1
|
Colazo JM, Keech MC, Shah V, Hoogenboezem EN, Lo JH, Francini N, Cassidy NT, Yu F, Sorets AG, McCune JT, DeJulius CR, Cho H, Michell DL, Maerz T, Vickers KC, Gibson-Corley KN, Hasty KA, Crofford LJ, Cook RS, Duvall CL. siRNA conjugate with high albumin affinity and degradation resistance for delivery and treatment of arthritis in mice and guinea pigs. Nat Biomed Eng 2025:10.1038/s41551-025-01376-x. [PMID: 40379798 DOI: 10.1038/s41551-025-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/07/2025] [Indexed: 05/19/2025]
Abstract
Osteoarthritis and rheumatoid arthritis are debilitating joint diseases marked by pain, inflammation and cartilage destruction. Current osteoarthritis treatments only relieve symptoms, while rheumatoid arthritis therapies can cause immune suppression and provide variable efficacy. Here we developed an optimized small interfering RNA targeting matrix metalloproteinase 13 for preferential delivery to arthritic joints. Chemical modifications in a stabilizing 'zipper' pattern improved RNA resistance to degradation, and two independent linkers with 18 ethylene glycol repeats connecting to tandem C18 lipids enhanced albumin binding and targeted delivery to inflamed joints following intravenous administration. In preclinical models of post-traumatic osteoarthritis and rheumatoid arthritis, a single intravenous injection of the albumin-binding small interfering RNA achieved long-term joint retention, sustained gene silencing and reduced matrix metalloproteinase 13 activity over 30 days, resulting in decreased cartilage erosion and improved clinical outcomes, including reduced joint swelling and pressure sensitivity. This approach demonstrated superior efficacy over corticosteroids and small-molecule MMP inhibitors, highlighting the therapeutic promise of albumin 'hitchhiking' for targeted, systemic delivery of gene-silencing therapeutics to treat osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Juan M Colazo
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Megan C Keech
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Veeraj Shah
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ella N Hoogenboezem
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Justin H Lo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nina T Cassidy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alexander G Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua T McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering, UTHSC, Memphis VA Medical Center, Memphis, TN, USA
| | - Danielle L Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kacey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, UTHSC, Memphis VA Medical Center, Memphis, TN, USA
| | - Leslie J Crofford
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca S Cook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Liu Y, Molchanov V, Brass D, Yang T. Recent advances in omics and the integration of multi-omics in osteoarthritis research. Arthritis Res Ther 2025; 27:100. [PMID: 40319309 PMCID: PMC12049056 DOI: 10.1186/s13075-025-03563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/20/2025] [Indexed: 05/07/2025] Open
Abstract
Osteoarthritis (OA) is a complex disorder driven by the combination of environmental and genetic factors. Given its high global prevalence and heterogeneity, developing effective and personalized treatment methods is crucial. This requires identifying new disease mechanisms, drug targets, and biomarkers. Various omics approaches have been applied to identify OA-related genes, pathways, and biomarkers, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. These omics studies have generated vast datasets that are shaping the field of OA research. The emergence of high-resolution methodologies, such as single-cell and spatial omics techniques, further enhances our ability to dissect molecular complexities within the OA microenvironment. By integrating these multi-layered datasets, researchers can uncover central signaling hubs and disease mechanisms, ultimately facilitating the development of targeted therapies and precision medicine approaches for OA treatment.
Collapse
Affiliation(s)
- Ye Liu
- Department of Cell Biology, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Vladimir Molchanov
- Department of Cell Biology, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - David Brass
- Department of Cell Biology, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA
| | - Tao Yang
- Department of Cell Biology, Van Andel Research Institute, 333 Bostwick Ave NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
3
|
Sahu N, Bedi YS, Grandi F, Maloney WJ, Chu CR, Bhutani N. Multiparametric Profiling of Circulating Immune Cells Identifies an Expansion of CD25 high Switched Memory B Cells in Osteoarthritis. Arthritis Rheumatol 2025. [PMID: 40229860 DOI: 10.1002/art.43186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 02/03/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
OBJECTIVE Osteoarthritis (OA) is a chronic, debilitating disease with no available disease-modifying drugs. Biomarker identification in patients with OA has hitherto been limited to serum proteins and bulk epigenomic feature identification. METHODS Peripheral blood mononuclear cells (PBMCs) from 21 healthy donors, 17 patients with OA, and 10 patients with degenerative meniscal tears (DMTs) were immunophenotyped at single-cell resolution by mass cytometry by time-of-flight using a 29-marker panel to identify OA-associated features in the circulating immune cells. Single-cell RNA sequencing was used to discern mechanistic attributes of perturbed immune cell populations in OA. RESULTS Comparison of the PBMCs of healthy donors and OA patients revealed distinct perturbations in OA. Although subsets of naive B cells were depleted, switched memory B cells were significantly expanded in OA, including a CD25hiCXCR5hiCD27+IgD- subpopulation. Single-cell RNA sequencing revealed a dysfunction of interleukin 2/Stat5 and tumor necrosis factor signaling in the CD25hi switched memory B cells in OA. A similar expansion of CD25hi switched memory B cells was observed in patients with DMT, a population at enhanced risk for OA. CONCLUSION A CD25hi switched memory B cell population was identified to be a potential cellular biomarker for OA that can be detected in the early stages of OA in the readily accessible circulating blood cells.
Collapse
Affiliation(s)
- Neety Sahu
- Stanford University, Stanford, California
| | | | - Fiorella Grandi
- Gladstone Institutes for Neurological Disease and Data Science and Biotechnology, Gladstone Institutes and University of California at San Francisco
| | | | - Constance R Chu
- Stanford University, Stanford, and VA Palo Alto Health Care, Palo Alto, California
| | | |
Collapse
|
4
|
Harasymowicz NS, Harissa Z, Rashidi N, Lenz K, Tang R, Guilak F. Injury and obesity differentially and synergistically induce dysregulation of synovial immune cells in osteoarthritis. Ann Rheum Dis 2025:S0003-4967(25)00813-1. [PMID: 40188009 DOI: 10.1016/j.ard.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVES The heterogeneity and phenotype of immune cells orchestrate many physiologic and pathologic processes. Recent evidence suggests that immune cells play critical roles in the progression of osteoarthritis (OA). We hypothesised that injury and obesity, two major risk factors for OA, affect the immunophenotype of the synovium, the primary reservoir of immune cells in the joint. METHODS Using single-cell transcriptomics, immunoprofiling, transgenic mouse models, and genetic fate mapping methods, we characterised the presence and fate of multiple populations of immune cells found in the knee joint capsule. RESULTS We found that joint injury and obesity differentially and synergistically alter the architectural, cellular, and molecular profiles of the synovial capsule. We observed fewer patrolling monocytes in obese animals and found a significantly higher influx of proinflammatory monocyte-derived macrophages in the first 3 days after joint injury in obese compared with that in control animals. We also showed a significant loss of barrier-forming synovial lining macrophages 3 days after destabilisation of medial meniscus surgery, with a significant restoration of their numbers in normal weight but not in obese mice in advanced stages of OA. Finally, we characterised the presence and changes of other immune cell subtypes, including T, B, and mast cells and neutrophils, as well as local synovial fluid cytokines associated with injury and obesity. CONCLUSIONS Our data revealed that injury and obesity independently and synergistically contribute to the dysregulation of the synovial immune landscape, providing new insight into their role in the pathogenesis of OA.
Collapse
Affiliation(s)
- Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA; Shriners Hospitals for Children, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO, USA; Department of Orthopaedic Surgery Operations University of Utah, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Zainab Harissa
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA; Shriners Hospitals for Children, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, USA
| | - Neda Rashidi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA; Shriners Hospitals for Children, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO, USA
| | - Kristin Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA; Shriners Hospitals for Children, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA; Shriners Hospitals for Children, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA; Shriners Hospitals for Children, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.
| |
Collapse
|
5
|
Roelofs AJ, McClure JJ, Hay EA, De Bari C. Stem and progenitor cells in the synovial joint as targets for regenerative therapy. Nat Rev Rheumatol 2025; 21:211-220. [PMID: 40045009 DOI: 10.1038/s41584-025-01222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 03/28/2025]
Abstract
Damage to articular cartilage, tendons, ligaments and entheses as a result of trauma, degeneration or inflammation in rheumatic diseases is prevalent. Regenerative medicine offers promising strategies for repairing damaged tissues, with the aim of restoring both their structure and function. While these strategies have traditionally relied on tissue engineering approaches using exogenous cells, interventions based on the activation of endogenous repair mechanisms are an attractive alternative. Key to advancing such approaches is a comprehensive understanding of the diversity of the stem and progenitor cells that reside in the adult synovial joint and how they function to repair damaged tissues. Advances in developmental biology have provided a lens through which to understand the origins, identities and functions of these cells, and insights into the roles of stem and progenitor cells in joint tissue repair, as well as their complex relationship with fibroblasts, have emerged. Integration of knowledge obtained through studies using advanced single-cell technologies will be crucial to establishing unified models of cell populations, lineage hierarchies and their molecular regulation. Ultimately, a more complete understanding of how cells repair tissues in adult life will guide the development of innovative pro-regenerative drugs, which are poised to enter clinical practice in musculoskeletal medicine.
Collapse
Affiliation(s)
- Anke J Roelofs
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Jessica J McClure
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Elizabeth A Hay
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK.
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
6
|
Guan M, Han X, Liao B, Han W, Chen L, Zhang B, Peng X, Tian Y, Xiao G, Li X, Kuang L, Zhu Y, Bai D. LIPUS Promotes Calcium Oscillation and Enhances Calcium Dependent Autophagy of Chondrocytes to Alleviate Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413930. [PMID: 40013941 PMCID: PMC12021083 DOI: 10.1002/advs.202413930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Osteoarthritis (OA) is a degenerative disease which places an enormous burden on society, effective treatments are still limited. As a non-invasive and safe physical therapy, low-intensity pulsed ultrasound (LIPUS) can alleviate OA progression, but the underlying mechanism is not fully understood, especially the mechanical transduction between LIPUS and the organism. In this pioneering study, the biomechanical effects of LIPUS on living mice chondrocytes and living body zebrafish are investigate by using fluorescence imaging technology, to dynamically "visualize" its invisible mechanical stimuli in the form of calcium oscillations. It is also confirmed that LIPUS maintains cartilage homeostasis by promoting chondrocyte autophagy in a calcium-dependent manner. In addition, chondrocyte ion channels are screened by scRNA-seq and confirm that the mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) mediated the biological effects of LIPUS on chondrocytes. Finally, it is found that a combination of pharmacologically induced and LIPUS-induced Ca2+ influx in chondrocytes enhances the cartilage-protective effect of LIPUS, which may provide new insights for optimizing LIPUS in the treatment of OA.
Collapse
Affiliation(s)
- Mengtong Guan
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiaoyu Han
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| | - Bo Liao
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Wang Han
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Lin Chen
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Bin Zhang
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Xiuqin Peng
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Yu Tian
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Gongyi Xiao
- Department of OrthopedicsChonggang General HospitalChongqing400000China
| | - Xinhe Li
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| | - Liang Kuang
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Ying Zhu
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Dingqun Bai
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| |
Collapse
|
7
|
Newton MD, Lammlin L, Gonzalez-Nolde S, Howser S, Smith I, Stasikelis L, Knights AJ, Maerz T. A standardized, open-source, portable model for noninvasive joint injury in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642661. [PMID: 40161844 PMCID: PMC11952444 DOI: 10.1101/2025.03.11.642661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Preclinical models of osteoarthritis (OA) are crucial for the study of disease mechanisms and for the development of critically-needed disease-modifying therapeutics. While surgical OA models, such as the destabilization of the medial meniscus (DMM), have been the gold standard in the field for decades, noninvasive joint loading-based models have increased in popularity and utility. To facilitate standardization of the noninvasive anterior cruciate ligament rupture (ACLR) model in mice, we present the Mo bile J oint-Injury O perator (MoJO) - an open-source protocol with accompanying fixtures and data, designed for a low-cost, commercially-available, portable uniaxial testing system with a small footprint. We provide 3d-printable fixture designs and a rapid, highly-repeatable ACLR-mediated joint injury protocol that results in the expected post-traumatic osteoarthritis phenotype in male and female C56Bl/6 mice. We then describe the expected mechanical data from the injury procedure and offer various troubleshooting strategies. Finally, we summarize the resultant PTOA phenotype by knee hyperalgesia testing, µCT imaging, flow cytometry, and histological assessment. Increased standardization of this model is a critical aspect of the overall refinement of animal models of OA.
Collapse
|
8
|
Aihaiti Y, Yu H, Xu P. The Role of Thrombospondins in Osteoarthritis: from Molecular Mechanisms to Therapeutic Potential. Int J Biol Sci 2025; 21:2346-2359. [PMID: 40083685 PMCID: PMC11900822 DOI: 10.7150/ijbs.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 03/16/2025] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic degenerative joint disorder characterized by cartilage degeneration, joint inflammation, and pain. The pathogenesis of OA still remains unclear. Among the various factors contributing to OA, the role of extracellular matrix (ECM) proteins, particularly thrombospondins (TSPs), has garnered significant attention. TSPs, a family of multifunctional extracellular matrix glycoproteins, are known to participate in numerous physiological and pathological processes, including cell adhesion, migration, differentiation, angiogenesis, and synaptogenesis through cell-cell and cell-matrix interactions. In this review, we provide a summary of the current understanding of TSP proteins in the pathogenesis of OA, including their effects on cartilage homeostasis, synovial inflammation, and subchondral bone remodeling and arthritic pain. We also review the evidence supporting the potential of TSP proteins as diagnostic biomarkers and therapeutic targets, with a focus on recent advances in cartilage regeneration, gene delivery therapy and pain management. Considering the multifaceted roles of TSP proteins in maintaining articular homeostasis, TSP proteins emerge as promising therapeutic targets for OA.
Collapse
Affiliation(s)
- Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
- Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, ShaanXi province, China
| | - Hui Yu
- Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, ShaanXi province, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
- Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, ShaanXi province, China
| |
Collapse
|
9
|
Ziemian SN, Antoinette AY, Witkowski A, Otero M, Goldring SR, Goldring MB, van der Meulen MCH. Joint damage is more severe following a single bout than multiple bouts of high magnitude loading in mice. Osteoarthritis Cartilage 2025:S1063-4584(25)00821-0. [PMID: 40020990 DOI: 10.1016/j.joca.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 03/03/2025]
Abstract
OBJECTIVE While physiological loads maintain cartilage health, both joint overload and abnormal joint mechanical loading contribute to osteoarthritis (OA) development. Here, we examined the role of abnormal mechanical loading on joint health by comparing the severity of OA development following a single overload event and repetitive joint overloads. METHOD Cyclic tibial compression was applied to the left limbs of 26-week-old male mice at a peak load of 9N for either a single bout or daily bouts to initiate OA disease. Joint damage severity was morphologically examined using histology and microcomputed tomography at 6 weeks following the start of loading. Early-stage transcriptomic responses to loading were evaluated. RESULTS Joint damage was more severe at 6 weeks following a single bout of loading than after daily loading bouts. Severe cartilage damage, subchondral plate erosions, and soft tissue calcifications occurred following the single bout of loading. Daily loading bouts resulted in less severe cartilage damage and preserved subchondral plate integrity. A diverging transcriptomic response was identified in cartilage at 1 week with increased expression of fibrosis- and inflammation-related genes following a single bout of loading compared to daily loading. CONCLUSIONS Even applied at hyperphysiological load magnitudes known to initiate cartilage damage, repetitive loading may induce protective effects in the joint and attenuate OA progression over time relative to a single bout of loading. Our findings suggest the potential of mechanotherapies that use repetitive loading as disease-modifying treatments for OA disease.
Collapse
Affiliation(s)
- Sophia N Ziemian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adrien Y Antoinette
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Ana Witkowski
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Miguel Otero
- Hospital for Special Surgery, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Steven R Goldring
- Hospital for Special Surgery, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Mary B Goldring
- Hospital for Special Surgery, New York, NY, USA; Weill Cornell Medicine, New York, NY, USA
| | - Marjolein C H van der Meulen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA; Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
10
|
Arino Y, Terashima A, Tsubaki T, Iwanaga Y, Omata Y, Tanaka S, Saito T. Short-term overloading exercise attenuates articular chondrocyte features partly via synovium-cartilage interactions mediated by inhibin subunit beta A. Sci Rep 2025; 15:6772. [PMID: 40000838 PMCID: PMC11861322 DOI: 10.1038/s41598-025-91742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/24/2025] [Indexed: 02/27/2025] Open
Abstract
Excessive mechanical loading leads to cartilage degeneration. However, short-term responses of the synovium and cartilage to overloading and interactions between these tissues remain poorly understood. We developed a mouse model to study excessive mechanical loading, combining treadmill exercise with weight attachment. Time-course RNA sequencing of the synovium and cartilage displayed transient upregulation of inflammation after single overloading, whereas it was prolonged by repeated overloading. Ingenuity pathway analysis identified Inhba, encoding inhibin subunit beta A, as an upstream molecule for the cartilage transcriptomic changes. Inhba was highly induced by single or repeated overloading in the synovium, and Inhba protein was detected in the superficial layer of the synovium. Supplementation with recombinant activin A, a homodimer of Inhba, exerted catabolic effects in mouse primary chondrocytes. Further insights into mechano-responses of the synovium and cartilage, including the role played by Inhba in the synovium-cartilage interaction, may contribute to the elucidation of osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Yusuke Arino
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Asuka Terashima
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiya Tsubaki
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasuhide Iwanaga
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yasunori Omata
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
11
|
Li Z, Jiang J, Cai K, Qiao Y, Zhang X, Wang L, Kang Y, Wu X, Zhao B, Wang X, Zhang T, Lin Z, Wu J, Lu S, Gao H, Jin H, Xu C, Huangfu X, James Z, Chen Q, Zheng X, Liu NN, Zhao J. CCN2 mediates fibroblast-macrophage interaction in knee arthrofibrosis based on single-cell RNA-seq analysis. Bone Res 2025; 13:26. [PMID: 39994205 PMCID: PMC11850813 DOI: 10.1038/s41413-025-00400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 02/26/2025] Open
Abstract
Knee arthrofibrosis, characterized by excessive matrix protein production and deposition, substantially impairs basic daily functions, causing considerable distress and financial burden. However, the underlying pathomechanisms remain unclear. Here, we characterized the heterogeneous cell populations and cellular pathways by combination of flow cytometry and single-cell RNA-seq analysis of synovial tissues from six patients with or without knee arthrofibrosis. Increased macrophages and fibroblasts were observed with decreased numbers of fibroblast-like synoviocytes, endothelial cells, vascular smooth muscle cells, and T cells in the arthrofibrosis group compared with negative controls. Notably, fibroblasts were discovered to interact with macrophages, and lead to fibrosis through TGF-β pathway induced CCN2 expression in fibroblasts. CCN2 was demonstrated to be required for fibroblast pro-fibrotic functions (activation, proliferation, and migration) through TGFBR/SMAD pathway. The expression of CCN2 was positively correlated with the collagen volume and TGF-β expression and negatively associated with patient-reported outcome measures in another cohort of patients with knee arthrofibrosis. Our study reveals the role of CCN2 in the fibroblast-macrophage interaction through TGF-β pathway which might help to shed light on CCN2 as a potential biomarker.
Collapse
Affiliation(s)
- Ziyun Li
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jia Jiang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kangwen Cai
- Shanghai Normal University, Shanghai, 200233, China
| | - Yi Qiao
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuancheng Zhang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liren Wang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiulin Wu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Benpeng Zhao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiuli Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianyi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhiqi Lin
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinlong Wu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Simin Lu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haihan Gao
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haocheng Jin
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Caiqi Xu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaoqiao Huangfu
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhengzhi James
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qiuhua Chen
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiaoqi Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
12
|
Knights AJ, Farrell EC, Ellis OM, Song MJ, Appleton CT, Maerz T. Synovial macrophage diversity and activation of M-CSF signaling in post-traumatic osteoarthritis. eLife 2025; 12:RP93283. [PMID: 39969512 PMCID: PMC11839164 DOI: 10.7554/elife.93283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Synovium is home to immune and stromal cell types that orchestrate inflammation following a joint injury; in particular, macrophages are central protagonists in this process. We sought to define the cellular and temporal dynamics of the synovial immune niche in a mouse model of post-traumatic osteoarthritis (PTOA), and to identify stromal-immune crosstalk mechanisms that coordinate macrophage function and phenotype. We induced PTOA in mice using a non-invasive tibial compression model of anterior cruciate ligament rupture (ACLR). Single-cell RNA-sequencing and flow cytometry were used to assess immune cell populations in healthy (Sham) and injured (7 and 28 days post-ACLR) synovium. Characterization of synovial macrophage polarization states was performed, alongside computational modeling of macrophage differentiation, as well as implicated transcriptional regulators and stromal-immune communication axes. Immune cell types are broadly represented in healthy synovium, but experience drastic expansion and speciation in PTOA, most notably in the macrophage portion. We identified several polarization states of macrophages in synovium following joint injury, underpinned by distinct transcriptomic signatures, and regulated in part by stromal-derived macrophage colony-stimulating factor signaling. The transcription factors Pu.1, Cebpα, Cebpβ, and Jun were predicted to control differentiation of systemically derived monocytes into pro-inflammatory synovial macrophages. In summary, we defined different synovial macrophage subpopulations present in healthy and injured mouse synovium. Nuanced characterization of the distinct functions, origins, and disease kinetics of macrophage subtypes in PTOA will be critical for targeting these highly versatile cells for therapeutic purposes.
Collapse
Affiliation(s)
- Alexander J Knights
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
| | - Easton C Farrell
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Olivia M Ellis
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Michelle J Song
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - C Thomas Appleton
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
- Bone and Joint Institute, Western UniversityLondonCanada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western UniversityLondonCanada
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Department of Internal Medicine – Division of Rheumatology, University of MichiganAnn ArborUnited States
| |
Collapse
|
13
|
Xu H, He Y, Chen S, Meng C, Liu Q, Huang XJ, You HB. Blocking the CCL5/CCL7-CCR1 axis regulates macrophage polarization through NF-κB pathway to alleviate the progression of osteoarthritis. Int Immunopharmacol 2025; 147:114027. [PMID: 39805173 DOI: 10.1016/j.intimp.2025.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
OBJECTIVE To study the effect of CCR1 and its ligands on macrophage polarization and evaluate its effect on chondrocytes in relieving the progression of osteoarthritis. METHODS RAW cells were polarized to M1/M2 subtype, and then different concentrations of BX471 were added to selectively inhibit CCR1. The polarization of the cells was detected by RT-qPCR, immunofluorescence and flow cytometry. CCL5 and CCL7 genes were silenced by SiRNA and its role in macrophage polarization was analyzed. Macrophage conditioned medium was further used to stimulate chondrocytes. Histological observation was carried out on models of medial meniscus (DMM) with or without BX471 treatment. RESULTS We found that blocking of CCR1 and silencing of its ligand, CCL5 and CCL7, reduced the polarization of M1 macrophages. In terms of mechanism, we found that blocking CCR1 could reduce the activation of NF-κB pathway and inhibit the phosphorylation of IKK, IκBα and P65. In addition, blocking of CCR1 could also reduce cartilage injury induced by macrophage conditioned medium. In vivo, blocking of CCR1 reduced the infiltration and accumulation of M1 macrophages and alleviated articular cartilage injury. CONCLUSION CCL5/CCL7-CCR1 axis was involved in macrophage polarization, and blocking it could reduce synovitis and alleviate the process of OA.
Collapse
Affiliation(s)
- Hanqing Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China
| | - Yi He
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 1 Minde Road, Donghu, Nanchang 330006, Jiangxi, China
| | - Sheng Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China
| | - Chen Meng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China
| | - Qingyi Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China
| | - Xiao-Jian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China.
| | - Hong-Bo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, Hubei Province, China.
| |
Collapse
|
14
|
Zheng L, Gu M, Li X, Hu X, Chen C, Kang Y, Pan B, Chen W, Xian G, Wu X, Li C, Wang C, Li Z, Guan M, Zhou G, Mobasheri A, Song W, Peng S, Sheng P, Zhang Z. ITGA5 + synovial fibroblasts orchestrate proinflammatory niche formation by remodelling the local immune microenvironment in rheumatoid arthritis. Ann Rheum Dis 2025; 84:232-252. [PMID: 39919897 DOI: 10.1136/ard-2024-225778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVES To investigate the phenotypic heterogeneity of tissue-resident synovial fibroblasts and their role in inflammatory response in rheumatoid arthritis (RA). METHODS We used single-cell and spatial transcriptomics to profile synovial cells and spatial gene expressions of synovial tissues to identify phenotypic changes in patients with osteoarthritis, RA in sustained remission and active state. Immunohistology, multiplex immunofluorescence and flow cytometry were used to identify synovial fibroblasts subsets. Deconvolution methods further validated our findings in two cohorts (PEAC and R4RA) with treatment response. Cell coculture was used to access the potential cell-cell interactions. Adoptive transfer of synovial cells in collagen-induced arthritis (CIA) mice and bulk RNA sequencing of synovial joints further validate the cellular functions. RESULTS We identified a novel tissue-remodelling CD45-CD31-PDPN+ITGA5+ synovial fibroblast population with unique transcriptome of POSTN, COL3A1, CCL5 and TGFB1, and enriched in immunoregulatory pathways. This subset was upregulated in active and lympho-myeloid type of RA, associated with an increased risk of multidrug resistance. Transforming growth factor (TGF)-β1 might participate in the differentiation of this subset. Moreover, ITGA5+ synovial fibroblasts might occur in early stage of inflammation and induce the differentiation of CXCL13hiPD-1hi peripheral helper T cells (TPHs) from naïve CD4+ T cells, by secreting TGF-β1. Intra-articular injection of ITGA5+ synovial fibroblasts exacerbates RA development and upregulates TPHs in CIA mice. CONCLUSIONS We demonstrate that ITGA5+ synovial fibroblasts might regulate the RA progression by inducing the differentiation of CXCL13hiPD-1hi TPHs and remodelling the proinflammatory microenvironments. Therapeutic modulation of this subpopulation could therefore be a potential treatment strategy for RA.
Collapse
Affiliation(s)
- Linli Zheng
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Minghui Gu
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Department of Spine Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xuantao Hu
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Department of Spine Surgery, Sun Yat-sen University Third Affiliated Hospital, Guangzhou, Guangdong, China
| | - Chen Chen
- Trauma Orthopedics, Foot and Ankle Surgery, Sun Yat-sen Memorial Hostpial, Guangzhou, Guangdong, China; Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yunze Kang
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Baiqi Pan
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Weishen Chen
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | | | - Xiaoyu Wu
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Chengxin Li
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Chao Wang
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Zhiwen Li
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Mingqiang Guan
- Department of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Guanming Zhou
- Department of Orthopedics and Traumatology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Public Health Aspects of Musculoskeletal Health and Aging, World Health Organization Collaborating Centre, Liege, Belgium
| | - Weidong Song
- Trauma Orthopedics, Foot and Ankle Surgery, Sun Yat-sen Memorial Hostpial, Guangzhou, Guangdong, China
| | - Sui Peng
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Clinical Trials Unit, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Department of Gastroenterology and Hepatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China.
| | - Puyi Sheng
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China.
| | - Ziji Zhang
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Peters H, Potla P, Rockel JS, Tockovska T, Pastrello C, Jurisica I, Delos Santos K, Vohra S, Fine N, Lively S, Perry K, Looby N, Li SH, Chandran V, Hueniken K, Kaur P, Perruccio AV, Mahomed NN, Rampersaud R, Syed K, Gracey E, Krawetz R, Buechler MB, Gandhi R, Kapoor M. Cell and transcriptomic diversity of infrapatellar fat pad during knee osteoarthritis. Ann Rheum Dis 2025; 84:351-367. [PMID: 39919907 DOI: 10.1136/ard-2024-225928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
OBJECTIVES In this study, we employ a multiomic approach to identify major cell types and subsets, and their transcriptomic profiles within the infrapatellar fat pad (IFP), and to determine differences in the IFP based on knee osteoarthritis (KOA), sex and obesity status. METHODS Single-nucleus RNA sequencing of 82 924 nuclei from 21 IFPs (n=6 healthy control and n=15 KOA donors), spatial transcriptomics and bioinformatic analyses were used to identify contributions of the IFP to KOA. We mapped cell subclusters from other white adipose tissues using publicly available literature. The diversity of fibroblasts within the IFP was investigated by bioinformatic analyses, comparing by KOA, sex and obesity status. Metabolomics was used to further explore differences in fibroblasts by obesity status. RESULTS We identified multiple subclusters of fibroblasts, macrophages, adipocytes and endothelial cells with unique transcriptomic profiles. Using spatial transcriptomics, we resolved distributions of cell types and their transcriptomic profiles and computationally identified putative cell-cell communication networks. Furthermore, we identified transcriptomic differences in fibroblasts from KOA versus healthy control donor IFPs, female versus male KOA-IFPs and obese versus normal body mass index (BMI) KOA-IFPs. Finally, using metabolomics, we defined differences in metabolite levels in supernatants of naïve, profibrotic stimuli-treated and proinflammatory stimuli-treated fibroblasts from obese compared to normal BMI KOA-IFPs. CONCLUSIONS Overall, by employing a multiomic approach, this study provides the first comprehensive map of the cellular and transcriptomic diversity of human IFP and identifies IFP fibroblasts as key cells contributing to transcriptomic and metabolic differences related to KOA disease, sex or obesity.
Collapse
Affiliation(s)
- Hayley Peters
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pratibha Potla
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jason S Rockel
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Teodora Tockovska
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Bioinformatics and HPC Core, Princess Margaret Cancer Research Tower, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Keemo Delos Santos
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shabana Vohra
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Noah Fine
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kim Perry
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nikita Looby
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Sheng Han Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Vinod Chandran
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Division of Rheumatology, Psoriatic Arthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Katrina Hueniken
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Paramvir Kaur
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anthony V Perruccio
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Nizar N Mahomed
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Khalid Syed
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Eric Gracey
- Molecular Immunology and Inflammation Unit, VIB Centre for Inflammation Research, Ghent University, Ghent, Belgium; Department of Rheumatology, University Hospital Ghent, Ghent, Belgium
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Matthew B Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Rajiv Gandhi
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Li X, Zhang Z, Jiang W, Ju Y, Guo W, Huang Z. Dipeptidyl Peptidase 4 (DPP4) Exacerbates Osteoarthritis Progression in an Enzyme-Independent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410525. [PMID: 39680708 PMCID: PMC11809337 DOI: 10.1002/advs.202410525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Chondrocyte senescence is a key driver of osteoarthritis (OA). Mitochondrial dysfunction and oxidative stress can induce chondrocyte senescence. However, the specific mechanisms by which senescence contributes to OA progression are not fully understood. Here, it is attested that Dipeptidyl peptidase 4 (DPP4) is significantly upregulated in osteoarthritic chondrocytes in both humans and mice. DPP4 promotes oxidative stress and cellular senescence in chondrocytes through excessive mitochondrial fission in an enzyme-independent manner. Intra-articular injection of adeno-associated virus 2 to upregulate DPP4 in chondrocytes promotes post-traumatic and aging-induced OA in mice in an enzyme-independent manner. Mechanistically, DPP4 competitively binds to Myosin heavy chain 9 (MYH9), interfering with its E3 ubiquitin ligase Carboxyl terminus of Hsc70-interacting protein (CHIP), and thereby upregulates MYH9 expression. Finally, a small molecule, 4,5-Dicaffeoylquinic acid is identified, which disrupts the interaction between DPP4 and MYH9, thereby ameliorating post-traumatic and aging-induced OA in mice caused by DPP4 upregulation. The study indicates that the non-enzymatic activity of DPP4 is a promising target for OA treatment.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Orthopaedic SurgeryOrthopaedic Research InstituteWest China HospitalWest China Medical SchoolSichuan UniversityChengdu610041China
| | - Zhao Zhang
- Department of Orthopaedic SurgeryOrthopaedic Research InstituteWest China HospitalWest China Medical SchoolSichuan UniversityChengdu610041China
| | - Wenyu Jiang
- Department of Orthopaedic SurgeryOrthopaedic Research InstituteWest China HospitalWest China Medical SchoolSichuan UniversityChengdu610041China
| | - Yucan Ju
- Department of Orthopaedic SurgeryOrthopaedic Research InstituteWest China HospitalWest China Medical SchoolSichuan UniversityChengdu610041China
| | - Weihua Guo
- Department of Immuno‐OncologyBeckman Research Institute at City of HopeNational Medical CenterDuarte91010USA
| | - Zeyu Huang
- Department of Orthopaedic SurgeryOrthopaedic Research InstituteWest China HospitalWest China Medical SchoolSichuan UniversityChengdu610041China
| |
Collapse
|
17
|
Miyahara J, Omata Y, Chijimatsu R, Okada H, Ishikura H, Higuchi J, Tachibana N, Nagata K, Tani S, Kono K, Kawaguchi K, Yamagami R, Inui H, Taketomi S, Iwanaga Y, Terashima A, Yano F, Seki M, Suzuki Y, Baron R, Tanaka S, Saito T. CD34hi subset of synovial fibroblasts contributes to fibrotic phenotype of human knee osteoarthritis. JCI Insight 2025; 10:e183690. [PMID: 39846253 PMCID: PMC11790023 DOI: 10.1172/jci.insight.183690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
Osteoarthritis (OA) shows various clinical manifestations depending on the status of its joint components. We aimed to identify the synovial cell subsets responsible for OA pathophysiology by comprehensive analyses of human synovium samples in single-cell resolution. Two distinct OA synovial tissue groups were classified by gene expression profiles in RNA-Seq: inflammatory and fibrotic. The inflammatory group exhibited high expression of inflammatory cytokines, histologically inflammatory infiltrate, and a more severe pain score. The fibrotic group showed higher expression of fibroblast growth factor (FGFs) and bone morphogenetic proteins (BMPs), showed histologically perivascular fibrosis, and showed a lower pain score. In single-cell RNA-Seq (scRNA-Seq) of synovial cells, MERTKloCD206lo macrophages and CD34hi fibroblasts were associated with the inflammatory and fibrotic groups, respectively. Among the 3 fibroblast subsets, CD34loTHY1lo and CD34loTHY1hi fibroblasts were influenced by synovial immune cells, whereas CD34hi fibroblasts were influenced by mural and endothelial cells. Particularly, in CD34hi fibroblast subsets, CD34hiCD70hi fibroblasts promoted proliferation of Tregs, potentially suppressing synovitis and protecting articular cartilage. Elucidation of the mechanisms underlying the regulation of these synovial cell subsets may lead to novel strategies for OA therapeutics.
Collapse
Affiliation(s)
| | - Yasunori Omata
- Sensory & Motor System Medicine
- Bone and Cartilage Regenerative Medicine
| | | | - Hiroyuki Okada
- Sensory & Motor System Medicine
- Center for Disease Biology and Integrative Medicine, and
| | | | | | | | | | - Shoichiro Tani
- Sensory & Motor System Medicine
- Center for Disease Biology and Integrative Medicine, and
| | | | | | | | | | | | - Yasuhide Iwanaga
- Sensory & Motor System Medicine
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | | | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Japan
| | - Roland Baron
- Department of Medicine, Harvard Medical School and Endocrine Unit, MGH, Boston, Massachusetts, USA
| | | | | |
Collapse
|
18
|
Griffin TM, Komaravolu RK, Lopes EBP, Mehta-D'souza P, Conner T, Kovats T, Kovats S, Allen M, Harris P, Humphrey MB, Welhaven HD, Brahmachary P, June RK. Exercise induces dynamic changes in intra-articular metabolism and inflammation associated with remodeling of the infrapatellar fat pad in mice. Sci Rep 2025; 15:2428. [PMID: 39827311 PMCID: PMC11743197 DOI: 10.1038/s41598-025-86726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
We hypothesized that daily exercise promotes joint health by upregulating anti-inflammatory mediators via adaptive molecular and metabolic changes in the infrapatellar fat pad (IFP). We tested this hypothesis by conducting time-resolved analyses between 1 and 14 days of voluntary wheel running exercise in C57BL/6J mice. IFP structure and cellularity were evaluated by histomorphology, picrosirius red collagen staining, and flow cytometry analysis of stromal vascular fraction cells. Joint inflammation and metabolism were evaluated by multiplex gene expression analysis of synovium-IFP tissue and synovial fluid metabolomics, respectively. Exercise transiently increased cytokine and chemokine gene expression in synovium-IFP tissue, resolving within the first 5 days of exercise. The acute inflammatory response was associated with decreased adipocyte size and elevated CD45+Gr1+ myeloid cells, increased collagen content, and oxidized phospholipids. Exercise acutely altered synovial fluid metabolites, characterized by increased amino acids, peptides, bile acids, sphingolipids, dicarboxylic acids, and straight medium chain fatty acids and decreased hydroxy fatty acids and diacylglycerols. Between 5 and 14 days of exercise, inflammation, collagen, and adipocyte size returned to pre-exercise levels, and CD206+ immuno-regulatory macrophages increased. Thus, although the onset of new daily exercise transiently induced synovium-IFP inflammation and altered tissue structure, sustained daily exercise promoted IFP homeostasis.
Collapse
Affiliation(s)
- Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA.
- Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Ravi K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Erika Barboza Prado Lopes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Padmaja Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Taylor Conner
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Tessa Kovats
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, 73104, USA
| | - Susan Kovats
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Madeline Allen
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, 73019, USA
| | - Peyton Harris
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Mary Beth Humphrey
- Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- Department of Medicine, Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Hope D Welhaven
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Priyanka Brahmachary
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
19
|
Sun W, Li X, Zhang L, Zhang Y, Shi Y, Tao H, Zhou J, Hao Y, Chen G, Gu C, Yang X. IL-17A exacerbates synovial inflammation in osteoarthritis via activation of endoplasmic reticulum stress. Int Immunopharmacol 2025; 145:113733. [PMID: 39662267 DOI: 10.1016/j.intimp.2024.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
The primary clinical manifestations of osteoarthritis (OA) are joint pain and restricted movement capabilities. Synovial inflammation, serving as an initiator of OA progression, intensifies cartilage damage via the generation of various deleterious agents, including pro-inflammatory cytokines and nociceptive mediators. Despite extensive research on modulating synovial inflammation to retard OA progression, the underlying pathophysiological mechanisms of synovial inflammation in OA remain elusive. Interleukin-17A (IL-17A), a pro-inflammatory cytokine released by activated T lymphocytes, is a therapeutic target for numerous inflammatory and autoimmune pathologies. This study investigates the role and mechanism of IL-17A in OA synovial inflammation using both in vivo and in vitro models and examines the impact of the endoplasmic reticulum stress (ERS) inhibitor, 4-Phenylbutyric Acid (4-PBA). Our findings indicate that IL-17A may be implicated in synovial inflammation through ERS and suggest a potential therapeutic direction for mitigating synovial inflammation in OA.
Collapse
Affiliation(s)
- Wen Sun
- Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Xueyan Li
- Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Liyuan Zhang
- Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Yuheng Zhang
- Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Yi Shi
- Department of Anesthesiology, the First People's Hospital of Yancheng, 66, Renmin South Road, Yancheng, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Guangdong Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu, China.
| | - Chengyong Gu
- Department of Anesthesiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, 242, Guangji Road, Suzhou, Jiangsu, China.
| |
Collapse
|
20
|
Jenei-Lanzl Z, Zaucke F. Osteoarthritis year in review 2024: Biology. Osteoarthritis Cartilage 2025; 33:58-66. [PMID: 39461410 DOI: 10.1016/j.joca.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Osteoarthritis (OA) research is a fast-growing and extremely wide field, in which a substantial increase in knowledge has been achieved over the last year. It covers many different topics, however, a PubMed search using the terms 'osteoarthritis' and 'biology' resulted in only a limited number of studies that were published between April 2023 and April 2024. In order to identify OA-relevant studies that focus on mechanistic studies of biological processes at the tissue, cellular, and molecular level, the following keywords were included as search terms: tissue interactions, single cell sequencing, transcriptomics, extracellular matrix, signaling, ion channels, and pain. The final selection of publications presented in this 'year in review' was influenced by the personal preferences of the authors, and eventually three larger key themes emerged: 1) Joint tissue interactions covering meniscus, subchondral bone, fat tissue, synovium, and synovial fluid. 2) Degeneration of the cartilage extracellular matrix and generation of bioactive fragments. 3) Receptors, ion channels, signaling pathways, and cellular metabolism. Many of the studies summarized here identified novel potential targets for OA treatment, and promising results were already obtained addressing these targets in different animal models. It will be exciting to see which findings can be translated into future clinical studies and eventually lead to novel treatment approaches for human OA.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Liao J, Zhu Z, Zou J, Liu S, Luo X, Bao W, Du C, Lei Y, Huang W. Macrophage Membrane-Biomimetic Multi-Layered Nanoparticles Targeting Synovial Angiogenesis for Osteoarthritis Therapy. Adv Healthc Mater 2025; 14:e2401985. [PMID: 39402771 DOI: 10.1002/adhm.202401985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/01/2024] [Indexed: 01/15/2025]
Abstract
Osteoarthritis (OA) is an inflammatory and progressive joint disease characterized by angiogenesis-mediated sustained, chronic, and low-grade synovitis. Anti-angiogenesis is emerging as a strategy for attenuating OA progression, but is often compromised by poor targeted drug delivery and immune clearance. Recent studies have identified macrophages formed a "protective barrier" in the lining layer (LL) of synovium, which blocked the communication of joint cavity and sublining layer (SL) of synovium. Inspired by natural mimicry, macrophage membrane-camouflaged drug delivery is explored to avoid immune clearance. Based on the single cell RNA sequencing, the CD34+ synovial cells are identified as "sentinel cells" for synovium angiogenesis. Consequently, CD34 antibody-modified macrophage membrane is constructed to target new angiogenesis. Hence, a biomimetic multi-layered nanoparticle (NP) is developed that incorporates axitinib-loaded poly(lactic-co-glycolic) acid (PLGA) with CD34 antibody modified macrophage membrane (Atb@NP@Raw@CD34) to specifically deliver axitinib (Atb) to the SL and sustain inhibiting angiogenesis without immune elimination. It is found that the Atb@NP@Raw@CD34 can pass through macrophage "barrier", specifically targeting CD34+ cells, continuously releasing Atb and anti-angiogenesis in OA synovitis. Furthermore, in vivo data demonstrated that Atb@NP@Raw@CD34 can attenuate joint degeneration by inhibiting synovium angiogenesis-mediated synovitis. In conclusion, local injection of Atb@NP@Raw@CD34 presents a promising approach for clinically impeding OA progression.
Collapse
Affiliation(s)
- Junyi Liao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenglin Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Xuefeng Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Bao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
22
|
Henriques J, Berenbaum F, Mobasheri A. Obesity-induced fibrosis in osteoarthritis: Pathogenesis, consequences and novel therapeutic opportunities. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100511. [PMID: 39483440 PMCID: PMC11525450 DOI: 10.1016/j.ocarto.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 11/03/2024] Open
Abstract
Osteoarthritis (OA) is a significant global burden, affecting more than half a billion people across the world. It is characterized by degeneration and loss of articular cartilage, synovial inflammation, and subchondral bone sclerosis, leading to pain and functional impairment. After age, obesity is a major modifiable risk factor for OA, and it has recently been identified as a chronic disease by the World Health Organization (WHO). Obesity is associated with high morbidity and mortality, imposing a significant cost on individuals and society. Obesity increases the risk of knee OA through increased joint loading, altered body composition, and elevated pro-inflammatory adipokines in the systemic circulation. Moreover, obesity triggers fibrotic processes in different organs and tissues, including those involved in OA. Fibrosis in OA refers to the abnormal accumulation of fibrous tissue within and around the joints. It can be driven by increased adiposity, low-grade inflammation, oxidative stress, and metabolic alterations. However, the clinical outcomes of fibrosis in OA are unclear. This review focuses on the link between obesity and OA, explores the mechanism of obesity-driven fibrosis, and examines potential therapeutic opportunities for targeting fibrotic processes in OA.
Collapse
Affiliation(s)
- João Henriques
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Francis Berenbaum
- Sorbonne University, Paris, France
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- INSERM CRSA, Paris, France
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
23
|
Yu X, Hu J, Li Y, Wen Y, Li B. ACL injury management: a comprehensive review of novel biotherapeutics. Front Bioeng Biotechnol 2024; 12:1455225. [PMID: 39650235 PMCID: PMC11620901 DOI: 10.3389/fbioe.2024.1455225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
The anterior cruciate ligament (ACL) is integral to the stability of the knee joint, serving to limit anterior tibial translation and regulate rotational movements. ACL injuries are among the most common and debilitating forms of knee trauma, often resulting in joint effusion, muscular atrophy, and diminished athletic capabilities. Despite the established efficacy of ACL reconstruction as the standard treatment, it is not uniformly successful. Consequently, there is a growing interest in novel biotherapeutic interventions as potential alternatives. This comprehensive review examines the latest advancements in ACL biotherapy, encompassing the application of hyaluronic acid, self-assembled short peptides, growth factors, stem cell therapy, gene therapy, platelet-rich plasma therapy, bone marrow aspirate concentrate cells, extracorporeal shock wave, electrical stimulation and cross bracing protocol. The collective aim of these innovative treatments is to facilitate the restoration of the ACL's native biological and biomechanical integrity, with the ultimate goal of enhancing clinical outcomes and the functional recovery of affected individuals.
Collapse
Affiliation(s)
- Xuezhi Yu
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Jiahui Hu
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yifan Li
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yu Wen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Bin Li
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
24
|
Kodama H, Endo K, Sekiya I. Macrophage depletion in inflamed rat knees prevents the activation of synovial mesenchymal stem cells by weakening Nampt and Spp1 signaling. Inflamm Regen 2024; 44:47. [PMID: 39563425 PMCID: PMC11577658 DOI: 10.1186/s41232-024-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Macrophages and mesenchymal stem cells (MSCs) engage in crucial interplay during inflammation and have significant roles in tissue regeneration. Synovial MSCs, as key players in joint regeneration, are known to proliferate together with macrophages in synovitis. However, the crosstalk between synovial MSCs and macrophages remains unclear. In this study, we investigated changes in the activation of synovial MSCs in inflamed rat knees following selective depletion of macrophages with clodronate liposomes. METHODS Acute inflammation was induced in rat knee joints by injection of carrageenan (day 0). Clodronate liposomes were administered intra-articularly on days 1 and 4 to deplete macrophages, with empty liposomes as a control. Knee joints were collected on day 7 for evaluation by histology, flow cytometry, and colony-forming assays. Concurrently, synovial MSCs were cultured and subjected to proliferation assays, flow cytometry, and chondrogenesis assessments. We also analyzed their crosstalk using single-cell RNA sequencing (scRNA-seq). RESULTS Clodronate liposome treatment significantly reduced CD68-positive macrophage numbers and suppressed synovitis. Immunohistochemistry and flow cytometry showed decreased expression of CD68 (a macrophage marker) and CD44 and CD271 (MSC markers) in the clodronate group, while CD73 expression remained unchanged. The number of colony-forming cells per 1000 nucleated cells and per gram of synovium was significantly lower in the clodronate group than in the control group. Cultured synovial MSCs from both groups showed comparable proliferation, surface antigen expression, and chondrogenic capacity. scRNA-seq identified seven distinct synovial fibroblast (SF) subsets, with a notable decrease in the Mki67+ SF subset, corresponding to synovial MSCs, in the clodronate group. Clodronate treatment downregulated genes related to extracellular matrix organization and anabolic pathways in Mki67+ SF. Cell-cell communication analysis revealed diminished Nampt and Spp1 signaling interaction between macrophages and Mki67+ SF and diminished Ccl7, Spp1, and Csf1 signaling interaction between Mki67+ SF and macrophages in the clodronate group. Spp1 and Nampt promoted the proliferation and/or chondrogenesis of synovial MSCs. CONCLUSIONS Macrophage depletion with clodronate liposomes suppressed synovitis and reduced the number and activity of synovial MSCs, highlighting the significance of macrophage-derived Nampt and Spp1 signals in synovial MSC activation. These findings offer potential therapeutic strategies to promote joint tissue regeneration by enhancing beneficial signals between macrophages and synovial MSCs.
Collapse
Affiliation(s)
- Hayato Kodama
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
25
|
Wijesinghe SN, Ditchfield C, Flynn S, Agrawal J, Davis ET, Dajas-Bailador F, Chapman V, Jones SW. Immunomodulation and fibroblast dynamics driving nociceptive joint pain within inflammatory synovium: Unravelling mechanisms for therapeutic advancements in osteoarthritis. Osteoarthritis Cartilage 2024; 32:1358-1370. [PMID: 38960140 DOI: 10.1016/j.joca.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
OBJECTIVE Synovitis is a widely accepted sign of osteoarthritis (OA), characterised by tissue hyperplasia, where increased infiltration of immune cells and proliferation of resident fibroblasts adopt a pro-inflammatory phenotype, and increased the production of pro-inflammatory mediators that are capable of sensitising and activating sensory nociceptors, which innervate the joint tissues. As such, it is important to understand the cellular composition of synovium and their involvement in pain sensitisation to better inform the development of effective analgesics. METHODS Studies investigating pain sensitisation in OA with a focus on immune cells and fibroblasts were identified using PubMed, Web of Science and SCOPUS. RESULTS In this review, we comprehensively assess the evidence that cellular crosstalk between resident immune cells or synovial fibroblasts with joint nociceptors in inflamed OA synovium contributes to peripheral pain sensitisation. Moreover, we explore whether the elucidation of common mechanisms identified in similar joint conditions may inform the development of more effective analgesics specifically targeting OA joint pain. CONCLUSION The concept of local environment and cellular crosstalk within the inflammatory synovium as a driver of nociceptive joint pain presents a compelling opportunity for future research and therapeutic advancements.
Collapse
Affiliation(s)
- Susanne N Wijesinghe
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Caitlin Ditchfield
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Sariah Flynn
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jyoti Agrawal
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | - Victoria Chapman
- Pain Centre Versus Arthritis, NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
26
|
Gilbert SJ, Soul J, Hao Y, Lin H, Piróg KA, Coxhead J, Patel K, Barter MJ, Young DA, Blain EJ. Comparative transcriptomic analysis of articular cartilage of post-traumatic osteoarthritis models. Dis Model Mech 2024; 17:dmm050583. [PMID: 39314058 PMCID: PMC11524441 DOI: 10.1242/dmm.050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Animal models of post-traumatic osteoarthritis (PTOA) recapitulate the pathological changes observed in human PTOA. Here, skeletally mature C57Bl6 mice were subjected to either rapid-onset non-surgical mechanical rupture of the anterior cruciate ligament (ACL) or to surgical destabilisation of the medial meniscus (DMM). Transcriptome profiling of micro-dissected cartilage at day 7 or day 42 following ACL or DMM procedure, respectively, showed that the two models were comparable and highly correlative. Gene ontology (GO) enrichment analysis identified similarly enriched pathways that were overrepresented by anabolic terms. To address the transcriptome changes more completely in the ACL model, we also performed small RNA sequencing, describing the first microRNA profile of this model. miR-199-5p was amongst the most abundant, yet differentially expressed, microRNAs, and its inhibition in primary human chondrocytes led to a transcriptome response that was comparable to that observed in both human 'OA damaged vs intact cartilage' and murine DMM cartilage datasets. We also experimentally verified CELSR1, GIT1, ECE1 and SOS2 as novel miR-199-5p targets. Together, these data support the use of the ACL rupture model as a non-invasive companion to the DMM model.
Collapse
Affiliation(s)
- Sophie J. Gilbert
- Biomechanics and Bioengineering Research Centre Versus Arthritis, Biomedicine Division, School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Jamie Soul
- Biosciences Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon TyneNE1 3BZ, UK
| | - Yao Hao
- Biosciences Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon TyneNE1 3BZ, UK
| | - Hua Lin
- Biosciences Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon TyneNE1 3BZ, UK
| | - Katarzyna A. Piróg
- Biosciences Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon TyneNE1 3BZ, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon TyneNE1 3BZ, UK
| | - Krutik Patel
- Biosciences Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon TyneNE1 3BZ, UK
| | - Matt J. Barter
- Biosciences Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon TyneNE1 3BZ, UK
| | - David A. Young
- Biosciences Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon TyneNE1 3BZ, UK
| | - Emma J. Blain
- Biomechanics and Bioengineering Research Centre Versus Arthritis, Biomedicine Division, School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
27
|
Obeidat AM, Kim SY, Burt KG, Hu B, Li J, Ishihara S, Xiao R, Miller RE, Little C, Malfait AM, Scanzello CR. A standardized approach to evaluation and reporting of synovial histopathology in two surgically induced murine models of osteoarthritis. Osteoarthritis Cartilage 2024; 32:1273-1282. [PMID: 38823432 PMCID: PMC11408105 DOI: 10.1016/j.joca.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVE Synovial pathology has been linked to osteoarthritis (OA) pain in patients. Microscopic grading systems for synovial changes in human OA have been described, but a standardized approach for murine models of OA is needed. We sought to develop a reproducible approach and set of minimum recommendations for reporting of synovial histopathology in mouse models of OA. METHODS Coronal and sagittal sections from male mouse knee joints subjected to destabilization of medial meniscus (DMM) or partial meniscectomy (PMX) were collected as part of other studies. Stains included Hematoxylin and Eosin (H&E), Toluidine Blue (T-Blue), and Safranin O/Fast Green (Saf-O). Four blinded readers graded pathological features (hyperplasia, cellularity, and fibrosis) at specific anatomic locations. Inter-reader agreement of each feature score was determined. RESULTS There was acceptable to very good agreement when using 3-4 individual readers. After DMM and PMX, expected medial predominant changes in hyperplasia and cellularity were observed, with fibrosis noted at 12 weeks post-PMX. Synovial changes were consistent from section to section in the mid-joint area. When comparing stains, H&E and T-blue resulted in better agreement compared to Saf-O stain. CONCLUSIONS To account for the pathologic and anatomic variability in synovial pathology and allow for a more standardized evaluation that can be compared across studies, we recommend evaluating a minimum set of 3 pathological features at standardized anatomic areas. Further, we suggest reporting individual feature scores separately before relying on a single summed "synovitis" score. H&E or T-blue are preferred, inter-reader agreement for each feature should be considered.
Collapse
Affiliation(s)
- Alia M Obeidat
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Sung Yeon Kim
- University of Pennsylvania School of Engineering and Applied Sciences, Philadelphia, PA 19104, United States.
| | - Kevin G Burt
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Department of Orthopaedic Surgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Baofeng Hu
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Jun Li
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Shingo Ishihara
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Pediatrics Division of Biostatistics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States.
| | - Rachel E Miller
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Christopher Little
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, NSW 2065, Australia.
| | - Anne-Marie Malfait
- Division of Rheumatology, Department of Internal Medicine, Rush University Medical College, Chicago, IL, United States.
| | - Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Division of Rheumatology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
28
|
Zhou F, Chen M, Qian Y, Yuan K, Han X, Wang W, Guo JJ, Chen Q, Li B. Enhancing Endogenous Hyaluronic Acid in Osteoarthritic Joints with an Anti-Inflammatory Supramolecular Nanofiber Hydrogel Delivering HAS2 Lentivirus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400542. [PMID: 38593309 DOI: 10.1002/smll.202400542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Osteoarthritis (OA) management remains challenging because of its intricate pathogenesis. Intra-articular injections of drugs, such as glucocorticoids and hyaluronic acid (HA), have certain limitations, including the risk of joint infection, pain, and swelling. Hydrogel-based therapeutic strategies have attracted considerable attention because of their enormous therapeutic potential. Herein, a supramolecular nanofiber hydrogel is developed using dexamethasone sodium phosphate (DexP) as a vector to deliver lentivirus-encoding hyaluronan synthase 2 (HAS2) (HAS2@DexP-Gel). During hydrogel degradation, HAS2 lentivirus and DexP molecules are slowly released. Intra-articular injection of HAS2@DexP-Gel promotes endogenous HA production and suppresses synovial inflammation. Additionally, HAS2@DexP-Gel reduces subchondral bone resorption in the anterior cruciate ligament transection-induced OA mice, attenuates cartilage degeneration, and delays OA progression. HAS2@DexP-Gel exhibited good biocompatibility both in vitro and in vivo. The therapeutic mechanisms of the HAS2@DexP-Gel are investigated using single-cell RNA sequencing. HAS2@DexP-Gel optimizes the microenvironment of the synovial tissue by modulating the proportion of synovial cell subpopulations and regulating the interactions between synovial fibroblasts and macrophages. The innovative nanofiber hydrogel, HAS2@DexP-Gel, effectively enhances endogenous HA production while reducing synovial inflammation. This comprehensive approach holds promise for improving joint function, alleviating pain, and slowing OA progression, thereby providing significant benefits to patients.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yufan Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xuequan Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Center for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Weishan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832099, P. R. China
| | - Jiong Jiong Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| |
Collapse
|
29
|
Bergman RF, Lammlin L, Junginger L, Farrell E, Goldman S, Darcy R, Rasner C, Obeidat AM, Malfait AM, Miller RE, Maerz T. Sexual dimorphism of the synovial transcriptome underpins greater PTOA disease severity in male mice following joint injury. Osteoarthritis Cartilage 2024; 32:1060-1073. [PMID: 37716404 DOI: 10.1016/j.joca.2023.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a disease with sex-dependent prevalence and severity in both human and animal models. We sought to elucidate sex differences in synovitis, mechanical sensitization, structural damage, bone remodeling, and the synovial transcriptome in the anterior cruciate ligament rupture (ACLR) mouse model of post-traumatic OA (PTOA). DESIGN Male and female 12-week-old C57/BL6J mice were randomized to Sham or noninvasive ACLR with harvests at 7d or 28d post-ACLR (n = 9 per sex in each group - Sham, 7d ACLR, 28d ACLR). Knee hyperalgesia, mechanical allodynia, and intra-articular matrix metalloproteinase (MMP) activity (via intravital imaging) were measured longitudinally. Trabecular and subchondral bone (SCB) remodeling and osteophyte formation were assessed by µCT. Histological scoring of PTOA, synovitis, and anti-MMP13 immunostaining were performed. NaV1.8-Cre;tdTomato mice were used to document localization and sprouting of nociceptors. Bulk RNA-seq of synovium in Sham, 7d, and 28d post-ACLR, and contralateral joints (n = 6 per group per sex) assessed injury-induced and sex-dependent gene expression. RESULTS Male mice exhibited more severe joint damage at 7d and 28d and more severe synovitis at 28d, accompanied by 19% greater MMP activity, 8% lower knee hyperalgesia threshold, and 43% lower hindpaw withdrawal threshold in injured limbs compared to female injured limbs. Females had injury-induced catabolic responses in trabecular and SCB, whereas males exhibited 133% greater normalized osteophyte volume relative to females and sclerotic remodeling of trabecular and SCB. NaV1.8+ nociceptor sprouting in SCB and medial synovium was induced by injury and comparable between sexes. RNA-seq of synovium demonstrated similar injury-induced transcriptomic programs between the sexes at 7d, but only female mice exhibited a transcriptomic signature indicative of synovial inflammatory resolution by 28d, whereas males had persistent pro-inflammatory, pro-fibrotic, pro-neurogenic, and pro-angiogenic gene expression. CONCLUSION Male mice exhibited more severe overall joint damage and pain behavior after ACLR, which was associated with persistent activation of synovial inflammatory, fibrotic, and neuroangiogenic processes, implicating persistent synovitis in driving sex differences in murine PTOA.
Collapse
Affiliation(s)
- Rachel F Bergman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Lindsey Lammlin
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Lucas Junginger
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Easton Farrell
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Sam Goldman
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Rose Darcy
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Cody Rasner
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Alia M Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University, Chicago, IL, United States
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University, Chicago, IL, United States
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University, Chicago, IL, United States
| | - Tristan Maerz
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
30
|
Komaravolu RK, Mehta-D'souza P, Conner T, Allen M, Lumry J, Batushansky A, Pezant NP, Montgomery CG, Griffin TM. Sex-specific effects of injury and beta-adrenergic activation on metabolic and inflammatory mediators in a murine model of post-traumatic osteoarthritis. Osteoarthritis Cartilage 2024; 32:1097-1112. [PMID: 38527663 PMCID: PMC11330734 DOI: 10.1016/j.joca.2024.03.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/09/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE Metabolic processes are intricately linked to the resolution of innate inflammation and tissue repair, two critical steps for treating post-traumatic osteoarthritis (PTOA). Based on lipolytic and immunoregulatory actions of norepinephrine, we hypothesized that intra-articular β-adrenergic receptor (βAR) stimulation would suppress PTOA-associated inflammation in the infrapatellar fat pad (IFP) and synovium. DESIGN We used the βAR agonist isoproterenol to perturb intra-articular metabolism 3.5 weeks after applying a non-invasive single-load compression injury to knees of 12-week-old male and female mice. We examined the acute effects of intra-articular isoproterenol treatment relative to saline on IFP histology, multiplex gene expression of synovium-IFP tissue, synovial fluid metabolomics, and mechanical allodynia. RESULTS Injured knees developed PTOA pathology characterized by heterotopic ossification, articular cartilage loss, and IFP atrophy and fibrosis. Isoproterenol suppressed the upregulation of pro-fibrotic genes and downregulated the expression of adipose genes and pro-inflammatory genes (Adam17, Cd14, Icam1, Csf1r, and Casp1) in injured joints of female (but not male) mice. Analysis of published single-cell RNA-seq data identified elevated catecholamine-associated gene expression in resident-like synovial-IFP macrophages after injury. Injury substantially altered synovial fluid metabolites by increasing amino acids, peptides, sphingolipids, phospholipids, bile acids, and dicarboxylic acids, but these changes were not appreciably altered by isoproterenol. Intra-articular injection of either isoproterenol or saline increased mechanical allodynia in female mice, whereas neither substance affected male mice. CONCLUSIONS Acute βAR activation altered synovial-IFP transcription in a sex and injury-dependent manner, suggesting that women with PTOA may be more sensitive than men to treatments targeting sympathetic neural signaling pathways.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Isoproterenol/pharmacology
- Adrenergic beta-Agonists/pharmacology
- Disease Models, Animal
- Sex Factors
- Synovial Membrane/metabolism
- Adipose Tissue/metabolism
- Inflammation Mediators/metabolism
- Receptors, Adrenergic, beta/metabolism
- Injections, Intra-Articular
- Knee Injuries/complications
- Knee Injuries/metabolism
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/etiology
- Cartilage, Articular/metabolism
- Cartilage, Articular/drug effects
- Cartilage, Articular/pathology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Ravi K Komaravolu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Padmaja Mehta-D'souza
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Taylor Conner
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Madeline Allen
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK 73019, USA.
| | - Jessica Lumry
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Nathan P Pezant
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Courtney G Montgomery
- Center for Biomedical Data Sciences, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Oklahoma City VA Health Care System, Oklahoma City, OK 73104, USA; Oklahoma Center for Geroscience and the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
31
|
Liu X, Chen Y, Zhang T. Mechanism study of BMSC-exosomes combined with hyaluronic acid gel in the treatment of posttraumatic osteoarthritis. Heliyon 2024; 10:e34192. [PMID: 39100446 PMCID: PMC11295849 DOI: 10.1016/j.heliyon.2024.e34192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Objective To explore the mechanism and efficacy of gel in the treatment of posttraumatic osteoarthritis (PTOA), combined with hyaluronic acid (HA) and bone marrow mesenchymal stem cell exosomes (BMSC-EXOs), and to explain its role in alleviating oxidative stress damage induced by mitochondrial reactive oxygen species (ROS). Methods How is the therapeutic potential of toa influenced by bone marrow mesenchymal stem cells-EXO to be evaluated both in vitro and in vivo. In vitro, BMSC-EXOs were extracted and characterized from rat specimens and labeled with Dil. Rat primary chondrocytes were then isolated to create a cellular PTOA model. BMSC-EXOs + HA group, BMSC-EXOs + HA + 740Y-P group, model group, BMSC-EXOs group, HA group, and control group were included in the cell group, and the function of cartilage matrix and the level of oxidative stress could be evaluated. Cartilage matrix integrity and oxidative stress can be assessed by grouping rats. At the same time, a rat model of ptosis can be established by excision of the anterior cruciate ligament, and joint rehabilitation, with pro-inflammatory and Enzyme-linked immunosorbent assay (ELISA) can be used to determine anti-inflammatory markers. Result sThe combined use of BMSC-EXOs and HA gel was found to significantly reduce oxidative stress in chondrocytes and PTOA rat models, improving cartilage mechanical properties more effectively than BMSC-EXOs alone. Conclusion BMSC-EXOs combined with HA gel offer a promising treatment for PTOA by modulating damage caused by mitochondrial ROS-induced oxidative stress.
Collapse
Affiliation(s)
- Xianqiang Liu
- Beichen District Hospital of Traditional Chinese Medicine, China
| | - Yongshuai Chen
- Beichen District Hospital of Traditional Chinese Medicine, China
| | - Tao Zhang
- Beichen District Hospital of Traditional Chinese Medicine, China
| |
Collapse
|
32
|
McCartney EE, Chung Y, Buechler MB. Life of Pi: Exploring functions of Pi16+ fibroblasts. F1000Res 2024; 13:126. [PMID: 38919948 PMCID: PMC11196929 DOI: 10.12688/f1000research.143511.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 06/27/2024] Open
Abstract
Fibroblasts are mesenchymal cells that are responsible for creating and maintaining tissue architecture through the production of extracellular matrix. These cells also play critical roles in processes such as wound repair and immune modulation in normal tissues and various disease states including fibrosis, autoimmunity, and cancer. Fibroblasts have a complex repertoire of functions that vary by organ, inflammatory state, and the developmental stage of an organism. How fibroblasts manage so many functions in such a context-dependent manner represents a gap in our understanding of these cells. One possibility is that a tissue-resident precursor cell state exists that provides the fibroblast lineage with flexibility during growth, inflammation, or other contexts that require dynamic tissue changes. Recent work has suggested that a precursor fibroblast cell state is marked by expression of Peptidase inhibitor 16 ( Pi16). This review aims to concatenate and compare studies on fibroblasts that express Pi16 to clarify the roles of this cell state in fibroblast lineage development and other functions.
Collapse
Affiliation(s)
- Erika E. McCartney
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Yein Chung
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Matthew B. Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
33
|
Damerau A, Rosenow E, Alkhoury D, Buttgereit F, Gaber T. Fibrotic pathways and fibroblast-like synoviocyte phenotypes in osteoarthritis. Front Immunol 2024; 15:1385006. [PMID: 38895122 PMCID: PMC11183113 DOI: 10.3389/fimmu.2024.1385006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, characterized by osteophyte formation, cartilage degradation, and structural and cellular alterations of the synovial membrane. Activated fibroblast-like synoviocytes (FLS) of the synovial membrane have been identified as key drivers, secreting humoral mediators that maintain inflammatory processes, proteases that cause cartilage and bone destruction, and factors that drive fibrotic processes. In normal tissue repair, fibrotic processes are terminated after the damage has been repaired. In fibrosis, tissue remodeling and wound healing are exaggerated and prolonged. Various stressors, including aging, joint instability, and inflammation, lead to structural damage of the joint and micro lesions within the synovial tissue. One result is the reduced production of synovial fluid (lubricants), which reduces the lubricity of the cartilage areas, leading to cartilage damage. In the synovial tissue, a wound-healing cascade is initiated by activating macrophages, Th2 cells, and FLS. The latter can be divided into two major populations. The destructive thymocyte differentiation antigen (THY)1─ phenotype is restricted to the synovial lining layer. In contrast, the THY1+ phenotype of the sublining layer is classified as an invasive one with immune effector function driving synovitis. The exact mechanisms involved in the transition of fibroblasts into a myofibroblast-like phenotype that drives fibrosis remain unclear. The review provides an overview of the phenotypes and spatial distribution of FLS in the synovial membrane of OA, describes the mechanisms of fibroblast into myofibroblast activation, and the metabolic alterations of myofibroblast-like cells.
Collapse
Affiliation(s)
- Alexandra Damerau
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| | - Emely Rosenow
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Dana Alkhoury
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| |
Collapse
|
34
|
Feng J, Zhang Q, Pu F, Zhu Z, Lu K, Lu WW, Tong L, Yu H, Chen D. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif 2024; 57:e13600. [PMID: 38199244 PMCID: PMC11150147 DOI: 10.1111/cpr.13600] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent disorder of synovial joint affecting multiple joints. In the past decade, we have witnessed conceptual switch of OA pathogenesis from a 'wear and tear' disease to a disease affecting entire joint. Extensive studies have been conducted to understand the underlying mechanisms of OA using genetic mouse models and ex vivo joint tissues derived from individuals with OA. These studies revealed that multiple signalling pathways are involved in OA development, including the canonical Wnt/β-catenin signalling and its interaction with other signalling pathways, such as transforming growth factor β (TGF-β), bone morphogenic protein (BMP), Indian Hedgehog (Ihh), nuclear factor κB (NF-κB), fibroblast growth factor (FGF), and Notch. The identification of signalling interaction and underlying mechanisms are currently underway and the specific molecule(s) and key signalling pathway(s) playing a decisive role in OA development need to be evaluated. This review will focus on recent progresses in understanding of the critical role of Wnt/β-catenin signalling in OA pathogenesis and interaction of β-catenin with other pathways, such as TGF-β, BMP, Notch, Ihh, NF-κB, and FGF. Understanding of these novel insights into the interaction of β-catenin with other pathways and its integration into a complex gene regulatory network during OA development will help us identify the key signalling pathway of OA pathogenesis leading to the discovery of novel therapeutic strategies for OA intervention.
Collapse
Affiliation(s)
- Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Qing Zhang
- Department of EmergencyRenmin Hospital, Wuhan UniversityWuhanHubeiChina
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Zhenglin Zhu
- Department of Orthopedic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ke Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - William W. Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Huan Yu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Di Chen
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
35
|
Lin P, Gan YB, He J, Lin SE, Xu JK, Chang L, Zhao LM, Zhu J, Zhang L, Huang S, Hu O, Wang YB, Jin HJ, Li YY, Yan PL, Chen L, Jiang JX, Liu P. Advancing skeletal health and disease research with single-cell RNA sequencing. Mil Med Res 2024; 11:33. [PMID: 38816888 PMCID: PMC11138034 DOI: 10.1186/s40779-024-00538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Orthopedic conditions have emerged as global health concerns, impacting approximately 1.7 billion individuals worldwide. However, the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders. The advent of single-cell RNA sequencing (scRNA-seq) technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity. Nevertheless, investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges. In this comprehensive review, we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines. By utilizing these methodologies, crucial insights into the developmental dynamics, maintenance of homeostasis, and pathological processes involved in spine, joint, bone, muscle, and tendon disorders have been uncovered. Specifically focusing on the joint diseases of degenerative disc disease, osteoarthritis, and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension. These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.
Collapse
Grants
- 2022YFA1103202 National Key Research and Development Program of China
- 82272507 National Natural Science Foundation of China
- 32270887 National Natural Science Foundation of China
- 32200654 National Natural Science Foundation of China
- CSTB2023NSCQ-ZDJO008 Natural Science Foundation of Chongqing
- BX20220397 Postdoctoral Innovative Talent Support Program
- SFLKF202201 Independent Research Project of State Key Laboratory of Trauma and Chemical Poisoning
- 2021-XZYG-B10 General Hospital of Western Theater Command Research Project
- 14113723 University Grants Committee, Research Grants Council of Hong Kong, China
- N_CUHK472/22 University Grants Committee, Research Grants Council of Hong Kong, China
- C7030-18G University Grants Committee, Research Grants Council of Hong Kong, China
- T13-402/17-N University Grants Committee, Research Grants Council of Hong Kong, China
- AoE/M-402/20 University Grants Committee, Research Grants Council of Hong Kong, China
Collapse
Affiliation(s)
- Peng Lin
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi-Bo Gan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jian He
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, the General Hospital of Western Theater Command, Chengdu, 610031, China
| | - Si-En Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Jian-Kun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China
| | - Li-Ming Zhao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Sacramento, CA, 94305, USA
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liang Zhang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Sha Huang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ying-Bo Wang
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Huai-Jian Jin
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yang-Yang Li
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Pu-Lin Yan
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma and Chemical Poisoning, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jian-Xin Jiang
- Wound Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
36
|
Liu F, Lu Y, Wang X, Sun S, Pan H, Wang M, Wang Z, Zhang W, Ma S, Sun G, Chu Q, Wang S, Qu J, Liu GH. Identification of FOXO1 as a geroprotector in human synovium through single-nucleus transcriptomic profiling. Protein Cell 2024; 15:441-459. [PMID: 38092362 PMCID: PMC11131031 DOI: 10.1093/procel/pwad060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 05/29/2024] Open
Abstract
The synovium, a thin layer of tissue that is adjacent to the joints and secretes synovial fluid, undergoes changes in aging that contribute to intense shoulder pain and other joint diseases. However, the mechanism underlying human synovial aging remains poorly characterized. Here, we generated a comprehensive transcriptomic profile of synovial cells present in the subacromial synovium from young and aged individuals. By delineating aging-related transcriptomic changes across different cell types and their associated regulatory networks, we identified two subsets of mesenchymal stromal cells (MSCs) in human synovium, which are lining and sublining MSCs, and found that angiogenesis and fibrosis-associated genes were upregulated whereas genes associated with cell adhesion and cartilage development were downregulated in aged MSCs. Moreover, the specific cell-cell communications in aged synovium mirrors that of aging-related inflammation and tissue remodeling, including vascular hyperplasia and tissue fibrosis. In particular, we identified forkhead box O1 (FOXO1) as one of the major regulons for aging differentially expressed genes (DEGs) in synovial MSCs, and validated its downregulation in both lining and sublining MSC populations of the aged synovium. In human FOXO1-depleted MSCs derived from human embryonic stem cells, we recapitulated the senescent phenotype observed in the subacromial synovium of aged donors. These data indicate an important role of FOXO1 in the regulation of human synovial aging. Overall, our study improves our understanding of synovial aging during joint degeneration, thereby informing the development of novel intervention strategies aimed at rejuvenating the aged joint.
Collapse
Affiliation(s)
- Feifei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Lu
- Sports Medicine Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Xuebao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Huize Pan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230001, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guoqiang Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Si Wang
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
37
|
Lin R, Yin J, Huang J, Zou L, Liu L, Tang W, Zhang H, Yang L, Zhang Y, Li G, Wang G, Cai D, Zhang H, Liu Y, Shao Y. Macrophage-derived ectosomal miR-350-3p promotes osteoarthritis progression through downregulating chondrocyte H3K36 methyltransferase NSD1. Cell Death Discov 2024; 10:223. [PMID: 38719811 PMCID: PMC11078928 DOI: 10.1038/s41420-024-01986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Mechanical overloading can promote cartilage senescence and osteoarthritis (OA) development, but its impact on synovial macrophages and the interaction between macrophages and chondrocytes remain unknown. Here, we found that macrophages exhibited M1 polarization under mechanical overloading and secreted ectosomes that induced cartilage degradation and senescence. By performing miRNA sequencing on ectosomes, we identified highly expressed miR-350-3p as a key factor mediating the homeostatic imbalance of chondrocytes caused by M1-polarized macrophages, this result being confirmed by altering the miR-350-3p level in chondrocytes with mimics and inhibitor. In experimental OA mice, miR-350-3p was increased in synovium and cartilage, while intra-articular injection of antagomir-350-3p inhibited the increase of miR-350-3p and alleviated cartilage degeneration and senescence. Further studies showed that macrophage-derived ectosomal miR-350-3p promoted OA progression by inhibiting nuclear receptor binding SET domain protein 1(NSD1) in chondrocytes and regulating histone H3 lysine 36(H3K36) methylation. This study demonstrated that the targeting of macrophage-derived ectosomal miRNAs was a potential therapeutic method for mechanical overload-induced OA.
Collapse
Affiliation(s)
- Rengui Lin
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jianbin Yin
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jialuo Huang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Liping Zou
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Liangliang Liu
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Wen Tang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hongbo Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Lingfeng Yang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yu Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Guangming Li
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Guiqing Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, orthopedics department, Qingyuan, Guangdong, China
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| | - Yanli Liu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| | - Yan Shao
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
| |
Collapse
|
38
|
Lung H, Wentworth KL, Moody T, Zamarioli A, Ram A, Ganesh G, Kang M, Ho S, Hsiao EC. Wnt pathway inhibition with the porcupine inhibitor LGK974 decreases trabecular bone but not fibrosis in a murine model with fibrotic bone. JBMR Plus 2024; 8:ziae011. [PMID: 38577521 PMCID: PMC10994528 DOI: 10.1093/jbmrpl/ziae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 04/06/2024] Open
Abstract
G protein-coupled receptors (GPCRs) mediate a wide spectrum of physiological functions, including the development, remodeling, and repair of the skeleton. Fibrous dysplasia (FD) of the bone is characterized by fibrotic, expansile bone lesions caused by activating mutations in GNAS. There are no effective therapies for FD. We previously showed that ColI(2.3)+/Rs1+ mice, in which Gs-GPCR signaling was hyper-activated in osteoblastic cell lineages using an engineered receptor strategy, developed a fibrotic bone phenotype with trabecularization that could be reversed by normalizing Gs-GPCR signaling, suggesting that targeting the Gs-GPCR or components of the downstream signaling pathway could serve as a promising therapeutic strategy for FD. The Wnt signaling pathway has been implicated in the pathogenesis of FD-like bone, but the specific Wnts and which cells produce them remain largely unknown. Single-cell RNA sequencing on long-bone stromal cells of 9-wk-old male ColI(2.3)+/Rs1+ mice and littermate controls showed that fibroblastic stromal cells in ColI(2.3)+/Rs1+ mice were expanded. Multiple Wnt ligands were up- or downregulated in different cellular populations, including in non-osteoblastic cells. Treatment with the porcupine inhibitor LGK974, which blocks Wnt signaling broadly, induced partial resorption of the trabecular bone in the femurs of ColI(2.3)+/Rs1+ mice, but no significant changes in the craniofacial skeleton. Bone fibrosis remained evident after treatment. Notably, LGK974 caused significant bone loss in control mice. These results provide new insights into the role of Wnt and Gs-signaling in fibrosis and bone formation in a mouse model of Gs-GPCR pathway overactivation.
Collapse
Affiliation(s)
- Hsuan Lung
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- School of Dentistry, Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, Zuckerberg San Francisco General Hospital, San Francisco, CA 94143, United States
| | - Tania Moody
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Ariane Zamarioli
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Department of Orthopaedics and Anesthesiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo (SP) 14049-900, Brazil
| | - Apsara Ram
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Gauri Ganesh
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Misun Kang
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| | - Sunita Ho
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| | - Edward C Hsiao
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| |
Collapse
|
39
|
Chen B, Sun Y, Xu G, Jiang J, Zhang W, Wu C, Xue P, Cui Z. Role of crosstalk between synovial cells and chondrocytes in osteoarthritis (Review). Exp Ther Med 2024; 27:201. [PMID: 38590580 PMCID: PMC11000048 DOI: 10.3892/etm.2024.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 04/10/2024] Open
Abstract
Osteoarthritis (OA) is a low-grade, nonspecific inflammatory disease that affects the entire joint. This condition is characterized by synovitis, cartilage erosion, subchondral bone defects, and subpatellar fat pad damage. There is mounting evidence demonstrating the significance of crosstalk between synovitis and cartilage destruction in the development of OA. To comprehensively explore the phenotypic alterations of synovitis and cartilage destruction, it is important to elucidate the crosstalk mechanisms between chondrocytes and synovial cells. Furthermore, the updated iteration of single-cell sequencing technology reveals the interaction between chondrocyte and synovial cells. In the present review, the histological and pathological alterations between cartilage and synovium during OA progression are described, and the mode of interaction and molecular mechanisms between synovial cells and chondrocytes in OA, both of which affect the OA process mainly by altering the inflammatory environment and cellular state, are elucidated. Finally, the current OA therapeutic approaches are summarized and emerging therapeutic targets are reviewed in an attempt to provide potential insights into OA treatment.
Collapse
Affiliation(s)
- Baisen Chen
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuyu Sun
- Department of Orthopedics, Nantong Third People's Hospital, Nantong, Jiangsu 226003, P.R. China
| | - Guanhua Xu
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jiawei Jiang
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wenhao Zhang
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chunshuai Wu
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Pengfei Xue
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Orthopedics, Nantong City No. 1 People's Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
40
|
Rošin M, Kelam N, Jurić I, Racetin A, Ogorevc M, Corre B, Čarić D, Filipović N, Vukojević K. Syndecans, Exostosins and Sulfotransferases as Potential Synovial Inflammation Moderators in Patients with Hip Osteoarthritis. Int J Mol Sci 2024; 25:4557. [PMID: 38674142 PMCID: PMC11049902 DOI: 10.3390/ijms25084557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The gradual deterioration of articular cartilage was thought to be the central event in osteoarthritis (OA), but recent studies demonstrated the importance of low-grade synovitis in the progression of OA. The Syndecan (SDC) family of membrane proteoglycans is known to be involved in the regulation of inflammation, but there is limited evidence considering the role of syndecans in OA synovitis. Our study aimed to investigate the hip OA synovial membrane expression patterns of SDC1, SDC2 and SDC4, as well as exostosins and sulfotransferases (enzymes involved in the polymerisation and modification of syndecans' heparan sulphate chains). Synovial membrane samples of patients with OA (24) were divided into two groups according to their Krenn synovitis score severity. The immunohistochemical expressions of SDC1, SDC2, SDC4, EXT1, EXT2, NDST1 and NDST2 in synovial intima and subintima were then analysed and compared with the control group (patients with femoral neck fracture). According to our study, the immunoexpression of SDC1, NDST1 and EXT2 is significantly increased in the intimal cells of OA synovial membrane in patients with lower histological synovitis scores and SDC4 in patients with higher synovitis scores, in comparison with non-OA controls. The difference in the expression of SDC2 among the OA and non-OA groups was insignificant. SDC1, SDC4, NDST1 and EXT2 seem to be involved as inflammation moderators in low-grade OA synovitis and, therefore, should be further investigated as potential markers of disease progression and therapeutic goals.
Collapse
Affiliation(s)
- Matko Rošin
- Surgery Department, Orthopaedics and Traumatology Division, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.R.); (D.Č.)
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Ivana Jurić
- Department of Emergency Medicine, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia;
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Brieuc Corre
- Faculty of Medicine and Health Sciences, University of Brest, 29200 Brest, France;
| | - Davor Čarić
- Surgery Department, Orthopaedics and Traumatology Division, University Hospital of Split, Spinciceva 1, 21000 Split, Croatia; (M.R.); (D.Č.)
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia; (N.K.); (A.R.); (M.O.); (N.F.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| |
Collapse
|
41
|
Pu H, Gao C, Zou Y, Zhao L, Li G, Liu C, Zhao L, Zheng M, Sheng G, Sun X, Hao X, Wang C, He X, Xiao J. Single cell transcriptome profiling of infrapatellar fat pad highlights the role of interstitial inflammatory fibroblasts in osteoarthritis. Int Immunopharmacol 2024; 131:111888. [PMID: 38522139 DOI: 10.1016/j.intimp.2024.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVES Osteoarthritis (OA) is a whole-joint disease in which the role of the infrapatellar fat pad (IFP) in its pathogenesis is unclear. Our study explored the cellular heterogeneity of IFP to understand OA and identify therapeutic targets. METHODS Single-cell and single-nuclei RNA sequencing were used to analyze 10 IFP samples, comprising 5 from OA patients and 5 from healthy controls. Analyses included differential gene expression, enrichment, pseudotime trajectory, and cellular communication, along with comparative studies with visceral and subcutaneous fats. Key subcluster and pathways were validated using multiplex immunohistochemistry. RESULTS The scRNA-seq performed on the IFPs of the OA and control group profiled the gene expressions of over 49,674 cells belonging to 11 major cell types. We discovered that adipose stem and progenitor cells (ASPCs), contributing to the formation of both adipocytes and synovial-lining fibroblasts (SLF). Interstitial inflammatory fibroblasts (iiFBs) were a subcluster of ASPCs that exhibit notable pro-inflammatory and proliferative characteristics. We identified four adipocyte subtypes, with one subtype showing a reduced lipid synthesis ability. Furthermore, iiFBs modulated the activities of macrophages and T cells in the IFP. Compared to subcutaneous and visceral adipose tissues, iiFBs represented a distinctive subpopulation of ASPCs in IFP that regulated cartilage proliferation through the MK pathway. CONCLUSION This study presents a comprehensive single-cell transcriptomic atlas of IFP, uncovering its complex cellular landscape and potential impact on OA progression. Our findings highlight the role of iiFBs in OA, especially through MK pathway, opening new avenues for understanding OA pathogenesis and developing novel targeted therapies.
Collapse
Affiliation(s)
- Hongxu Pu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zou
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liming Zhao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guanghao Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changyu Liu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Libo Zhao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Zheng
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaohong Sheng
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuying Sun
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingjie Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jun Xiao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
42
|
Liu B, Xian Y, Chen X, Shi Y, Dong J, Yang L, An X, Shen T, Wu W, Ma Y, He Y, Gong W, Peng R, Lin J, Liu N, Guo B, Jiang Q. Inflammatory Fibroblast-Like Synoviocyte-Derived Exosomes Aggravate Osteoarthritis via Enhancing Macrophage Glycolysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307338. [PMID: 38342630 PMCID: PMC11005727 DOI: 10.1002/advs.202307338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/23/2024] [Indexed: 02/13/2024]
Abstract
The severity of osteoarthritis (OA) and cartilage degeneration is highly associated with synovial inflammation. Although recent investigations have revealed a dysregulated crosstalk between fibroblast-like synoviocytes (FLSs) and macrophages in the pathogenesis of synovitis, limited knowledge is available regarding the involvement of exosomes. Here, increased exosome secretion is observed in FLSs from OA patients. Notably, internalization of inflammatory FLS-derived exosomes (inf-exo) can enhance the M1 polarization of macrophages, which further induces an OA-like phenotype in co-cultured chondrocytes. Intra-articular injection of inf-exo induces synovitis and exacerbates OA progression in murine models. In addition, it is demonstrated that inf-exo stimulation triggers the activation of glycolysis. Inhibition of glycolysis using 2-DG successfully attenuates excessive M1 polarization triggered by inf-exo. Mechanistically, HIF1A is identified as the determinant transcription factor, inhibition of which, both pharmacologically or genetically, relieves macrophage inflammation triggered by inf-exo-induced hyperglycolysis. Furthermore, in vivo administration of an HIF1A inhibitor alleviates experimental OA. The results provide novel insights into the involvement of FLS-derived exosomes in OA pathogenesis, suggesting that inf-exo-induced macrophage dysfunction represents an attractive target for OA therapy.
Collapse
|
43
|
Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C, June RK, Ramos Y, Rice SJ, Ali SA, Pastrello C, Jurisica I, Thomas Appleton C, Rockel JS, Kapoor M. Three decades of advancements in osteoarthritis research: insights from transcriptomic, proteomic, and metabolomic studies. Osteoarthritis Cartilage 2024; 32:385-397. [PMID: 38049029 DOI: 10.1016/j.joca.2023.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a complex disease involving contributions from both local joint tissues and systemic sources. Patient characteristics, encompassing sociodemographic and clinical variables, are intricately linked with OA rendering its understanding challenging. Technological advancements have allowed for a comprehensive analysis of transcripts, proteomes and metabolomes in OA tissues/fluids through omic analyses. The objective of this review is to highlight the advancements achieved by omic studies in enhancing our understanding of OA pathogenesis over the last three decades. DESIGN We conducted an extensive literature search focusing on transcriptomics, proteomics and metabolomics within the context of OA. Specifically, we explore how these technologies have identified individual transcripts, proteins, and metabolites, as well as distinctive endotype signatures from various body tissues or fluids of OA patients, including insights at the single-cell level, to advance our understanding of this highly complex disease. RESULTS Omic studies reveal the description of numerous individual molecules and molecular patterns within OA-associated tissues and fluids. This includes the identification of specific cell (sub)types and associated pathways that contribute to disease mechanisms. However, there remains a necessity to further advance these technologies to delineate the spatial organization of cellular subtypes and molecular patterns within OA-afflicted tissues. CONCLUSIONS Leveraging a multi-omics approach that integrates datasets from diverse molecular detection technologies, combined with patients' clinical and sociodemographic features, and molecular and regulatory networks, holds promise for identifying unique patient endophenotypes. This holistic approach can illuminate the heterogeneity among OA patients and, in turn, facilitate the development of tailored therapeutic interventions.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC -Hospital Universitario A Coruña, SERGAS, Spain
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Yolande Ramos
- Dept. Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - C Thomas Appleton
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Jason S Rockel
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada.
| |
Collapse
|
44
|
Li J, Gui T, Yao L, Guo H, Lin YL, Lu J, Duffy M, Zgonis M, Mauck R, Dyment N, Zhang Y, Scanzello C, Seale P, Qin L. Synovium and infrapatellar fat pad share common mesenchymal progenitors and undergo coordinated changes in osteoarthritis. J Bone Miner Res 2024; 39:161-176. [PMID: 38477740 PMCID: PMC11323896 DOI: 10.1093/jbmr/zjad009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 03/14/2024]
Abstract
Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2. Histologic examination of joints in reporter mice having Dpp4-CreER and Prg4-CreER that label MPCs and SLFs, respectively, demonstrated that Dpp4+ MPCs reside in the synovial sublining layer and give rise to Prg4+ SLFs and Perilipin+ adipocytes during growth and OA progression. After OA injury, both MPCs and SLFs gave rise to MFs, which remained in the thickened synovium at later stages of OA. In culture, Dpp4+ MPCs possessed mesenchymal progenitor properties, such as proliferation and multilineage differentiation. In contrast, Prg4+ SLFs did not contribute to adipocytes in IFP and Prg4+ cells barely grew in vitro. Taken together, we demonstrate that the synovium and joint fat pad are one integrated functional tissue sharing common mesenchymal progenitors and undergoing coordinated changes during OA progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, Liaoning Province 110112, China
| | - Hanli Guo
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yu-Lieh Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Miltiadis Zgonis
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert Mauck
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz, VA Medical Center, Philadelphia PA 19104, United States
| | - Nathaniel Dyment
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yejia Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz, VA Medical Center, Philadelphia PA 19104, United States
- Department of Physical Medicine & Rehabilitation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Carla Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J Crescenz, VA Medical Center, Philadelphia PA 19104, United States
- Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Patrick Seale
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
45
|
Liu Y, Hao R, Lv J, Yuan J, Wang X, Xu C, Ma D, Duan Z, Zhang B, Dai L, Cheng Y, Lu W, Zhang X. Targeted knockdown of PGAM5 in synovial macrophages efficiently alleviates osteoarthritis. Bone Res 2024; 12:15. [PMID: 38433252 PMCID: PMC10909856 DOI: 10.1038/s41413-024-00318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease worldwide and new therapeutics that target inflammation and the crosstalk between immunocytes and chondrocytes are being developed to prevent and treat OA. These attempts involve repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype in synovium. In this study, we found that phosphoglycerate mutase 5 (PGAM5) significantly increased in macrophages in OA synovium compared to controls based on histology of human samples and single-cell RNA sequencing results of mice models. To address the role of PGAM5 in macrophages in OA, we found conditional knockout of PGAM5 in macrophages greatly alleviated OA symptoms and promoted anabolic metabolism of chondrocytes in vitro and in vivo. Mechanistically, we found that PGAM5 enhanced M1 polarization via AKT-mTOR/p38/ERK pathways, whereas inhibited M2 polarization via STAT6-PPARγ pathway in murine bone marrow-derived macrophages. Furthermore, we found that PGAM5 directly dephosphorylated Dishevelled Segment Polarity Protein 2 (DVL2) which resulted in the inhibition of β-catenin and repolarization of M2 macrophages into M1 macrophages. Conditional knockout of both PGAM5 and β-catenin in macrophages significantly exacerbated osteoarthritis compared to PGAM5-deficient mice. Motivated by these findings, we successfully designed mannose modified fluoropolymers combined with siPGAM5 to inhibit PGAM5 specifically in synovial macrophages via intra-articular injection, which possessed desired targeting abilities of synovial macrophages and greatly attenuated murine osteoarthritis. Collectively, these findings defined a key role for PGAM5 in orchestrating macrophage polarization and provides insights into novel macrophage-targeted strategy for treating OA.
Collapse
Affiliation(s)
- Yuhang Liu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200092, China
- National Facility for Translational Medicine, Shanghai, 200240, China
| | - Ruihan Hao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200092, China
- National Facility for Translational Medicine, Shanghai, 200240, China
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jie Yuan
- Department of Orthopaedic Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xuelei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Churong Xu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ding Ma
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200092, China
- National Facility for Translational Medicine, Shanghai, 200240, China
| | - Zhouyi Duan
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200092, China
- National Facility for Translational Medicine, Shanghai, 200240, China
| | - Bingjun Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200092, China
- National Facility for Translational Medicine, Shanghai, 200240, China
| | - Liming Dai
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200092, China
- National Facility for Translational Medicine, Shanghai, 200240, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200092, China.
- National Facility for Translational Medicine, Shanghai, 200240, China.
| |
Collapse
|
46
|
DeJulius CR, Walton BL, Colazo JM, d'Arcy R, Francini N, Brunger JM, Duvall CL. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat Rev Rheumatol 2024; 20:81-100. [PMID: 38253889 PMCID: PMC11129836 DOI: 10.1038/s41584-023-01067-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Osteoarthritis (OA) is a chronic, debilitating disease that substantially impairs the quality of life of affected individuals. The underlying mechanisms of OA are diverse and are becoming increasingly understood at the systemic, tissue, cellular and gene levels. However, the pharmacological therapies available remain limited, owing to drug delivery barriers, and consist mainly of broadly immunosuppressive regimens, such as corticosteroids, that provide only short-term palliative benefits and do not alter disease progression. Engineered RNA-based and cell-based therapies developed with synthetic chemistry and biology tools provide promise for future OA treatments with durable, efficacious mechanisms of action that can specifically target the underlying drivers of pathology. This Review highlights emerging classes of RNA-based technologies that hold potential for OA therapies, including small interfering RNA for gene silencing, microRNA and anti-microRNA for multi-gene regulation, mRNA for gene supplementation, and RNA-guided gene-editing platforms such as CRISPR-Cas9. Various cell-engineering strategies are also examined that potentiate disease-dependent, spatiotemporally regulated production of therapeutic molecules, and a conceptual framework is presented for their application as OA treatments. In summary, this Review highlights modern genetic medicines that have been clinically approved for other diseases, in addition to emerging genome and cellular engineering approaches, with the goal of emphasizing their potential as transformative OA treatments.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard d'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
47
|
Roelofs AJ, De Bari C. Osteoarthritis year in review 2023: Biology. Osteoarthritis Cartilage 2024; 32:148-158. [PMID: 37944663 DOI: 10.1016/j.joca.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Great progress continues to be made in our understanding of the multiple facets of osteoarthritis (OA) biology. Here, we review the major advances in this field and progress towards therapy development over the past year, highlighting a selection of relevant published literature from a PubMed search covering the year from the end of April 2022 to the end of April 2023. The selected articles have been arranged in themes. These include 1) molecular regulation of articular cartilage and implications for OA, 2) mechanisms of subchondral bone remodelling, 3) role of synovium and inflammation, 4) role of age-related changes including cartilage matrix stiffening, cellular senescence, mitochondrial dysfunction, metabolic dysfunction, and impaired autophagy, and 5) peripheral mechanisms of OA pain. Progress in the understanding of the cellular and molecular mechanisms responsible for the multiple aspects of OA biology is unravelling novel therapeutic targets for disease modification.
Collapse
Affiliation(s)
- Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
48
|
Yang J, Li S, Li Z, Yao L, Liu M, Tong K, Xu Q, Yu B, Peng R, Gui T, Tang W, Xu Y, Chen J, He J, Zhao K, Wang X, Wang X, Zha Z, Zhang H. Targeting YAP1-regulated Glycolysis in Fibroblast-Like Synoviocytes Impairs Macrophage Infiltration to Ameliorate Diabetic Osteoarthritis Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304617. [PMID: 38044289 PMCID: PMC10837355 DOI: 10.1002/advs.202304617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The interplay between immune cells/macrophages and fibroblast-like synoviocytes (FLSs) plays a pivotal role in initiating synovitis; however, their involvement in metabolic disorders, including diabetic osteoarthritis (DOA), is largely unknown. In this study, single-cell RNA sequencing (scRNA-seq) is employed to investigate the synovial cell composition of DOA. A significant enrichment of activated macrophages within eight distinct synovial cell clusters is found in DOA synovium. Moreover, it is demonstrated that increased glycolysis in FLSs is a key driver for DOA patients' synovial macrophage infiltration and polarization. In addition, the yes-associated protein 1 (YAP1)/thioredoxin-interacting protein (TXNIP) signaling axis is demonstrated to play a crucial role in regulating glucose transporter 1 (GLUT1)-dependent glycolysis in FLSs, thereby controlling the expression of a series of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) which may subsequently fine-tune the infiltration of M1-polarized synovial macrophages in DOA patients and db/db diabetic OA mice. For treatment, M1 macrophage membrane-camouflaged Verteporfin (Vt)-loaded PLGA nanoparticles (MVPs) are developed to ameliorate DOA progression by regulating the YAP1/TXNIP signaling axis, thus suppressing the synovial glycolysis and the infiltration of M1-polarized macrophages. The results provide several novel insights into the pathogenesis of DOA and offer a promising treatment approach for DOA.
Collapse
Affiliation(s)
- Jie Yang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Shanshan Li
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhenyan Li
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Lutian Yao
- Department of OrthopedicsThe First Hospital of China Medical UniversityShenyang110001China
| | - Meijing Liu
- Key Laboratory of Big Data‐Based Precision MedicineSchool of Engineering MedicineBeihang UniversityBeijing100191China
- Clinical Research Platform for Interdisciplinary of Stomatologythe First Affiliated Hospital of Jinan University and Department of StomatologyJinan UniversityGuangzhou510632China
| | - Kui‐Leung Tong
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Qiutong Xu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Bo Yu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Rui Peng
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Tao Gui
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Wang Tang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Yidi Xu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula‐Pattern Research CenterSchool of Traditional Chinese MedicineJinan UniversityGuangzhou510640China
| | - Jun He
- Institute of Laboratory Animal ScienceJinan UniversityGuangzhou510632China
| | - Kewei Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosisthe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou510375China
| | - Xiaogang Wang
- Key Laboratory of Big Data‐Based Precision MedicineSchool of Engineering MedicineBeihang UniversityBeijing100191China
- Clinical Research Platform for Interdisciplinary of Stomatologythe First Affiliated Hospital of Jinan University and Department of StomatologyJinan UniversityGuangzhou510632China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhengang Zha
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Huan‐Tian Zhang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosisthe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou510375China
| |
Collapse
|
49
|
Chen K, Tao H, Zhu P, Chu M, Li X, Shi Y, Zhang L, Xu Y, Lv S, Huang L, Huang W, Geng D. ADAM8 silencing suppresses the migration and invasion of fibroblast-like synoviocytes via FSCN1/MAPK cascade in osteoarthritis. Arthritis Res Ther 2024; 26:20. [PMID: 38218854 PMCID: PMC10787439 DOI: 10.1186/s13075-023-03238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is a degenerative joint disease that affects elderly populations worldwide, causing pain and disability. Alteration of the fibroblast-like synoviocytes (FLSs) phenotype leads to an imbalance in the synovial inflammatory microenvironment, which accelerates the progression of OA. Despite this knowledge, the specific molecular mechanisms of the synovium that affect OA are still unclear. METHODS Both in vitro and in vivo experiments were undertaken to explore the role of ADAM8 playing in the synovial inflammatory of OA. A small interfering RNA (siRNA) was targeting ADAM8 to intervene. High-throughput sequencing was also used. RESULTS Our sequencing analysis revealed significant upregulation of the MAPK signaling cascade and ADAM8 gene expression in IL-1β-induced FLSs. The in vitro results demonstrated that ADAM8 blockade inhibited the invasion and migration of IL-1β-induced FLSs, while also suppressing the expression of related matrix metallomatrix proteinases (MMPs). Furthermore, our study revealed that inhibiting ADAM8 weakened the inflammatory protein secretion and MAPK signaling networks in FLSs. Mechanically, it revealed that inhibiting ADAM8 had a significant effect on the expression of migration-related signaling proteins, specifically FSCN1. When siADAM8 was combined with BDP-13176, a FSCN1 inhibitor, the migration and invasion of FLSs was further inhibited. These results suggest that FSCN1 is a crucial downstream factor of ADAM8 in regulating the biological phenotypes of FLSs. The in vivo experiments demonstrated that ADAM8 inhibition effectively reduced synoviocytes inflammation and alleviated the progression of OA in rats. CONCLUSIONS ADAM8 could be a promising therapeutic target for treating OA by targeting synovial inflammation.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
- Department of Orthopedics, Yixing Peoples's Hospital, Xincheng Road 1588, Yixing, Jiangsu, China
| | - Xueyan Li
- Anesthesiology department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Guangjj Road 242, Suzhou, Jiangsu, China
| | - Yi Shi
- Anesthesiology department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Guangjj Road 242, Suzhou, Jiangsu, China
| | - Liyuan Zhang
- Anesthesiology department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Guangjj Road 242, Suzhou, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China
| | - Shujun Lv
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu, China.
| | - Lixin Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China.
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road 17, Hefei, An'hui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, Jiangsu, China.
| |
Collapse
|
50
|
Ju J, Ma M, Zhang Y, Ding Z, Chen J. State transition and intercellular communication of synovial fibroblasts in response to chronic and acute shoulder injuries unveiled by single-cell transcriptomic analyses. Connect Tissue Res 2024; 65:73-87. [PMID: 38090785 DOI: 10.1080/03008207.2023.2295322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/10/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE We aimed to investigate the heterogeneity of synovial fibroblasts and their potential to undergo cell state transitions at the resolution of single cells. MATERIALS AND METHODS We employed the single-cell RNA sequencing (scRNA-seq) approach to comprehensively map the cellular landscape of the shoulder synovium in individuals with chronic rotator cuff tears (RCTs) and acute proximal humerus fractures (PHFs). Utilizing unbiased clustering analysis, we successfully identified distinct subpopulations of fibroblasts within the synovial environment. We utilized Monocle 3 to delineate the trajectory of synovial fibroblast state transition. And we used CellPhone DB v2.1.0 to predict cell-cell communication patterns within the synovial microenvironment. RESULTS We identified eight main cell clusters in the shoulder synovium. Unbiased clustering analysis identified four synovial fibroblast subpopulations, with diverse biological functions associated with protein secretion, ECM remodeling, inflammation regulation and cell division. Lining, mesenchymal, pro-inflammatory and proliferative fibroblasts subsets were identified. Combining the results from StemID and characteristic gene features, mesenchymal fibroblasts exhibited characteristics of fibroblast progenitor cells. The trajectory of synovial fibroblast state transition showed a transition from mesenchymal to pro-inflammatory and lining phenotypes. In addition, the cross talk between fibroblast subclusters increased in degenerative shoulder diseases compared to acute trauma. CONCLUSION We successfully generated the scRNA-seq transcriptomic atlas of the shoulder synovium, which provides a comprehensive understanding of the heterogeneity of synovial fibroblasts, their potential to undergo state transitions, and their intercellular communication in the context of chronic degenerative and acute traumatic shoulder diseases.
Collapse
Affiliation(s)
- Jiabao Ju
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Mingtai Ma
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Yichong Zhang
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Zhentao Ding
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| | - Jianhai Chen
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China
| |
Collapse
|