1
|
Jiang Y, Chen J, Du Y, Fan M, Shen L. Immune modulation for the patterns of epithelial cell death in inflammatory bowel disease. Int Immunopharmacol 2025; 154:114462. [PMID: 40186907 DOI: 10.1016/j.intimp.2025.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 04/07/2025]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disease of the intestine whose primary pathological presentation is the destruction of the intestinal epithelium. The intestinal epithelium, located between the lumen and lamina propria, transmits luminal microbial signals to the immune cells in the lamina propria, which also modulate the intestinal epithelium. In IBD patients, intestinal epithelial cells (IECs) die dysfunction and the mucosal barrier is disrupted, leading to the recruitment of immune cells and the release of cytokines. In this review, we describe the structure and functions of the intestinal epithelium and mucosal barrier in the physiological state and under IBD conditions, as well as the patterns of epithelial cell death and how immune cells modulate the intestinal epithelium providing a reference for clinical research and drug development of IBD. In addition, according to the targeting of epithelial apoptosis and necroptotic pathways and the regulation of immune cells, we summarized some new methods for the treatment of IBD, such as necroptosis inhibitors, microbiome regulation, which provide potential ideas for the treatment of IBD. This review also describes the potential for integrating AI-driven approaches into innovation in IBD treatments.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaoyao Du
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Minwei Fan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Bamias G, Menghini P, Pizarro TT, Cominelli F. Targeting TL1A and DR3: the new frontier of anti-cytokine therapy in IBD. Gut 2025; 74:652-668. [PMID: 39266053 PMCID: PMC11885054 DOI: 10.1136/gutjnl-2024-332504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
TNF-like cytokine 1A (TL1A) and its functional receptor, death-domain receptor 3 (DR3), are members of the TNF and TNFR superfamilies, respectively, with recognised roles in regulating innate and adaptive immune responses; additional existence of a decoy receptor, DcR3, indicates a tightly regulated cytokine system. The significance of TL1A:DR3 signalling in the pathogenesis of inflammatory bowel disease (IBD) is supported by several converging lines of evidence. Herein, we aim to provide a comprehensive understanding of what is currently known regarding the TL1A/DR3 system in the context of IBD. TL1A and DR3 are expressed by cellular subsets with important roles for the initiation and maintenance of intestinal inflammation, serving as potent universal costimulators of effector immune responses, indicating their participation in the pathogenesis of IBD. Recent evidence also supports a homoeostatic role for TL1A:DR3 via regulation of Tregs and innate lymphoid cells. TL1A and DR3 are also expressed by stromal cells and may contribute to inflammation-induced or inflammation-independent intestinal fibrogenesis. Finally, discovery of genetic polymorphisms with functional consequences may allow for patient stratification, including differential responses to TL1A-targeted therapeutics. In conclusion, TL1A:DR3 signalling plays a central and multifaceted role in the immunological pathways that underlie intestinal inflammation, such as that observed in IBD. Such evidence provides the foundation for developing pharmaceutical approaches targeting this ligand-receptor pair in IBD.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Paola Menghini
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Lu X, Xv Y, Hu W, Sun B, Hu H. Targeting CD4+ T cells through gut microbiota: therapeutic potential of traditional Chinese medicine in inflammatory bowel disease. Front Cell Infect Microbiol 2025; 15:1557331. [PMID: 40099014 PMCID: PMC11911530 DOI: 10.3389/fcimb.2025.1557331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is an autoimmune disease characterized by chronic relapsing inflammation of the intestinal tract. Gut microbiota (GM) and CD4+T cells are important in the development of IBD. A lot of studies have shown that GM and their metabolites like short-chain fatty acids, bile acids and tryptophan can be involved in the differentiation of CD4+T cells through various mechanisms, which in turn regulate the immune homeostasis of the IBD patients. Therefore, regulating CD4+T cells through GM may be a potential therapeutic direction for the treatment of IBD. Many studies have shown that Traditional Chinese Medicine (TCM) formulas and some herbal extracts can affect CD4+T cell differentiation by regulating GM and its metabolites. In this review, we mainly focus on the role of GM and their metabolites in regulating the differentiation of CD4+T cells and their correlation with IBD. We also summarize the current research progress on the regulation of this process by TCM.
Collapse
Affiliation(s)
- Xingyao Lu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichuan Xv
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiye Hu
- Department of Liver Disease, Shanghai Yueyang Integrated Traditional Chinese Medicine and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Boyun Sun
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Liu YQ, Li ZZ, Han YL, Wang QB. The role of efferocytosis in inflammatory bowel disease. Front Immunol 2025; 16:1524058. [PMID: 40040696 PMCID: PMC11876057 DOI: 10.3389/fimmu.2025.1524058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 03/06/2025] Open
Abstract
Efferocytosis is the process by which various phagocytes clear apoptotic cells. In recent years, an increasing body of evidence has emphasized the importance of efferocytosis in maintaining internal homeostasis. Intestinal macrophages play a crucial role in modulating intestinal inflammation and promoting tissue repair. Inflammatory bowel disease (IBD) is a chronic, progressive, and relapsing condition, primarily marked by the presence of ulcers in the digestive tract. The exact mechanisms underlying IBD are not yet fully understood, and current treatment approaches mainly aim at repairing the damaged intestinal mucosa and reducing inflammatory responses to ease symptoms.This article provides new perspectives on IBD treatment and clinical management by examining the expression of macrophage efferocytosis-related molecules, the effects of efferocytosis on IBD development, the various roles of macrophage efferocytosis in IBD, and treatment strategies for IBD that focus on efferocytosis.
Collapse
Affiliation(s)
- Yi-Qian Liu
- Institute of Acupuncture and Moxibustion, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zhan-Zhan Li
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yong-Li Han
- Acupuncture Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Qing-Bo Wang
- Acupuncture Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Zhang J, Feng Y, Li D, Shi D. Fungal influence on immune cells and inflammatory responses in the tumor microenvironment (Review). Oncol Lett 2025; 29:50. [PMID: 39564373 PMCID: PMC11574707 DOI: 10.3892/ol.2024.14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, a growing body of research has highlighted the significant influence of the microbiota on tumor immunity within the tumor microenvironment (TME). While much attention has been given to bacteria, emerging evidence suggests that fungi also play crucial roles in tumor development. The present review aimed to consolidate the latest findings on the mechanisms governing the interactions between fungi and the immune system or TME. By elucidating these intricate mechanisms, novel insights into the modulation of tumor immunity and therapeutic strategies may be uncovered. Ultimately, a deeper understanding of the interplay between fungi and the TME holds promise for the development of innovative management strategies and targeted drugs to enhance tumor therapy efficacy.
Collapse
Affiliation(s)
- Jinke Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Yahui Feng
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| |
Collapse
|
6
|
Jiang Z, Yan M, Qin Y, Liu Z, Duan Y, Wang Y, Zhang R, Lin W, Li Y, Xie T, Ke J. Quercetin alleviates ulcerative colitis through inhibiting CXCL8-CXCR1/2 axis: a network and transcriptome analysis. Front Pharmacol 2024; 15:1485255. [PMID: 39717557 PMCID: PMC11663639 DOI: 10.3389/fphar.2024.1485255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Ulcerative colitis (UC) is a chronic inflammatory condition of the intestinal tract in which mucosal healing is a crucial measure of therapeutic efficacy. Quercetin, a flavonoid prevalent in various foods and traditional Chinese medicines, exhibits notable pharmacological properties, including antioxidant and anti-inflammatory activities. Consequently, it warrants investigation to determine its potential therapeutic effects on UC. The objective of this study was to investigate the effects and underlying mechanisms of quercetin in a murine model of UC. Methods A comprehensive approach integrating network predictions with transcriptomic analyses was employed to identify the potential targets and enriched pathways associated with quercetin in UC. Subsequently, the effects of quercetin on pathological morphology, inflammatory mediators, and mucosal barrier-associated proteins, as well as the identified potential targets and enriched pathways, were systematically investigated in a murine model of dextran sulfate sodium (DSS)-induced UC. Results Network analyses identified CXCL8 and its receptors, CXCR1 and CXCR2, as primary target genes for therapeutic intervention in UC. Further validation through transcriptomic analysis and immunofluorescence staining demonstrated significant upregulation of the CXCL8-CXCR1/2 axis in the intestinal tissues of patients with UC. Experimental investigations in animal models have shown that quercetin markedly alleviates DSS-induced symptoms in mice. This effect includes the restoration of colonic crypt architecture, normalization of goblet cell structure and density, reduction of inflammatory cell infiltration, and decreased concentrations of inflammatory mediators. Quercetin enhanced the expression of tight junction (TJ) proteins, including ZO-1, MUC2 (Mucin 2), and occludin, thereby preserving the integrity of the intestinal mucosal barrier. Additionally, it significantly diminished the levels of IL-17A, NF-κB, CXCL8, CXCR1, and CXCR2 in the colonic tissues of mice with UC. Discussion The ameliorative effects of quercetin on colon tissue damage in DSS-induced UC mice were significant, possibly due to its ability to inhibit the CXCL8-CXCR1/2 signaling axis. These findings provide a solid foundation for the clinical application and pharmaceutical advancement of quercetin.
Collapse
Affiliation(s)
- Zhangyu Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingjuan Yan
- Department of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanmi Qin
- Department of Cardiology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhenglin Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yilin Duan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingju Wang
- Foshan Chancheng Center Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Ruisen Zhang
- Department of Pharmacy, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjia Lin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian Xie
- Department of Cardiology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Junyu Ke
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, China
| |
Collapse
|
7
|
Chen Z, Jiang P, Su D, Zhao Y, Zhang M. Therapeutic inhibition of the JAK-STAT pathway in the treatment of inflammatory bowel disease. Cytokine Growth Factor Rev 2024; 79:1-15. [PMID: 39179485 DOI: 10.1016/j.cytogfr.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Inflammatory bowel disease (IBD) encompasses a group of non-specific chronic intestinal inflammatory conditions of unclear etiology. The current treatment and long-term management primarily involve biologics. Nevertheless, some patients experience treatment failure or intolerance to biologics [1], making these patients a primary focus of IBD research. The Janus kinase (JAK)-Signal Transducers and Activator of Transcription (STAT) signal transduction pathway is crucial to the regulation of immune and inflammatory responses [2], and plays an important role in the pathogenesis of IBD. JAK inhibitors alleviate IBD by suppressing the transmission of JAK-STAT signaling pathway. As the first small-molecule oral inhibitor for IBD, JAK inhibitors greatly improved the treatment of IBD and have demonstrated significant efficacy, with tofacitinib and upadacitinib being approved for the treatment of ulcerative colitis (UC) [3]. JAK inhibitors can effectively alleviate intestinal inflammation in IBD patients who have failed to receive biologics, which may bring new treatment opportunities for refractory IBD patients. This review aims to elucidate the crucial roles of JAK-STAT signal transduction pathway in IBD pathogenesis, examine its role in various cell types within IBD, and explore the research progress of JAK inhibitors as therapeutic agents, paving the road for new IBD treatment strategies.
Collapse
Affiliation(s)
- Zihan Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China
| | - Dan Su
- FUJIFILM Diosynth Biotechnologies, Watertown, 02472, MA, United States
| | - Yu Zhao
- University of Chicago, Pritzker School of Molecular Engineering, Chicago, IL, 60637
| | - Mingming Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China.
| |
Collapse
|
8
|
Shi Y, Ma C, Wu S, Ye X, Zhuang Q, Ning M, Xia J, Shen S, Dong Z, Chen D, Liu Z, Wan X. ETS translocation variant 5 (ETV5) promotes CD4 + T cell-mediated intestinal inflammation and fibrosis in inflammatory bowel diseases. Mucosal Immunol 2024; 17:584-598. [PMID: 38555025 DOI: 10.1016/j.mucimm.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
E26 transformation-specific translocation variant 5 (ETV5) has been implicated in the pathogenesis of inflammatory bowel diseases (IBD). However, the exact roles of ETV5 in regulating CD4+ T cell-mediated intestinal inflammation and fibrosis formation remain unclear. Here, we reveal that ETV5 overexpression induced interleukin (IL)-9 and its transcription factor IRF4 expression in IBD CD4+ T cells under T helper type 9 (Th9) cells-polarizing conditions. The silencing of IRF4 inhibited ETV5-induced IL-9 expression. CD4+ T cell-specific ETV5 deletion ameliorated intestinal inflammation and fibrosis in trinitrobenzene sulfonic acid (TNBS)-induced experimental colitis and CD4+ T cell-transferred recombination-activating gene-1 knockout (Rag1-/-) colitis mice, characterized by less CD4+ T cell infiltration and lower fibroblast activation and collagen deposition in the colonic tissues. Furthermore, IL-9 treatment aggressive TNBS-induced intestinal fibrosis in CD4+ T cell-specific ETV5 deletion and wild-type control mice. In vitro, human intestinal fibroblasts cocultured with ETV5 overexpressed-Th9 cells expressed higher levels of collagen I and III, whereas an inclusion of anti-IL-9 antibody could reverse this effect. Ribonucleic acid sequencing analysis demonstrated that IL-9 upregulated TAF1 expression in human intestinal fibroblasts. Clinical data showed that number of α-smooth muscle actin+TAF1+ fibroblasts are higher in inflamed mucosa of patients with IBD. Importantly, TAF1 small interfering ribonucleic acid treatment suppressed IL-9-mediated profibrotic effect in vitro. These findings reveal that CD4+ T cell-derived ETV5 promotes intestinal inflammation and fibrosis through upregulating IL-9-mediated intestinal inflammatory and fibrotic response in IBD. Thus, the ETV5/IL-9 signal pathway in T cells might represent a novel therapeutic target for intestinal inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Yan Shi
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiyun Ma
- Center for InflammatoryBowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shan Wu
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Ye
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Zhuang
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Ning
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xia
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuang Shen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixia Dong
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dafan Chen
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanju Liu
- Center for InflammatoryBowel Disease Research and Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Xinjian Wan
- Digestive Endoscopic Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Zhan RR, Wang D, Zhang XL. Progress in research of TNF-like cytokine 1A as a therapeutic target for inflammatory bowel disease. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:397-404. [DOI: 10.11569/wcjd.v32.i6.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
|
10
|
Khokhar M, Purohit P. The emerging role of T helper 9 (Th9) cells in immunopathophysiology: A comprehensive review of their effects and responsiveness in various disease states. Int Rev Immunol 2024; 43:341-360. [PMID: 38864109 DOI: 10.1080/08830185.2024.2364586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Th9 cells, a subset of T-helper cells producing interleukin-9 (IL-9), play a vital role in the adaptive immune response and have diverse effects in different diseases. Regulated by transcription factors like PU.1 and IRF4, and cytokines such as IL-4 and TGF-β, Th9 cells drive tissue inflammation. This review focuses on their emerging role in immunopathophysiology. Th9 cells exhibit immune-mediated cancer cell destruction, showing promise in glioma and cervical cancer treatment. However, their role in breast and lung cancer is intricate, requiring a deeper understanding of pro- and anti-tumor aspects. Th9 cells, along with IL-9, foster T cell and immune cell proliferation, contributing to autoimmune disorders. They are implicated in psoriasis, atopic dermatitis, and infections. In allergic reactions and asthma, Th9 cells fuel pro-inflammatory responses. Targeting Foxo1 may regulate innate and adaptive immune responses, alleviating disease symptoms. This comprehensive review outlines Th9 cells' evolving immunopathophysiological role, emphasizing the necessity for further research to grasp their effects and potential therapeutic applications across diseases.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
11
|
Roostaee A, Yaghobi R, Afshari A, Jafarinia M. Regulatory role of T helper 9/interleukin-9: Transplantation view. Heliyon 2024; 10:e26359. [PMID: 38420400 PMCID: PMC10900956 DOI: 10.1016/j.heliyon.2024.e26359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
T helper 9 (Th9) cells, a subset of CD4+ T helper cells, have emerged as a valuable target for immune cell therapy due to their potential to induce immunomodulation and tolerance. The Th9 cells mainly produce interleukin (IL)-9 and are known for their defensive effects against helminth infections, allergic and autoimmune responses, and tumor suppression. This paper explores the mechanisms involved in the generation and differentiation of Th9 cells, including the cytokines responsible for their polarization and stabilization, the transcription factors necessary for their differentiation, as well as the role of Th9 cells in inflammatory and autoimmune diseases, allergic reactions, and cancer immunotherapies. Recent research has shown that the differentiation of Th9 cells is coregulated by the transcription factors transforming growth factor β (TGF-β), IL-4, and PU.1, which are also known to secrete IL-10 and IL-21. Multiple cell types, such as T and B cells, mast cells, and airway epithelial cells, are influenced by IL-9 due to its pleiotropic effects.
Collapse
Affiliation(s)
- Azadeh Roostaee
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
12
|
Wilfahrt D, Delgoffe GM. Metabolic waypoints during T cell differentiation. Nat Immunol 2024; 25:206-217. [PMID: 38238609 DOI: 10.1038/s41590-023-01733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
This Review explores the interplay between T cell activation and cell metabolism and highlights how metabolites serve two pivotal functions in shaping the immune response. Traditionally, T cell activation has been characterized by T cell antigen receptor-major histocompatibility complex interaction (signal 1), co-stimulation (signal 2) and cytokine signaling (signal 3). However, recent research has unveiled the critical role of metabolites in this process. Firstly, metabolites act as signal propagators that aid in the transmission of core activation signals, such as specific lipid species that are crucial at the immune synapse. Secondly, metabolites also function as unique signals that influence immune differentiation pathways, such as amino acid-induced mTORC1 signaling. Metabolites also play a substantial role in epigenetic remodeling, by directly modifying histones, altering gene expression and influencing T cell behavior. This Review discusses how T cells integrate nutrient sensing with activating stimuli to shape their differentiation and sensitivity to metabolites. We underscore the integration of immunological and metabolic inputs in T cell function and suggest that metabolite availability is a fundamental determinant of adaptive immune responses.
Collapse
Affiliation(s)
- Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center and Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
14
|
Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal 2024; 17:eadh1641. [PMID: 38194476 DOI: 10.1126/scisignal.adh1641] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic, chronic condition characterized by episodes of inflammation in the gastrointestinal tract. The nuclear factor κB (NF-κB) system describes a family of dimeric transcription factors. Canonical NF-κB signaling is stimulated by and enhances inflammation, whereas noncanonical NF-κB signaling contributes to immune organogenesis. Dysregulation of NF-κB factors drives various inflammatory pathologies, including IBD. Signals from many immune sensors activate NF-κB subunits in the intestine, which maintain an equilibrium between local microbiota and host responses. Genetic association studies of patients with IBD and preclinical mouse models confirm the importance of the NF-κB system in host defense in the gut. Other studies have investigated the roles of these factors in intestinal barrier function and in inflammatory gut pathologies associated with IBD. NF-κB signaling modulates innate and adaptive immune responses and the production of immunoregulatory proteins, anti-inflammatory cytokines, antimicrobial peptides, and other tolerogenic factors in the intestine. Furthermore, genetic studies have revealed critical cell type-specific roles for NF-κB proteins in intestinal immune homeostasis, inflammation, and restitution that contribute to the etiopathology of IBD-associated manifestations. Here, we summarize our knowledge of the roles of these NF-κB pathways, which are activated in different intestinal cell types by specific ligands, and their cross-talk, in fueling aberrant intestinal inflammation. We argue that an in-depth understanding of aberrant immune signaling mechanisms may hold the key to identifying predictive or prognostic biomarkers and developing better therapeutics against inflammatory gut pathologies.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
15
|
Barjasteh AH, Al-Asady AM, Latifi H, Al Okla S, Al-Nazwani N, Avan A, Khazaei M, Ryzhikov M, Nadi-Yazdi H, Hassanian SM. Maximizing Treatment Options for IBD through Drug Repurposing. Curr Pharm Des 2024; 30:2538-2549. [PMID: 39039672 DOI: 10.2174/0113816128318032240702045822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Chronic inflammation characterizes Inflammatory Bowel Disease (IBD), encompassing Crohn's Disease (CD) and Ulcerative Colitis (UC). Despite modest activity of disease in most UC patients, exacerbations occur, especially in those with severe symptoms, necessitating interventions, like colectomy. Current treatments for IBD, predominantly small molecule therapies, impose significant economic burdens. Drug repurposing offers a cost-effective alternative, leveraging existing drugs for novel therapeutic applications. This approach capitalizes on shared molecular pathways across diseases, accelerating therapeutic discovery while minimizing costs and risks. This article provides an overview of IBD and explores drug repurposing as a promising avenue for more effective and affordable treatments. Through computational and animal studies, potential drug candidates are categorized, offering insights into IBD pathogenesis and treatment strategies.
Collapse
Affiliation(s)
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, Warith Al-Anbiyaa University, Karbala, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Souad Al Okla
- College of Medicine and Health Sciences, National University of Science and Technology, Muscat, Oman
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Nasser Al-Nazwani
- Department of Biochemistry, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Oman
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- School of Medicine, Saint Louis University, St. Louis, MO 63103, USA
| | - Hanieh Nadi-Yazdi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Chakraborty S, Gupta R, Kubatzky KF, Kar S, Kraus FV, Souto-Carneiro MM, Lorenz HM, Kumar P, Kumar V, Mitra DK. Negative impact of Interleukin-9 on synovial regulatory T cells in rheumatoid arthritis. Clin Immunol 2023; 257:109814. [PMID: 37879380 PMCID: PMC7615987 DOI: 10.1016/j.clim.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
In Rheumatoid Arthritis (RA), regulatory T cells (Tregs) have been found to be enriched in the synovial fluid. Despite their accumulation, they are unable to suppress synovial inflammation. Recently, we showed the synovial enrichment of interleukin-9 (IL-9) producing helper T cells and its positive correlation with disease activity. Therefore, we investigated the impact of IL-9 on synovial Tregs in RA. Here, we confirmed high synovial Tregs in RA patients, however these cells were functionally impaired in terms of suppressive cytokine production (IL-10 and TGF-β). Abrogating IL-9/ IL-9 receptor interaction could restore the suppressive cytokine production of synovial Tregs and reduce the synovial inflammatory T cells producing IFN-γ, TNF-α, IL-17. However, blocking these inflammatory cytokines failed to show any effect on IL-9 producing T cells, highlighting IL-9's hierarchy in the inflammatory network. Thus, we propose that blocking IL-9 might dampen synovial inflammation by restoring Tregs function and inhibiting inflammatory T cells.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Ranjan Gupta
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Katharina F Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Santanu Kar
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Franziska V Kraus
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - M Margarida Souto-Carneiro
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Internal Medicine 5 Hematology-Oncology-Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Pankaj Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijay Kumar
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
17
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
18
|
Tavasolian F, Lively S, Pastrello C, Tang M, Lim M, Pacheco A, Qaiyum Z, Yau E, Baskurt Z, Jurisica I, Kapoor M, Inman RD. Proteomic and genomic profiling of plasma exosomes from patients with ankylosing spondylitis. Ann Rheum Dis 2023; 82:1429-1443. [PMID: 37532285 DOI: 10.1136/ard-2022-223791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Recent advances in understanding the biology of ankylosing spondylitis (AS) using innovative genomic and proteomic approaches offer the opportunity to address current challenges in AS diagnosis and management. Altered expression of genes, microRNAs (miRNAs) or proteins may contribute to immune dysregulation and may play a significant role in the onset and persistence of inflammation in AS. The ability of exosomes to transport miRNAs across cells and alter the phenotype of recipient cells has implicated exosomes in perpetuating inflammation in AS. This study reports the first proteomic and miRNA profiling of plasma-derived exosomes in AS using comprehensive computational biology analysis. METHODS Plasma samples from patients with AS and healthy controls (HC) were isolated via ultracentrifugation and subjected to extracellular vesicle flow cytometry analysis to characterise exosome surface markers by a multiplex immunocapture assay. Cytokine profiling of plasma-derived exosomes and cell culture supernatants was performed. Next-generation sequencing was used to identify miRNA populations in exosomes enriched from plasma fractions. CD4+ T cells were sorted, and the frequency and proliferation of CD4+ T-cell subsets were analysed after treatment with AS-exosomes using flow cytometry. RESULTS The expression of exosome marker proteins CD63 and CD81 was elevated in the patients with AS compared with HC (q<0.05). Cytokine profiling in plasma-derived AS-exosomes demonstrated downregulation of interleukin (IL)-8 and IL-10 (q<0.05). AS-exosomes cocultured with HC CD4+ T cells induced significant upregulation of IFNα2 and IL-33 (q<0.05). Exosomes from patients with AS inhibited the proliferation of regulatory T cells (Treg), suggesting a mechanism for chronically activated T cells in this disease. Culture of CD4+ T cells from healthy individuals in the presence of AS-exosomes reduced the proliferation of FOXP3+ Treg cells and decreased the frequency of FOXP3+IRF4+ Treg cells. miRNA sequencing identified 24 differentially expressed miRNAs found in circulating exosomes of patients with AS compared with HC; 22 of which were upregulated and 2 were downregulated. CONCLUSIONS Individuals with AS have different immunological and genetic profiles, as determined by evaluating the exosomes of these patients. The inhibitory effect of exosomes on Treg in AS suggests a mechanism contributing to chronically activated T cells in this disease.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
| | - Michael Tang
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Melissa Lim
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Addison Pacheco
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zoya Qaiyum
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Enoch Yau
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Zeynep Baskurt
- Department of Biostatistics, Princess Margaret Cancer Center, 610 University Ave, Toronto, Ontario, Canada
| | - Igor Jurisica
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, - Data Science Discovery Centre for Chronic Diseases, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mohit Kapoor
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery and Department of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Robert D Inman
- Schroeder Arthritis Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Li Y, Liu H, He C, Lin Y, Ma L, Xue H. IL-9-Producing Th9 Cells Participate in the Occurrence and Development of Iodine-Induced Autoimmune Thyroiditis. Biol Trace Elem Res 2023; 201:5298-5308. [PMID: 36773201 DOI: 10.1007/s12011-023-03598-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Iodine excess may cause and aggravate autoimmune thyroiditis (AIT), which is regarded as a typical kind of autoimmune disease mainly mediated by CD4+ T cells. Thus far, it is unclear whether T helper (Th) 9 cells, a novel subpopulation of CD4+ T cells, play a potential role in AIT. Therefore, in the present study, changes in Th9 cells were detected in murine models of AIT induced by excess iodine intake to explore the possible immune mechanism. Female C57BL/6 mice were divided into 7 groups (n = 8) and were supplied with water containing 0.005% sodium iodide for 0, 2, 4, 6, 8, 10, and 12 weeks. With the extension of the high-iodine intake duration, the incidence of thyroiditis and the spleen index were significantly increased, and serum thyroglobulin antibody (TgAb) titers and interleukin 9 (IL-9, major cytokine from Th9 cells) concentrations were also increased. Additionally, it was revealed that the percentages of Th9 cells in spleen mononuclear cells (SMCs) and thyroid tissues were both markedly elevated and accompanied by increased mRNA and protein expression of IL-9 and key transcription factors of Th9 cells (PU.1 and IRF-4). Significantly, dynamic changes in Th9 cells were found, with a peak at 8 weeks after high iodine intake, the time point when thyroiditis was the most serious. Importantly, Th9 cells were detected in the areas of infiltrating lymphocytes in thyroid sections. In conclusion, the continuously increasing proportions of Th9 cells may play an important role in the occurrence and development of AIT induced by high iodine intake.
Collapse
Affiliation(s)
- Yiwen Li
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Hao Liu
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Chengyan He
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Yawen Lin
- Department of Dermatology, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Lei Ma
- Department of Dermatology, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China
| | - Haibo Xue
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, No. 661 Second Huanghe Road, Binzhou, 256603, China.
| |
Collapse
|
20
|
He S, Zhang H, Yin S, Hao X, Yang Y, Shang S. Characterization of chicken interleukin-9 receptor alpha chain. Poult Sci 2023; 102:102965. [PMID: 37562135 PMCID: PMC10432844 DOI: 10.1016/j.psj.2023.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023] Open
Abstract
Interleukin-9 receptor alpha chain (IL-9Rα) is the ligand-binding subunit of IL-9R that plays roles in IL-9-mediated allergy, inflammation, infection, and tumor immunity. While mammalian IL-9Rαs have been extensively investigated, avian IL-9Rα has not yet been identified and characterized. In this study, we cloned chicken IL-9Rα (chIL-9Rα) and performed a phylogenetic analysis, analyzed its tissue distribution, characterized the expression form of natural chIL-9Rα. Phylogenetic analysis showed that chIL-9Rα has less than 25% amino acid homology with mammalian IL-9Rαs. The chIL-9Rα mRNA was abundantly detected only in heart and mitogen-activated peripheral blood mononuclear cells. Furthermore, 4 monoclonal antibodies (mAbs) against chIL-9Rα were generated using prokaryotic recombinant chIL-9Rα (rchIL-9Rα). Using anti-chIL-9Rα mAbs, natural chIL-9Rα expressed on the splenocytes of chickens was observed by indirect immunofluorescence assay (IFA), and its molecular weight of 51 kDa was identified by Western blotting. Overall, our study reveals for the first time the presence of IL-9Rα in birds, and provides immunological tools for further investigating the roles of chIL-9 in diseases and immunity.
Collapse
Affiliation(s)
- Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Huining Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shi Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Hao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China; International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
21
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
22
|
Pajulas A, Zhang J, Kaplan MH. The World according to IL-9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:7-14. [PMID: 37339404 PMCID: PMC10287031 DOI: 10.4049/jimmunol.2300094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/22/2023]
Abstract
Among the cytokines regulating immune cells, IL-9 has gained considerable attention for its ability to act on multiple cell types as a regulator of beneficial and pathologic immune responses. Yet, it is still not clearly defined how IL-9 impacts immune responses. IL-9 demonstrates a remarkable degree of tissue-specific functionality and has cellular sources that vary by tissue site and the context of the inflammatory milieu. Here, we provide perspective to summarize the biological activities of IL-9 and highlight cell type-specific roles in the immune pathogenesis of diseases. This perspective will be important in defining the diseases where targeting IL-9 as a therapeutic strategy would be beneficial and where it has the potential to complicate clinical outcomes.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
23
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
24
|
Mielcarska S, Dawidowicz M, Kula A, Kiczmer P, Skiba H, Krygier M, Chrabańska M, Piecuch J, Szrot M, Ochman B, Robotycka J, Strzałkowska B, Czuba Z, Waniczek D, Świętochowska E. B7H3 Role in Reshaping Immunosuppressive Landscape in MSI and MSS Colorectal Cancer Tumours. Cancers (Basel) 2023; 15:3136. [PMID: 37370746 DOI: 10.3390/cancers15123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The study aimed to assess the expression of B7H3 concerning clinicopathological and histological parameters, including MSI/MSS status, CD-8 cells, tumour-infiltrating lymphocytes (TILs), budding, TNM scale and grading. Moreover, we analyzed the B7H3-related pathways using available online datasets and the immunological context of B7H3 expression, through the 48-cytokine screening panel of cancer tissues homogenates, immunogenic features and immune composition. The study included 158 patients diagnosed with CRC. To assess B7H3 levels, we performed an immunohistochemistry method (IHC) and enzyme-linked immunosorbent assay (ELISA). To elucidate the immune composition of colorectal cancer, we performed the Bio-Plex Pro Human 48-cytokine panel. To study biological characteristics of B7H3, we used online databases. Expression of B7H3 was upregulated in CRC tumour tissues in comparison to adjacent noncancerous margin tissues. The concentrations of B7H3 in tumours were positively associated with T parameter of patients and negatively with tumour-infiltrating lymphocytes score. Additionally, Principal Component Analysis showed that B7H3 expression in tumours correlated positively with cytokines associated with M2-macrophages and protumour growth factors. The expression of B7H3 in tumours was independent of MSI/MSS status. These findings will improve our understanding of B7H3 role in colorectal cancer immunity. Our study suggests that B7-H3 is a promising potential target for cancer therapy. Further studies must clarify the mechanisms of B7H3 overexpression and its therapeutic importance in colorectal cancer.
Collapse
Affiliation(s)
- Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Paweł Kiczmer
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Hanna Skiba
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Małgorzata Krygier
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Magdalena Chrabańska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland
| | - Monika Szrot
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland
| | - Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Julia Robotycka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Bogumiła Strzałkowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| |
Collapse
|
25
|
Ohtsuki S, Wang C, Watanabe R, Zhang H, Akiyama M, Bois MC, Maleszewski JJ, Warrington KJ, Berry GJ, Goronzy JJ, Weyand CM. Deficiency of the CD155-CD96 immune checkpoint controls IL-9 production in giant cell arteritis. Cell Rep Med 2023; 4:101012. [PMID: 37075705 PMCID: PMC10140609 DOI: 10.1016/j.xcrm.2023.101012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Loss of function of inhibitory immune checkpoints, unleashing pathogenic immune responses, is a potential risk factor for autoimmune disease. Here, we report that patients with the autoimmune vasculitis giant cell arteritis (GCA) have a defective CD155-CD96 immune checkpoint. Macrophages from patients with GCA retain the checkpoint ligand CD155 in the endoplasmic reticulum (ER) and fail to bring it to the cell surface. CD155low antigen-presenting cells induce expansion of CD4+CD96+ T cells, which become tissue invasive, accumulate in the blood vessel wall, and release the effector cytokine interleukin-9 (IL-9). In a humanized mouse model of GCA, recombinant human IL-9 causes vessel wall destruction, whereas anti-IL-9 antibodies efficiently suppress innate and adaptive immunity in the vasculitic lesions. Thus, defective surface translocation of CD155 creates antigen-presenting cells that deviate T cell differentiation toward Th9 lineage commitment and results in the expansion of vasculitogenic effector T cells.
Collapse
Affiliation(s)
- Shozo Ohtsuki
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Cardiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Chenyao Wang
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Cardiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Ryu Watanabe
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hui Zhang
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Deptartment of Rheumatology, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Mitsuhiro Akiyama
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kenneth J Warrington
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Gerald J Berry
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Cornelia M Weyand
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Cardiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
26
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
27
|
Kakni P, Truckenmüller R, Habibović P, van Griensven M, Giselbrecht S. A Microwell-Based Intestinal Organoid-Macrophage Co-Culture System to Study Intestinal Inflammation. Int J Mol Sci 2022; 23:15364. [PMID: 36499691 PMCID: PMC9736416 DOI: 10.3390/ijms232315364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mammalian intestinal epithelium contains more immune cells than any other tissue, and this is largely because of its constant exposure to pathogens. Macrophages are crucial for maintaining intestinal homeostasis, but they also play a central role in chronic pathologies of the digestive system. We developed a versatile microwell-based intestinal organoid-macrophage co-culture system that enables us to recapitulate features of intestinal inflammation. This microwell-based platform facilitates the controlled positioning of cells in different configurations, continuous in situ monitoring of cell interactions, and high-throughput downstream applications. Using this novel system, we compared the inflammatory response when intestinal organoids were co-cultured with macrophages versus when intestinal organoids were treated with the pro-inflammatory cytokine TNF-α. Furthermore, we demonstrated that the tissue-specific response differs according to the physical distance between the organoids and the macrophages and that the intestinal organoids show an immunomodulatory competence. Our novel microwell-based intestinal organoid model incorporating acellular and cellular components of the immune system can pave the way to unravel unknown mechanisms related to intestinal homeostasis and disorders.
Collapse
Affiliation(s)
- Panagiota Kakni
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
28
|
Gerlach K, Popp V, Wirtz S, Al-Saifi R, Gonzalez Acera M, Atreya R, Dregelies T, Vieth M, Fichtner-Feigl S, McKenzie ANJ, Rosenbauer F, Weigmann B, Neurath MF. PU.1-driven Th9 Cells Promote Colorectal Cancer in Experimental Colitis Models Through Il-6 Effects in Intestinal Epithelial Cells. J Crohns Colitis 2022; 16:1893-1910. [PMID: 35793807 DOI: 10.1093/ecco-jcc/jjac097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Colorectal cancer [CRC] is one of the most frequent malignancies, but the molecular mechanisms driving cancer growth are incompletely understood. We characterised the roles of the cytokine IL-9 and Th9 cells in regulating CRC development. METHODS CRC patient samples and samples from AOM/DSS treated mice were analysed for expression of IL-9, CD3, and PU.1 by FACS analysis and immunohistochemistry. IL-9 citrine reporter mice, IL-9 knockout mice, and PU.1 and GATA3 CD4-Cre conditional knockout mice were studied in the AOM/DSS model. DNA minicircles or hyper-IL-6 were used for overexpression of cytokines in vivo. Effects of IL-6 and IL-9 were determined in organoid and T cell cultures. Claudin2/3 expression was studied by western blotting and bacterial translocation by FISH. RESULTS We uncovered a significant expansion of IL-9- and PU.1-expressing mucosal Th9 cells in CRC patients, with particularly high levels in patients with colitis-associated neoplasias. PU.1+ Th9 cells accumulated in experimental colorectal neoplasias. Deficiency of IL-9 or inactivation of PU.1 in T cells led to impaired tumour growth in vivo, suggesting a protumoral role of Th9 cells. In contrast, GATA3 inactivation did not affect Th9-mediated tumour growth. Mechanistically, IL-9 controls claudin2/3 expression and T cell-derived IL-6 production in colorectal tumours. IL-6 abrogated the anti-proliferative effects of IL-9 in epithelial organoids in vivo. IL-9-producing Th9 cells expand in CRC and control IL-6 production by T cells. CONCLUSIONS IL-9 is a crucial regulator of tumour growth in colitis-associated neoplasias and emerges as potential target for therapy.
Collapse
Affiliation(s)
- Katharina Gerlach
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vanessa Popp
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ragheed Al-Saifi
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie [DZI], Erlangen, University of Erlangen-Nuremberg, Germany
| | - Theresa Dregelies
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Andrew N J McKenzie
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Frank Rosenbauer
- Laboratory of Molecular Stem Cell Biology, University of Münster, Münster, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie [DZI], Erlangen, University of Erlangen-Nuremberg, Germany
| |
Collapse
|
29
|
Liu M. Effect of crosstalk between Th17 and Th9 cells on the activation of dermal vascular smooth muscle cells in systemic scleroderma and regulation of tanshinone IIA. An Bras Dermatol 2022; 97:716-728. [PMID: 36117047 PMCID: PMC9582889 DOI: 10.1016/j.abd.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND To evaluate the effect of T-helper 17 (Th17) cells and Th9 cells on the activation of dermal vascular smooth muscle cells (DVSMCs) in systemic scleroderma (SSc) and regulation of tanshinone IIA. METHODS The expression of interleukin 17 receptor (IL-17R) and interleukin 9 receptor (IL-9R) in the skin of SSc patients was assessed by immunofluorescence. The expression of IL-9 and IL-9R mRNA in peripheral blood mononuclear cells (PBMCs) of SSc patients were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The proportion of Th9 cells in PBMCs of SSc patients was sorted by flow cytometry. The effect of IL-9 on the differentiation of Th17 and IL-17 on that of Th9 was detected by flow cytometry. The proportion of Th9 and Th17 cells in SSc patients was detected by flow cytometry. The level of collagen I, III, α-SMA, IL-9R, IL-17R, JNK, P38, and ERK were analyzed using western blot (WB). RESULTS Th9 cells were highly expressed in SSc. IL-9 stimulated the differentiation of immature T cells into Th17 cells. IL-17 induced the differentiation of immature T cells into Th9 cells. Tanshinone IIA inhibited the differentiation of immature T lymphocytes into Th17 and Th9. WB showed that the combined action of IL-17 and IL-9 upregulated the inflammation and proliferation of DVSMCs. Anti-IL17, anti-IL9, and tanshinone IIA inhibited the functional activation of DVSMCs. STUDY LIMITATIONS For Th17, Th9 and vascular smooth muscle cells, the study on the signal pathway of their interaction is not thorough enough. More detailed studies are needed to explore the mechanism of cell-cell interaction. CONCLUSIONS The current results suggested that Th17 and Th9 cells induced the activation of DVSMCs in SSc through crosstalk in vitro, and tanshinone IIA inhibited the process.
Collapse
Affiliation(s)
- Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, the 12th Urumqi Road, Shanghai, China.
| |
Collapse
|
30
|
Wu F, Yang H, Xu X, Ren C, Zheng Y, Zhang H, Cai B, Qiu R, Ren W, Quan R. CD96 Downregulation Promotes the Immune Response of CD4 T Cells and Associates with Ankylosing Spondylitis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3946754. [PMID: 35769669 PMCID: PMC9234051 DOI: 10.1155/2022/3946754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022]
Abstract
Inhibitory receptors (IRs) play an indispensable role in regulating T cell activation and expansion. This study is aimed at exploring the correlation between IRs and ankylosing spondylitis (AS). Bioinformatics analysis of two datasets (GSE25101 and GSE73754), including 68 AS cases and 36 healthy controls, demonstrated that "T cell receptor signaling pathway" was significantly enriched, and two IRs (CD112R and CD96) were downregulated in AS cases. Real-time Quantitative PCR Detecting System (qPCR) analysis confirmed the decreased expression of CD112R and CD96 in the peripheral blood of AS patients. Flow cytometry demonstrated that the frequency of CD96-positive cells among CD4 T cells in AS patients was significantly reduced and that expressed on the cells was also significantly lower than the healthy controls. In addition, the expression of CD96 was altered on human primary CD4 T cells extracted from 3 healthy volunteers and cocultured with allogeneic dendritic cells (DCs). Also, low expression of CD96 elevated the phosphorylation of ERK in CD4 T cells and increased the level of TNF-α, IL-23, IL-17A, IL-6, and IFN-γ in the cell culture supernatant. These results suggested that CD96 is crucial for the pathogenesis of AS and may be a potential target in the treatment of the disease.
Collapse
Affiliation(s)
- Fengqing Wu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Xu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Conglin Ren
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zheng
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Helou Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingbing Cai
- The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Qiu
- The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifan Ren
- The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Renfu Quan
- The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
31
|
Lechner K, Zeeshana M, Noack M, Ali H, Neurath M, Weigmanna B. Small but powerful: Will nanoparticles be the future state‐of‐the‐art therapy for IBD? Expert Opin Drug Deliv 2022; 19:235-245. [DOI: 10.1080/17425247.2022.2043847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristina Lechner
- Medical Clinic I, University Hospital Erlangen, Research Campus, Hartmannstr.14, 91052, Erlangen, 91052 Erlangen, Germany
| | - Mahira Zeeshana
- Department of Pharmacy, Faculty of Biological Sciences, Quaid‐i‐Azam University, Islamabad, 45320, Pakistan
| | - Maxi Noack
- Medical Clinic I, University Hospital Erlangen, Research Campus, Hartmannstr.14, 91052, Erlangen, 91052 Erlangen, Germany
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid‐i‐Azam University, Islamabad, 45320, Pakistan
| | - Markus Neurath
- Medical Clinic I, University Hospital Erlangen, Ulmenweg 14, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Benno Weigmanna
- Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich‐Alexander University, Erlangen‐Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Tamburini B, La Manna MP, La Barbera L, Mohammadnezhad L, Badami GD, Shekarkar Azgomi M, Dieli F, Caccamo N. Immunity and Nutrition: The Right Balance in Inflammatory Bowel Disease. Cells 2022; 11:cells11030455. [PMID: 35159265 PMCID: PMC8834599 DOI: 10.3390/cells11030455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an increasingly urgent medical problem that strongly impairs quality of life for patients. A global rise in incidence has been observed over the last few decades, with the highest incidence rates recorded in North America and Europe. Still, an increased incidence has been reported in the last ten years in newly industrialized countries in Asia, including China and India, both with more than one billion inhabitants. These data underline that IBD is an urgent global health problem. In addition, it is estimated that between 20% and 30% of IBD patients will develop colorectal cancer (CRC) within their lifetime and CRC mortality is approximately 50% amongst IBD patients. Although the exact etiology of IBD is still being defined, it is thought to be due to a complex interaction between many factors, including defects in the innate and adaptive immune system; microbial dysbiosis, i.e., abnormal levels of, or abnormal response to, the gastrointestinal microbiome; a genetic predisposition; and several environmental factors. At present, however, it is not fully understood which of these factors are the initiators of inflammation and which are compounders. The purpose of this review is to analyze the complex balance that exists between these elements to maintain intestinal homeostasis and prevent IBD or limit adverse effects on people’s health.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Marco Pio La Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
- Correspondence:
| | - Lidia La Barbera
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Piazza delle Cliniche, 2, 90110 Palermo, Italy;
| | - Leila Mohammadnezhad
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
33
|
Sun JK, Zhang Q, Shen X, Zhou J, Wang X, Zhou SM, Mu XW. Integrin αEβ7 is involved in the intestinal barrier injury of sepsis. Aging (Albany NY) 2022; 14:780-788. [PMID: 35042191 PMCID: PMC8833114 DOI: 10.18632/aging.203839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Background: IL-9-producing CD4(+) T (Th9) cell was related to acute intestinal barrier injury in sepsis. Integrin αEβ7 was an important lymphocyte homing receptor on the surface of intestinal Th9 cells. However, the roles of αEβ7 in the intestinal injury caused by Th9 cells were not clear in sepsis. Methods: To investigate the roles of αEβ7 in the intestinal injury caused by Th9 cells in sepsis model, the Th9 cells percentages, αEβ7, E-cadherin, IL-9, and D-lactate levels in both serum and intestinal tissue were measured. The intestinal histopathology, epithelium apoptosis, and mucosal permeability measurement were also performed. The survival rate of septic rats was recorded daily for 14 days. Results: Rats were assigned to four cohorts: control cohort, sepsis cohort, sepsis+αEβ7i (αEβ7 inhibition) cohort, and sepsis+αEβ7e (αEβ7 overexpression) cohort. The Th9 cells percentages, αEβ7, IL-9, and D-lactate levels of the sepsis cohort were significantly higher than those of the control cohort. The levels of these variables were also elevated progressively in the sepsis+αEβ7i cohort, sepsis cohort, and sepsis+αEβ7e cohort. The E-cadherin levels were decreased progressively in the control cohort, sepsis+αEβ7i cohort, sepsis cohort, and sepsis+αEβ7e cohort. Moreover, αEβ7 overexpression could decrease the 14-day survival rate. The findings of histopathology staining, apoptosis detection, and intestinal permeability test also confirmed that the barrier injury was deteriorated or relieved by elevating or decreasing the αEβ7 expression levels, respectively. Conclusions: Integrin αEβ7 was closely associated with the intestinal barrier injury caused by Th9 lymphocytes in sepsis.
Collapse
Affiliation(s)
- Jia-Kui Sun
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province People's Hospital), Nanjing 210029, Jiangsu Province, China.,Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Qian Zhang
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province People's Hospital), Nanjing 210029, Jiangsu Province, China
| | - Xiao Shen
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Jing Zhou
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province People's Hospital), Nanjing 210029, Jiangsu Province, China
| | - Xiang Wang
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Su-Ming Zhou
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province People's Hospital), Nanjing 210029, Jiangsu Province, China
| | - Xin-Wei Mu
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| |
Collapse
|
34
|
The functional role of miRNAs in inflammatory pathways associated with intestinal epithelial tight junction barrier regulation in IBD. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Inflammatory bowel disease – Crohn's disease and ulcerative colitis – is an immune-mediated chronic disorder with still not fully elucidated complex mechanisms of pathogenesis and pathophysiology. Intestinal epithelial barrier (IEB) dysregulation is one of the major underlying mechanisms of inflammatory process induction in IBD. Proper IEB integrity is maintained to a large extent by intercellular tight junctions, the function of which can be modified by many molecules, including miRNAs. MiRNAs belong to noncoding and non-messenger RNAs, which can modulate gene expression by binding predicted mRNAs.
In this review, we summarize and discuss the potential role of miRNAs in the regulation of inflammatory signaling pathways affecting the function of the intestinal epithelial barrier in IBD, with particular emphasis on therapeutic potentials. The aim of the review is also to determine the further development directions of the studies on miRNA in the modulation of the intestinal epithelial barrier in IBD.
Collapse
|
35
|
Novel Perspectives in Pseudomyxoma Peritonei Treatment. Cancers (Basel) 2021; 13:cancers13235965. [PMID: 34885075 PMCID: PMC8656832 DOI: 10.3390/cancers13235965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Pseudomyxoma Peritonei (PMP) represents a rare entity which greatly benefits from Cytoreductive Surgery (CRS) associated with Hyperthermic Intraperitoneal Chemotherapy (HIPEC). In fact, CRS-HIPEC represents the treatment with potential chances of cure and long-term disease control of patients affected by PMP. This therapeutic strategy should be performed in referral centers, where a consolidated know-how of this locoregional treatment and a multidisciplinary approach are available. CRS-HIPEC provides excellent results for PMP patients in terms of postoperative outcome, overall and disease-free survival, and quality of life. However, in patients with an extensive or recurrent disease, few therapeutic opportunities are available. This review is focused on the most recent clinical evidence and provides a better understanding of the molecular prognostic factors and potential therapeutic targets in this rare malignancy. Abstract Pseudomyxoma Peritonei (PMP) is an anatomo-clinical condition characterized by the implantation of neoplastic cells on peritoneal surfaces with the production of a large amount of mucin. The rarity of the disease precludes the evaluation of treatment strategies within randomized controlled trials. Cytoreductive Surgery (CRS) combined with Hyperthermic Intraperitoneal Chemotherapy (HIPEC) has proven to be the only therapeutic option with potential chances of cure and long-term disease control. The present review discusses the epidemiology, pathogenesis, clinical presentation and treatment of PMP, focusing on the molecular factors involved in tumor progression and mucin production that could be used, in the upcoming future, to improve patient selection for surgery and to expand the therapeutic armamentarium.
Collapse
|
36
|
Guo J, Qiao C, Zhou J, Hu S, Lin X, Shen Y, Li Z, Liu J. Neobavaisoflavone-mediated T H9 cell differentiation ameliorates bowel inflammation. Int Immunopharmacol 2021; 101:108191. [PMID: 34601328 DOI: 10.1016/j.intimp.2021.108191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/01/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Neobavaisoflavone (Neo), is the active constituent of the herb Psoralea corylifolial, used in the traditional Chinese medicine, and has anti-inflammatory activity, but whether Neo could regulate colitis remains unclear. T helper 9 (TH9) cells, a subset of CD4+ T helper cells characterized by secretion of IL-9, have been reported to be involved in the pathogenesis of many autoimmune and inflammatory diseases, but whether Neo could control TH9 cell differentiation also remains unclear. Here, we found that Neo could decrease IL-9 production of CD4+ T cells by targeting PU.1 in vitro. Importantly, Neo had therapeutic effects on DSS-induced colitis. Furthermore, we identified TH9 cells as the direct target of Neo for attenuating bowel inflammation. Therefore, Neo could serve as a lead for developing new therapeutics against inflammatory bowel disease.
Collapse
Affiliation(s)
- Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Chenxiao Qiao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Zhou
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Shufang Hu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xia Lin
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yingying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ziyan Li
- Chunan Chinese Traditional Medicine, Hangzhou, Zhejiang 311700, China.
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
37
|
EGFR-HIF1α signaling positively regulates the differentiation of IL-9 producing T helper cells. Nat Commun 2021; 12:3182. [PMID: 34075041 PMCID: PMC8169867 DOI: 10.1038/s41467-021-23042-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/09/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin 9 (IL-9)-producing helper T (Th9) cells are essential for inducing anti-tumor immunity and inflammation in allergic and autoimmune diseases. Although transcription factors that are essential for Th9 cell differentiation have been identified, other signaling pathways that are required for their generation and functions are yet to be explored. Here, we identify that Epidermal Growth Factor Receptor (EGFR) is essential for IL-9 induction in helper T (Th) cells. Moreover, amphiregulin (Areg), an EGFR ligand, is critical for the amplification of Th9 cells induced by TGF-β1 and IL-4. Furthermore, our data show that Areg-EGFR signaling induces HIF1α, which binds and transactivates IL-9 and NOS2 promoters in Th9 cells. Loss of EGFR or HIF1α abrogates Th9 cell differentiation and suppresses their anti-tumor functions. Moreover, in line with its reliance on HIF1α expression, metabolomics profiling of Th9 cells revealed that Succinate, a TCA cycle metabolite, promotes Th9 cell differentiation and Th9 cell-mediated tumor regression.
Collapse
|
38
|
Inyang KE, Folger JK, Laumet G. Can FDA-Approved Immunomodulatory Drugs be Repurposed/Repositioned to Alleviate Chronic Pain? J Neuroimmune Pharmacol 2021; 16:531-547. [PMID: 34041656 DOI: 10.1007/s11481-021-10000-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Pain is among the most widespread chronic health condition confronting society today and our inability to manage chronic pain contributes to the opioid abuse epidemic in America. The immune system is known to contribute to acute and chronic pain, but only limited therapeutic treatments such as non-steroid anti-inflammatory drugs have resulted from this knowledge. The last decade has shed light on neuro-immune interactions mediating the development, maintenance, and resolution of chronic pain. Here, we do not aim to perform a comprehensive review of all immune mechanisms involved in chronic pain, but to briefly review the contribution of the main cytokines and immune cells (macrophages, microglia, mast cells and T cells) to chronic pain. Given the urgent need to address the Pain crisis, we provocatively propose to repurpose/reposition FDA-approved immunomodulatory drugs for their potential to alleviate chronic pain. Repositioning or repurposing offers an attractive way to accelerate the arrival of new analgesics.
Collapse
Affiliation(s)
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
39
|
Sun JK, Zhou J, Sun XP, Shen X, Zhu DM, Wang X, Zhou SM, Mu XW. Interleukin-9 promotes intestinal barrier injury of sepsis: a translational research. J Intensive Care 2021; 9:37. [PMID: 33941281 PMCID: PMC8091144 DOI: 10.1186/s40560-021-00550-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/25/2021] [Indexed: 12/29/2022] Open
Abstract
Background Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Intestinal mucosal barrier injury is one of the important manifestations of sepsis. Interleukin-9 (IL-9) and IL-9-producing CD4(+) T cells were emerging pro-inflammatory mediators with development of intestinal injury. However, it is unclear whether IL-9 is related to the intestinal barrier injury of sepsis. Methods To investigate the roles of IL-9-producing CD4(+) T cells and IL-9 in the process of barrier injury in sepsis, serum IL-9-producing CD4(+) T cell percentages, IL-9, and D-lactate levels were measured in septic patients and controls. The markers of barrier function in serum and intestinal tissue were also collected in septic rats. Moreover, the barrier injury degree and survival rate of septic rats were also investigated after increasing or interfering with IL-9 expression. Results The serum IL-9-producing CD4(+) T cell percentages, IL-9, and D-lactate levels were significantly higher in septic patients or rats than those in controls. IL-9-producing CD4(+) T cells and IL-9 levels were positively correlated with D-lactate levels and had a high predictive value of 28-day mortality in septic patients. The non-survivors had significantly higher serum T cell percentages, IL-9, and D-lactate levels compared with survivors. In septic rats, IL-9 increased the expression levels of D-lactate, whereas that decreased the expression levels of zonula occludens 1. Moreover, the barrier injury was aggravated or alleviated by increasing or interfering with IL-9 expression, respectively. Survival rate analysis also showed that IL-9 decreased the 14-day survival rate of septic rats. Conclusion IL-9 is closely related to intestinal mucosal barrier injury and mortality in sepsis. IL-9 blockade has the potential to improve the barrier injury in sepsis. Trial registration The study was registered at ClinicalTrials.gov (ID: NCT03791866, Date: December 2018).
Collapse
Affiliation(s)
- Jia-Kui Sun
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province People's Hospital), 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.,Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Jing Zhou
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province People's Hospital), 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xin-Pei Sun
- Department of General Office, Productivity Center of Jiangsu Province, 175 Longpan Road, Nanjing, 210042, Jiangsu Province, China
| | - Xiao Shen
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Dong-Mei Zhu
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province People's Hospital), 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xiang Wang
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu Province, China.
| | - Su-Ming Zhou
- Department of Geriatrics Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province People's Hospital), 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| | - Xin-Wei Mu
- Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu Province, China.
| |
Collapse
|
40
|
Furfaro F, Alfarone L, Gilardi D, Correale C, Allocca M, Fiorino G, Argollo M, Zilli A, Zacharopoulou E, Loy L, Roda G, Danese S. TL1A: A New Potential Target in the Treatment of Inflammatory Bowel Disease. Curr Drug Targets 2021; 22:760-769. [PMID: 33475057 DOI: 10.2174/1389450122999210120205607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), are chronic inflammatory diseases of the gastrointestinal tract. In the last few years, the development of biological agents targeting cytokines and receptors involved in IBD pathogenesis has led to better outcomes and has improved the course of the disease. Despite their effectiveness, drugs such as tumor necrosis factor (TNF) inhibitors, anti-Interleukin-12/23 and anti-integrins, do not induce a response in about one-third of patients, and 40% of patients lose response over time. Therefore, more efficient therapies are required. Recent studies showed that TL1A (Tumor necrosis factor-like cytokine 1A) acts as a regulator of mucosal immunity and participates in immunological pathways involved in the IBD pathogenesis. In this review article, we analyze the role of TL1A as a new potential target therapy in IBD patients.
Collapse
Affiliation(s)
- Federica Furfaro
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Ludovico Alfarone
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Daniela Gilardi
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Carmen Correale
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Mariangela Allocca
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Gionata Fiorino
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | | | - Alessandra Zilli
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Eirini Zacharopoulou
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Laura Loy
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Giulia Roda
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| | - Silvio Danese
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano (Mi), Italy
| |
Collapse
|
41
|
Ming S, Zhang M, Liang Z, Li C, He J, Chen P, Zhang S, Niu X, Deng S, Geng L, Zhang G, Gong S, Wu Y. OX40L/OX40 Signal Promotes IL-9 Production by Mucosal MAIT Cells During Helicobacter pylori Infection. Front Immunol 2021; 12:626017. [PMID: 33777009 PMCID: PMC7990886 DOI: 10.3389/fimmu.2021.626017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Mucosal associated invariant T (MAIT) cells play a critical role in Helicobacter pylori (H. pylori)-induced gastritis by promoting mucosal inflammation and aggravating mucosal injuries (1, 2). However, the underlying mechanism and key molecules involved are still uncertain. Here we identified OX40, a co-stimulatory molecule mainly expressed on T cells, as a critical regulator to promote proliferation and IL-9 production by MAIT cells and facilitate mucosal inflammation in H. pylori-positive gastritis patients. Serum examination revealed an increased level of IL-9 in gastritis patients. Meanwhile, OX40 expression was increased in mucosal MAIT cells, and its ligand OX40L was also up-regulated in mucosal dendritic cells (DCs) of gastritis patients, compared with healthy controls. Further results demonstrated that activation of the OX40/OX40L pathway promoted IL-9 production by MAIT cells, and MAIT cells displayed a highly-activated phenotype after the cross-linking of OX40 and OX40L. Moreover, the level of IL-9 produced by MAIT cells was positively correlated with inflammatory indexes in the gastric mucosa, suggesting the potential role of IL-9-producing MAIT cells in mucosal inflammation. Taken together, we elucidated that OX40/OX40L axis promoted mucosal MAIT cell proliferation and IL-9 production in H. pylori-induced gastritis, which may provide potential targeting strategies for gastritis treatment.
Collapse
Affiliation(s)
- Siqi Ming
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China.,Center for Infection and Immunity, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Mei Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Zibin Liang
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Chunna Li
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Shunxian Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Xiaoli Niu
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shimei Deng
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China
| | - Yongjian Wu
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou, China.,Center for Infection and Immunity, The Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
42
|
Sheng Y, Zhang J, Li K, Wang H, Wang W, Wen L, Gao J, Tang X, Tang H, Huang H, Cai M, Yuan T, Liu L, Zheng X, Zhu Z, Cui Y. Bach2 overexpression represses Th9 cell differentiation by suppressing IRF4 expression in systemic lupus erythematosus. FEBS Open Bio 2021; 11:395-403. [PMID: 33249782 PMCID: PMC7876501 DOI: 10.1002/2211-5463.13050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 01/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by abnormal activation of T cells and caused by an imbalance in the production and clearance of apoptotic cells. We previously showed that the transcription regulator Bach2 regulated abnormal B-cell activation in SLE. Here, we investigated whether Bach2 was also involved in Th9 cell differentiation in SLE. We found that the proportion of Th9 cells was enhanced in the peripheral blood mononuclear cells (PBMC) of SLE patients. The PBMC and CD4+ T cells of SLE patients exhibited a decrease of Bach2 expression and an increase of IL-9 expression. Furthermore, Bach2 overexpression significantly repressed the levels of PU.1, IRF4, IL-9, and Th9 cells in the CD4+ T cells of SLE patients and healthy volunteers. In addition, Bach2 overexpression inhibited the levels of IL-9 and Th9 cells, whereas IRF4 upregulation enhanced the levels of IRF4 and IL-9 and Th9 cells in the CD4+ T cells of SLE patients and healthy volunteers. The effect of IRF4 up-regulation was abolished by Bach2 overexpression. In summary, our work suggests that Bach2 overexpression represses Th9 cell differentiation by suppressing IRF4 expression in SLE, and thus, Bach2 may be a novel potential target for SLE treatment.
Collapse
Affiliation(s)
- Yujun Sheng
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Jiali Zhang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Keke Li
- Department of DermatologyChina–Japan Friendship HospitalBeijingChina
| | - Hongyan Wang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Wenjun Wang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Leilei Wen
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Jinping Gao
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Xianfa Tang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Huayang Tang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - He Huang
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Minglong Cai
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Tao Yuan
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Lu Liu
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Xiaodong Zheng
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Zhengwei Zhu
- Department of DermatologyInstitute of Dermatologythe First Affiliated HospitalAnhui Medical UniversityHefeiChina
- The Key Laboratory of DermatologyMinistry of EducationAnhui Medical UniversityHefeiChina
| | - Yong Cui
- Department of DermatologyChina–Japan Friendship HospitalBeijingChina
| |
Collapse
|
43
|
A centric view of JAK/STAT5 in intestinal homeostasis, infection, and inflammation. Cytokine 2021; 139:155392. [PMID: 33482575 PMCID: PMC8276772 DOI: 10.1016/j.cyto.2020.155392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Cytokines, growth factors or hormones take action through the JAK/STAT5 signaling pathway, which plays a critical role in regulating the intestinal response to infection and inflammation. However, the way in which STAT5 regulates intestinal epithelial compartment is largely ignored due to the lack of genetic tools for proper exploration and because the two STAT5 transcription factors (STAT5A and STAT5B) have some redundant but also distinct functions. In this review article, by focusing on STAT5 functions in the intestinal undifferentiated and differentiated epithelia, we discuss major advances of the growth factor/cytokine-JAK/STAT5 research in view of intestinal mucosal inflammation and immunity. We highlight the gap in the research of the intestinal STAT5 signaling to anticipate the gastrointestinal explorative insights. Furthermore, we address the critical questions to illuminate how STAT5 signaling influences intestinal epithelial cell differentiation and stem cell regeneration during homeostasis and injury. Overall, our article provides a centric view of the relevance of the relationship between chronic inflammatory diseases and JAK/STAT5 pathway and it also gives an example of how chronic infection and inflammation pirate STAT5 signaling to worsen intestinal injuries. Importantly, our review suggests how to protect a wound healing from gastrointestinal diseases by modulating intestinal STAT5.
Collapse
|
44
|
Zhao C, Wang D, Wu M, Luo Y, Yang M, Guo J, Zhang H, Zhang X. Tumor necrosis factor ligand-related molecule 1A affects the intestinal mucosal barrier function by promoting Th9/interleukin-9 expression. J Int Med Res 2020; 48:300060520926011. [PMID: 32567429 PMCID: PMC7309405 DOI: 10.1177/0300060520926011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/20/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES To investigate the effect of tumor necrosis factor ligand-related molecule 1A (TL1A) on the intestinal mucosal barrier in mice with chronic colitis. METHODS Male TL1A-overexpressing transgenic mice and male C57BL/6 wild-type mice were used to establish a dextran sodium sulfate (DSS)-induced colitis model. The expression of occludin and claudin-1 was observed. Bacterial distribution in the intestinal mucosa and Th9/interleukin (IL)-9 expression were detected. In vitro co-culture systems of naive CD4+ T cells and Caco-2 cells were established and TL1A was added. Changes in transepithelial electrical resistance and IL-9 expression were measured. CD4+IL-9 cells were detected by flow cytometry. RESULTS DSS mice showed a significant down-regulation of occludin and claudin-1 compared with controls. Expression levels of occludin, zonulin-1, and claudin-1 in the Caco-2+TGF-β+IL-4+TL1A group were significantly lower than in the Caco-2+TGF-β+IL-4 group. Bacterial distribution was clearly disordered in the DSS group. Transmembrane resistance of the Caco-2+TGF-β+IL-4+TL1A group was significantly lower and IL-9 expression significantly higher than in the Caco-2+TGF-β+IL-4 group. CONCLUSIONS TL1A overexpression promotes destruction of the intestinal mucosal barrier in mice with chronic colitis. The underlying mechanism may be associated with the promoting role of TL1A in Th9/IL-9 expression, which further destroys the mucosal barrier.
Collapse
Affiliation(s)
- Caihong Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
- Department of Gastroenterology, Harrison International Peace Hospital, Hengshui, Hebei, China
| | - Dong Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Mengyao Wu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Yuxin Luo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Mingyue Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jinbo Guo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Hong Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei, China
| |
Collapse
|
45
|
Park SM, Do-Thi VA, Lee JO, Lee H, Kim YS. Interleukin-9 Inhibits Lung Metastasis of Melanoma through Stimulating Anti-Tumor M1 Macrophages. Mol Cells 2020; 43:479-490. [PMID: 32326670 PMCID: PMC7264476 DOI: 10.14348/molcells.2020.0047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Interleukin-9 (IL-9) is well known for its role in allergic inflammation. For cancer, both pro- and anti-tumor effects of IL-9 were controversially reported, but the impact of IL-9 on tumor metastasis has not yet been clarified. In this study, IL-9 was expressed as a secretory form (sIL-9) and a membrane-bound form (mbIL-9) on B16F10 melanoma cells. The mbIL-9 was engineered as a chimeric protein with the transmembrane and cytoplasmic region of TNF-α. The effect of either mbIL-9 or sIL-9 expressing cells were analyzed on the metastasis capability of the cancer cells. After three weeks of tumor implantation into C57BL/6 mice through the tail vein, the number of tumor modules in lungs injected with IL-9 expressing B16F10 was 5-fold less than that of control groups. The percentages of CD4+ T cells, CD8+ T cells, NK cells, and M1 macrophages considerably increased in the lungs of the mice injected with IL-9 expressing cells. Among them, the M1 macrophage subset was the most significantly enhanced. Furthermore, peritoneal macrophages, which were stimulated with either sIL-9 or mbIL-9 expressing transfectant, exerted higher anti-tumor cytotoxicity compared with that of the mock control. The IL-9-stimulated peritoneal macrophages were highly polarized to M1 phenotype. Stimulation of RAW264.7 macrophages with sIL-9 or mbIL-9 expressing cells also significantly increased the cytotoxicity of those macrophages against wild-type B16F10 cells. These results clearly demonstrate that IL-9 can induce an anti-metastasis effect by enhancing the polarization and proliferation of M1 macrophages.
Collapse
Affiliation(s)
- Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 3434, Korea
| | - Van Anh Do-Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 3434, Korea
| | - Jie-Oh Lee
- Department of Life Sciences, POSTECH, Pohang 37673, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 414, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 3434, Korea
| |
Collapse
|
46
|
Nardone OM, Shivaji UN, Ferruzza V, Ghosh S, Iacucci M. Soluble Blood Markers of Mucosal Healing in Inflammatory Bowel Disease: The Future of Noninvasive Monitoring. Inflamm Bowel Dis 2020; 26:961-969. [PMID: 31587036 DOI: 10.1093/ibd/izz226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 12/13/2022]
Abstract
The traditional management of inflammatory bowel disease (IBD) based on symptom control is not considered valid anymore by most specialists in this field, and a new paradigm called "treat to target" has been introduced. This is based on the assessment of disease activity using objective measures. The identification of noninvasive biomarkers is crucial to diagnosis and monitor IBD because frequent endoscopic examinations are costly and uncomfortable for the patient. In this review, we focus on blood markers that may be able to assess mucosal healing (MH) in IBD and recent advances in this area. Introduction of commercial panel to predict MH opens the way for further developments so that colonoscopy or fecal markers may be avoided in some patients. This may also permit frequent monitoring for therapeutic response and achieve MH. It is a challenging area of research to identify a panel of biomarkers that may reflect inflammation and healing to serve as a surrogate of MH.
Collapse
Affiliation(s)
- Olga Maria Nardone
- Institute of Translational Medicine and Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Uday Nagesh Shivaji
- Institute of Translational Medicine and Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Vittoria Ferruzza
- Institute of Translational Medicine and Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Subrata Ghosh
- Institute of Translational Medicine and Institute of Immunology and Immunotherapy, University of Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, UK
- NIHR Biomedical Research Centre, University of Birmingham and University Hospitals NHS Foundation Trust Birmingham, UK
- Department of Gastroenterology and Hepatology, University of Calgary, Alberta, Canada
| | - Marietta Iacucci
- Institute of Translational Medicine and Institute of Immunology and Immunotherapy, University of Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, UK
- NIHR Biomedical Research Centre, University of Birmingham and University Hospitals NHS Foundation Trust Birmingham, UK
- Department of Gastroenterology and Hepatology, University of Calgary, Alberta, Canada
| |
Collapse
|
47
|
Troncone E, Marafini I, Del Vecchio Blanco G, Di Grazia A, Monteleone G. Novel Therapeutic Options for People with Ulcerative Colitis: An Update on Recent Developments with Janus Kinase (JAK) Inhibitors. Clin Exp Gastroenterol 2020; 13:131-139. [PMID: 32440190 PMCID: PMC7211304 DOI: 10.2147/ceg.s208020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC), the main forms of inflammatory bowel disease (IBD) in human beings, are chronic relapsing-remitting disorders of the gastrointestinal tract, which usually require lifelong therapies. For many years, IBD have been managed with corticosteroids, aminosalicylates and immunosuppressants (ie, thiopurines). The advent of biologic therapies (anti-TNF-α agents) has significantly improved the outcome of IBD patients in terms of prolonged clinical remission, corticosteroid sparing, achievement of mucosal healing and prevention of disease-related complications. Nevertheless, primary failure or loss of response to biologics occur in about 50% of patients treated with these drugs. Therefore, the need for new effective treatments for such patients has critically emerged as an urgent priority. With this regard, several small-molecule drugs (SMDs) targeting lymphocyte trafficking (ie, sphingosine-1-phosphate receptor modulators) and the JAK/STAT pathway (eg, tofacitinib) have been recently developed and tested in IBD. In particular, JAK inhibitors are oral compounds characterized by short half-life, low antigenicity and the ability to dampen several pro-inflammatory pathways simultaneously. Tofacitinib, a pan-JAK inhibitor, has shown good efficacy and safety in UC clinical trials and has been recently approved for the treatment of UC patients. In this review, we analyze the main evidence supporting the use of JAK inhibitors in UC and explore the unanswered questions about the use of this class of drug in UC.
Collapse
Affiliation(s)
- Edoardo Troncone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Antonio Di Grazia
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
48
|
Hsu CY, Fu SH, Chien MW, Liu YW, Chen SJ, Sytwu HK. Post-Translational Modifications of Transcription Factors Harnessing the Etiology and Pathophysiology in Colonic Diseases. Int J Mol Sci 2020; 21:ijms21093207. [PMID: 32369982 PMCID: PMC7246881 DOI: 10.3390/ijms21093207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Defects in mucosal immune balance can lead to colonic diseases such as inflammatory bowel diseases and colorectal cancer. With the advancement of understanding for the immunological and molecular basis of colonic disease, therapies targeting transcription factors have become a potential approach for the treatment of colonic disease. To date, the biomedical significance of unique post-translational modifications on transcription factors has been identified, including phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. This review focuses on our current understanding and the emerging evidence of how post-translational regulations modify transcription factors involved in the etiology and pathophysiology of colonic disease as well as the implications of these findings for new therapeutic approaches in these disorders.
Collapse
Affiliation(s)
- Chao-Yuan Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Shin-Huei Fu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan;
- Molecular Cell Biology, Taiwan International Graduate Program, No.128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Shyi-Jou Chen
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Rd., Neihu District, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No.35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (C.-Y.H.); (S.-H.F.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (M.-W.C.); (S.-J.C.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan;
- Correspondence: ; Tel.: +886-2-8792-3100 (ext. 18539); Fax: +886-2-8792-1774
| |
Collapse
|
49
|
Yeshi K, Ruscher R, Hunter L, Daly NL, Loukas A, Wangchuk P. Revisiting Inflammatory Bowel Disease: Pathology, Treatments, Challenges and Emerging Therapeutics Including Drug Leads from Natural Products. J Clin Med 2020; 9:E1273. [PMID: 32354192 PMCID: PMC7288008 DOI: 10.3390/jcm9051273] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and life-long disease characterized by gastrointestinal tract inflammation. It is caused by the interplay of the host's genetic predisposition and immune responses, and various environmental factors. Despite many treatment options, there is no cure for IBD. The increasing incidence and prevalence of IBD and lack of effective long-term treatment options have resulted in a substantial economic burden to the healthcare system worldwide. Biologics targeting inflammatory cytokines initiated a shift from symptomatic control towards objective treatment goals such as mucosal healing. There are seven monoclonal antibody therapies excluding their biosimilars approved by the US Food and Drug Administration for induction and maintenance of clinical remission in IBD. Adverse side effects associated with almost all currently available drugs, especially biologics, is the main challenge in IBD management. Natural products have significant potential as therapeutic agents with an increasing role in health care. Given that natural products display great structural diversity and are relatively easy to modify chemically, they represent ideal scaffolds upon which to generate novel therapeutics. This review focuses on the pathology, currently available treatment options for IBD and associated challenges, and the roles played by natural products in health care. It discusses these natural products within the current biodiscovery research agenda, including the applications of drug discovery techniques and the search for next-generation drugs to treat a plethora of inflammatory diseases, with a major focus on IBD.
Collapse
Affiliation(s)
- Karma Yeshi
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878, Australia
| | - Roland Ruscher
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW), Sydney NSW 2052, Australia
| | - Norelle L. Daly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878, Australia
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns QLD 4878, Australia
| |
Collapse
|
50
|
Abstract
Inflammatory bowel diseases are common, complex, immune-mediated conditions with a sharply rising global prevalence. While major advances since 2000 have provided strong mechanistic clues implicating a de-regulation in the normal interaction among host genetics, immunity, microbiome, and the environment, more recent progress has generated entirely new hypotheses and also further refined older disease concepts. In this review, we focus specifically on these novel developments in the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Ross J Porter
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Rahul Kalla
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gwo-Tzer Ho
- Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|