1
|
Olesińska W, Biernatek M, Lachowicz-Wiśniewska S, Piątek J. Systematic Review of the Impact of COVID-19 on Healthcare Systems and Society-The Role of Diagnostics and Nutrition in Pandemic Response. J Clin Med 2025; 14:2482. [PMID: 40217931 PMCID: PMC11989619 DOI: 10.3390/jcm14072482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
The COVID-19 pandemic has revealed deep vulnerabilities in healthcare systems and public health preparedness. This systematic review examines the effectiveness of epidemiological procedures, the role of diagnostics, and the influence of nutritional status on immune function and disease severity. A total of 88 studies were analyzed, encompassing diagnostics, micronutrient deficiencies (notably vitamin D, C, E, zinc, and selenium), and the psychosocial impact of the pandemic. The results underscore the importance of integrated strategies-including accurate testing, preventive nutritional measures, and mental health support-in improving outcomes and societal resilience during global health crises. Unlike previous reviews that focused on isolated biomedical or public health elements, this study integrates diagnostics, immune-nutritional status, and psychosocial effects to present a comprehensive, multidimensional analysis of pandemic impact and preparedness.
Collapse
Affiliation(s)
| | | | - Sabina Lachowicz-Wiśniewska
- Faculty of Medicine and Health Science, University of Kalisz (Calisia University), plac Wojciecha Bogusławskiego 2, 62-800 Kalisz, Poland; (W.O.); (M.B.); (J.P.)
| | | |
Collapse
|
2
|
Maywald M, Rink L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules 2024; 14:863. [PMID: 39062576 PMCID: PMC11274920 DOI: 10.3390/biom14070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, it has become clear that allergic diseases are on the rise in both Western and developing countries. The exact reason for the increase in prevalence has not been conclusively clarified yet. Multidimensional approaches are suspected in which diet and nutrition seem to play a particularly important role. Allergic diseases are characterized by a hyper-reactive immune system to usually harmless allergens, leading to chronic inflammatory diseases comprising respiratory diseases like asthma and allergic rhinitis (AR), allergic skin diseases like atopic dermatitis (AD), and food allergies. There is evidence that diet can have a positive or negative influence on both the development and severity of allergic diseases. In particular, the intake of the essential trace element zinc plays a very important role in modulating the immune response, which was first demonstrated around 60 years ago. The most prevalent type I allergies are mainly based on altered immunoglobulin (Ig)E and T helper (Th)2 cytokine production, leading to type 2 inflammation. This immune status can also be observed during zinc deficiency and can be positively influenced by zinc supplementation. The underlying immunological mechanisms are very complex and multidimensional. Since zinc supplements vary in dose and bioavailability, and clinical trials often differ in design and structure, different results can be observed. Therefore, different results are not surprising. However, the current literature suggests a link between zinc deficiency and the development of allergies, and shows positive effects of zinc supplementation on modulating the immune system and reducing allergic symptoms, which are discussed in more detail in this review.
Collapse
Affiliation(s)
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
3
|
Sandomierski M, Chojnacka M, Długosz M, Pokora M, Zwolińska J, Majchrzycki Ł, Voelkel A. Mesoporous Silica Modified with Polydopamine and Zinc Ions as a Potential Carrier in the Controlled Release of Mercaptopurine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4358. [PMID: 37374542 DOI: 10.3390/ma16124358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Mercaptopurine is one of the drugs used in the treatment of acute lymphoblastic leukemia. A problem with mercaptopurine therapy is its low bioavailability. This problem can be solved by preparing the carrier that releases the drug in lower doses but over a longer period of time. In this work, polydopamine-modified mesoporous silica with adsorbed zinc ions was used as a drug carrier. SEM images confirm the synthesis of spherical carrier particles. The particle size is close to 200 nm, allowing for its use in intravenous delivery. The zeta potential values for the drug carrier indicate that it is not prone to agglomeration. The effectiveness of drug sorption is indicated by a decrease in the zeta potential and new bands in the FT-IR spectra. The drug was released from the carrier for 15 h, so all of the drug can be released during circulation in the bloodstream. The release of the drug from the carrier was sustained, and no 'burst release' was observed. The material also released small amounts of zinc, which are important in the treatment of the disease because these ions can prevent some of the adverse effects of chemotherapy. The results obtained are promising and have great application potential.
Collapse
Affiliation(s)
- Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Martyna Chojnacka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Maria Długosz
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Monika Pokora
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Joanna Zwolińska
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Łukasz Majchrzycki
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
4
|
Tomar S, Musyuni P, Aggarwal G. An overview of regulation for nutraceuticals and concept of personalized nutraceuticals. JOURNAL OF GENERIC MEDICINES 2023; 19:66-74. [PMID: 38603246 PMCID: PMC9841207 DOI: 10.1177/17411343221150875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Nutraceuticals are essentially nutritional components that have a vital role in developing and maintaining the body's regular functions, which keeps people healthy. The nutraceutical sector is also primarily driven by the existing global population and trends. Examples of foods considered as nutraceuticals include prebiotics, fibre, polyunsaturated fatty acids, probiotics, antioxidants, and other natural or herbal foods. Some of the most serious health problems of the 20th century, like COVID-19 and diabetes mellitus, are managed with the help of the preceding nutraceuticals. As we move into a time of health and medicine, the food industry as a whole has become more focused on research.
Collapse
Affiliation(s)
- Saurav Tomar
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Pankaj Musyuni
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| | - Geeta Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, New Delhi, India
| |
Collapse
|
5
|
Cundra LB, Vallabhaneni M, Saadeh M, Houston KV, Yoo BS, D’Souza S, Johnsonv DA. Immunomodulation strategies against COVID-19 evidence: key nutrients and dietary approaches. EXPLORATION OF MEDICINE 2023:189-206. [DOI: 10.37349/emed.2023.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/03/2023] [Indexed: 01/16/2025] Open
Abstract
The novel coronavirus disease-2019 (COVID-19) has created a major public health crisis. Various dietary factors may enhance immunological activity against COVID-19 and serve as a method to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The dietary factors that are responsible for boosting immunity may provide a therapeutic advantage in patients with COVID-19. Investigators have demonstrated that vitamins B6, B12, C, D, E, and K, and trace elements like zinc, copper, selenium, and iron may serve as important tools for immunomodulation. Herein this is a review the peer-reviewed literature pertaining to dietary immunomodulation strategies against COVID-19. This review is intended to better define the evidence that dietary modifications and supplementation could positively influence the proinflammatory state in patients with COVID-19 and improve clinical outcomes. With appropriate insight, therapeutic interventions are discussed and directed to potentially modulate host immunity to mitigate the disease mechanisms of COVID-19.
Collapse
Affiliation(s)
- Lindsey B. Cundra
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, USA
| | - Manasa Vallabhaneni
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Michael Saadeh
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Kevin V. Houston
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Byung Soo Yoo
- Department of Gastroenterology, Carolinas Medical Center, Charlotte, NC 28203, USA
| | - Steve D’Souza
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - David A. Johnsonv
- Division of Gastroenterology, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
6
|
Gain C, Song S, Angtuaco T, Satta S, Kelesidis T. The role of oxidative stress in the pathogenesis of infections with coronaviruses. Front Microbiol 2023; 13:1111930. [PMID: 36713204 PMCID: PMC9880066 DOI: 10.3389/fmicb.2022.1111930] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses can cause serious respiratory tract infections and may also impact other end organs such as the central nervous system, the lung and the heart. The coronavirus disease 2019 (COVID-19) has had a devastating impact on humanity. Understanding the mechanisms that contribute to the pathogenesis of coronavirus infections, will set the foundation for development of new treatments to attenuate the impact of infections with coronaviruses on host cells and tissues. During infection of host cells, coronaviruses trigger an imbalance between increased production of reactive oxygen species (ROS) and reduced antioxidant host responses that leads to increased redox stress. Subsequently, increased redox stress contributes to reduced antiviral host responses and increased virus-induced inflammation and apoptosis that ultimately drive cell and tissue damage and end organ disease. However, there is limited understanding how different coronaviruses including SARS-CoV-2, manipulate cellular machinery that drives redox responses. This review aims to elucidate the redox mechanisms involved in the replication of coronaviruses and associated inflammation, apoptotic pathways, autoimmunity, vascular dysfunction and tissue damage that collectively contribute to multiorgan damage.
Collapse
Affiliation(s)
| | | | | | | | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Vitamins, microelements and the immune system: current standpoint in the fight against coronavirus disease 2019. Br J Nutr 2022; 128:2131-2146. [PMID: 35057876 DOI: 10.1017/s0007114522000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory disease associated with severe systemic inflammation. The optimal status of vitamins and microelements is considered crucial for the proper functioning of the immune system and necessary for successful recovery. Most patients with respiratory distress in COVID-19 are vitamin and microelement deficient, with vitamin D and Se deficiency being the most common. Anyway, various micronutrient supplements are widely and arbitrarily used for prevention or in the treatment of COVID-19. We aimed to summarise current knowledge about molecular and physiological mechanisms of vitamins (D, A, C, B6, B9 and B12) and microelements (Se, Zn, Cu and Fe) involved in the immune system regulation in consideration with COVID-19 pathogenesis, as well as recent findings related to their usage and effects in the prevention and treatment of COVID-19. In the early course of the pandemic, several, mainly observational, studies reported an association of some micronutrients, such as vitamin C, D and Zn, with severity reduction and survival improvement. Still, emerging randomised controlled trials showed no effect of vitamin D on hospitalisation length and no effect of vitamin C and Zn on symptom reduction. Up to date, there is evidence neither for nor against the use of micronutrients in the treatment of COVID-19. The doses that exceed the recommended for the general population and age group should not be used, except in clinical trials. Benefits of supplementation are primarily expected in populations prone to micronutrient deficiencies, who are, as well, at a higher risk of worse outcomes in COVID-19.
Collapse
|
8
|
Kladnik J, Dolinar A, Kljun J, Perea D, Grau-Expósito J, Genescà M, Novinec M, Buzon MJ, Turel I. Zinc pyrithione is a potent inhibitor of PL Pro and cathepsin L enzymes with ex vivo inhibition of SARS-CoV-2 entry and replication. J Enzyme Inhib Med Chem 2022; 37:2158-2168. [PMID: 35943189 PMCID: PMC9367663 DOI: 10.1080/14756366.2022.2108417] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zinc pyrithione (1a), together with its analogues 1b–h and ruthenium pyrithione complex 2a, were synthesised and evaluated for the stability in biologically relevant media and anti-SARS-CoV-2 activity. Zinc pyrithione revealed potent in vitro inhibition of cathepsin L (IC50=1.88 ± 0.49 µM) and PLPro (IC50=0.50 ± 0.07 µM), enzymes involved in SARS-CoV-2 entry and replication, respectively, as well as antiviral entry and replication properties in an ex vivo system derived from primary human lung tissue. Zinc complexes 1b–h expressed comparable in vitro inhibition. On the contrary, ruthenium complex 2a and the ligand pyrithione a itself expressed poor inhibition in mentioned assays, indicating the importance of the selection of metal core and structure of metal complex for antiviral activity. Safe, effective, and preferably oral at-home therapeutics for COVID-19 are needed and as such zinc pyrithione, which is also commercially available, could be considered as a potential therapeutic agent against SARS-CoV-2.
Collapse
Affiliation(s)
- Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Dolinar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - David Perea
- Infectious Diseases Department, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Diseases Department, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Maria J Buzon
- Infectious Diseases Department, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, VHIR Task Force COVID-19, Barcelona, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Sonkar C, Hase V, Banerjee D, Kumar A, Kumar R, Jha HC. Post COVID-19 complications, adjunct therapy explored, and steroidal after effects. CAN J CHEM 2022; 100:459-474. [DOI: 10.1139/cjc-2021-0247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
For COVID-19 survivors, defeating the virus is just the beginning of a long road to recovery. The inducibility and catastrophic effects of the virus are distributed across multiple organs. The induction of cytokine storms in COVID-19 patients is due to the interaction of the SARS-CoV-2 virus and the host receptor, leading to various immunopathological consequences that may eventually lead to death. So far, COVID-19 has affected tons of people across the world, but there is still no effective treatment. Patients facing complications of COVID-19 after recovery have shown extensive clinical symptoms similar to that of patients recovering from previously circulating coronaviruses. Previous knowledge and literature have opened up ways to treat this disease and manage post-COVID-19 complications, which pose a severe challenge to the health system globally and may exacerbate the fragmentation of diseases. The use of steroids as a treatment has resulted in various health problems and side-effects in COVID-19 patients. This review discusses various post-COVID-19 complications observed and adjunctive therapies used along with common COVID-19 treatment and spotlights their side effects and consequences. This review provides the latest literature on COVID-19, which emphasizes the subsequent complications in various organs, side effects of drugs, and alternative regimens used to treat COVID-19.
Collapse
Affiliation(s)
- Charu Sonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vaishnavi Hase
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai 400614, India
| | - Durba Banerjee
- School of Biotechnology (SOB), Gautam Buddha University (Delhi NCR), Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201312, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India
| | - Rajesh Kumar
- Department of Physics, Indian Institute of Technology, Indore 453552, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
10
|
Xia W, Li C, Zhao D, Xu L, Kuang M, Yao X, Hu H. The Impact of Zinc Supplementation on Critically Ill Patients With Acute Kidney Injury: A Propensity Score Matching Analysis. Front Nutr 2022; 9:894572. [PMID: 35769374 PMCID: PMC9234667 DOI: 10.3389/fnut.2022.894572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/17/2022] [Indexed: 12/05/2022] Open
Abstract
Background Zinc is an essential trace element involved in multiple metabolic processes. Acute kidney injury (AKI) is associated with low plasma zinc, but outcomes with zinc supplementation in critically ill patients with AKI remain unknown. Our objective was to investigate the effectiveness of zinc supplementation in this patient population. Methods Critically ill patients with AKI were identified from the Medical Informative Mart for Intensive Care IV database. Prosperity score matching (PSM) was applied to match patients receiving zinc treatment to those without zinc treatment. The association between zinc sulfate use and in-hospital mortality and 30-day mortality, need for renal replacement therapy (RRT), and length of stay was determined by logistic regression and Cox proportional hazards modeling. Results A total of 9,811 AKI patients were included in the study. PSM yielded 222 pairs of patients who received zinc treatment and those who did not. Zinc supplementation was associated with reduced in-hospital mortality (HR = 0.48 (95% CI: 0.28, 0.83) P = 0.009) and 30-day mortality (HR = 0.51 (95% CI, 0.30, 0.86) P = 0.012). In the subgroup analysis, zinc use was associated with reduced in-hospital mortality in patients with stage 1 AKI and those with sepsis. Conclusions Zinc supplementation was associated with improved survival in critically ill patients with AKI. The supplementation was especially effective in those with stage 1 AKI and sepsis. These results need to be verified in randomized controlled trials.
Collapse
Affiliation(s)
- Wenkai Xia
- Department of Nephrology, The Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Chenyu Li
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Danyang Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lingyu Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meisi Kuang
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Xiajuan Yao
- Department of Nephrology, The Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China
| | - Hong Hu
- Department of Nephrology, The Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China
- *Correspondence: Hong Hu
| |
Collapse
|
11
|
Singh B, Eshaghian E, Chuang J, Covasa M. Do Diet and Dietary Supplements Mitigate Clinical Outcomes in COVID-19? Nutrients 2022; 14:nu14091909. [PMID: 35565876 PMCID: PMC9104892 DOI: 10.3390/nu14091909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has caused a pandemic and upheaval that health authorities and citizens around the globe are still grappling with to this day. While public health measures, vaccine development, and new therapeutics have made great strides in understanding and managing the pandemic, there has been an increasing focus on the potential roles of diet and supplementation in disease prevention and adjuvant treatment. In the literature, the impact of nutrition on other respiratory illnesses, including the common cold, pneumonia, and influenza, has been widely demonstrated in both animal and human models. However, there is much less research on the impact related to COVID-19. The present study discusses the potential uses of diets, vitamins, and supplements, including the Mediterranean diet, glutathione, zinc, and traditional Chinese medicine, in the prevention of infection and severe illness. The evidence demonstrating the efficacy of diet supplementation on infection risk, disease duration, severity, and recovery is mixed and inconsistent. More clinical trials are necessary in order to clearly demonstrate the contribution of nutrition and to guide potential therapeutic protocols.
Collapse
Affiliation(s)
- Bhavdeep Singh
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (B.S.); (E.E.); (J.C.)
| | - Eli Eshaghian
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (B.S.); (E.E.); (J.C.)
| | - Judith Chuang
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (B.S.); (E.E.); (J.C.)
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (B.S.); (E.E.); (J.C.)
- Department of Biomedical Sciences, College of Medicine and Biological Sciences, University of Suceava, 7200229 Suceava, Romania
- Correspondence:
| |
Collapse
|
12
|
Balboni E, Zagnoli F, Filippini T, Fairweather-Tait SJ, Vinceti M. Zinc and selenium supplementation in COVID-19 prevention and treatment: a systematic review of the experimental studies. J Trace Elem Med Biol 2022; 71:126956. [PMID: 35217499 PMCID: PMC8853960 DOI: 10.1016/j.jtemb.2022.126956] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM The COVID-19 pandemic has severely affected the world's population in the last two years. Along with non-pharmacological public health interventions, major efforts have also been made to identify effective drugs or active substances for COVID-19 prevention and treatment. These include, among many others, the trace elements zinc and selenium, based on laboratory studies and some observational human studies. However, both of these study designs are not adequate to identify and approve treatments in human medicine, and experimental studies in the form of randomized controlled trials are needed to demonstrate the effectiveness and the safety of any interventions. METHODS We undertook a systematic review in which we searched for published and unpublished clinical trials using zinc or selenium supplementation to treat or prevent COVID-19 in the Pubmed, Scopus and ClinicalTrials databases up to 10 January 2022. RESULTS Amongst the published studies, we did not find any trial with selenium, whereas we retrieved four eligible randomized clinical trials using zinc supplementation, only one of which was double-blind. One of these trials looked at the effect of the intervention on the rate of new SARS-CoV-2 infections, and three at the COVID-19 clinical outcome in already infected individuals. The study populations of the four trials were very heterogeneous, ranging from uninfected individuals to those hospitalized for COVID-19. Only two studies investigated zinc alone in the intervention arm with no differences in the endpoints. The other two studies examined zinc in association with one or more drugs and supplements in the intervention arm, therefore making it impossible to disentangle any specific effects of the element. In addition, we identified 22 unpublished ongoing clinical trials, 19 on zinc, one on selenium and two on both elements. CONCLUSION No trials investigated the effect of selenium supplementation on COVID-19, while the very few studies on the effects of zinc supplementation did not confirm efficacy. Therefore, preventive or therapeutic interventions against COVID-19 based on zinc or selenium supplementation are currently unjustified, although when the results of the on-going studies are published, this may change our conclusion.
Collapse
Affiliation(s)
- Erica Balboni
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Zagnoli
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Section of Public Health, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, USA.
| |
Collapse
|
13
|
Krone A, Fu Y, Schreiber S, Kotrba J, Borde L, Nötzold A, Thurm C, Negele J, Franz T, Stegemann-Koniszewski S, Schreiber J, Garbers C, Shukla A, Geffers R, Schraven B, Reinhold D, Dudeck A, Reinhold A, Müller AJ, Kahlfuss S. Ionic mitigation of CD4 + T cell metabolic fitness, Th1 central nervous system autoimmunity and Th2 asthmatic airway inflammation by therapeutic zinc. Sci Rep 2022; 12:1943. [PMID: 35121767 PMCID: PMC8816938 DOI: 10.1038/s41598-022-04827-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
T helper (Th) cells provide immunity to pathogens but also contribute to detrimental immune responses during allergy and autoimmunity. Th2 cells mediate asthmatic airway inflammation and Th1 cells are involved in the pathogenesis of multiple sclerosis. T cell activation involves complex transcriptional networks and metabolic reprogramming, which enable proliferation and differentiation into Th1 and Th2 cells. The essential trace element zinc has reported immunomodulatory capacity and high zinc concentrations interfere with T cell function. However, how high doses of zinc affect T cell gene networks and metabolism remained so far elusive. Herein, we demonstrate by means of transcriptomic analysis that zinc aspartate (UNIZINK), a registered pharmaceutical infusion solution with high bioavailability, negatively regulates gene networks controlling DNA replication and the energy metabolism of murine CD3/CD28-activated CD4+ T cells. Specifically, in the presence of zinc, CD4+ T cells show impaired expression of cell cycle, glycolytic and tricarboxylic acid cycle genes, which functionally cumulates in reduced glycolysis, oxidative phosphorylation, metabolic fitness and viability. Moreover, high zinc concentrations impaired nuclear expression of the metabolic transcription factor MYC, prevented Th1 and Th2 differentiation in vitro and reduced Th1 autoimmune central nervous system (CNS) inflammation and Th2 asthmatic airway inflammation induced by house dust mites in vivo. Together, we find that higher zinc doses impair the metabolic fitness of CD4+ T cells and prevent Th1 CNS autoimmunity and Th2 allergy.
Collapse
MESH Headings
- Animals
- Aspartic Acid/analogs & derivatives
- Aspartic Acid/pharmacology
- Asthma/drug therapy
- Asthma/genetics
- Asthma/immunology
- Asthma/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Energy Metabolism/drug effects
- Energy Metabolism/genetics
- Gene Expression Regulation
- Immunomodulating Agents/pharmacology
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Mice, Inbred C57BL
- Mice, Transgenic
- Pneumonia/drug therapy
- Pneumonia/genetics
- Pneumonia/immunology
- Pneumonia/metabolism
- Pyroglyphidae/immunology
- Signal Transduction
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Transcription, Genetic
- Zinc Compounds/pharmacology
- Mice
Collapse
Affiliation(s)
- Anna Krone
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yan Fu
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Simon Schreiber
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Johanna Kotrba
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Loisa Borde
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Aileen Nötzold
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christoph Thurm
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jonas Negele
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tobias Franz
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sabine Stegemann-Koniszewski
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens Schreiber
- Experimental Pneumology, Department of Pneumology, University Hospital Magdeburg/Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Christoph Garbers
- Institute of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Aniruddh Shukla
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research (HZI), Braunschweig, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Intravital Microscopy of Infection and Immunity, Helmholtz-Center for Infection Research (HZI), Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
14
|
Liu J, Yao S, Jia J, Chen Z, Yuan Y, He Y, Wasti B, Duan W, Li D, Wang G, Jia A, Sun W, Qiu S, Ma L, Li J, Liu Y, Zheng J, Xiang X, Zhang X, Liu S, He Z, Peng Z, Zhang H, Zhang D, Xiao B. Loss of MBD2 ameliorates LPS‐induced alveolar epithelial cell apoptosis and ALI in mice via modulating intracellular zinc homeostasis. FASEB J 2022; 36:e22162. [PMID: 35061304 DOI: 10.1096/fj.202100924rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Jiqiang Liu
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Shuo Yao
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Jingsi Jia
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Zhifeng Chen
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Yu Yuan
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Yi He
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Binaya Wasti
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Wentao Duan
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Danhong Li
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Guyi Wang
- Department of Intensive Care Medicine The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Aijun Jia
- Department of the Third Emergency of Yuelushan Hospital District Hunan Provincial People's Hospital Changsha P.R. China
| | - Wenjin Sun
- Department of General Medicine West China Hospital, Sichuan University Chengdu P.R. China
| | - Shuangfa Qiu
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine The Affiliated Hospital of Guilin Medical University Guangxi P.R. China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine Hunan Provincial People's Hospital Changsha P.R. China
| | - Yi Liu
- Department of Respiratory Medicine Zhuzhou City Central Hospital Zhuzhou P.R. China
| | - Jianfei Zheng
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Xudong Xiang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Xiufeng Zhang
- Department of Respiratory Medicine The Second Affiliated Hospital of Hainan Medical University Haikou P.R. China
| | - Shaokun Liu
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Zhibiao He
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Zhenyu Peng
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Hongliang Zhang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Dongshan Zhang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Bing Xiao
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| |
Collapse
|
15
|
Gordon AM, Hardigan PC. A Case-Control Study for the Effectiveness of Oral Zinc in the Prevention and Mitigation of COVID-19. Front Med (Lausanne) 2021; 8:756707. [PMID: 34966750 PMCID: PMC8711630 DOI: 10.3389/fmed.2021.756707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The ongoing coronavirus disease-19 (COVID-19) pandemic (caused by an infection with severe acute respiratory syndrome (SARS)-coronavirus (CoV-2) has put a burden on the medical community and society at large. Efforts to reduce the disease burden and mortality over the course of the pandemic have focused on research to rapidly determine age-stratified seroepidemiologic surveys, a centralized research program to fast-track the most promising rapid diagnostics and serologic assays, and the testing of potential anti-viral agents, immunologic therapies, and vaccine candidates. Despite the lack of official recognition for the role of nutrition in the fight against COVID-19 infection, multiple groups proposed zinc supplementation as an adjuvant for the management of participants. Method: In an ambulatory, interventional, prospective, single-blind study, we evaluated the effectiveness of zinc supplementation in the prevention and mitigation of COVID-19 in two similar participant groups. In Clinic A (n = 104) participants were randomized to receive 10 mg, 25 mg, or 50 mg zinc picolinate daily, and Clinic B control participants paired according to their demographics and clinical parameters (n = 96). All participants were compared based on demographics, clinical comorbidities, blood counts, renal functions, vitamin D levels, and their development of symptomatic COVID-19 infection. Results: Symptomatic COVID-19 infection was significantly higher among the control group participants (N = 9, 10.4%) than the treatment participants (N = 2, 1.9%), p = 0.015. The unadjusted odds ratio indicates that symptomatic COVID-19 infection was 5.93 [95% CI: 1.51, 39.26] higher in the control group, p < 0.01. Controlling for co-morbidities, individuals in the control group were 7.38 (95% CI: 1.80, 50.28) times more likely to develop symptomatic COVID-19 infection as compared with individuals in the treatment group (p < 0.01). For every-one unit increase in the number of co-morbidities, the likelihood of developing symptomatic COVID-19 infection increased 1.57 (95% CI: 1.16, 2.19) (p = 0.01). Discussion: The findings from our study suggest that zinc supplementation in all three doses (10, 25, and 50 mg) may be an effective prophylaxis of symptomatic COVID-19 and may mitigate the severity of COVID-19 infection. Conclusion: Zinc is a relatively inexpensive mineral nutrient that is an effective prophylactic agent to prevent and mitigate the potentially deadly symptomatic SARS-CoV-2 infection. As the COVID-19 pandemic continues with a lag in vaccinations in some regions and the continued emergence of dangerously infectious variants of SARS-CoV-2, it is important to replicate our data in other populations and locations and to engage public health and nutrition services on the emergent need to use zinc supplantation or fortification of staple foods in the prevention and mitigation of COVID-19 infection severity.
Collapse
Affiliation(s)
- Antonio M Gordon
- Department of Internal Medicine, University Health Care, Hialeah, FL, United States
| | - Patrick C Hardigan
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
16
|
Barber MS, Barrett R, Bradley RD, Walker E. A naturopathic treatment approach for mild and moderate COVID-19: A retrospective chart review. Complement Ther Med 2021; 63:102788. [PMID: 34748955 PMCID: PMC8570825 DOI: 10.1016/j.ctim.2021.102788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The coronavirus disease 2019 (COVID-19) pandemic has led to significant morbidity and mortality. Although COVID-19 vaccination is available, therapeutic options are still needed. The goal of the present manuscript is to report on a treatment strategy used in a naturopathic medical practice for mild and moderate COVID-19. DESIGN A retrospective chart review was conducted of 30 consecutive patients diagnosed with mild and moderate COVID-19 who were provided multi-nutrient, herbal, and probiotic treatment in a rural, out-patient, naturopathic primary care setting. MAIN OUTCOMES MEASURES The primary outcome was treatment safety; secondary outcomes included changes in symptoms, progression to severe COVID-19, incidence of long COVID, and recovery time. RESULTS No side effects or adverse events were reported from treatment and all patients experienced resolution of symptoms presumed to be associated with COVID-19 infection. One patient who had been ill for 28 days prior to presentation was hospitalized. Five patients had an illness duration of more than one month. Time to treatment was correlated with duration of illness post-treatment (r = 0.63, p < 0.001) and more symptoms at presentation was correlated with a longer duration of illness (r = 0.52, p < 0.01). CONCLUSIONS In this retrospective chart review, a multi-nutrient, herbal, and probiotic therapeutic approach for mild and moderate COVID-19 appeared to be well-tolerated. Delay in seeking treatment after symptom onset, as well as more symptoms at presentation, were correlated with a longer duration of illness. This treatment strategy may have clinical benefit, warranting prospective clinical trials with confirmed COVID-19 cases.
Collapse
Affiliation(s)
- Melissa S Barber
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, United States.
| | - Richard Barrett
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, United States.
| | - Ryan D Bradley
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, United States.
| | - Erin Walker
- Canby Clinic, 452 NW 1st Ave, Canby, OR, United States.
| |
Collapse
|
17
|
Al Sulaiman K, Aljuhani O, Al Shaya AI, Kharbosh A, Kensara R, Al Guwairy A, Alharbi A, Algarni R, Al Harbi S, Vishwakarma R, Korayem GB. Evaluation of zinc sulfate as an adjunctive therapy in COVID-19 critically ill patients: a two center propensity-score matched study. Crit Care 2021; 25:363. [PMID: 34663411 PMCID: PMC8522856 DOI: 10.1186/s13054-021-03785-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/06/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Zinc is a trace element that plays a role in stimulating innate and acquired immunity. The role of zinc in critically ill patients with COVID-19 remains unclear. This study aims to evaluate the efficacy and safety of zinc sulfate as adjunctive therapy in critically ill patients with COVID-19. METHODS Patients aged ≥ 18 years with COVID-19 who were admitted to the intensive care unit (ICU) in two tertiary hospitals in Saudi Arabia were retrospectively assessed for zinc use from March 1, 2020 until March 31, 2021. After propensity score matching (1:1 ratio) based on the selected criteria, we assessed the association of zinc used as adjunctive therapy with the 30-day mortality. Secondary outcomes included the in-hospital mortality, ventilator free days, ICU length of stay (LOS), hospital LOS, and complication (s) during ICU stay. RESULTS A total of 164 patients were included, 82 patients received zinc. Patients who received zinc sulfate as adjunctive therapy have a lower 30-day mortality (HR 0.52, CI 0.29, 0.92; p = 0.03). On the other hand, the in-hospital mortality was not statistically significant between the two groups (HR 0.64, CI 0.37-1.10; p = 0.11). Zinc sulfate use was associated with a lower odds of acute kidney injury development during ICU stay (OR 0.46 CI 0.19-1.06; p = 0.07); however, it did not reach statistical significance. CONCLUSION The use of zinc sulfate as an additional treatment in critically ill COVID-19 patients may improve survival. Furthermore, zinc supplementation may have a protective effect on the kidneys.
Collapse
Affiliation(s)
- Khalid Al Sulaiman
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia.
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Ohoud Aljuhani
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman I Al Shaya
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abdullah Kharbosh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Raed Kensara
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Alhomaidi Al Guwairy
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Aisha Alharbi
- Pharmaceutical Care Department, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Rahmah Algarni
- Pharmaceutical Care Department, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Shmeylan Al Harbi
- Pharmaceutical Care Department, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ramesh Vishwakarma
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Ghazwa B Korayem
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Dhar C, Sasmal A, Diaz S, Verhagen A, Yu H, Li W, Chen X, Varki A. Are sialic acids involved in COVID-19 pathogenesis? Glycobiology 2021; 31:1068-1071. [PMID: 34192318 PMCID: PMC8344891 DOI: 10.1093/glycob/cwab063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Chirag Dhar
- Departments of Medicine and Cellular and Molecular Medicine, UC San Diego School of Medicine, La Jolla, CA.,Glycobiology Research and Training Center (GRTC), UC San Diego, La Jolla, CA
| | - Aniruddha Sasmal
- Departments of Medicine and Cellular and Molecular Medicine, UC San Diego School of Medicine, La Jolla, CA.,Glycobiology Research and Training Center (GRTC), UC San Diego, La Jolla, CA
| | - Sandra Diaz
- Departments of Medicine and Cellular and Molecular Medicine, UC San Diego School of Medicine, La Jolla, CA.,Glycobiology Research and Training Center (GRTC), UC San Diego, La Jolla, CA
| | - Andrea Verhagen
- Departments of Medicine and Cellular and Molecular Medicine, UC San Diego School of Medicine, La Jolla, CA.,Glycobiology Research and Training Center (GRTC), UC San Diego, La Jolla, CA
| | - Hai Yu
- Department of Chemistry, UC Davis, Davis, CA
| | - Wanqing Li
- Department of Chemistry, UC Davis, Davis, CA
| | - Xi Chen
- Department of Chemistry, UC Davis, Davis, CA
| | - Ajit Varki
- Departments of Medicine and Cellular and Molecular Medicine, UC San Diego School of Medicine, La Jolla, CA.,Glycobiology Research and Training Center (GRTC), UC San Diego, La Jolla, CA
| |
Collapse
|
19
|
Derosa G, Maffioli P, D’Angelo A, Di Pierro F. Nutraceutical Approach to Preventing Coronavirus Disease 2019 and Related Complications. Front Immunol 2021; 12:582556. [PMID: 34262553 PMCID: PMC8273380 DOI: 10.3389/fimmu.2021.582556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/14/2021] [Indexed: 01/12/2023] Open
Abstract
Introduction Several months ago, Chinese authorities identified an atypical pneumonia in Wuhan city, province of Hubei (China) caused by a novel coronavirus (2019-nCoV or SARS-CoV-2). The WHO announced this new disease was to be known as "COVID-19". Evidence Acquisition Several approaches are currently underway for the treatment of this disease, but a specific cure remains to be established. Evidence Synthesis This review will describe how the use of selected nutraceuticals could be helpful, in addition to pharmacological therapy, in preventing some COVID-19-related complications in infected patients. Conclusions Even if a specific and effective cure for COVID-19 still has some way to go, selected nutraceuticals could be helpful, in addition to pharmacological therapy, in preventing some COVID-19-related complications in infected patients.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Angela D’Angelo
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Di Pierro
- Velleja Research S.r.l., Milan, Italy
- Digestive Endoscopy & Gastroenterology, Poliambulanza Hospital, Brescia, Italy
| |
Collapse
|
20
|
Domingo JL, Marquès M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem Toxicol 2021; 152:112161. [PMID: 33794307 PMCID: PMC8006493 DOI: 10.1016/j.fct.2021.112161] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
Thousands of studies have been conducted in order to understand in depth the characteristics of the novel coronavirus SARS-CoV-2, its infectivity and ways of transmission, and very especially everything related to the clinical and severity of the COVID-19, as well as the potential treatments. In this sense, the role that essential and toxic metals/metalloids have in the development and course of this disease is being studied. Metals/metalloids such as arsenic, cadmium, lead, mercury or vanadium, are elements with known toxic effects in mammals, while trace elements such as cobalt, copper, iron, manganese, selenium and zinc are considered essential. Given the importance of metals/metalloids in nutrition and human health, the present review was aimed at assessing the relationship between various essential and toxic metals/metalloids and the health outcomes related with the COVID-19. We are in the position to conclude that particular attention must be paid to the load/levels of essential trace elements in COVID-19 patients, mainly zinc and selenium. On the other hand, the exposure to air pollutants in general, and toxic metal/metalloids in particular, should be avoided as much as possible to reduce the possibilities of viral infections, including SARS-CoV-2.
Collapse
Affiliation(s)
- Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
21
|
Chinni V, El-Khoury J, Perera M, Bellomo R, Jones D, Bolton D, Ischia J, Patel O. Zinc supplementation as an adjunct therapy for COVID-19: Challenges and opportunities. Br J Clin Pharmacol 2021; 87:3737-3746. [PMID: 33742473 PMCID: PMC8250380 DOI: 10.1111/bcp.14826] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 01/19/2023] Open
Abstract
An outbreak of a novel coronavirus (COVID‐19 or 2019‐CoV) infection has posed significant threats to international health and the economy. Patients with COVID‐19 are at risk of cytokine storm, acute respiratory distress syndrome (ARDS), reduced blood oxygenation, mechanical ventilation, and a high death rate. Although recent studies have shown remdesivir and dexamethasone as treatment options, there is an urgent need to find a treatment to inhibit virus replication and to control the progression of the disease. Essential biometal zinc has generated a lot of excitement as one of the promising candidates to reduce the severity of COVID‐19 infection. Several published observations outlined in the review are the reasons why there is a global enthusiasm that zinc therapy could be a possible therapeutic option. However, the biggest challenge in realising the therapeutic value of zinc is lack of optimal treatment modalities such as dose, duration of zinc supplementation and the mode of delivery. In this review, we discuss the regulatory mechanism that hinges upon the bioavailability of zinc. Finally, we propose that intravenous zinc could circumvent the confounding factors affecting the bioavailability of zinc and allow zinc to achieve its therapeutic potential. If successful, due to advantages such as lack of toxicity, low cost and ease of availability, intravenous zinc could be rapidly implemented clinically.
Collapse
Affiliation(s)
- Vidyasagar Chinni
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - John El-Khoury
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Marlon Perera
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, The University of Melbourne, Parkville, Victoria, Australia.,Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Daryl Jones
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Damien Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Joseph Ischia
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Oneel Patel
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
22
|
Patel O, Chinni V, El-Khoury J, Perera M, Neto AS, McDonald C, See E, Jones D, Bolton D, Bellomo R, Trubiano J, Ischia J. A pilot double-blind safety and feasibility randomized controlled trial of high-dose intravenous zinc in hospitalized COVID-19 patients. J Med Virol 2021; 93:3261-3267. [PMID: 33629384 PMCID: PMC8014767 DOI: 10.1002/jmv.26895] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Zinc inhibits replication of the SARS-CoV virus. We aimed to evaluate the safety, feasibility, and biological effect of administering high-dose intravenous zinc (HDIVZn) to patients with COVID-19. We performed a Phase IIa double-blind, randomized controlled trial to compare HDIVZn to placebo in hospitalized patients with COVID-19. We administered trial treatment per day for a maximum of 7 days until either death or hospital discharge. We measured zinc concentration at baseline and during treatment and observed patients for any significant side effects. For eligible patients, we randomized and administered treatment to 33 adult participants to either HDIVZn (n = 15) or placebo (n = 18). We observed no serious adverse events throughout the study for a total of 94 HDIVZn administrations. However, three participants in the HDIVZn group reported infusion site irritation. Mean serum zinc on Day 1 in the placebo, and the HDIVZn group was 6.9 ± 1.1 and 7.7 ± 1.6 µmol/l, respectively, consistent with zinc deficiency. HDIVZn, but not placebo, increased serum zinc levels above the deficiency cutoff of 10.7 µmol/l (p < .001) on Day 6. Our study did not reach its target enrollment because stringent public health measures markedly reduced patient hospitalizations. Hospitalized COVID-19 patients demonstrated zinc deficiency. This can be corrected with HDIVZn. Such treatment appears safe, feasible, and only associated with minimal peripheral infusion site irritation. This pilot study justifies further investigation of this treatment in COVID-19 patients.
Collapse
Affiliation(s)
- Oneel Patel
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Vidyasagar Chinni
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - John El-Khoury
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Marlon Perera
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Ary S Neto
- Australian and New Zealand Intensive Care-Research Centre, Monash University, Melbourne, Victoria, Australia.,Centre for Integrated Critical Care, The University of Melbourne, Parkville, Victoria, Australia
| | - Christine McDonald
- Department of Respiratory and Sleep Medicine, Austin Health, Heidelberg, Victoria, Australia
| | - Emily See
- Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Daryl Jones
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Damien Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, The University of Melbourne, Parkville, Victoria, Australia.,Department of Intensive Care, Austin Hospital, Heidelberg, Victoria, Australia
| | - Jason Trubiano
- Department of Infectious Disease, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Joseph Ischia
- Department of Surgery, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
23
|
Shakoor H, Feehan J, Al Dhaheri AS, Ali HI, Platat C, Ismail LC, Apostolopoulos V, Stojanovska L. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021; 143:1-9. [PMID: 33308613 PMCID: PMC7415215 DOI: 10.1016/j.maturitas.2020.08.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022]
Abstract
The world is currently in the grips of the coronavirus disease (COVID-19) pandemic, caused by the SARS-CoV-2 virus, which has mutated to allow human-to-human spread. Infection can cause fever, dry cough, fatigue, severe pneumonia, respiratory distress syndrome and in some instances death. COVID-19 affects the immune system by producing a systemic inflammatory response, or cytokine release syndrome. Patients with COVID-19 have shown a high level of pro-inflammatory cytokines and chemokines. There are currently no effective anti-SARS-CoV-2 viral drugs or vaccines. COVID-19 disproportionately affects the elderly, both directly, and through a number of significant age-related comorbidities. Undoubtedly, nutrition is a key determinant of maintaining good health. Key dietary components such as vitamins C, D, E, zinc, selenium and the omega 3 fatty acids have well-established immunomodulatory effects, with benefits in infectious disease. Some of these nutrients have also been shown to have a potential role in the management of COVID-19. In this paper, evidence surrounding the role of these dietary components in immunity as well as their specific effect in COVID-19 patients are discussed. In addition, how supplementation of these nutrients may be used as therapeutic modalities potentially to decrease the morbidity and mortality rates of patients with COVID-19 is discussed.
Collapse
Affiliation(s)
- Hira Shakoor
- Department of Food, Nutrition and Health, College of Food and Agriculture, Al Ain, United Arab Emirates University, United Arab Emirates
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia
| | - Ayesha S Al Dhaheri
- Department of Food, Nutrition and Health, College of Food and Agriculture, Al Ain, United Arab Emirates University, United Arab Emirates
| | - Habiba I Ali
- Department of Food, Nutrition and Health, College of Food and Agriculture, Al Ain, United Arab Emirates University, United Arab Emirates
| | - Carine Platat
- Department of Food, Nutrition and Health, College of Food and Agriculture, Al Ain, United Arab Emirates University, United Arab Emirates
| | - Leila Cheikh Ismail
- Clinical Nutrition and Dietetics Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Lily Stojanovska
- Department of Food, Nutrition and Health, College of Food and Agriculture, Al Ain, United Arab Emirates University, United Arab Emirates; Institute for Health and Sport, Victoria University, Melbourne, Australia.
| |
Collapse
|