1
|
Kielbassa K, Van der Weele L, Voskuyl AE, de Vries N, Eldering E, Kuijpers TW. Differential expression pattern of Bcl-2 family members in B and T cells in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Res Ther 2023; 25:225. [PMID: 37993903 PMCID: PMC10664305 DOI: 10.1186/s13075-023-03203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the expression level of anti-apoptotic Bcl-2 family proteins in B and T cells in patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) in relation to disease activity and the effect of various Bcl-2 family inhibitors (BH3 mimetics) as potential treatment. METHODS We included 14 SLE patients, 12 RA patients, and 13 healthy controls to study anti-apoptotic Bcl-2, Bcl-XL, and Mcl-1 expression and cell survival in different B and T cell subsets using stimulation assays and intracellular flow cytometry. Effect of various BH3 mimetics was assessed by cell viability analyses. RESULTS In SLE, significant differences in Bcl-2 family members were confined to the B cell compartment with decreased induction of Bcl-XL (p ≤ 0.05) and Mcl-1 (p ≤ 0.001) upon CpG stimulation. In RA, we did not observe any differences in expression levels of Bcl-2 family proteins. Expression patterns did not correlate with disease activity apart from decreased induction of Mcl-1 in B cells in active SLE. After in vitro stimulation with CpG, plasmablasts were more viable after treatment with three different BH3 mimetics compared to naïve or memory B cells in control and patient cells. After activation, Mcl-1 inhibition was most effective in reducing plasmablast and T cell viability, however, less in patients than controls. CONCLUSION Our study provides evidence for the increased differential expression pattern of Bcl-2 family members in B and T cell subsets of patients with SLE compared to controls. Tested BH3 mimetics showed higher efficacy in controls compared to both autoimmune diseases, though nonsignificant due to low patient numbers.
Collapse
Affiliation(s)
- K Kielbassa
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - L Van der Weele
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - A E Voskuyl
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - N de Vries
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre (ARC), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Eldering
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AIII), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - T W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Werry F, Mazur E, Theyse LFH, Edlich F. Apoptosis Regulation in Osteoarthritis and the Influence of Lipid Interactions. Int J Mol Sci 2023; 24:13028. [PMID: 37685835 PMCID: PMC10488181 DOI: 10.3390/ijms241713028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic diseases in human and animal joints. The joints undergo several morphological and histological changes during the development of radiographically visible osteoarthritis. The most discussed changes include synovial inflammation, the massive destruction of articular cartilage and ongoing joint destruction accompanied by massive joint pain in the later stadium. Either the increased apoptosis of chondrocytes or the insufficient apoptosis of inflammatory macrophages and synovial fibroblasts are likely to underly this process. In this review, we discuss the current state of research on the pathogenesis of OA with special regard to the involvement of apoptosis.
Collapse
Affiliation(s)
- Frederike Werry
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Emilia Mazur
- Soft Tissue & Orthopaedic Surgery Service, Department for Small Animals, College of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Lars F. H. Theyse
- Soft Tissue & Orthopaedic Surgery Service, Department for Small Animals, College of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Frank Edlich
- Institute of Biochemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
3
|
Ficus dubia latex extract prevent DMH-induced rat early colorectal carcinogenesis through the regulation of xenobiotic metabolism, inflammation, cell proliferation and apoptosis. Sci Rep 2022; 12:15472. [PMID: 36104433 PMCID: PMC9474822 DOI: 10.1038/s41598-022-19843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Ficus dubia latex is recognized as a remedy in Asian traditional medicine with various therapeutic effects. The present study aimed to determine the preventive action of Ficus dubia latex extract (FDLE) on 1,2-dimethylhydrazine (DMH)-induced rat colorectal carcinogenesis and its mechanisms. The experiment included an initiation model in which rats were orally administered with FDLE daily for 1 week before DMH injection until the end of the experiment, while only after DMH injection until the end in the post-initiation model. The results firstly indicated that FDLE treatment could reduce the level of methylazoxymethanol (MAM) in rat colonic lumen by inhibition of the activities of both phase I xenobiotic metabolizing enzymes in the liver and β-glucuronidase in the colon, leading to reduced DNA methylation in colonic mucosal cells, related to the number of ACF in the initiation stage. Besides, FDLE modulated the inflammation which could suppress the growth and induce apoptosis of aberrant colonic mucosal cells, leading to retardation of ACF multiplicity. Therefore, FDLE showed the ability to suppress the DMH-induced rat ACF formation and inflammation promoted growth of ACF. In conclusion, FDLE had the potential to prevent carcinogens-induced rat colorectal carcinogenesis in the initiation stage.
Collapse
|
4
|
The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Immunol Res 2021; 69:225-238. [PMID: 33983569 DOI: 10.1007/s12026-021-09202-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
P53 is a transcription factor that regulates many signaling pathways like apoptosis, cell cycle, DNA repair, and cellular stress responses. P53 is involved in inflammatory responses through the regulation of inflammatory signaling pathways, induction of cytokines, and matrix metalloproteinase expression. Also, p53 regulates immune responses through modulating Toll-like receptors expression and innate and adaptive immune cell differentiation and maturation. P53 is a modulator of the apoptosis and proliferation processes through regulating multiple anti and pro-apoptotic genes. Rheumatoid arthritis (RA) is categorized as an invasive inflammatory autoimmune disease with irreversible deformity of joints and bone resorption. Different immune and non-immune cells contribute to RA pathogenesis. Fibroblast-like synoviocytes (FLSs) have been recently introduced as a key player in the pathogenesis of RA. These cells in RA synovium produce inflammatory cytokines and matrix metalloproteinases which results in synovitis and joint destruction. Besides, hyper proliferation and apoptosis resistance of FLSs lead to synovial hyperplasia and bone and cartilage destruction. Given the critical role of p53 in inflammation, apoptosis, and cell proliferation, lack of p53 function (due to mutation or low expression) exerts a prominent role for this gene in the pathogenesis of RA. This review focuses on the role of p53 in different mechanisms and cells (specially FLSs) that involved in RA pathogenesis.
Collapse
|
5
|
Autophagy protects against redox-active trace metal-induced cell death in rabbit synovial fibroblasts through Toll-like receptor 4 activation. Exp Cell Res 2019; 374:19-28. [DOI: 10.1016/j.yexcr.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/22/2018] [Accepted: 11/03/2018] [Indexed: 12/18/2022]
|
6
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Yamaza T, Masuda KF, Atsuta I, Nishijima K, Kido MA, Tanaka T. Oxidative Stress-induced DNA Damage in the Synovial Cells of the Temporomandibular Joint in the Rat. J Dent Res 2016; 83:619-24. [PMID: 15271970 DOI: 10.1177/154405910408300807] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synovial hyperplasia is a feature of degenerative temporomandibular joint (TMJ) disease. However, the mechanism by which hyperplasia progresses in the TMJ is unknown. Based on the hypothesis that the oxidative stress generated by mechanical loading causes degenerative changes in the TMJ synovium, we investigated the generation of the highly reactive species, peroxynitrite, and the occurrence of DNA damage in the synovium. After condylar hypermobility of rat TMJs, a marker of peroxynitrite, nitrotyrosine, was localized to the nuclei and cytoplasm of the synovial lining cells and fibroblasts in synovitis-induced TMJ. DNA single-strand breaks were found in the nuclei of the synovial cells only after enzyme treatment, whereas DNA double-strand breaks were not detected. These findings indicate that condylar hypermovement induces the proliferation of synovial cells, and suggest that oxidative stress leads to the progression of synovial hyperplasia via DNA damage of the synovial cells in TMJs after mechanical loading.
Collapse
Affiliation(s)
- T Yamaza
- Department of Oral Anatomy and Cell Biology, Faculty of Oral Science, Kyushu University Graduate Schoolof Dental Science, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Hong S, Kim EJ, Lee EJ, San Koo B, Min Ahn S, Bae SH, Lim DH, Kim YG, Yoo B, Lee CK. TNF-α confers resistance to Fas-mediated apoptosis in rheumatoid arthritis through the induction of soluble Fas. Life Sci 2015; 122:37-41. [DOI: 10.1016/j.lfs.2014.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/19/2014] [Accepted: 12/06/2014] [Indexed: 12/23/2022]
|
9
|
Li X, Zhang Z, Peng A, He M, Xu J, Shen S, Zhuang J, Huang X. Effect of CD95 on inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. Cell Immunol 2014; 290:209-16. [PMID: 25084560 DOI: 10.1016/j.cellimm.2014.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Many CD95-expressing cells don't always undergo apoptosis after stimulation with CD95 ligation. The purpose of this paper is to investigate the role of expression of CD95 (Fas/Apo1) on inflammatory response in fibroblast-like synoviocytes (FLS) obtained from rheumatoid arthritis (RA) and to evaluate the role of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB or Akt) pathways within this process. METHODS The expression levels of CD95 were monitored by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). Apoptotic cells were detected by in situ apoptosis detection (TUNEL) assay. The RA-FLS were treated with agonistic anti-CD95 antibody or CD95 siRNA. Then the proliferation was detected by CCK-8, and mRNA level of inflammatory cytokines was detected by RT-PCR. After the RA-FLS were treated with agonistic anti-CD95 antibody, the total Akt and pAkt protein expression was analyzed by Western blot, and the changes mentioned above were observed while pre-incubated with the PI3K inhibitor LY294002. RESULTS A significant increase of CD95 antigen was found in RA compared with osteoarthritis (OA) samples, while apoptosis in RA synovial tissue was not obvious. Low concentrations of agonistic anti-CD95 antibody could promote RA-FLS growth and interleukin-6 (IL-6) mRNA expression, while high concentrations could induce apoptosis. And both of these phenomena could be inhibited by CD95 siRNA. Agonistic anti-CD95 antibody could stimulate the expression of pAkt, and PI3K specific inhibitor LY294002 could induce opposite changes. CONCLUSION Stimulation of CD95 could promote RA-FLS proliferation and inflammation, and activation of the PI3K/Akt signaling pathway might be the possible mechanism.
Collapse
Affiliation(s)
- Xiaoqiong Li
- Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Zhanfeng Zhang
- Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Anping Peng
- Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Min He
- Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Jianhua Xu
- Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Sujing Shen
- Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Junhua Zhuang
- Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Xianzhang Huang
- Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| |
Collapse
|
10
|
CIP2A facilitates apoptotic resistance of fibroblast-like synoviocytes in rheumatoid arthritis independent of c-Myc expression. Rheumatol Int 2013; 33:2241-8. [DOI: 10.1007/s00296-013-2711-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
|
11
|
Makrygiannakis D, Catrina AI. Apoptosis as a mechanism of action of tumor necrosis factor antagonists in rheumatoid arthritis. J Rheumatol 2012; 39:679-85. [PMID: 22422498 DOI: 10.3899/jrheum.110974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor (TNF) antagonists are drugs developed to block endogenous TNF, an essential proinflammatory molecule with a central role in the pathogenesis of rheumatoid arthritis (RA). Although extensive studies have been performed concerning the mode of action of TNF-blocking agents, there are still many unresolved questions and potential differences between different TNF-blocking drugs. One unresolved issue is to what extent apoptosis is affected by TNF blockade in RA. We provide an overview of studies that have investigated the proapoptotic effect of different anti-TNF drugs in RA, searching for a unified interpretation of somewhat contradictory data.
Collapse
Affiliation(s)
- Dimitrios Makrygiannakis
- Karolinska Institutet, Karolinska University Hospital, Rheumatology Unit, Department of Medicine, D2:01, Solna, S-17176, Sweden
| | | |
Collapse
|
12
|
Vilmont V, Tourneur L, Chiocchia G. Fas-associated death domain protein and adenosine partnership: fad in RA. Rheumatology (Oxford) 2012; 51:964-75. [PMID: 22253026 DOI: 10.1093/rheumatology/ker402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation is the principal hallmark of RA. Different pathways are implicated in the production of pro-inflammatory cytokines, the bona fide mediators of this inflammation. Among them are the TNF pathway and the IL-1 receptor/Toll-like receptor (IL-1R/TLR4) pathway. One of the potential negative regulators of IL-1R/TLR4 signalling is the Fas-associated death domain protein (FADD), which is the pivotal adaptor of the apoptotic signal mediated by death receptors of the TNF family. FADD can sequester myeloid differentiation primary response gene 88 (MyD88), the common adaptor of most TLRs, and hence hinder the activation of nuclear factor κB (NF-κB), the downstream transcription factor. We recently described a new regulatory mechanism of FADD expression, via the shedding of microvesicles, mediated by adenosine receptors. Interestingly, adenosine is found in high concentrations in the joints of RA patients and has been largely reported as a regulator of inflammation. This review discusses the possible link that could exist between the adenosine-dependent regulation of FADD in the inflammatory context of RA and the potential role of FADD as a therapeutic target in the treatment of RA. We will see that the modulation of FADD expression may be a double-edged sword by increasing apoptosis and at the same time limiting NF-κB activation.
Collapse
Affiliation(s)
- Valérie Vilmont
- Département d’Immunologie-Hématologie, Institut Cochin, Inserm U1016, France
| | | | | |
Collapse
|
13
|
JIANG JB, QIU JD, YANG LH, HE JP, SMITH GW, LI HQ. Therapeutic effects of astragalus polysaccharides on inflammation and synovial apoptosis in rats with adjuvant-induced arthritis. Int J Rheum Dis 2010; 13:396-405. [DOI: 10.1111/j.1756-185x.2010.01555.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Cha HS, Bae EK, Ahn JK, Lee J, Ahn KS, Koh EM. Slug suppression induces apoptosis via Puma transactivation in rheumatoid arthritis fibroblast-like synoviocytes treated with hydrogen peroxide. Exp Mol Med 2010; 42:428-36. [PMID: 20418652 PMCID: PMC2892596 DOI: 10.3858/emm.2010.42.6.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2010] [Indexed: 11/04/2022] Open
Abstract
Inadequate apoptosis contributes to synovial hyperplasia in rheumatoid arthritis (RA). Recent study shows that low expression of Puma might be partially responsible for the decreased apoptosis of fibroblast-like synoviocytes (FLS). Slug, a highly conserved zinc finger transcriptional repressor, is known to antagonize apoptosis of hematopoietic progenitor cells by repressing Puma transactivation. In this study, we examined the expression and function of Slug in RA FLS. Slug mRNA expression was measured in the synovial tissue (ST) and FLS obtained from RA and osteoarthritis patients. Slug and Puma mRNA expression in FLS by apoptotic stimuli were measured by real-time PCR analysis. FLS were transfected with control siRNA or Slug siRNA. Apoptosis was quantified by trypan blue exclusion, DNA fragmentation and caspase-3 assay. RA ST expressed higher level of Slug mRNA compared with osteoarthritis ST. Slug was significantly induced by hydrogen peroxide (H2O2) but not by exogenous p53 in RA FLS. Puma induction by H2O2 stimulation was significantly higher in Slug siRNA-transfected FLS compared with control siRNA-transfected FLS. After H2O2 stimulation, viable cell number was significantly lower in Slug siRNA-transfected FLS compared with control siRNA-transfected FLS. Apoptosis enhancing effect of Slug siRNA was further confirmed by ELISA that detects cytoplasmic histone-associated DNA fragments and caspase-3 assay. These data demonstrate that Slug is overexpressed in RA ST and that suppression of Slug gene facilitates apoptosis of FLS by increasing Puma transactivation. Slug may therefore represent a potential therapeutic target in RA.
Collapse
Affiliation(s)
- Hoon-Suk Cha
- Department of Medicine, Samsung Medical Center, Seoul 135-710, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford) 2010; 49:1618-31. [PMID: 20338884 DOI: 10.1093/rheumatology/keq045] [Citation(s) in RCA: 524] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In inflammatory conditions such as RA, the neutrophil has tended to be dismissed as a short-lived, terminally differentiated, irrelevant bystander cell. However, this is clearly not the case. A better understanding of the complex heterogeneous pathways and processes that constitute RA, in parallel with a more sophisticated knowledge of neutrophil biology has identified many potential roles for these cells in the persistence of inflammation and progression of joint damage, which should not be underestimated. Not only are neutrophils found in high numbers within the rheumatoid joint, both in synovial tissue and in joint fluid, they have a huge potential to directly inflict damage to tissue, bone and cartilage via the secretion of proteases and toxic oxygen metabolites, as well as driving inflammation through antigen presentation and secretion of cytokines, chemokines, prostaglandins and leucotrienes. Drugs already used to treat RA down-regulate many neutrophil functions, including migration to the joint, degranulation and production of inflammatory mediators, and these cells should be considered as important targets for the development of new therapies in the future.
Collapse
Affiliation(s)
- Helen L Wright
- School of Biological Sciences, University of Liverpool, UK
| | | | | | | |
Collapse
|
16
|
Li W, Liu Z, Zhuang G, Yin P, Tao H, Qiu J, Hu Q, Zhang J. Anti-DR5 mAb ameliorate adjuvant arthritis rats through inducing synovial cells apoptosis. Exp Biol Med (Maywood) 2009; 234:1468-76. [PMID: 19934367 DOI: 10.3181/0811-rm-342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE Study the therapeutic effects and immunoregulatory mechanisms of anti-DR5 mAb on adjuvant arthritis (AA) rats. METHODS AA rats induced by CFA, were treated with anti-DR5 mAb through mainline administration. Effect on the synovial membranes of the tissues was detected by H&E staining. Flow cytometry and MTT assay were used for detecting the induced apoptosis in an in vitro system and TUNEL assay was used for analysis in an in vivo system. The involvement of the apoptotic pathway was further proved by a caspase inhibition assay. RESULTS Anti-DR5 mAb could induce synovial cell apoptosis in an in vitro system, which was related with the mRNA expression of DR5 on the cell surface. The mRNA expressions of c-myc and bcl-2 were decreased in synovial cells and those of p21, p53, and bax were increased. The protein expressions of caspase-8/3/9, RANKL, JNK2, and c-Jun were raised and that of bcl-2 was decreased. When the caspase inhibitor was added to the synovial cells treated with anti-DR5 mAb, it showed a dose-dependence inhibition effect, indicating that anti-DR5 mAb inducing apoptosis might be through the caspase pathway. CONCLUSION This study shows that anti-DR5 mAb can ameliorate arthritic symptoms. The mechanisms of the treatment are related to the increase in synovial cell apoptosis by regulating the mRNA expression of DR5 and apoptosis-related genes, prolonging the duration of the cell cycle by modulation of the mRNA expression of cell cycle-related genes, and the protein expression of the molecules in the caspase pathway and RANKL, JNK2, and c-Jun.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Apoptosis/immunology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Caspases/biosynthesis
- Caspases/immunology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Genes, myc/immunology
- Male
- Mitogen-Activated Protein Kinase 9/biosynthesis
- Mitogen-Activated Protein Kinase 9/immunology
- Proto-Oncogene Proteins c-jun/biosynthesis
- Proto-Oncogene Proteins c-jun/immunology
- RANK Ligand/biosynthesis
- RANK Ligand/immunology
- Rats
- Rats, Sprague-Dawley
- Receptors, TNF-Related Apoptosis-Inducing Ligand/biosynthesis
- Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology
- Synovial Fluid/immunology
- Synovial Fluid/metabolism
- Tumor Suppressor Protein p53/biosynthesis
- Tumor Suppressor Protein p53/immunology
- bcl-2-Associated X Protein/biosynthesis
- bcl-2-Associated X Protein/immunology
Collapse
Affiliation(s)
- Wenzhu Li
- Anti-Cancer Research Center, Medical College, Xiamen University, 422 SiMing South Road, Xiamen 361005, Fujian, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Nagata Y, Nakasa T, Mochizuki Y, Ishikawa M, Miyaki S, Shibuya H, Yamasaki K, Adachi N, Asahara H, Ochi M. Induction of apoptosis in the synovium of mice with autoantibody-mediated arthritis by the intraarticular injection of double-stranded MicroRNA-15a. ACTA ACUST UNITED AC 2009; 60:2677-83. [PMID: 19714650 DOI: 10.1002/art.24762] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE MicroRNA is a family of noncoding RNAs that exhibit tissue-specific or developmental stage-specific expression patterns and are associated with human diseases. MicroRNA-15a (miR-15a) is reported to induce cell apoptosis by negatively regulating the expression of Bcl-2, which suppresses the apoptotic processes. The purpose of this study was to investigate whether double-stranded miR-15a administered by intraarticular injection could be taken up by cells and could induce Bcl-2 dysfunction and cell apoptosis in the synovium of arthritic mice in vivo. METHODS Autoantibody-mediated arthritis was induced in male DBA/1J mice. In the experimental group, double-stranded miR-15a labeled with FAM-atelocollagen complex was injected into the knee joint. In the control group, control small interfering RNA-atelocollagen complex was injected into the knee joint. Synovial expression of miR-15a was analyzed by quantitative polymerase chain reaction, FAM by fluorescence microscopy, Bcl-2 by Western blotting, and Bcl-2 and caspase 3 by immunohistochemistry. RESULTS The expression of miR-15a in the synovium of the experimental group was significantly higher than that in the control group. Green fluorescence emission of FAM was observed in the synovium of the experimental group. Bcl-2 protein was down-regulated and the expression of caspase 3 was increased as compared with that in the control group. CONCLUSION These results indicate that the induction of cell apoptosis after intraarticular injection of double-stranded miR-15a occurs through inhibition of the translation of Bcl-2 protein in arthritic synovium.
Collapse
Affiliation(s)
- Yoshihiko Nagata
- Department of Orthopaedic Surgery, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hutcheson J, Perlman H. BH3-only proteins in rheumatoid arthritis: potential targets for therapeutic intervention. Oncogene 2009; 27 Suppl 1:S168-75. [PMID: 19641502 DOI: 10.1038/onc.2009.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis (RA) is a debilitating disease, resulting in the destruction of bone and cartilage, and in the permanent disfigurement of joints. Although the precise cause of RA is currently unresolved, it has become clear that the damaging effects are a result of the toxic milieu caused by an influx of inflammatory cells and the resulting heightened proinflammatory state within the joint. As the amount of literature suggesting that this preponderance of cells is a result of decreased local apoptosis in the joint continues to increase, in this review, we describe how Bcl-2 family pro-apoptotic BH3-only proteins, particularly Bim and Bid, could act to protect against the development of the disease. We also suggest a role for BH3-mimetic drugs as potential therapeutics in the treatment of RA.
Collapse
Affiliation(s)
- J Hutcheson
- Rheumatic Diseases Division, Department of Internal Medicine, University of Texas - Southwestern Medical Center, Simmons Arthritis Research Center, Dallas, TX, USA
| | | |
Collapse
|
19
|
Meusch U, Rossol M, Baerwald C, Hauschildt S, Wagner U. Outside-to-inside signaling through transmembrane tumor necrosis factor reverses pathologic interleukin-1β production and deficient apoptosis of rheumatoid arthritis monocytes. ACTA ACUST UNITED AC 2009; 60:2612-21. [DOI: 10.1002/art.24778] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Makrygiannakis D, Revu S, Neregård P, af Klint E, Snir O, Grundtman C, Catrina AI. Monocytes are essential for inhibition of synovial T-cell glucocorticoid-mediated apoptosis in rheumatoid arthritis. Arthritis Res Ther 2008; 10:R147. [PMID: 19099567 PMCID: PMC2656252 DOI: 10.1186/ar2582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 11/22/2008] [Accepted: 12/19/2008] [Indexed: 11/23/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is characterized by synovial inflammation with local accumulation of mononuclear cells such as macrophages and lymphocytes. We previously demonstrated that intra-articular glucocorticoids decrease the synovial tissue (ST) T-cell population and therefore aimed to investigate whether this is mediated through modulation of apoptosis. Methods Apoptosis and cell phenotype were evaluated by immunohistochemistry and dual-immunofluorescence in synovial biopsy sections from 12 RA patients before and after a mean of 11 days of an intra-articular triamcinolone knee injection. In vitro, RA synovial fluid (SF)-derived T cells were evaluated for Annexin V expression by multicolor flow cytometry after 24-hour exposure to dexamethasone, methylprednisolone, or triamcinolone. We also tested induction of apoptosis by dexamethasone on psoriatic arthritis SF-derived T cells using the same method. Results Intra-articular glucocorticoids reduced ST T cells but not macrophage number. ST apoptosis levels were unchanged following treatment, virtually absent from lymphoid aggregates, and minimal in CD3+ cells both before and after treatment. RA SF T cells were resistant to glucocorticoid-induced apoptosis when cultured in the presence of monocytes but were rendered sensitive to all three tested compounds upon SF isolation. Furthermore, transwell coculture of monocytes and T cells demonstrated that soluble factor(s) and not cellular contact are essential for T-cell resistance to glucocorticoid-mediated apoptosis. This feature is RA-specific as far as dexamethasone-induced apoptosis in nonisolated SF T cells obtained from psoriatic arthritis patients is concerned. Conclusions We demonstrate that monocytes rescue synovial T cells from glucocorticoid-induced apoptosis, a feature that is specific for RA. To overcome this, we propose the use of monocyte-targeted therapies rather than T-cell apoptosis-inducing therapies.
Collapse
Affiliation(s)
- Dimitrios Makrygiannakis
- Department of Rheumatology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Brun J. Proteasome inhibition as a novel therapy in treating rheumatoid arthritis. Med Hypotheses 2008; 71:65-72. [PMID: 18424014 DOI: 10.1016/j.mehy.2008.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 02/04/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
Rheumatoid arthritis (RA) is an erosive joint disease affecting about 1% of the population. The joint destruction is primarily mediated by special cells called fibroblast-like synoviocytes (FLS), which undergo an expansion forming a pannus that destroys the joint. Apoptosis has been rarely detected in the synovial lining. This has lead to the identification of pro-survival factors that are expressed in FLS at the sites of the pannus including mutant p53, hrd1, sentrin, and NF-kappaB. Current anti-inflammatory modalities only bring upon temporary relief and do not treat the pannus. Therefore, the FLS remain intact, joint destruction proceeds, patients relapse and eventually become resistant to all forms of therapy. To date, surgical removal of the pannus remains the only option to help delay further joint destruction. Therefore, we believe the future should hold a less invasive approach using a class of novel drugs called proteasome inhibitors to attenuate the growth of the FLS. We suggest the use of a novel proteasome inhibitor PS-341 to treat RA patients. PS-341 has been shown to induce apoptosis in many cancer cell lines and has lead to successful outcomes in phase II and III clinical trials of multiple myeloma. Moreover, PS-341 has been shown to sensitize a variety of cell lines to chemotherapeutic drugs, some of which are used as conventional therapy in RA. We hypothesize that PS-341 alone and/or in combination with conventional RA therapies could induce apoptosis in FLS in vitro and in vivo thereby treating the pannus. Prior to clinical use extensive research examining the effects of PS-341 in animal models of arthritis would be essential in order to understand the effects proteasome inhibition in disease biology. Overall, the purpose of our hypothesis is to suggest a realistic and alternative treatment for patients with refractory and non-refractory arthritic disease.
Collapse
Affiliation(s)
- Jan Brun
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, 401 Smyth Road, Room 3103, Ottawa, ON, Canada.
| |
Collapse
|
22
|
Ospelt C, Gay S. The role of resident synovial cells in destructive arthritis. Best Pract Res Clin Rheumatol 2008; 22:239-52. [PMID: 18455682 DOI: 10.1016/j.berh.2008.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Infiltration by inflammatory cells, thickening of the lining layer, and destructive invasion into cartilage and bone are pathognomic features of the synovium in rheumatoid arthritis (RA). However, the most common cell types at the sites of invasion are resident cells of the joint, in particular synovial fibroblasts. These cells differ from healthy synovial fibroblasts in their morphology, their expression of proto-oncogenes and antiapoptotic molecules, and in their lack of certain tumor suppressor genes. Through their production of proinflammatory cytokines and chemokines mediated by signaling via Toll-like receptors, they are not only effector cells but also active parts of the innate immune system attracting inflammatory immune cells to the synovium. Most importantly, by producing matrix-degrading molecules they contribute strongly to the destructive mechanisms operative in RA.
Collapse
Affiliation(s)
- Caroline Ospelt
- Center of Experimental Rheumatology, University Hospital Zurich and Zurich Center of Integrative Human Physiology, Gloriastrasse 23, CH-8091 Zürich, Switzerland
| | | |
Collapse
|
23
|
Scatizzi JC, Hutcheson J, Bickel E, Haines GK, Perlman H. Pro-apoptotic Bid is required for the resolution of the effector phase of inflammatory arthritis. Arthritis Res Ther 2008; 9:R49. [PMID: 17509138 PMCID: PMC2206343 DOI: 10.1186/ar2204] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/10/2007] [Accepted: 05/17/2007] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by hyperplasia of the synovial lining and destruction of cartilage and bone. Recent studies have suggested that a lack of apoptosis contributes to the hyperplasia of the synovial lining and to the failure in eliminating autoreactive cells. Mice lacking Fas or Bim, two pro-apoptotic proteins that mediate the extrinsic and intrinsic death cascades, respectively, develop enhanced K/BxN serum transfer-induced arthritis. Since the pro-apoptotic protein Bid functions as an intermediate between the extrinsic and intrinsic apoptotic pathways, we examined the role that it plays in inflammatory arthritis. Mice deficient in Bid (Bid-/-) show a delay in the resolution of K/BxN serum transfer-induced arthritis. Bid-/- mice display increased inflammation, bone destruction, and pannus formation compared to wild-type mice. Furthermore, Bid-/- mice have elevated levels of CXC chemokine and IL-1β in serum, which are associated with more inflammatory cells throughout the arthritic joint. In addition, there are fewer apoptotic cells in the synovium of Bid-/- compared to Wt mice. These data suggest that extrinsic and intrinsic apoptotic pathways cooperate through Bid to limit development of inflammatory arthritis.
Collapse
Affiliation(s)
- John C Scatizzi
- Saint Louis University, School of Medicine, Department of Molecular Microbiology and Immunology, Saint Louis, MO 63104, USA
| | - Jack Hutcheson
- Saint Louis University, School of Medicine, Department of Molecular Microbiology and Immunology, Saint Louis, MO 63104, USA
| | - Emily Bickel
- Saint Louis University, School of Medicine, Department of Molecular Microbiology and Immunology, Saint Louis, MO 63104, USA
| | - G Kenneth Haines
- Yale University, School of Medicine, Department of Pathology, New Haven CT 06510, USA
| | - Harris Perlman
- Saint Louis University, School of Medicine, Department of Molecular Microbiology and Immunology, Saint Louis, MO 63104, USA
- Yale University, School of Medicine, Department of Pathology, New Haven CT 06510, USA
| |
Collapse
|
24
|
Hromadnikova I, Nguyen TTH, Zlacka D, Sedlackova L, Popelka S, Veigl D, Pech J, Vavrincova P, Sosna A. Expression of heat shock protein receptors on fibroblast-like synovial cells derived from rheumatoid arthritis-affected joints. Rheumatol Int 2008; 28:837-44. [PMID: 18231792 DOI: 10.1007/s00296-008-0532-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 01/05/2008] [Indexed: 12/31/2022]
Abstract
We examined the membrane expression of inducible Hsp70 and HSP receptors like TLR2, TLR4, CD14, CD36, CD40 and CD91 on fibroblast-like synovial cells (SC) derived from synovial tissue in 23 patients with rheumatoid arthritis (RA), who underwent synovectomy by using flow cytometric analysis. For comparison, autologous skin fibroblasts (SF) derived from the operation wound were tested. Significantly higher Hsp70 expression was found on synovial cells than on skin fibroblasts (median SC 21.4% x SF 5.0%, P < 0.001). Both synovial cells and skin fibroblasts expressed high levels of cell surface CD91 (median SC 80.2% x SF 79.2%), however, no or low levels of CD14, CD40, TLR2, TLR4 and CD36. Further, we observed high co-expression of CD91 and Hsp70 on RA synovial cells (median 18.6%), while skin fibroblasts showed only background Hsp70 expression (median 3.9%, P < 0.001). Since we demonstrated the high prevalence of inducible Hsp70 in RA synovial fluids, we speculate that Hsp70 might be captured onto the membrane of synovial cells from the extracellular space via the CD91 receptor. The significance of the Hsp70 interaction with synovial cells via CD91 remains undefined, but may mediate other non-immune purposes.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, 3rd Medical Faculty, Charles University, Ruska 87, Prague 10, 10000, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Scatizzi JC, Bickel E, Hutcheson J, Haines GK, Perlman H. Bim deficiency leads to exacerbation and prolongation of joint inflammation in experimental arthritis. ACTA ACUST UNITED AC 2006; 54:3182-93. [PMID: 17009248 DOI: 10.1002/art.22133] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE : Rheumatoid arthritis (RA) is characterized by hyperplasia of the synovial lining, inflammation, and destruction of cartilage and bone. Since there are only a few detectable cells undergoing apoptosis in the joint, it is possible that a defect in apoptosis may contribute to synovial hyperplasia. This study sought to identify and characterize the direct role of apoptotic regulators in a mouse model of inflammatory arthritis. METHODS Using a serum transfer model, experimental arthritis was induced in mice lacking the proapoptotic Bcl-2 family genes Bak (Bak-/-), Bax (Bax-/-), or Bim (Bim-/-), as compared with wild-type (WT) control mice. Physical examination for edema of the ankles and histopathologic analysis of ankle sections were used to determine the severity of arthritis. The serum and ankles were examined for production of chemokines and cytokines using enzyme-linked immunosorbent or Luminex-based assays. RESULTS Bim-/- mice displayed increased severity and prolongation of arthritis. In contrast, Bak-/- and Bax-/- mice showed no difference in the severity of arthritis as compared with WT mice. In addition, Bim-/- mice had elevated levels of proinflammatory chemokines and cytokines, decreased joint and serum production of antiinflammatory cytokines, fewer TUNEL-positive cells, and reduced levels of active caspase 3 as compared with WT mice. CONCLUSION These studies are the first to demonstrate a role for the proapoptotic Bcl-2 protein Bim in the effector phase of RA. The findings indicate that Bim potentially functions to repress the effector phase of arthritis by regulating the milieu of the joint and serum, and by inducing apoptosis.
Collapse
|
26
|
Liu H, Eksarko P, Temkin V, Haines GK, Perlman H, Koch AE, Thimmapaya B, Pope RM. Mcl-1 is essential for the survival of synovial fibroblasts in rheumatoid arthritis. THE JOURNAL OF IMMUNOLOGY 2006; 175:8337-45. [PMID: 16339575 DOI: 10.4049/jimmunol.175.12.8337] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mcl-1 is a Bcl-2-family, antiapoptotic molecule that is critical for the survival of T and B lymphocytes and macrophages; however, its role in nonhemopoietic cells remains to be fully elucidated. The current study focuses on the role of Mcl-1 in rheumatoid arthritis (RA). Mcl-1 was strongly expressed in the synovial lining and was increased in the sublining fibroblasts of patients with RA, compared with control synovial tissue. The expression of Mcl-1 in sublining fibroblasts correlated with the degree of inflammation and TNF-alpha, and IL-1beta treatment of cultured synovial fibroblasts resulted in the increased expression of Mcl-1 at the mRNA and protein levels. Mcl-1 was critical for the survival of RA synovial fibroblasts, because the forced reduction of Mcl-1 using a Mcl-1 antisense-expressing adenoviral vector induced apoptotic cell death, which was mediated through Bax, Bak, and Bim. These observations document a critical role for Mcl-1 in protecting against apoptosis in RA and suggest that Mc1-1 is a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Hongtao Liu
- Division of Rheumatology, Northwestern University Feinberg School of Medicine and The Jesse Brown Veterans Affairs Chicago Heathcare System, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Takahashi Tohyama C, Yamakawa M, Murasawa A, Nakazono K, Ishikawa H. Local cell proliferation in rheumatoid synovial tissue: analysis by cyclin expression. Clin Rheumatol 2006; 25:801-6. [PMID: 16518573 DOI: 10.1007/s10067-005-0189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/17/2005] [Accepted: 10/23/2005] [Indexed: 11/30/2022]
Abstract
The immunohistochemical staining of cyclins was done to evaluate the proliferating cells in synovial tissue of rheumatoid arthritis (RA). Synovial specimens obtained from 18 patients with RA, 12 with osteoarthritis (OA), and 8 with traumatic arthritis (TA) were used for immunostaining of cyclins A and B1 and proliferating cell nuclear antigen (PCNA). The positive cells in lining layer (synoviocytes) and sublining layer (lymphoid and nonlymphoid cells) were counted. Moreover, the relationship between the frequency of their positive cells and clinical data of RA patients was analyzed statistically. In general, cyclin-A-, cyclin-B1-, and PCNA-positive cells in RA were more frequently observed as compared with those in OA and TA. Significant differences were found between RA and OA or TA in cyclin-A-, cyclin-B1-, and PCNA-positive sublining lymphoid cells, between RA and OA or TA in cyclin-B1- and PCNA-positive sublining nonlymphoid cells, and between RA and OA in cyclin-B1-positive synoviocytes. The ratio of cyclin-A- or cyclin-B1-positive cells per PCNA-positive cells was significantly higher in sublining lymphoid cells in RA than TA and in sublining lymphoid and nonlymphoid cells of RA than OA or TA. Moreover, a better relationship was observed between the frequency of cyclin-A-positive synoviocytes and age and between cyclin-A-positive sublining nonlymphoid cells and duration of the disease in RA patients. Our data demonstrated clearly that synoviocytes, as well as sublining lymphoid and nonlymphoid cells, could divide in situ, and more frequent cell division and a higher ratio of cyclin-A- or cyclin-B1-positive/PCNA-positive sublining cells could occur in RA than OA and TA.
Collapse
Affiliation(s)
- Chikako Takahashi Tohyama
- Department of Orthopedic Surgery, Rheumatic Center, Niigata Prefectural Senami Hospital, 2-4-15, Senami-Onsen, Murakami, 958-8555, Niigata, Japan.
| | | | | | | | | |
Collapse
|
28
|
Seemayer CA, Neidhart M, Jüngel A, Gay RE, Gay S. Synovial fibroblasts in joint destruction of rheumatoid arthritis. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmec.2005.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Hong SJ, Rim GS, Yang HI, Yin CS, Koh HG, Jang MH, Kim CJ, Choe BK, Chung JH. Bee venom induces apoptosis through caspase-3 activation in synovial fibroblasts of patients with rheumatoid arthritis. Toxicon 2005; 46:39-45. [PMID: 15922390 DOI: 10.1016/j.toxicon.2005.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 03/05/2005] [Accepted: 03/07/2005] [Indexed: 11/15/2022]
Abstract
Bee venom (BV) has been used traditionally for the control of pain and inflammation in various chronic inflammatory diseases, including rheumatoid arthritis (RA) in Oriental medicine. However, it is still unclear how BV exerts its beneficial effects on the clinical course of RA patients. To investigate the effect of BV on the treatment of rheumatoid synovitis, we examined the inhibition of cell growth and induction of apoptosis in human rheumatoid synovial fibroblasts. Rheumatoid synovial fibroblasts were surgically obtained from patients with RA. Cell proliferation and viability were assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptosis of synovial cells treated with 10 microg/ml BV for 24 h was identified by 4,6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, DNA fragmentation assay, RT-PCR, and Western blot analysis. It was demonstrated that rheumatoid synovial cells treated with 10 microg/ml BV for 24 h exhibited apoptotic features and fragmentation of DNA. In addition, BV induces apoptosis in rheumatoid synovial cells through a decrease in BCL2 expression and an increase in BAX and caspase-3 (CASP3) expression. It is suggested that BV inhibits the proliferation of rheumatoid synovial cells through induction of apoptosis by CASP3 activation.
Collapse
Affiliation(s)
- Seung-Jae Hong
- Department of Internal Medicine, College of Medicine, Pochon CHA University, 351 Yatap-dong, Bundang-gu, Sungnam-si, Kyonggi-do 463-712, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pap T, Nawrath M, Heinrich J, Bosse M, Baier A, Hummel KM, Petrow P, Kuchen S, Michel BA, Gay RE, Müller-Ladner U, Moelling K, Gay S. Cooperation of Ras- and c-Myc-dependent pathways in regulating the growth and invasiveness of synovial fibroblasts in rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 50:2794-802. [PMID: 15457447 DOI: 10.1002/art.20461] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To study the specific contribution of MAP kinase activator c-Raf-1 and one of its downstream transcription factors, c-Myc, to the growth and invasive behavior of rheumatoid arthritis synovial fibroblasts (RASFs). METHODS RASFs were transduced with retroviral constructs expressing dominant-negative mutants of c-Raf-1 or c-Myc (DN c-Raf-1 or DN c-Myc, respectively) or with the mock vector. The expression of wild-type and mutant proteins was confirmed by Western blotting. Growth curves of RASFs were recorded, and apoptosis was measured by flow cytometry. Invasiveness of RASFs was assessed in the SCID mouse model of RA. Immunohistochemistry was used to study the effects of DN c-Raf-1 on phosphorylated c-Jun and matrix metalloproteinase 1 (MMP-1) in RASFs implanted into SCID mice. The phosphorylation of ERK and JNK in DN c-Raf-1- and mock-transduced RASFs was determined in vitro by Western blotting. The levels of MMPs in these cells were measured by quantitative polymerase chain reaction (PCR). RESULTS Neither DN c-Raf-1 alone nor DN c-Myc alone significantly altered proliferation or apoptosis of RASFs, but both mutants together rapidly induced apoptosis. Inhibition of c-Raf-1 or c-Myc significantly reduced the invasiveness of RASFs in the SCID mouse model. DN c-Raf-1 decreased the phosphorylation of ERK and JNK in vitro and reduced the in vivo expression of phosphorylated c-Jun as well as the expression of disease-relevant MMPs. As determined by quantitative PCR, the inhibition was most pronounced for MMP-1 and MMP-3. CONCLUSION The data demonstrate that Ras- and c-Myc-dependent signaling events cooperate to regulate the growth and invasiveness of RASFs. Targeting of both c-Raf-1 and c-Myc may constitute an interesting therapeutic approach in RA.
Collapse
Affiliation(s)
- Thomas Pap
- Center of Internal Medicine, University Hospital Magdeburg, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
A better understanding of the mechanisms that contribute to the resistance of synovial macrophages and fibroblasts to apoptosis will not only provide better insights into the mechanisms contributing to the perpetuation of rheumatoid arthritis (RA) but will also help identify targets for the development of novel, more effective, and long-lasting therapies for the treatment of patients with RA. To avoid toxicity, such as the induction of apoptosis of critical organs, the mechanisms by which these molecules are targeted and therapy delivered must be carefully selected, using the insights obtained from studies characterizing the mechanisms that promote chronic inflammation.
Collapse
Affiliation(s)
- Hongtao Liu
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
32
|
Tu-Rapp H, Hammermüller A, Mix E, Kreutzer HJ, Goerlich R, Köhler H, Nizze H, Thiesen HJ, Ibrahim SM. A proinflammatory role for Fas in joints of mice with collagen-induced arthritis. Arthritis Res Ther 2004; 6:R404-14. [PMID: 15380040 PMCID: PMC546278 DOI: 10.1186/ar1205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/30/2004] [Accepted: 06/07/2004] [Indexed: 11/18/2022] Open
Abstract
Collagen-induced arthritis (CIA) is a chronic inflammatory disease bearing all the hallmarks of rheumatoid arthritis, e.g. polyarthritis, synovitis, and subsequent cartilage/bone erosions. One feature of the disease contributing to joint damage is synovial hyperplasia. The factors responsible for the hyperplasia are unknown; however, an imbalance between rates of cell proliferation and cell death (apoptosis) has been suggested. To evaluate the role of a major pathway of cell death – Fas (CD95)/FasL – in the pathogenesis of CIA, DBA/1J mice with a mutation of the Fas gene (lpr) were generated. The susceptibility of the mutant DBA-lpr/lpr mice to arthritis induced by collagen type II was evaluated. Contrary to expectations, the DBA-lpr/lpr mice developed significantly milder disease than the control littermates. The incidence of disease was also significantly lower in the lpr/lpr mice than in the controls (40% versus 81%; P < 0.05). However DBA-lpr/lpr mice mounted a robust immune response to collagen, and the expression of local proinflammatory cytokines such as, e.g., tumor necrosis factor α (TNF-α) and IL-6 were increased at the onset of disease. Since the contribution of synovial fibroblasts to inflammation and joint destruction is crucial, the potential activating effect of Fas on mouse fibroblast cell line NIH3T3 was investigated. On treatment with anti-Fas in vitro, the cell death of NIH3T3 fibroblasts was reduced and the expression of proinflammatory cytokines TNF-α and IL-6 was increased. These findings suggest that impairment of immune tolerance by increased T-cell reactivity does not lead to enhanced susceptibility to CIA and point to a role of Fas in joint destruction.
Collapse
Affiliation(s)
- Hoang Tu-Rapp
- Department of Immunology, University of Rostock, Rostock, Germany
| | | | - Eilhard Mix
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | | | - Horst Nizze
- Department of Pathology, University of Rostock, Rostock, Germany
| | | | - Saleh M Ibrahim
- Department of Immunology, University of Rostock, Rostock, Germany
| |
Collapse
|
33
|
Kato K, Miyake K, Igarashi T, Yoshino S, Shimada T. Human immunodeficiency virus vector-mediated intra-articular expression of angiostatin inhibits progression of collagen-induced arthritis in mice. Rheumatol Int 2004; 25:522-9. [PMID: 15205911 DOI: 10.1007/s00296-004-0476-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 03/24/2004] [Indexed: 01/28/2023]
Abstract
We examined the feasibility of the human immunodeficiency virus (HIV) vector-mediated local expression of angiostatin in the treatment of murine collagen-induced arthritis in a mouse model generated by immunization with bovine type II collagen and Freund's complete adjuvant. The HIV vector containing the murine angiostatin expression unit (HIV-angiostatin) was injected into right knee joints after arthritis development; the HIV vector containing the enhanced green fluorescein protein (EGFP) marker gene (HIV-EGFP) was injected into the left joints. Quantitative histological evaluation demonstrated that synovial cell hyperplasia and pannus formation were significantly reduced in the right knee joints as determined by this protocol. Suppression of radiographical changes in the ipsilateral paws was also observed. These results indicate that the HIV vector-mediated expression of angiostatin efficiently inhibits the progression of collagen-induced arthritis. Angiostatic gene therapy may provide a new approach to the effective treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ko Kato
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | |
Collapse
|
34
|
Altered expression of inflammatory cytokines in primary osteoarthritis by human T lymphotropic virus type I retrovirus infection: a cross-sectional study. Arthritis Res Ther 2004; 6:R347-54. [PMID: 15225370 PMCID: PMC464878 DOI: 10.1186/ar1193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 04/19/2004] [Accepted: 05/07/2004] [Indexed: 11/12/2022] Open
Abstract
Human T cell leukaemia virus type I (HTLV-I) is known to be involved in late-onset chronic polyarthritis as HTLV-I-associated arthropathy. However, it is unclear whether HTLV-I infection could modify the pathophysiology of osteoarthritis (OA). In this study we compared several inflammatory cytokines, such as C-terminal parathyroid hormone-related peptide (C-PTHrP), soluble interleukin-2 receptor (sIL-2R) and interleukin (IL)-6, and an osteo-destruction marker, deoxypyridinoline, in synovial fluid (SF) samples obtained from 22 HTLV-I carriers and 58 control non-carrier patients with OA. These patients were diagnosed clinically and radiographically with primary OA affecting one or both knee joints, and were similar with regard to age, sex and clinical symptoms. We also performed histopathological examination as well as immunohistochemistry of HTLV-I-derived Tax protein in eight synovial tissues taken from carrier patients. C-PTHrP in SF was significantly higher in HTLV-I carriers (287 ± 280 pM) than in non-carriers (69 ± 34 pM), and the concentration in 13 carriers was above the upper range of OA. In HTLV-I carriers, the concentrations of sIL-2R (741 ± 530 IU/ml), IL-6 (55 ± 86 ng/ml) and deoxypyridinoline (3.1 ± 1.8 nM) were higher than in non-carriers (299 ± 303, 2.5 ± 4.0, 0.96 ± 1.0, respectively), and correlated positively with C-PTHrP. C-PTHrP, sIL-2R and IL-6 concentrations in SF positive for IgM antibody against HTLV-I antigen, a marker of persistent viral replication, were higher than of IgM-negative SF. Histologically, five and two synovia showed mild and moderate synovial proliferation with or without some degree of inflammatory reaction, respectively, and could not be distinguished from OA. Tax-positive synoviocytes were observed sparsely in all samples, and often appeared frequently in actively proliferating regions. Our results suggest that although HTLV-I infection does not necessarily worsen the clinical outcome and local synovitis, the virus can potentially modify the pathophysiology of OA by increasing the inflammatory activity in a subset of carrier patients, especially those with IgM antibody. Longitudinal studies are required to assess the association between HTLV-I infection and OA.
Collapse
|
35
|
Smolewska E, Brózik H, Smolewski P, Darzynkiewicz Z, Stańczyk J. Regulation of peripheral blood and synovial fluid lymphocyte apoptosis in juvenile idiopathic arthritis. Scand J Rheumatol 2004; 33:7-12. [PMID: 15124936 DOI: 10.1080/03009740310004072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Complex regulatory mechanisms are involved in the induction of apoptosis. Their impairment may play a role in the pathogenesis of several autoimmune diseases. Recently, we have described higher incidences of spontaneous apoptosis of peripheral blood (PB) lymphocytes in children with juvenile idiopathic arthritis (JIA). This study aimed to evaluate the regulatory mechanisms that may be responsible for this phenomenon. METHODS Thirty-four JIA children were examined and compared with 20 healthy children of similar ages. Expression of regulatory proteins p53, Bax and Bcl-2 in lymphocytes isolated from PB and synovial fluid (SF) was assessed. Serum and SF levels of interleukin-15 (IL-15) were also evaluated. RESULTS The study showed significantly decreased Bcl-2 expression in JIA PB lymphocytes, compared to both healthy control (p = 0.03) and JIA SF lymphocytes (p = 0.005). There were no significant differences found in Bax expression between groups or compartments examined. However, the Bax/Bcl-2 ratio was nearly two-fold higher in PB lymphocytes than in SF of JIA patients (p = 0.001). p53 expression in PB lymphocytes from both JIA and control children did not statistically differ. In JIA, however, p53 was significantly higher in PB than SF lymphocytes (p = 0.016). IL-15 levels were about 20-fold higher in JIA SF than in serum from either JIA or healthy children (p < 0.0001). CONCLUSION The results suggest that a higher incidence of apoptosis of PB lymphocytes observed in JIA may be associated with down-regulation of Bcl-2, rather than with changes in expression of Bax and p53. In contrast, the low p53 expression and elevated IL-15 appear to provide mechanisms responsible for suppression of apoptosis in SF cells from JIA patients.
Collapse
Affiliation(s)
- E Smolewska
- Department of Paediatric Cardiology, Institute of Pediatrics, Medical University of Lodz, Poland.
| | | | | | | | | |
Collapse
|
36
|
Bradley K, Scatizzi JC, Fiore S, Shamiyeh E, Koch AE, Firestein GS, Gorges LL, Kuntsman K, Pope RM, Moore TL, Han J, Perlman H. Retinoblastoma suppression of matrix metalloproteinase 1, but not interleukin-6, through a p38-dependent pathway in rheumatoid arthritis synovial fibroblasts. ACTA ACUST UNITED AC 2004; 50:78-87. [PMID: 14730602 DOI: 10.1002/art.11482] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is characterized by increased synovial lining cellularity, inflammation, and destruction of cartilage and bone. During the pathogenesis of RA, synovial fibroblasts reenter the cell cycle and multiply in number. RA synovial fibroblasts express high levels of the MAP kinase p38, which may contribute to the production of interleukin-6 (IL-6) and matrix metalloproteinases (MMPs). IL-6 and MMP-1 promote inflammation and joint destruction, respectively. Taken together, these findings indicate that in RA the enhanced cell cycle activity and production of IL-6 and MMP-1 may be linked. Therefore, we sought to determine if the tumor suppressor gene product retinoblastoma (Rb), a negative regulator of cell cycle activity, inhibits IL-6, MMP-1, and p38 in RA synovial fibroblasts. METHODS RA and non-RA synovial fibroblasts were examined by enzyme-linked immunosorbent assay (ELISA) for the relative expression of inactive hyperphosphorylated Rb (inactive Rb/total Rb). Ectopic Rb expression was mediated by infection with a replication-defective adenovirus that expresses Rb (Ad-Rb). A control replication-defective adenovirus that expresses beta-galactosidase (Ad-beta-gal) was used. Cell cycle activity was determined by flow cytometry. IL-6 and MMP-1 expression was examined by real-time polymerase chain reaction and ELISA. Expression and activation of p38 were determined by kinase assays and ELISA. The activity of p38 was enhanced by infecting RA synovial fibroblasts with a replication-defective adenovirus that expresses a constitutively active form of MAPK kinase 3 (Ad-CA-MKK3), an upstream activator of p38. RESULTS Quiescent RA, compared with non-RA synovial fibroblasts, displayed a 200% (P < 0.02) increase in the inactive Rb isoform. Proliferating RA synovial fibroblasts exhibited a 60% (P < 0.12) increase in the inactive Rb isoform compared with non-RA synovial fibroblasts. Increased levels of the active Rb isoform inhibited cell cycle progression and suppressed IL-6 and MMP-1 secretion in RA synovial fibroblasts, although the steady-state levels of IL-6 and MMP-1 messenger RNA remained unchanged. However, Rb overexpression had no effect on spontaneous or IL-1beta-induced production of IL-6 or MMP-1 in non-RA synovial fibroblasts. Ectopic Rb expression reduced the activity of p38. Ad-CA-MKK3 infection in RA synovial fibroblasts increased p38 phosphorylation, and MMP-1 but not IL-6 secretion. In contrast, Rb overexpression inhibited Ad-CA-MKK3-mediated phosphorylation of p38 and subsequent increase in MMP-1. CONCLUSION Rb-mediated suppression of IL-6 and MMP-1 occurs at a posttranscriptional level. However, Ad-Rb reduction of MMP-1 but not IL-6 requires inhibition of the p38 pathway. These results suggest that Rb negatively regulates p38 activation, leading to decreased MMP-1 secretion in RA synovial fibroblasts.
Collapse
Affiliation(s)
- Kathleen Bradley
- Saint Louis University, School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Seemayer CA, Kuchen S, Neidhart M, Kuenzler P, Rihosková V, Neumann E, Pruschy M, Aicher WK, Müller-Ladner U, Gay RE, Michel BA, Firestein GS, Gay S. p53 in rheumatoid arthritis synovial fibroblasts at sites of invasion. Ann Rheum Dis 2003; 62:1139-44. [PMID: 14644850 PMCID: PMC1754413 DOI: 10.1136/ard.2003.007401] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To analyse the functional response of p53 in rheumatoid arthritis synovial fibroblasts (RASF) in vitro and in vivo and to investigate whether activation of p53 modulates the destructive process of RASF. METHODS RASF and controls grown on chamber slides were either directly examined with DO7 anti-p53 antibodies by immunofluorescence or irradiated with 10 Gy x rays and analysed time dependently for the expression of p53. The percentage of positive cells was evaluated by a quantitative scoring system. RASF and normal (N) SF cultured in vitro were co-implanted with human cartilage in SCID mice for 60 days. Consecutively, the invasion score was evaluated, and the number of p53 positive cells was determined at the sites of invasion by immunohistochemistry. In addition, synovial tissues from RA, osteoarthritis, and normal synovia were stained with DO7 antibodies. RESULTS In vitro the rate of expression of p53 in RASF was low (<5%), but transiently inducible by ionising irradiation (50%). In vitro low p53 expressing RASF disclosed, when invading articular cartilage, a nuclear p53 signal in 20% of the cells, indicating the induction of p53 in a distinct population of RASF during the invasive process. CONCLUSIONS These data suggest an inductive p53 response at sites of cartilage invasion during the destructive process driven by activated RASF.
Collapse
Affiliation(s)
- C A Seemayer
- Centre of Experimental Rheumatology and WHO Collaborating Centre for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, Department of Rheumatology, University Hospital Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Seemayer CA, Kuchen S, Kuenzler P, Rihosková V, Rethage J, Aicher WK, Michel BA, Gay RE, Kyburz D, Neidhart M, Gay S. Cartilage destruction mediated by synovial fibroblasts does not depend on proliferation in rheumatoid arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1549-57. [PMID: 12707039 PMCID: PMC1851181 DOI: 10.1016/s0002-9440(10)64289-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the study was to investigate the relationship between invasion and proliferation in rheumatoid arthritis synovial fibroblasts (RASFs). In vitro, RASFs, normal synovial fibroblasts (NSFs), and RASFs transformed with SV40 T-antigen (RASF(SV40)) were analyzed for the expression of cell surface markers (Thy1, VCAM-1, ICAM-1, CD40, CD44) and their proliferation by flow cytometry. Furthermore, colony-forming unit assays were performed and the expression of matrix metalloproteinases (MMP)-14 and cathepsin K mRNA were determined by real-time polymerase chain reaction. In vivo, in the severe combined immunodeficiency (SCID) mouse co-implantation model, RASFs, NSFs, and RASF(SV40) were tested for cartilage invasion, cellular density, and for their expression of the cell cycle-associated protein Ki67. In the SCID mouse co-implantation model, RASFs invaded significantly stronger into the cartilage than NSFs and RASF(SV40). Of note, RASF(SV40) cells formed tumor-like tissues, and the cellular density adjacent to the cartilage was significantly higher than in RASFs or NSFs. In turn, the proliferation marker Ki67 was strongly expressed in the SV40-transformed synoviocytes in SCID mice, but not in RASFs, and specifically not at sites of cartilage invasion. Using the colony-forming unit assay, RASFs and NSFs did not form colonies, whereas RASF(SV40) lost contact inhibition. In vitro, the proliferative rate of RASFs was low (4.3% S phase) in contrast to RASF(SV40) (24.4%). Expression of VCAM-1 was significantly higher, whereas of ICAM-1 was significantly lower, in RASFs than in RASF(SV40). CD40 was significantly stronger expressed in RASF(SV40), whereas CD44 and AS02 were present at the same degree in almost all synoviocytes. Expression of cathepsin K and matrix metalloproteinase-14 mRNA was significantly higher in RASFs than in the RASF(SV40). Our data demonstrate clearly that invasion of cartilage is mediated by activated RASFs characterized by increased expression of adhesion molecules, matrix-degrading enzymes, but does not depend on cellular proliferation, suggesting the dissociation of invasion and proliferation in RASFs.
Collapse
Affiliation(s)
- Christian A Seemayer
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Following fracture, the cartilaginous tissue of the soft callus is eventually replaced by bone. Removal of the cartilage is a critical part of the bone healing process but information concerning the changes in chondrocytes during this process is sparse. The aim of the study was to investigate the fate of chondrocytes in the soft callus during the bone repair process using a rabbit tibial fracture model. Fracture tissue was processed for collagen I-III and keratan sulphate immunohistochemistry to study changes in matrix composition and the TUNEL technique (terminal deoxynucleotidyl transferase medicated dUTP nick-end labelling) to identify death of soft callus chondrocytes. Transmission electron microscopy (TEM) was also carried out to investigate the ultrastructure of chondrocytes within the soft callus. Results showed that the size of the cartilage area decreased over time and that cartilage matrix was replaced with new matrix rich in collagen I and III. Chondrocytes became engulfed in the new matrix and appeared to stop producing cartilage matrix. Chondrocyte cell death was seen at the border of the soft callus, just within the newly produced matrix. TEM revealed that these dying/dead cells were not typically apoptotic in appearance. In conclusion, results indicate that chondrocytes of the soft callus die as a result of the progressive production of bone matrix which eventually engulfs them and leads to the remodelling of the area and eventual bone repair.
Collapse
Affiliation(s)
- Joanna L Ford
- Division of Orthopaedic and Accident Surgery, University Hospital, Queen's Medical Centre, C Floor, West Block, Nottingham NG7 2UR, UK
| | | | | |
Collapse
|
40
|
Schett G, Redlich K, Smolen JS. The role of osteoprotegerin in arthritis. Arthritis Res Ther 2003; 5:239-45. [PMID: 12932284 PMCID: PMC193736 DOI: 10.1186/ar990] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Revised: 07/30/2003] [Accepted: 07/31/2003] [Indexed: 11/10/2022] Open
Abstract
Bone erosion is a hallmark of rheumatoid arthritis. Recent evidence from experimental arthritis suggests that osteoclasts are essential for the formation of local bone erosions. Two essential regulators of osteoclastogenesis have recently been described: the receptor-activator of nuclear factor kappa B ligand, which promotes osteoclast maturation, and osteoprotegerin (OPG), which blocks osteoclastogenesis. The present review summarizes the current knowledge on the role of osteoclasts in local bone erosion. In addition, the role of OPG as a therapeutic tool to inhibit local bone erosion is addressed. Finally, evidence for OPG as an inhibitor of systemic inflammatory bone loss is discussed.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine III, Division of Rheumatology, University of Vienna, Austria.
| | | | | |
Collapse
|
41
|
Furuzawa-Carballeda J, Rodríquez-Calderón R, Díaz de León L, Alcocer-Varela J. Mediators of inflammation are down-regulated while apoptosis is up-regulated in rheumatoid arthritis synovial tissue by polymerized collagen. Clin Exp Immunol 2002; 130:140-9. [PMID: 12296865 PMCID: PMC1906486 DOI: 10.1046/j.1365-2249.2002.01955.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2002] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was to determine whether collagen-polyvinylpyrrolidone (collagen-PVP) modifies some proinflammatory responses in synovium cultures from rheumatoid arthritis (RA) patients. Synovium from 10 RA patients were cultured with or without 1% collagen-PVP. Tissues on the 3rd, 5th and 7th culture day were sectioned and stained by the Herovici technique. Total collagen and type I/III collagen ratios were evaluated by the Woessner micromethod and by interrupted gel electrophoresis, respectively. Collagenolytic activity was assessed by degradation of [3H]-collagen in supernatants. TIMP-1, IL-1beta and TNF-alpha were determined in supernatants by ELISA, and the results were normalized by DNA concentration. IL-1beta, TNF-alpha, IL-6, IL-8, MMP-1, TIMP-1, Cox-1, VCAM-1, ICAM-1 and Fas/APO95 expression was evaluated by immunohistochemistry. Apoptosis was detected by TUNEL technique. The histological analysis and electrophoresis revealed a 1.7-fold increase of type III collagen in a time-dependent fashion in collagen-PVP-treated cultures. Proinflammatory cytokines (IL-1beta: 58 +/- 9 versus 22 +/- 10; TNF-alpha: 41 +/- 6 versus 11 +/- 3; IL-8: 59 +/- 12 versus 29 +/- 9; treated versus untreated), adhesion molecule (ICAM-1: 57 +/- 11 versus 29 +/- 15; VCAM-1: 49 +/- 7 versus 21 +/- 13; treated versus untreated) as well as Cox-1 (59 +/- 10 versus 20 +/- 3) expression was down-regulated in RA synovium treated. Meanwhile, TIMP-1 (36 +/- 7 versus 57 +/- 11) and Fas expression (20 +/- 10 versus 55 +/- 13) and apoptosis (14 +/- 3 versus 55 +/- 5) were up-regulated in treated cultures compared with controls. In supernatants, the collagenolytic activity, as well as IL-1beta and TNF-alpha, levels were all down-regulated in treated cultures (two, three, fourfold, respectively). The addition of collagen-PVP to synovium-induced down-modulation of some inflammatory parameters and an increase in apoptosis of synovial cells. Perhaps this mechanism could contribute to inhibit outgrowth of pannus formation and to down-regulate inflammation of joints in patients with RA.
Collapse
Affiliation(s)
- J Furuzawa-Carballeda
- Department of Cellular Biology, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico.
| | | | | | | |
Collapse
|
42
|
Kurowska M, Rudnicka W, Kontny E, Janicka I, Chorazy M, Kowalczewski J, Ziółkowska M, Ferrari-Lacraz S, Strom TB, Maśliński W. Fibroblast-like synoviocytes from rheumatoid arthritis patients express functional IL-15 receptor complex: endogenous IL-15 in autocrine fashion enhances cell proliferation and expression of Bcl-x(L) and Bcl-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1760-7. [PMID: 12165497 DOI: 10.4049/jimmunol.169.4.1760] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The hallmarks of rheumatoid arthritis (RA) are leukocytic infiltration of the synovium and expansiveness of fibroblast-like synoviocytes (FLS). The abnormal proliferation of FLS and their resistance to apoptosis is mediated, at least in part, by present in RA joints proinflammatory cytokines and growth factors. Because IL-15 exerts properties of antiapoptotic and growth factors, and is produced by RA FLS, we hypothesized that IL-15 participates in RA FLS activation. To test this hypothesis, we first examined whether RA FLS express chains required for high affinity functional IL-15R. Indeed, RA FLS express IL-15Ralpha at mRNA and protein levels. Moreover, we confirmed the presence of IL-2Rbeta and common gamma-chains. Interestingly, TNF-alpha or IL-1beta triggered significant elevation of IL-15Ralpha chain at mRNA and protein levels. Next, we investigated the effects of exogenous or endogenous IL-15 on Bcl-2 and Bcl-x(L) expression, FLS proliferation, and apoptosis. Exogenous IL-15 enhanced RA FLS proliferation and increased the level of mRNA-encoding Bcl-x(L). To test the role of endogenous IL-15 in the activation of RA FLS, an IL-15 mutant/Fcgamma2a protein exerting properties of specific antagonist to the IL-15Ralpha chain was used. We found that blocking IL-15 biological activities using this protein substantially reduced endogenous expression of Bcl-2 and Bcl-x(L), and RA FLS proliferation that was reflected by increased apoptosis. Thus, we have demonstrated that a distinctive phenotype of RA FLS, i.e., persistent activation, proliferation, and resistance to apoptosis, is related to the autocrine activation of IL-15Rs by FLS-derived IL-15.
Collapse
Affiliation(s)
- Mariola Kurowska
- Department of Pathophysiology and Immunology, Institute of Rheumatology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory synovitis that is dominated by the presence of macrophages, lymphocytes and synovial fibroblasts, which leads to the destruction of bone and cartilage. The effectiveness of therapies that are directed against tumour-necrosis factor and interleukin-1 has identified macrophages as a crucial target for therapeutic intervention. However, not all patients respond to these therapies, and the benefits of this form of treatment are short lived. Recent work indicates that the insufficient apoptosis of inflammatory cells in the RA joint might contribute to pathogenesis. In this article, I characterize the mechanisms that prevent the apoptosis of chronic inflammatory cells in the RA joint, to identify potential new targets for the treatment of RA.
Collapse
Affiliation(s)
- Richard M Pope
- Division of Rheumatology, Northwestern University, The Feinberg School of Medicine, Ward 3-315, 303 East Chicago Avenue, Chicago, Illinois 60611, USA.
| |
Collapse
|
44
|
Abstract
OBJECTIVE To review the literature published in the past 6 years concerning the role of p53 tumor-suppressor protein in rheumatoid arthritis (RA). METHODS A MEDLINE search was performed to identify all publications that covered the role of p53 in RA. In addition, selected articles related to proto-oncogenes and matrix metalloproteinases were included in this review. RESULTS p53 protein is expressed in RA fibroblast-like synoviocytes (FLSs), and its overexpression is a characteristic feature of RA. The overexpression of p53 is probably induced by DNA strand breaks caused by the genotoxic environment of RA joints, in some cases because of p53 mutations. Independent studies from 3 groups indicated that p53 mutations can and do occur in RA synovial tissue samples derived from a subset of RA patients. Inactivation of p53 may contribute to the invasiveness of FLSs and to the high-level expression of cartilage degradation enzymes as well. Gene transfer or gene knockout studies using a collagen-II-induced RA animal model to examine the role of p53 in RA have been reported. Initial results are positive and indicate that gene transfer of p53 may be clinically useful for the management of RA. CONCLUSIONS p53 protein is expressed in RA FLSs, and its overexpression is a characteristic feature of RA. p53 mutations occur in the synovial tissues derived from a subset of RA patients. The clinical implications of p53 expression and the functional importance of somatic mutations in RA, however, are still unclear. Further research is needed to fully understand the implications of these findings and develop corresponding new therapeutic strategies.
Collapse
Affiliation(s)
- Yubo Sun
- Department of Medicine, University of Miami School of Medicine, FL, USA
| | | |
Collapse
|
45
|
Perlman H, Liu H, Georganas C, Koch AE, Shamiyeh E, Haines GK, Pope RM. Differential expression pattern of the antiapoptotic proteins, Bcl-2 and FLIP, in experimental arthritis. ARTHRITIS AND RHEUMATISM 2001; 44:2899-908. [PMID: 11762951 DOI: 10.1002/1529-0131(200112)44:12<2899::aid-art478>3.0.co;2-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To examine the relationship between apoptosis and the expression of antiapoptotic proteins in the pathogenesis of experimental inflammatory arthritis. METHODS Clinical and histologic assessment of adjuvant-induced arthritis (AIA) was performed over a 42-day period. The induction of apoptosis was measured by TUNEL analysis, and the antiapoptotic proteins, Bcl-2 and FLIP, were examined by immunohistochemistry with the use of monospecific antibodies. The percentage of Bcl-2- and FLIP-positive cells was correlated with histologic markers of AIA. RESULTS Arthritis developed by day 14 following adjuvant injection. Few TUNEL-positive cells were observed between days 0 and 21, indicating that apoptosis did not occur at these time points. An increase in the number of TUNEL-positive cells was observed at day 28, particularly outside sites of cartilage or bone erosion, which dramatically declined by day 35. Immunohistochemical analyses of Bcl-2 and FLIP revealed that the synovium was positive for Bcl-2 and FLIP on day 0. On day 14, Bcl-2 was present at the sites of early erosions and correlated with the erosion and inflammation scores. FLIP was also highly expressed at sites of erosion and was localized to the pannus starting on day 21. Although TUNEL positivity peaked at day 28, a time point in which Bcl-2 and FLIP were present, the areas that displayed intense positivity for expression of Bcl-2 and FLIP were TUNEL negative. In addition, the number of neutrophils in the synovial lining and pannus significantly decreased from day 28 to day 35, suggesting that the cells undergoing apoptosis were neutrophils. Furthermore, at day 42 when TUNEL-positive cells were absent, Bcl-2 expression was diminished, while FLIP remained highly expressed in the pannus. CONCLUSION The overall percentage of TUNEL-positive cells in the ankle was <1% except on days 28 and 35 post-adjuvant injection, suggesting that in AIA, similar to rheumatoid arthritis, a lack of apoptosis may contribute to disease progression. Furthermore, Bcl-2 and FLIP are temporally and differentially expressed during the pathogenesis of AIA. Inhibition of these molecules may augment synovial apoptosis and ameliorate the disease.
Collapse
Affiliation(s)
- H Perlman
- Northwestern University Medical School and the Veterans Administration Chicago Healthcare System, Lakeside Division, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Yao Q, Wang S, Glorioso JC, Evans CH, Robbins PD, Ghivizzani SC, Oligino TJ. Gene transfer of p53 to arthritic joints stimulates synovial apoptosis and inhibits inflammation. Mol Ther 2001; 3:901-10. [PMID: 11407904 DOI: 10.1006/mthe.2001.0343] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that primarily affects joints. During the pathogenesis of rheumatoid arthritis, the synovial lining becomes dramatically thickened and hyperplastic. This highly aggressive tissue invades and destroys articular cartilage and bone. Several lines of evidence suggest that the proliferation of the synovial tissue may be due to disruption in the control of the cell cycle or apoptotic pathways. In particular, mutations in the tumor suppressor protein p53 have been found in synovial tissue from RA joints. We have examined the effects of overexpression of p53 by adenoviral infection in synovial cells in culture and in synovial tissue in vivo in a rabbit model of arthritis. Here we demonstrate that p53 overexpression resulted in significant apoptosis in human and rabbit synovial cells in culture. Furthermore, intraarticular injection of Ad-p53 resulted in extensive and rapid induction of synovial apoptosis in the rabbit knee without affecting cartilage metabolism. Interestingly, a significant reduction in the leukocytic infiltrate was observed within 24 h postinfection of Ad.p53. These results suggest that intraarticular gene transfer of p53 is able to induce synovial apoptosis as well as reduce inflammation and thus may be useful clinically for the treatment of RA.
Collapse
Affiliation(s)
- Q Yao
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Yatsugi N, Tsukazaki T, Osaki M, Koji T, Yamashita S, Shindo H. Apoptosis of articular chondrocytes in rheumatoid arthritis and osteoarthritis: correlation of apoptosis with degree of cartilage destruction and expression of apoptosis-related proteins of p53 and c-myc. J Orthop Sci 2001; 5:150-6. [PMID: 10982649 DOI: 10.1007/s007760050142] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To investigate the relationship of chondrocyte apoptosis and cartilage destruction, we performed in situ nick end labeling (ISNEL), electron microscopy, and immunohistochemistry against apoptosis-related proteins, p53 and c-myc, in the articular cartilages of patients with rheumatoid arthritis (RA; n = 12) and osteoarthritis (OA; n = 12), and in control articular cartilages from patients with femoral neck fracture (n = 8). The distribution of stained chondrocytes was evaluated semiquantitatively in relation to the degree of cartilage destruction. ISNEL-positive chondrocytes with apoptotic morphological features were identified in a relatively early phase of cartilage destruction, and correlated positively and significantly in a number with the degree of cartilage degeneration. Comparison of RA and OA revealed a significantly greater number of ISNEL-positive chondrocytes in RA cartilage. In contrast, the specimens of normal subjects contained few cells with apoptotic changes. Similarly to the distribution of ISNEL staining, the expression of p53 and c-myc proteins was observed in chondrocytes within the degraded lesions, and showed a positive correlation with the number of ISNEL-stained cells. These results suggest that the degree of chondrocyte apoptosis is closely related to cartilage destruction and that chondrocytes in RA more readily undergo apoptosis than those in OA. The expression of p53 and c-myc proteins in ISNEL-positive areas may reflect the involvement of these proteins in the apoptotic process in articular chondrocytes in inflammatory arthritis.
Collapse
Affiliation(s)
- N Yatsugi
- Department of Orthopaedic Surgery, Nagasaki University School of Medicine, Nagasaki, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Relic B, Guicheux J, Mezin F, Lubberts E, Togninalli D, Garcia I, van den Berg WB, Guerne PA. Il-4 and IL-13, but not IL-10, protect human synoviocytes from apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2775-82. [PMID: 11160344 DOI: 10.4049/jimmunol.166.4.2775] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interleukin-4, which has been contemplated for the treatment of rheumatoid arthritis and/or osteoarthritis because of its anticatabolic properties, has also been shown to modulate apoptosis. Because inadequate apoptosis is thought to contribute to synovial hyperplasia, we have investigated the ability of IL-4 and other Th2 cytokines to protect human synovial cells from apoptosis. Human synoviocytes or synovial explants were pretreated with IL-4, IL-10, and IL-13 before exposure to NO donor sodium-nitro-prusside (SNP). Apoptosis was evaluated by microscopy, annexin V-FITC, 3-(4,5-dimethylthiazol-2-gl)-5-(3-carboxymethoxylphenyl)-2-(4-sulphophenyl-2H: tetrazolium inner salt (MTS) test, pulse field gel electrophoresis, and a method proposed in this study based on (32)P Klenow end labeling of high m.w. DNA. Pretreatment by IL-4 or IL-13, but not IL-10, protected human synoviocytes from apoptosis induced by SNP. Even at doses as high as 2 mM SNP, up to 86% and 56% protection was achieved, after IL-4 and IL-13 treatment, respectively. Cell survival was dependent on IL concentration. IL-4 and IL-13 also had antiapoptotic effects on SNP-treated human synovial explants. Effects of IL-4 and IL-13 varied in the presence of phosphatidylinositol-3 kinase and protein kinase C inhibitors, implying the involvement of these pathways in antiapoptotic signaling. Antiapoptotic effects were dramatically inhibited by LY294002, and partially by the protein kinase C inhibitor Gö 6976, while insulin-like growth factor increased synoviocyte survival. The possibility that IL-4 and IL-13 may enhance synovial expansion in vivo by their antiapoptotic effects is discussed.
Collapse
Affiliation(s)
- B Relic
- Division of Rheumatology and Department of Orthopedic Surgery, University Hospital, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Schett G, Tohidast-Akrad M, Steiner G, Smolen J. The stressed synovium. ARTHRITIS RESEARCH 2001; 3:80-6. [PMID: 11178114 PMCID: PMC128883 DOI: 10.1186/ar144] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2000] [Revised: 11/16/2000] [Accepted: 12/07/2000] [Indexed: 12/21/2022]
Abstract
This review focuses on the mechanisms of stress response in the synovial tissue of rheumatoid arthritis. The major stress factors, such as heat stress, shear stress, proinflammatory cytokines and oxidative stress, are discussed and reviewed, focusing on their potential to induce a stress response in the synovial tissue. Several pathways of stress signalling molecules are found to be activated in the synovial membrane of rheumatoid arthritis; of these the most important examples are heat shock proteins, mitogen-activated protein kinases, stress-activated protein kinases and molecules involved in the oxidative stress pathways. The expression of these pathways in vitro and in vivo as well as the consequences of stress signalling in the rheumatoid synovium are discussed. Stress signalling is part of a cellular response to potentially harmful stimuli and thus is essentially involved in the process of synovitis. Stress signalling pathways are therefore new and promising targets of future anti-rheumatic therapies.
Collapse
Affiliation(s)
- G Schett
- Department of Internal Medicine III, University of Vienna, Währinger Gürtel 18-20, A-1180 Vienna, Austria.
| | | | | | | |
Collapse
|
50
|
Perlman H, Pagliari LJ, Liu H, Koch AE, Haines GK, Pope RM. Rheumatoid arthritis synovial macrophages express the Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein and are refractory to Fas-mediated apoptosis. ARTHRITIS AND RHEUMATISM 2001; 44:21-30. [PMID: 11212162 DOI: 10.1002/1529-0131(200101)44:1<21::aid-anr4>3.0.co;2-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The chronic inflammation and progressive joint destruction observed in rheumatoid arthritis (RA) are mediated in part by macrophages. A paucity of apoptosis has been observed in RA synovial tissues, yet the mechanism remains unknown. The present study sought to characterize the expression of Fas, Fas ligand (FasL), and Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (FLIP), and to quantify the apoptosis induced by agonistic anti-Fas antibody, using mononuclear cells (MNC) isolated from the peripheral blood (PB) and synovial fluid (SF) of RA patients. METHODS The expression of Fas, FasL, and FLIP and apoptosis induced by agonistic anti-Fas antibody in MNC from the PB and SF of RA patients were determined by flow cytometry. Immunohistochemistry employing a monospecific anti-FLIP antibody was performed on RA and osteoarthritis (OA) synovial tissue. RESULTS CD14-positive monocyte/macrophages from normal and RA PB and from RA SF expressed equivalent levels of Fas and FasL. Furthermore, unlike the CD14-positive PB monocytes, RA SF monocyte/macrophages were resistant to the addition of agonistic anti-Fas antibody. In contrast, both CD14-positive PB and SF monocyte/macrophages were sensitive to apoptosis mediated by a phosphatidylinositol 3-kinase inhibitor. Intracellular staining of the caspase 8 inhibitor, FLIP, in CD14-positive SF monocyte/macrophages revealed a significant up-regulation of FLIP compared with normal and RA PB monocytes. Immunohistochemical analysis of synovial tissue from RA and OA patients revealed increased FLIP expression in the RA synovial lining compared with the OA synovial lining. Furthermore, FLIP expression was observed in the CD68positive population in the RA synovial lining. Forced reduction of FLIP by a chemical inhibitor resulted in RA SF macrophage apoptosis that was enhanced by agonistic anti-Fas antibody, indicating that FLIP is necessary for SF macrophage survival. CONCLUSION These data suggest that up-regulation of FLIP in RA macrophages may account for their persistence in the disease. Thus, the targeted suppression of FLIP may be a potential therapeutic strategy for the amelioration of RA.
Collapse
Affiliation(s)
- H Perlman
- Northwestern University Medical School, and the Veterans Administration Chicago Healthcare System, Lakeside Division, Illinois, USA
| | | | | | | | | | | |
Collapse
|