTC) deficiency and hereditary tyrosinemia. However, few studies on the treatment of autoimmune disease using CRISPR-Cas9 have been reported so far. In this review, we highlight the current and potential use of CRISPR-Cas9 in the management of autoimmune diseases. We summarize the potential target genes for immunomodulation using CRISPR-Cas9 in autoimmune diseases including rheumatoid arthritis (RA), inflammatory bowel diseases (IBD), systemic lupus erythematosus (SLE), multiple sclerosis (MS), type 1 diabetes mellitus (DM), psoriasis, and type 1 coeliac disease. This article will give a new perspective on understanding the use of CRISPR-Cas9 in autoimmune diseases not only through animal models but also in human models. Emerging approaches to investigate the potential target genes for CRISPR-Cas9 treatment may be promising for the tailored immunomodulation of some autoimmune diseases in the near future.
Collapse
Affiliation(s)
- Min Ho Lee
- Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (D.H.C.); (J.B.H.); (Y.P.); (E.C.); (S.P.)
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea; (J.I.S.); (K.H.L.)
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea; (J.I.S.); (K.H.L.)
| | - Do Hyeon Cha
- Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (D.H.C.); (J.B.H.); (Y.P.); (E.C.); (S.P.)
- Korea Advanced Institute for Science and Technology, Graduate School of Medical Science and Engineering, Daejeon 34141, Korea
| | - Jun Beom Hong
- Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (D.H.C.); (J.B.H.); (Y.P.); (E.C.); (S.P.)
| | - Yeoeun Park
- Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (D.H.C.); (J.B.H.); (Y.P.); (E.C.); (S.P.)
| | - Eugene Choi
- Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (D.H.C.); (J.B.H.); (Y.P.); (E.C.); (S.P.)
| | - Kalthoum Tizaoui
- Laboratory Microorganismes and Active Biomolecules, Sciences Faculty of Tunis, University Tunis El Manar, Tunis 1068, Tunisia;
| | - Ai Koyanagi
- Parc Sanitari Sant Joan de Deu/CIBERSAM, Universitat de Barcelona, Fundacio Sant Joan de Deu, Sant Boi de Llobregat, 08830 Barcelona, Spain; (A.K.); (L.J.)
- ICREA, Pg. LluisCompanys 23, 08010 Barcelona, Spain
| | - Louis Jacob
- Parc Sanitari Sant Joan de Deu/CIBERSAM, Universitat de Barcelona, Fundacio Sant Joan de Deu, Sant Boi de Llobregat, 08830 Barcelona, Spain; (A.K.); (L.J.)
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78180 Montigny-le-Bretonneux, France
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul 03722, Korea; (M.H.L.); (D.H.C.); (J.B.H.); (Y.P.); (E.C.); (S.P.)
| | - Ji Hong Kim
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| |
Collapse
|
30
|
Georgakis S, Gkirtzimanaki K, Papadaki G, Gakiopoulou H, Drakos E, Eloranta ML, Makridakis M, Kontostathi G, Zoidakis J, Baira E, Rönnblom L, Boumpas DT, Sidiropoulos P, Verginis P, Bertsias G. NETs decorated with bioactive IL-33 infiltrate inflamed tissues and induce IFN-α production in patients with SLE. JCI Insight 2021; 6:147671. [PMID: 34554930 PMCID: PMC8663547 DOI: 10.1172/jci.insight.147671] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
IL-33, a nuclear alarmin released during cell death, exerts context-specific effects on adaptive and innate immune cells, eliciting potent inflammatory responses. We screened blood, skin, and kidney tissues from patients with systemic lupus erythematosus (SLE), a systemic autoimmune disease driven by unabated type I IFN production, and found increased amounts of extracellular IL-33 complexed with neutrophil extracellular traps (NETs), correlating with severe, active disease. Using a combination of molecular, imaging, and proteomic approaches, we show that SLE neutrophils, activated by disease immunocomplexes, release IL-33–decorated NETs that stimulate robust IFN-α synthesis by plasmacytoid DCs in a manner dependent on the IL-33 receptor ST2L. IL33-silenced neutrophil-like cells cultured under lupus-inducing conditions generated NETs with diminished interferogenic effect. Importantly, NETs derived from patients with SLE are enriched in mature bioactive isoforms of IL-33 processed by the neutrophil proteases elastase and cathepsin G. Pharmacological inhibition of these proteases neutralized IL-33–dependent IFN-α production elicited by NETs. We believe these data demonstrate a novel role for cleaved IL-33 alarmin decorating NETs in human SLE, linking neutrophil activation, type I IFN production, and end-organ inflammation, with skin pathology mirroring that observed in the kidneys.
Collapse
Affiliation(s)
- Spiros Georgakis
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Katerina Gkirtzimanaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Garyfalia Papadaki
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Hariklia Gakiopoulou
- 1st Department of Pathology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Elias Drakos
- Department of Pathology, University of Crete, Medical School, Iraklio, Greece
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgia Kontostathi
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eirini Baira
- Laboratory of Toxicological Assessment of Pesticides, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Lars Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece.,Joint Rheumatology Program and 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| | - Panayotis Verginis
- Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece.,Laboratory of Immune Regulation and Tolerance, University of Crete, Medical School, Iraklio, Greece
| | - George Bertsias
- Laboratory of Rheumatology, Autoimmunity and Inflammation, University of Crete, Medical School, Iraklio, Greece.,Infections and Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas (FORTH), Iraklio, Greece
| |
Collapse
|
31
|
Mutua V, Gershwin LJ. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin Rev Allergy Immunol 2021; 61:194-211. [PMID: 32740860 PMCID: PMC7395212 DOI: 10.1007/s12016-020-08804-7] [Citation(s) in RCA: 330] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Activated neutrophils release neutrophil extracellular traps (NETs) in response to a variety of stimuli. NETosis is driven by protein-arginine deiminase type 4, with the release of intracellular granule components that function by capturing and destroying microbes, including viral, fungal, bacterial, and protozoal pathogens. The positive effects of pathogen control are countered by pro-inflammatory effects as demonstrated in a variety of diseases. Components of NETS are non-specific, and other than controlling microbes, they cause injury to surrounding tissue by themselves or by increasing the pro-inflammatory response. NETs can play a role in enhancement of the inflammation seen in autoimmune diseases including psoriasis, rheumatoid arthritis, and systemic lupus erythematosis. In addition, autoinflammatory diseases such as gout have been associated with NETosis. Inhibition of NETs may decrease the severity of many diseases improving survival. Herein, we describe NETosis in different diseases focusing on the detrimental effect of NETs and outline possible therapeutics that can be used to mitigate netosis. There is a need for more studies and clinical trials on these and other compounds that could prevent or destroy NETs, thereby decreasing damage to patients.
Collapse
Affiliation(s)
- Victoria Mutua
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA.
| | - Laurel J Gershwin
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, USA
| |
Collapse
|
32
|
Endo Y, Funakoshi Y, Koga T, Ohashi H, Takao M, Miura K, Yoshiura KI, Matsumoto T, Moriuchi H, Kawakami A. Large deletion in 6q containing the TNFAIP3 gene associated with autoimmune lymphoproliferative syndrome. Clin Immunol 2021; 235:108853. [PMID: 34520861 DOI: 10.1016/j.clim.2021.108853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Yushiro Endo
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Medical Sciences, Nagasaki, Japan
| | - Yasutomo Funakoshi
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Medical Sciences, Nagasaki, Japan.
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Mami Takao
- Department of Genetic Counseling Unit, Clinical Genomics Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tadashi Matsumoto
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Moriuchi
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Medical Sciences, Nagasaki, Japan
| |
Collapse
|
33
|
Tawa GJ, Braisted J, Gerhold D, Grewal G, Mazcko C, Breen M, Sittampalam G, LeBlanc AK. Transcriptomic profiling in canines and humans reveals cancer specific gene modules and biological mechanisms common to both species. PLoS Comput Biol 2021; 17:e1009450. [PMID: 34570764 PMCID: PMC8523068 DOI: 10.1371/journal.pcbi.1009450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 10/18/2021] [Accepted: 09/14/2021] [Indexed: 12/25/2022] Open
Abstract
Understanding relationships between spontaneous cancer in companion (pet) canines and humans can facilitate biomarker and drug development in both species. Towards this end we developed an experimental-bioinformatic protocol that analyzes canine transcriptomics data in the context of existing human data to evaluate comparative relevance of canine to human cancer. We used this protocol to characterize five canine cancers: melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma, in 60 dogs. We applied an unsupervised, iterative clustering method that yielded five co-expression modules and found that each cancer exhibited a unique module expression profile. We constructed cancer models based on the co-expression modules and used the models to successfully classify the canine data. These canine-derived models also successfully classified human tumors representing the same cancers, indicating shared cancer biology between canines and humans. Annotation of the module genes identified cancer specific pathways relevant to cells-of-origin and tumor biology. For example, annotations associated with melanin production (PMEL, GPNMB, and BACE2), synthesis of bone material (COL5A2, COL6A3, and COL12A1), synthesis of pulmonary surfactant (CTSH, LPCAT1, and NAPSA), ribosomal proteins (RPL8, RPS7, and RPLP0), and epigenetic regulation (EDEM1, PTK2B, and JAK1) were unique to melanoma, osteosarcoma, pulmonary carcinoma, B- and T-cell lymphoma, respectively. In total, 152 biomarker candidates were selected from highly expressing modules for each cancer type. Many of these biomarker candidates are under-explored as drug discovery targets and warrant further study. The demonstrated transferability of classification models from canines to humans enforces the idea that tumor biology, biomarker targets, and associated therapeutics, discovered in canines, may translate to human medicine.
Collapse
Affiliation(s)
- Gregory J. Tawa
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - John Braisted
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - David Gerhold
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - Gurmit Grewal
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - Christina Mazcko
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Comparative Oncology Program, Bethesda, Maryland, United States of America
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, North Carolina, United States of America
| | - Gurusingham Sittampalam
- National Institutes of Health, National Center for Advancing Translational Sciences, Division of Preclinical Innovation, Therapeutic Development Branch, Rockville, Maryland, United States of America
| | - Amy K. LeBlanc
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Comparative Oncology Program, Bethesda, Maryland, United States of America
| |
Collapse
|
34
|
Abstract
Based on the PubMed data, we have been performing a yearly evaluation of the publications related to autoimmune diseases and immunology to ascertain the relative weight of the former in the scientific literature. It is particularly intriguing to observe that despite the numerous new avenues of immune-related mechanisms, such as cancer immunotherapy, the proportion of immunology manuscripts related to autoimmunity continues to increase and has been approaching 20% in 2019. As in the previous 13 years, we performed an arbitrary selection of the peer-reviewed articles published by the major dedicated Journals and discussed the common themes which continue to outnumber peculiarites in autoimmune diseases. The investigated areas included systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriatic arthritis (PsA), autoantibodies (autoAbs), and common therapeutic avenues and novel pathogenic mechanisms for autoimmune conditions. Some examples include new pathogenetic evidence which is well represented by IL21 or P2X7 receptor (P2X7R) in SLE or the application of single-cell RNA sequencing (scRNA-seq), mass cytometry, bulk RNA sequencing (RNA-seq), and flow cytometry for the analysis of different cellular populations in RA. Cumulatively and of interest to the clinicians, a large number of findings continue to underline the importance of a strict relationship between basic and clinical science to define new pathogenetic and therapeutic developments. The therapeutic pipeline in autoimmunity continues to grow and maintain a constant flow of new molecules, as well illustrated in RA and PsA, and this is most certainly derived from the new basic evidence and the high-throughput tools applied to autoimmune diseases.
Collapse
|
35
|
Baglaenko Y, Macfarlane D, Marson A, Nigrovic PA, Raychaudhuri S. Genome editing to define the function of risk loci and variants in rheumatic disease. Nat Rev Rheumatol 2021; 17:462-474. [PMID: 34188205 PMCID: PMC10782829 DOI: 10.1038/s41584-021-00637-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
Discoveries in human genetic studies have revolutionized our understanding of complex rheumatic and autoimmune diseases, including the identification of hundreds of genetic loci and single nucleotide polymorphisms that potentially predispose individuals to disease. However, in most cases, the exact disease-causing variants and their mechanisms of action remain unresolved. Functional follow-up of these findings is most challenging for genomic variants that are in non-coding genomic regions, where the large majority of common disease-associated variants are located, and/or that probably affect disease progression via cell type-specific gene regulation. To deliver on the therapeutic promise of human genetic studies, defining the mechanisms of action of these alleles is essential. Genome editing technology, such as CRISPR-Cas, has created a vast toolbox for targeted genetic and epigenetic modifications that presents unprecedented opportunities to decipher disease-causing loci, genes and variants in autoimmunity. In this Review, we discuss the past 5-10 years of progress in resolving the mechanisms underlying rheumatic disease-associated alleles, with an emphasis on how genomic editing techniques can enable targeted dissection and mechanistic studies of causal autoimmune risk variants.
Collapse
Affiliation(s)
- Yuriy Baglaenko
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Dana Macfarlane
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexander Marson
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter A Nigrovic
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
36
|
Liu Y, Kaplan MJ. Neutrophil Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:317-333. [PMID: 34215366 DOI: 10.1016/j.rdc.2021.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent identifications of a subset of proinflammatory neutrophils, low-density granulocytes, and their ability to readily form neutrophil extracellular traps led to a resurgence of interest in neutrophil dysregulation in the pathogenesis of systemic lupus erythematosus (SLE). This article presents an overview on how neutrophil dysregulation modulates the innate and adaptive immune responses in SLE and their putative roles in disease pathogenesis. The therapeutic potential of targeting this pathogenic process in the treatment of SLE is also discussed.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD 20892-1930, USA.
| |
Collapse
|
37
|
Hasni SA, Gupta S, Davis M, Poncio E, Temesgen-Oyelakin Y, Carlucci PM, Wang X, Naqi M, Playford MP, Goel RR, Li X, Biehl AJ, Ochoa-Navas I, Manna Z, Shi Y, Thomas D, Chen J, Biancotto A, Apps R, Cheung F, Kotliarov Y, Babyak AL, Zhou H, Shi R, Stagliano K, Tsai WL, Vian L, Gazaniga N, Giudice V, Lu S, Brooks SR, MacKay M, Gregersen P, Mehta NN, Remaley AT, Diamond B, O’Shea JJ, Gadina M, Kaplan MJ. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat Commun 2021; 12:3391. [PMID: 34099646 PMCID: PMC8185103 DOI: 10.1038/s41467-021-23361-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
Increased risk of premature cardiovascular disease (CVD) is well recognized in systemic lupus erythematosus (SLE). Aberrant type I-Interferon (IFN)-neutrophil interactions contribute to this enhanced CVD risk. In lupus animal models, the Janus kinase (JAK) inhibitor tofacitinib improves clinical features, immune dysregulation and vascular dysfunction. We conducted a randomized, double-blind, placebo-controlled clinical trial of tofacitinib in SLE subjects (ClinicalTrials.gov NCT02535689). In this study, 30 subjects are randomized to tofacitinib (5 mg twice daily) or placebo in 2:1 block. The primary outcome of this study is safety and tolerability of tofacitinib. The secondary outcomes include clinical response and mechanistic studies. The tofacitinib is found to be safe in SLE meeting study's primary endpoint. We also show that tofacitinib improves cardiometabolic and immunologic parameters associated with the premature atherosclerosis in SLE. Tofacitinib improves high-density lipoprotein cholesterol levels (p = 0.0006, CI 95%: 4.12, 13.32) and particle number (p = 0.0008, CI 95%: 1.58, 5.33); lecithin: cholesterol acyltransferase concentration (p = 0.024, CI 95%: 1.1, -26.5), cholesterol efflux capacity (p = 0.08, CI 95%: -0.01, 0.24), improvements in arterial stiffness and endothelium-dependent vasorelaxation and decrease in type I IFN gene signature, low-density granulocytes and circulating NETs. Some of these improvements are more robust in subjects with STAT4 risk allele.
Collapse
Affiliation(s)
- Sarfaraz A. Hasni
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Sarthak Gupta
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA ,grid.420086.80000 0001 2237 2479Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD USA
| | - Michael Davis
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Elaine Poncio
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Yenealem Temesgen-Oyelakin
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Philip M. Carlucci
- grid.420086.80000 0001 2237 2479Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD USA
| | - Xinghao Wang
- grid.420086.80000 0001 2237 2479Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD USA
| | - Mohammad Naqi
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Martin P. Playford
- grid.279885.90000 0001 2293 4638Section of Inflammation and Cardiometabolic Diseases, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, MD USA
| | - Rishi R. Goel
- grid.420086.80000 0001 2237 2479Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD USA
| | - Xiaobai Li
- grid.410305.30000 0001 2194 5650NIH Clinical Center Biostatistics and Clinical Epidemiology Service, Bethesda, MD USA
| | - Ann J. Biehl
- grid.420086.80000 0001 2237 2479Office of the Clinical Director, NIAMS, NIH, Bethesda, MD USA
| | - Isabel Ochoa-Navas
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Zerai Manna
- grid.420086.80000 0001 2237 2479Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD USA
| | - Yinghui Shi
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Donald Thomas
- Arthritis and Pain Associates of PG County, Greenbelt, MD USA
| | - Jinguo Chen
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Angélique Biancotto
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Richard Apps
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Foo Cheung
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Yuri Kotliarov
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Ashley L. Babyak
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Huizhi Zhou
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Rongye Shi
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Katie Stagliano
- grid.94365.3d0000 0001 2297 5165Trans-NIH Center for Human Immunology, Autoimmunity and Inflammation, NIH, Bethesda, MD USA
| | - Wanxia Li Tsai
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Laura Vian
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Nathalia Gazaniga
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Valentina Giudice
- grid.279885.90000 0001 2293 4638Hematology Branch, NHLBI, NIH, Bethesda, MD USA
| | - Shajia Lu
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Stephen R. Brooks
- grid.420086.80000 0001 2237 2479Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD USA
| | - Meggan MacKay
- grid.250903.d0000 0000 9566 0634Feinstein Institute for Medical Research, Manhasset, NY USA
| | - Peter Gregersen
- grid.250903.d0000 0000 9566 0634Feinstein Institute for Medical Research, Manhasset, NY USA
| | - Nehal N. Mehta
- grid.279885.90000 0001 2293 4638Section of Inflammation and Cardiometabolic Diseases, National Heart Lung and Blood Institute (NHLBI), NIH, Bethesda, MD USA
| | - Alan T. Remaley
- grid.279885.90000 0001 2293 4638Translational Vascular Medicine Branch, NHLBI, NIH, Bethesda, MD USA
| | - Betty Diamond
- grid.250903.d0000 0000 9566 0634Feinstein Institute for Medical Research, Manhasset, NY USA
| | - John J. O’Shea
- grid.420086.80000 0001 2237 2479Molecular Immunology and Inflammation Branch, NIAMS, NIH, Bethesda, MD USA
| | - Massimo Gadina
- grid.420086.80000 0001 2237 2479Translational Immunology Section, NIAMS, NIH, Bethesda, MD USA
| | - Mariana J. Kaplan
- grid.420086.80000 0001 2237 2479Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD USA
| |
Collapse
|
38
|
Montúfar-Robles I, Soto ME, Jiménez-Morales S, Gamboa R, Huesca-Gómez C, Ramírez-Bello J. Polymorphisms in TNFAIP3, but not in STAT4, BANK1, BLK, and TNFSF4, are associated with susceptibility to Takayasu arteritis. Cell Immunol 2021; 365:104375. [PMID: 33975174 DOI: 10.1016/j.cellimm.2021.104375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/08/2021] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Takayasu arteritis (TAK) is considered a rare disease characterized by nonspecific inflammation of the large arteries, especially the aorta and its major branches. Because TAK is an autoimmune disease (AD), it could share susceptibility loci with other pathologies such as systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), among others. Widely explored polymorphisms in non-HLA genes, including TNFAIP3, STAT4, TNFSF4, BANK1, and BLK have been consistently associated with both SLE and RA, but they have not been evaluated in TAK. OBJECTIVE The aim of our study was to investigate whether TNFAIP3, STAT4, BANK1, BLK, and TNFSF4 polymorphisms are associated with susceptibility to TAK. METHODS The TNFAIP3 rs2230926T/G and rs5029924C/T, STAT4 rs7574865G/T, BANK1 10516487G/A, BLK rs2736340T/C, rs13277113A/G, and TNFS4 rs2205960G/T polymorphisms were genotyped in 101 cases and 276 controls by using a TaqMan SNP genotyping assay. An association analysis was performed. RESULTS The TNFAIP3 rs2230926T/G and rs5029924C/T polymorphisms were in complete linkage disequilibrium and turned out to be risk factors for TAK (OR = 4.88, p = 0.0001). The STAT4, BANK1, BLK, and TNFSF4 polymorphisms were not associated with the disease. CONCLUSIONS This is the first study documenting an association of TNFAIP3 rs2230926T/G and rs5029924C/T with TAK. Our results provide new information on the genetic bases of TAK.
Collapse
Affiliation(s)
| | - María Elena Soto
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, México City, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ricardo Gamboa
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, México City, Mexico
| | - Claudia Huesca-Gómez
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, México City, Mexico
| | | |
Collapse
|
39
|
Winslow S, Odqvist L, Diver S, Riise R, Abdillahi S, Wingren C, Lindmark H, Wellner A, Lundin S, Yrlid L, Ax E, Djukanovic R, Sridhar S, Higham A, Singh D, Southworth T, Brightling CE, Olsson HK, Jevnikar Z. Multi-omics links IL-6 trans-signalling with neutrophil extracellular trap formation and Haemophilus infection in COPD. Eur Respir J 2021; 58:13993003.03312-2020. [PMID: 33766947 DOI: 10.1183/13993003.03312-2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND IL-6 trans-signalling (IL-6TS) is emerging as a pathogenic mechanism in chronic respiratory diseases, however the drivers of IL-6TS in the airways and the phenotypic characteristic of patients with increased IL-6TS pathway activation remain poorly understood. OBJECTIVE Our aim was to identify and characterize COPD patients with increased airway IL-6TS and to elucidate the biological drivers of IL-6TS pathway activation. METHODS We used an IL-6TS-specific sputum biomarker profile (sIL-6R, IL-6, IL-1β, IL-8, MIP-1β) to stratify sputum data from patients with COPD (n=74; BEAT-COPD) by hierarchical clustering. The IL-6TS signature was related to clinical characteristics and sputum microbiome profiles. The induction of neutrophil extracellular trap formation (NETosis) and IL-6TS by Haemophilus influenzae were studied in human neutrophils. RESULTS Hierarchical clustering revealed an IL-6TS-high subset (n=24) of COPD patients, which shared phenotypic traits with an IL-6TS-high subset previously identified in asthma. The subset was characterized by increased sputum cell counts (p=0.0001), persistent sputum neutrophilia (p=0.0004), reduced quality of life (CRQ total score; p=0.008), and increased levels of pro-inflammatory mediators and MMPs in sputum. IL-6TS-high COPD patients showed an increase in Proteobacteria, with Haemophilus as the dominating genus. NETosis induced by H. influenzae was identified as a potential mechanism for increased soluble IL-6 receptor (sIL-6R) levels. This was supported by a significant positive correlation between sIL-6R and NETosis markers in bronchoalveolar lavage fluid from COPD patients. CONCLUSION IL-6TS pathway activation due to chronic colonization with Haemophilus may be an important disease driver in a subset of COPD patients.
Collapse
Affiliation(s)
- Sofia Winslow
- Translational Science and Experimental Medicine, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lina Odqvist
- Bioscience COPD/IPF, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sarah Diver
- Department of Respiratory Science, Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Rebecca Riise
- Bioscience COPD/IPF, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suado Abdillahi
- Bioscience COPD/IPF, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Wingren
- Bioscience COPD/IPF, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Helena Lindmark
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Wellner
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sofia Lundin
- Translational Science and Experimental Medicine, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Yrlid
- Bioscience COPD/IPF, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Ax
- Translational Science and Experimental Medicine, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences and Human Development and Health, University of Southampton, Southampton, UK
| | - Sriram Sridhar
- Oncology Bioinformatics, Translational Science, Early Oncology, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew Higham
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - Dave Singh
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - Thomas Southworth
- The University of Manchester Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester, NHS Foundation Trust, Manchester, UK
| | - Christopher E Brightling
- Department of Respiratory Science, Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Henric K Olsson
- Translational Science and Experimental Medicine, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Zala Jevnikar
- Translational Science and Experimental Medicine, Early Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
40
|
Okamato Y, Ghosh T, Okamoto T, Schuyler RP, Seifert J, Charry LL, Visser A, Feser M, Fleischer C, Pedrick C, August J, Moss L, Bemis EA, Norris JM, Kuhn KA, Demoruelle MK, Deane KD, Ghosh D, Holers VM, Hsieh EWY. Subjects at-risk for future development of rheumatoid arthritis demonstrate a PAD4-and TLR-dependent enhanced histone H3 citrullination and proinflammatory cytokine production in CD14 hi monocytes. J Autoimmun 2021; 117:102581. [PMID: 33310262 PMCID: PMC7855988 DOI: 10.1016/j.jaut.2020.102581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The presence of anti-citrullinated protein/peptide antibodies (ACPA) and epitope spreading across the target autoantigens is a unique feature of rheumatoid arthritis (RA). ACPA are present in the peripheral blood for several years prior to the onset of arthritis and clinical classification of RA. ACPA recognize multiple citrullinated proteins, including histone H3 (H3). Intracellular citrullination of H3 in neutrophils and T cells is known to regulate immune cell function by promoting neutrophil extracellular trap formation and citrullinated autoantigen release as well as regulating the Th2/Th17 T cell phenotypic balance. However, the roles of H3 citrullination in other immune cells are not fully elucidated. We aimed to explore H3 citrullination and cytokine/metabolomic signatures in peripheral blood immune cells from subjects prior to and after the onset of RA, at baseline and in response to ex vivo toll-like receptor (TLR) stimulation. Here, we analyzed 13 ACPA (+) subjects without arthritis but at-risk for future development of RA, 14 early RA patients, and 13 healthy controls. We found significantly elevated H3 citrullination in CD14hi monocytes, as well as CD1c+ dendritic cells and CD66+ granulocytes. Unsupervised analysis identified two distinct subsets in CD14hi monocytes characterized by H3 modification and unique cytokine/metabolomic signatures. CD14hi monocytes with elevated TLR-stimulated H3 citrullination were significantly increased in ACPA (+) at-risk subjects. These cells were skewed to produce TNFα, MIP1β, IFNα, and partially IL-12. Additionally, they demonstrate peptidyl arginine deiminase 4 (PAD4) mediated upregulation of the glycolytic enzyme PFKFB3. These CD14hi monocytes with elevated H3 citrullination morphologically formed monocyte extracellular traps (METs). Taken together, dysregulated PAD4-driven cytokine production as well as MET formation in CD14hi monocytes in ACPA (+) at-risk subjects likely plays an important role in the development of RA via promoting and perpetuating inflammation and generation of citrullinated autoantigens.
Collapse
Affiliation(s)
- Yuko Okamato
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA; Tokyo Women's Medical University School of Medicine, Department of Rheumatology, Tokyo, Japan.
| | - Tusharkanti Ghosh
- Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Tsukasa Okamoto
- University of Colorado Denver, Department of Medicine, Aurora, CO, USA
| | - Ronald P Schuyler
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Jennifer Seifert
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Laura Lenis Charry
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Ashley Visser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Marie Feser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chelsie Fleischer
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chong Pedrick
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Justin August
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Laurakay Moss
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Elizabeth A Bemis
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Jill M Norris
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Kristine A Kuhn
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | | | - Kevin D Deane
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Debashis Ghosh
- Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - V Michael Holers
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Elena W Y Hsieh
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, CO, USA; University of Colorado School of Medicine, Children's Hospital Colorado, Department of Pediatrics, Section of Allergy & Immunology, Aurora, CO, USA
| |
Collapse
|
41
|
Gupta S, Kaplan MJ. Bite of the wolf: innate immune responses propagate autoimmunity in lupus. J Clin Invest 2021; 131:144918. [PMID: 33529160 PMCID: PMC7843222 DOI: 10.1172/jci144918] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiopathogenesis of systemic lupus erythematosus (SLE), a clinically heterogeneous multisystemic syndrome that derives its name from the initial characterization of facial lesions that resemble the bite of a wolf, is considered a complex, multifactorial interplay between underlying genetic susceptibility factors and the environment. Prominent pathogenic factors include the induction of aberrant cell death pathways coupled with defective cell death clearance mechanisms that promote excessive externalization of modified cellular and nuclear debris with subsequent loss of tolerance to a wide variety of autoantigens and innate and adaptive immune dysregulation. While abnormalities in adaptive immunity are well recognized and are key to the pathogenesis of SLE, recent findings have emphasized fundamental roles of the innate immune system in the initiation and propagation of autoimmunity and the development of organ damage in this disease. This Review focuses on recent discoveries regarding the role of components of the innate immune system, specifically neutrophils and interferons, in promoting various aspects of lupus pathogenesis, with potential implications for novel therapeutic strategies.
Collapse
|
42
|
Abstract
Inflammation is triggered by stimulation of innate sensors that recognize pathogens, chemical and physical irritants, and damaged cells subsequently initiating a well-orchestrated adaptive immune response. Immune cell activation is a strictly regulated and self-resolving process supported by an array of negative feedback mechanisms to sustain tissue homeostasis. The disruption of these regulatory pathways forms the basis of chronic inflammatory diseases, including periodontitis. Ubiquitination, a covalent posttranslational modification of target proteins with ubiquitin, has a profound effect on the stability and activity of its substrates, thereby regulating the immune system at molecular and cellular levels. Through the cooperative actions of E3 ubiquitin ligases and deubiquitinases, ubiquitin modifications are implicated in several biological processes, including proteasomal degradation, transcriptional regulation, regulation of protein-protein interactions, endocytosis, autophagy, DNA repair, and cell cycle regulation. A20 (tumor necrosis factor α-induced protein 3 or TNFAIP3) is a ubiquitin-editing enzyme that mainly functions as an endogenous regulator of inflammation through termination of nuclear factor (NF)-κB activation as part of a negative feedback loop. A20 interacts with substrates that reside downstream of immune sensors, including Toll-like receptors, nucleotide-binding oligomerization domain-containing receptors, lymphocyte receptors, and cytokine receptors. Due to its pleiotropic functions as a ubiquitin binding protein, deubiquitinase and ubiquitin ligase, and its versatile role in various signaling pathways, aberrant A20 levels are associated with numerous conditions such as rheumatoid arthritis, diabetes, systemic lupus erythematosus, inflammatory bowel disease, psoriasis, Sjögren syndrome, coronary artery disease, multiple sclerosis, cystic fibrosis, asthma, cancer, neurological disorders, and aging-related sequelae. Similarly, A20 has recently been implicated as an essential regulator of inflammation in the oral cavity. This review presents information on the ubiquitin system and regulation of NF-κB by ubiquitination using A20 as a representative molecule and highlights how the dysregulation of this system can lead to several immune pathologies, including oral cavity-related disorders mainly focusing on periodontitis.
Collapse
Affiliation(s)
- E.C. Mooney
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Dentistry, Richmond, VA, USA
| | - S.E. Sahingur
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Abstract
Neutrophils are recruited rapidly to sites of infection in response to host- and/or microbe-derived proinflammatory molecules. At such sites, neutrophils phagocytose microbes and are activated to produce superoxide and other reactive oxygen species (ROS). In addition, neutrophils contain stores of antimicrobial peptides and enzymes that work in concert with ROS to kill ingested microbes. Neutrophils can also release chromosomal DNA bound with antimicrobial peptides and enzymes to form web-like structures known as extracellular traps. Neutrophil extracellular traps (NETs) have been reported to ensnare and kill microbes and are commonly considered to be an important component of innate host defense. Notably, the formation of NETs is most often reported as a cytolytic process. Whereas intraphagosomal killing of microbes sequesters cytotoxic antimicrobial molecules that would otherwise damage host tissues, the formation of NETs and associated extracellular release of these molecules can contribute to host tissue destruction and disease. Here we compare and contrast phagocytosis and NETs in host defense, with emphasis on recent studies of NETs that ultimately underscore the importance of phagocytosis as the primary means by which neutrophils eliminate microbes.
Collapse
Affiliation(s)
- Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lee-Ann H Allen
- Inflammation Program, Department of Internal Medicine and Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- VA Healthcare System, Iowa City, IA, USA
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
44
|
Gao Y, Du L, Li F, Ding J, Li G, Cao Q, Li N, Su G, Kijlstra A, Yang P. The haplotypes of various TNF related genes associated with scleritis in Chinese Han. Hum Genomics 2020; 14:46. [PMID: 33287909 PMCID: PMC7720609 DOI: 10.1186/s40246-020-00296-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background Several studies have stated that TNF-α participates in the pathogenesis of scleritis, but also in several systemic autoimmune diseases and vasculitis, of which some are associated with scleritis. Earlier GWAS and SNP studies have confirmed that multiple SNPs of TNF related genes are associated with many immune-mediated disorders. The purpose of this study was to examine the association of TNF related gene polymorphisms with scleritis in Chinese Han. A case-control study was carried out in 556 non-infectious scleritis cases and 742 normal controls. A total of 28 single-nucleotide polymorphisms (SNPs) were genotyped by the iPLEXGold genotyping assay. Results No significant correlations were seen between the individual SNPs in the TNF related genes and scleritis. Haplotype analysis showed a significantly decreased frequency of a TNFAIP3 TGT haplotype (order of SNPs: rs9494885, rs3799491, rs2230926) (Pc = 0.021, OR = 0.717, 95% CI = 0.563–0.913) and a significantly increased frequency of a TNFSF4 GT haplotype (order of SNPs: rs3850641, rs704840) (Pc = 0.004, OR = 1.691, 95% CI = 1.205–2.372) and TNFSF15 CCC haplotype (order of SNPs: rs6478106, rs3810936, rs7865494) (Pc = 0.012, OR = 1.662, 95% CI = 1.168–2.363) in patients with scleritis as compared with healthy volunteers. Conclusions This study reveals that a TGT haplotype in TNFAIP3 may be a protective factor for the development of scleritis and that a GT haplotype in TNFSF4 and a CCC haplotype in TNFSF15 may be risk factors for scleritis in Chinese Han.
Collapse
Affiliation(s)
- Yingnan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China
| | - Jiadong Ding
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Geng Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Youyi Road 1, Chongqing, 400016, People's Republic of China
| | - Na Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Youyi Road 1, Chongqing, 400016, People's Republic of China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Limburg, the Netherlands
| | - Peizeng Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China. .,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Youyi Road 1, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
45
|
Liu Y, Kaplan MJ. Neutrophils in the Pathogenesis of Rheumatic Diseases: Fueling the Fire. Clin Rev Allergy Immunol 2020; 60:1-16. [DOI: 10.1007/s12016-020-08816-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
|
46
|
Endo Y, Funakoshi Y, Koga T, Furukawa K, Sasaki D, Miura K, Yanagihara K, Moriuchi H, Kawakami A. Paediatric-onset haploinsufficiency of A20 associated with a novel and de novo nonsense TNFAIP3 mutation. Rheumatology (Oxford) 2020; 59:e85-e87. [PMID: 32417885 DOI: 10.1093/rheumatology/keaa206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yushiro Endo
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Medical Sciences
| | - Yasutomo Funakoshi
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Medical Sciences
| | - Kaori Furukawa
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Medical Sciences
| | | | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Hiroyuki Moriuchi
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Medical Sciences
| |
Collapse
|
47
|
Hagberg N, Lundtoft C, Rönnblom L. Immunogenetics in systemic lupus erythematosus: Transitioning from genetic associations to cellular effects. Scand J Immunol 2020; 92:e12894. [DOI: 10.1111/sji.12894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Niklas Hagberg
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Christian Lundtoft
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Lars Rönnblom
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
48
|
Wu Y, He X, Huang N, Yu J, Shao B. A20: a master regulator of arthritis. Arthritis Res Ther 2020; 22:220. [PMID: 32958016 PMCID: PMC7504854 DOI: 10.1186/s13075-020-02281-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
A20, also known as TNF-α-induced protein 3 (TNFAIP3), is an anti-inflammatory protein that plays an important part in both immune responses and cell death. Impaired A20 function is associated with several human inflammatory and autoimmune diseases. Although the role of A20 in mediating inflammation has been frequently discussed, its intrinsic link to arthritis awaits further explanation. Here, we review new findings that further demonstrate the molecular mechanisms through which A20 regulates inflammatory arthritis, and we discuss the regulation of A20 by many factors. We conclude by reviewing the latest A20-associated mouse models that have been applied in related research because they reflect the characteristics of arthritis, the study of which will hopefully cast new light on anti-arthritis treatments.
Collapse
Affiliation(s)
- Yongyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaomin He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiayun Yu
- State Key Laboratory of Biotherapy anf Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy anf Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
49
|
McCarthy MW. Harnessing the potential of CRISPR-based platforms to advance the field of hospital medicine. Expert Rev Anti Infect Ther 2020; 18:799-805. [PMID: 32366131 PMCID: PMC7212535 DOI: 10.1080/14787210.2020.1761333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Clustered regularly interspaced short palindromic repeats (CRISPR) are segments of nucleic acid that play a role in prokaryotic defense and form the basis of a genome editing technology that allows permanent alteration of genetic material. This methodology, known as CRISPR-Cas9, is poised to revolutionize molecular biology, but no literature yet exists on how these advances will affect hospitalists. AREAS COVERED These specialists in inpatient medicine care for a wide variety of hospitalized patients, including those with infectious disease, cancer, cardiovascular disease, autoimmune disease, hematologic disease, and a variety of other conditions that may soon be impacted by advances in gene-modifying technology provided by CRISPR-Cas9. A Literature search was performed using PubMed [1 December 2019-17 April 2020]. EXPERT OPINION This paper reviews the remarkable diagnostic and therapeutic potential of the CRISPR-Cas9 platform and concludes with a look at ethical issues and technical hurdles pertaining to the implementation of permanent gene modification in the practice of Hospital Medicine.
Collapse
Affiliation(s)
- Matthew W. McCarthy
- Weill Cornell Medical College, Division of General Internal Medicine, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
50
|
Hanata N, Shoda H, Hatano H, Nagafuchi Y, Komai T, Okamura T, Suzuki A, Gunarta IK, Yoshioka K, Yamamoto K, Fujio K. Peptidylarginine Deiminase 4 Promotes the Renal Infiltration of Neutrophils and Exacerbates the TLR7 Agonist-Induced Lupus Mice. Front Immunol 2020; 11:1095. [PMID: 32655553 PMCID: PMC7324481 DOI: 10.3389/fimmu.2020.01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4), encoded by PADI4, plays critical roles in the immune system; however, its contribution to the pathogenesis of lupus nephritis remains controversial. The pathological roles of PAD4 were investigated in lupus model mice. An imiquimod (IMQ)-induced lupus model was analyzed in wild-type (WT) and Padi4-knockout (KO) mice. Proteinuria, serum anti-double stranded DNA (anti-dsDNA) antibody, and renal infiltrated cells were evaluated. Neutrophil migration and adhesion were assessed using adoptive transfer and adhesion assay. PAD4-regulated pathways were identified by RNA-sequencing of Padi4 KO neutrophils. Padi4 KO mice exhibited significant improvements in proteinuria progression compared with WT mice, whereas, serum anti-dsDNA antibody and immune complex deposition in the glomeruli showed no difference between both mice strains. Padi4 KO mice showed decreased neutrophil infiltration in the kidneys. Adoptively transferred Padi4 KO neutrophils showed decreased migration to the kidneys of IMQ-treated WT mice, and adhesion to ICAM-1 was impaired in Padi4 KO neutrophils. Padi4 KO neutrophils exhibited reduced upregulation of p38 mitogen-activated protein kinase (MAPK) pathways. Toll-like receptor 7 (TLR7)-primed Padi4 KO neutrophils demonstrated reduced phosphorylation of p38 MAPK and lower expression of JNK-associated leucine zipper protein (JLP), a p38 MAPK scaffold protein. Neutrophils from heterozygous Jlp KO mice showed impaired adhesion to ICAM-1 and decreased migration to the kidneys of IMQ-treated WT mice. These results indicated a pivotal role of PAD4-p38 MAPK pathway in renal neutrophil infiltration in TLR7 agonist-induced lupus nephritis, and the importance of neutrophil-mediated kidney inflammation. Inhibition of the PAD4-p38 MAPK pathway may help in formulating a novel therapeutic strategy against lupus nephritis.
Collapse
Affiliation(s)
- Norio Hanata
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - I Ketut Gunarta
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|