1
|
Khademi Z, Mottaghi-Dastjerdi N, Morad H, Sahebkar A. The role of CRISPR-Cas9 and CRISPR interference technologies in the treatment of autoimmune diseases. Autoimmun Rev 2025; 24:103816. [PMID: 40221070 DOI: 10.1016/j.autrev.2025.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Autoimmune disorders can be described as inappropriate immune responses directed against self-antigens, which account for substantial healthcare concerns around the world. Immunosuppression or immune modulation are the main therapeutic modalities for autoimmune disorders. These modalities, however, impair the ability of the immune system to fight against infections, thereby predisposing to opportunistic diseases. This review explores existing therapies for autoimmune disorders, highlighting their limitations and challenges. Additionally, it describes the potential of CRISPR-Cas9 technology as a novel therapeutic approach to address these challenges.
Collapse
Affiliation(s)
- Zahra Khademi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Mottaghi-Dastjerdi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Vannuccini S, Manzi V, Tarocchi M, Donati N, La Torre F, Toscano F, Calabrò AS, Petraglia F. Human Leukocyte Antigen Haplotypes Predisposing to Celiac Disease in Patients With Endometriosis. Am J Reprod Immunol 2025; 93:e70079. [PMID: 40260879 PMCID: PMC12013243 DOI: 10.1111/aji.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/23/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
PROBLEM Immunological abnormalities are well recognized in the pathogenesis of endometriosis and the co-existence of endometriosis with inflammatory bowel disease (IBD) and celiac disease (CD), along with other systemic immune disorders, is clinically relevant. Recent genetic studies revealed some shared genetic traits associated with the co-occurrence of endometriosis with different gastrointestinal or autoimmune disorders, highlighting common biological pathways. Since class II human leukocyte antigen (HLA) genes, HLA-DQ2 and -DQ8, show the strongest and best-characterized genetic susceptibility for CD, the present study aims to explore the presence of these haplotypes in non-celiac patients with endometriosis. METHOD OF STUDY A group of patients with endometriosis (n = 126) participated in the study and were compared to healthy women (n = 379), as controls. Subjects who were diagnosed with CD or who tested positive for CD antibodies were excluded. All patients and controls were genotyped for HLA haplotypes predisposing to CD (DQ2, DQ8). In the group of endometriosis patients who tested positive for DQ2 and/or DQ8, symptoms were also investigated. RESULTS At least one of the HLA-DQ2 and -DQ8 genotypes was detected in 43.3% of non-celiac endometriosis patients (OR: 1.82, 95% CI: 1.11-2.81), whereas 29.5% (p < 0.01) of healthy women presented HLA haplotypes predisposing to CD. In endometriosis patients, no significant difference was shown between positive and negative in terms of endometriosis phenotype, or gynecological, and non-gynecological symptoms. CONCLUSIONS Our data revealed a significantly greater prevalence of predisposing haplotypes for CD in non-celiac patients with endometriosisthan in healthy subjects, suggesting that a common genetic background may explain the co-occurrence of endometriosis and CD.
Collapse
Affiliation(s)
- Silvia Vannuccini
- Department of Experimental, Clinical and Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
- Department of Maternal and Child HealthCareggi University HospitalFlorenceItaly
| | - Virginia Manzi
- Department of Experimental, Clinical and Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
- Department of Maternal and Child HealthCareggi University HospitalFlorenceItaly
| | - Mirko Tarocchi
- Department of Experimental, Clinical and Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
- Clinical Gastroenterology UnitCareggi University HospitalFlorenceItaly
| | - Nico Donati
- Clinical Gastroenterology UnitCareggi University HospitalFlorenceItaly
| | - Francesco La Torre
- Department of Experimental, Clinical and Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
- Department of Maternal and Child HealthCareggi University HospitalFlorenceItaly
| | - Federico Toscano
- Department of Experimental, Clinical and Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
- Department of Maternal and Child HealthCareggi University HospitalFlorenceItaly
| | | | - Felice Petraglia
- Department of Experimental, Clinical and Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
- Department of Maternal and Child HealthCareggi University HospitalFlorenceItaly
| |
Collapse
|
3
|
Liao Y, Tong XT, Zhou T, Xue WQ, Wang TM, He YQ, Zheng MQ, Jia YJ, Yang DW, Wu YX, Zheng XH, Zuo ZX, Chen MY, Liu N, Jia WH. Unveiling familial aggregation of nasopharyngeal carcinoma: Insights from oral microbiome dysbiosis. Cell Rep Med 2025; 6:101979. [PMID: 39999841 PMCID: PMC11970330 DOI: 10.1016/j.xcrm.2025.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/02/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Familial aggregation is common in nasopharyngeal carcinoma (NPC), yet the impact of oral microbiome dysbiosis on this occurrence remains largely unexplored. We recruit 127 families (649 members, 1-5 patients each) and a case-control cohort of 337 individuals, validating findings in an additional cohort of 995 individuals. Significant microbial similarity is observed among family members, with family factors contributing most to microbiome variation, followed by cigarette smoking, age, and gender. Among multi-NPC families, especially those with three or more patients, we identify three NPC-enriched taxa with notable heritability, including Gemella sp. (heritability, h2 = 53.1%), Lautropia mirabilis (h2 = 38.8%), and Streptococcus sp. (h2 = 38.0%). Heritable bacteria present a markedly higher heritability in families with increased clustering of NPC and form closely interacting networks, suggesting their role in NPC familial aggregation. These findings open up possibilities for identifying high-risk individuals, enhancing clinical surveillance, and developing personalized prevention and treatment approaches of NPC through microbiome-based strategies.
Collapse
Affiliation(s)
- Ying Liao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xia-Ting Tong
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Mei-Qi Zheng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yi-Jing Jia
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhi-Xiang Zuo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ming-Yuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; School of Public Health, Sun Yat-sen University, Guangzhou 510080, P.R. China.
| |
Collapse
|
4
|
Islam T, Sagor MS, Tamanna NT, Bappy MKI, Danishuddin, Haque MA, Lackner M. Exploring the Immunological Role of the Microbial Composition of the Appendix and the Associated Risks of Appendectomies. J Pers Med 2025; 15:112. [PMID: 40137428 PMCID: PMC11943658 DOI: 10.3390/jpm15030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
The appendix, an integral part of the large intestine, may serve two purposes. First of all, it is a concentration of lymphoid tissue that resembles Peyer's patches. It is also the main location in the body for the creation of immunoglobulin A (IgA), which is essential for controlling intestinal flora's density and quality. Second, the appendix constitutes a special place for commensal bacteria in the body because of its location and form. Inflammation of the appendix, brought on by a variety of infectious agents, including bacteria, viruses, or parasites, is known as appendicitis. According to a number of studies, the consequences of appendectomies may be more subtle, and may relate to the emergence of heart disease, inflammatory bowel disease (IBD), and Parkinson's disease (PD), among other unexpected illnesses. A poorer prognosis for recurrent Clostridium difficile infection is also predicted by the absence of an appendix. Appendectomies result in gut dysbiosis, which consequently causes different disease outcomes. In this review, we compared the compositional differences between the appendix and gut microbiome, the immunological role of appendix and appendix microbiome (AM), and discussed how appendectomy is linked to different disease consequences.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; (T.I.); (M.K.I.B.)
| | - Md Shahjalal Sagor
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh;
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Md Kamrul Islam Bappy
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; (T.I.); (M.K.I.B.)
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea;
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
5
|
Kelley K, Dogru D, Huang Q, Yang Y, Palm NW, Altindis E, Ludvigsson J. Children who develop celiac disease are predicted to exhibit distinct metabolic pathways among their gut microbiota years before diagnosis. Microbiol Spectr 2025; 13:e0146824. [PMID: 39902908 DOI: 10.1128/spectrum.01468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Celiac disease (CD) is an autoimmune disease caused by a loss of gluten tolerance in genetically predisposed individuals. While 30%-40% of people possess the predisposing alleles, only 1%-2% are diagnosed with CD, suggesting that environmental factors are involved in disease pathogenesis. To determine an association between pediatric CD and the gut microbiome, we analyzed fecal samples from a prospective cohort study (ABIS). These samples were collected from children who later developed CD (CD progressors) and age-matched healthy children (at ages 1, 2.5, and 5) with similar HLA genotypes, breastfeeding durations, and gluten exposure times. We previously reported gut microbiome differences at ages 2.5 and 5 in this cohort; here, we present findings from samples collected at age 1 (n = 5). We identified 14 ASVs differing significantly between CD progressors and controls, including taxa linked to CD pathogenesis. CD progressors had increased Firmicutes and higher alpha diversity in IgA- bacteria. Using PICRUSt, we analyzed metabolic pathways enriched in CD progressors compared to controls at ages 1, 2.5, and 5 (n = 5-16), revealing enriched inflammatory and pathogenic pathways potentially contributing to CD-related immune dysregulation. While results are based on the primary EdgeR analysis, we also applied a non-parametric method of statistical analysis, reporting those results with supplementary figures. In conclusion, our findings suggest distinct metabolic pathways enriched in the gut microbiome of CD progressors years before diagnosis, which could inform targeted therapeutics for CD. As discussed in the limitations section, this small pilot study should be replicated with larger sample sizes for broader generalization. IMPORTANCE We analyzed gut microbiome data from children who later developed celiac disease (CD progressors) compared to healthy children in the first 5 years of life. Using fecal samples corresponding to the three phases of gut microbiome development, we uncovered enriched functional microbial pathways in CD progressors at age 1. Some of these pathways, implicated in bacterial pathogenesis, microbiota modulation, and inflammation, have been correlated with CD. We also identified taxa in CD progressors at age 1 including Lachnospiraceae, Alistipes, and Bifidobacterium dentium that were previously associated with CD. These findings suggest a potential role for these taxa and enriched pathways in pediatric CD onset years before diagnosis, highlighting potential for early interventions. While the findings of this exploratory study should be validated with larger sample sizes, our study suggests microbial metabolic pathways related to CD onset, enhancing our understanding of CD pathogenesis and the role of gut microbiome-mediated early alterations.
Collapse
Affiliation(s)
- Kristina Kelley
- Boston College Biology Department, Chestnut Hill, Massachusetts, USA
| | - Dogus Dogru
- Boston College Biology Department, Chestnut Hill, Massachusetts, USA
| | - Qian Huang
- Boston College Biology Department, Chestnut Hill, Massachusetts, USA
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emrah Altindis
- Boston College Biology Department, Chestnut Hill, Massachusetts, USA
| | - Johnny Ludvigsson
- Crown Princess Victoria's Children's Hospital, Region Östergötland, Linköping, Sweden
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Tamayo M, Agusti A, Molina-Mendoza GV, Rossini V, Frances-Cuesta C, Tolosa-Enguís V, Sanz Y. Bifidobacterium longum CECT 30763 improves depressive- and anxiety-like behavior in a social defeat mouse model through the immune and dopaminergic systems. Brain Behav Immun 2025; 125:35-57. [PMID: 39694341 DOI: 10.1016/j.bbi.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
Adolescence is a crucial period marked by profound changes in the brain. Exposure to psychological stressors such as bullying, abuse or maltreatment during this developmental period may increase the risk of developing depression, anxiety and comorbid cardiometabolic conditions. Chronic psychological stress is associated with behavioral changes and disruption of the hypothalamic-pituitary-adrenal axis, leading to corticosterone overproduction in rodents and changes in both the immune system and the gut microbiome. Here, we demonstrate the ability of Bifidobacterium longum CECT 30763 (B. longum) to ameliorate adolescent depressive and anxiety-like behaviors in a chronic social defeat (CSD) mouse model. The mechanisms underlying this beneficial effect are related to the ability of B. longum to attenuate the inflammation and immune cell changes induced by CSD after the initial stress exposure through the induction of T regulatory cells with enduring effects that may prevent and mitigate the adverse consequences of repeated stress exposure on mental and cardiometabolic health. B. longum administration also normalized dopamine release, metabolism and signaling at the end of the intervention, which may secondarily contribute to the reversal of behavioral changes. The anti-inflammatory effects of B. longum could also explain its cardioprotective effects, which were reflected in an amelioration of the oxidative stress-induced damage in the heart and improved lipid metabolism in the liver. Overall, our findings suggest that B. longum regulates the links between the immune and dopaminergic systems from the gut to the brain, potentially underpinning its beneficial psychobiotic and physiological effects in CSD.
Collapse
Affiliation(s)
- M Tamayo
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; Department of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - A Agusti
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain.
| | - G V Molina-Mendoza
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - V Rossini
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - C Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - V Tolosa-Enguís
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Y Sanz
- Microbiome, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain
| |
Collapse
|
7
|
Costigan CM, Warren FJ, Duncan AP, Hoad CL, Lewis N, Hill T, Crooks CJ, Morgan PS, Ciacci C, Iovino P, Sanders DS, Hildebrand F, Gowland PA, Spiller RC, Marciani L. One Year of Gluten-Free Diet Impacts Gut Function and Microbiome in Celiac Disease. Clin Gastroenterol Hepatol 2024:S1542-3565(24)01048-6. [PMID: 39662692 DOI: 10.1016/j.cgh.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND & AIMS Currently, the main treatment for celiac disease (CD) is the gluten-free diet (GFD). This observational cohort study investigated the impact of CD and 1 year of GFD on gut function and microbiome. METHODS A total of 36 newly diagnosed patients and 36 healthy volunteers (HVs) were studied at baseline and at 12-month follow-up. Small bowel water content (SBWC), whole gut transit time (WGTT), and colon volumes were measured by magnetic resonance imaging. Stool sample DNA was subjected to shotgun metagenomic sequencing. Species-level abundances and gene functions, including CAZymes (carbohydrate active enzymes) were determined. RESULTS SBWC was significantly higher in people with CD (157 ± 15 mL) vs (HVs 100 ± 12 mL) (P = .003). WGTT was delayed in people with CD (68 ± 8 hours) vs HVs (41 ± 5 hours) (P = .002). The differences reduced after 12 months of GFD but not significantly. Well-being in the CD group significantly improved after GFD but did not recover to control values. CD fecal microbiota showed a high abundance of proteolytic gene functions, associated with Escherichia coli, Enterobacter, and Peptostreptococcus. GFD significantly reduced Bifidobacteria and increased Blautia wexlerae. Microbiome composition correlated positively with WGTT, colonic volume, and Akkermansia municphilia but negatively with B wexerelae. Following GFD, the reduction in WGTT and colonic volume was significantly associated with increased abundance of B wexlerae. There were also significant alterations in CAZyme profiles, specifically starch- and arabinoxylan-degrading families. CONCLUSIONS CD impacted gut function and microbiota. GFD ameliorated but did not reverse these effects, significantly reducing Bifidobacteria associated with reduced intake of resistant starch and arabinoxylan from wheat. CLINICALTRIALS gov, number: NCT02551289.
Collapse
Affiliation(s)
- Carolyn M Costigan
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | | | - Anthony P Duncan
- Quadram Institute Bioscience, Norwich, United Kingdom; Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Caroline L Hoad
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Nina Lewis
- Gastroenterology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Trevor Hill
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Colin J Crooks
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Paul S Morgan
- Medical Physics, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Carolina Ciacci
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Paola Iovino
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - David S Sanders
- Department of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich, United Kingdom; Digital Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Penny A Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Robin C Spiller
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Luca Marciani
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.
| |
Collapse
|
8
|
Di Stefano M. Fecal Microbiota Transplantation in the Treatment of Severe Constipation in Children: Is It the Future? Am J Gastroenterol 2024; 119:2187-2188. [PMID: 39150086 DOI: 10.14309/ajg.0000000000002985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Michele Di Stefano
- 1st Internal Medicine Unit, Department of Medicine, IRCCS "S.Matteo" Hospital Foundation, Pavia, Italy
| |
Collapse
|
9
|
Arnaiz-Villena A, Juarez I, Vaquero-Yuste C, Lledo T, Martin-Villa JM, Suarez-Trujillo F. Complex Interactions between the Human Major Histocompatibility Complex (MHC) and Microbiota: Their Roles in Disease Pathogenesis and Immune System Regulation. Biomedicines 2024; 12:1928. [PMID: 39200390 PMCID: PMC11352054 DOI: 10.3390/biomedicines12081928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
The relationship between microbiota and the immune system is complex and characterized by the ways in which microbiota directs immune function interactions, both innate and acquired and also keeps activating the immune system throughout an individual's life. In this respect, the human Major Histocompatibility Complex (MHC, referred to as HLA in humans) plays a crucial role and is also established in self-defense against microbes by presenting microbial-derived peptides to the immune cells. However, this assumption has some unclear aspects that should be investigated. For example, how is the microbiota shaped by microbe species diversity, quantity and functions of the immune system, as well as the role and molecular mechanisms of the HLA complex during this process. There are autoimmune diseases related to both HLA and specific microbiota changes or alterations, many of which are mentioned in the present review. In addition, the HLA peptide presenting function should be put in a framework together with its linkage to diseases and also with HLA compatibility necessary for transplants to be successful. These are still quite an enigmatically statistical and phenomenological approach, but no firm pathogenic mechanisms have been described; thus, HLA's real functioning is still to be fully unveiled. After many years of HLA single-genes studies, firm pathogenesis mechanisms underlying disease linkage have been discovered. Finally, microbiota has been defined as conformed by bacteria, protozoa, archaea, fungi, and viruses; notwithstanding, endogenous viral sequences integrated into the human genome and other viral particles (obelisks) recently found in the digestive mucosa should be taken into account because they may influence both the microbiome and the immune system and their interactions. In this context, we propose to integrate these microbial-genetic particle components into the microbiome concept and designate it as "microgenobiota".
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| | - Ignacio Juarez
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| | - Christian Vaquero-Yuste
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| | - Tomás Lledo
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| | - José Manuel Martin-Villa
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| | - Fabio Suarez-Trujillo
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (I.J.); (C.V.-Y.); (T.L.); (J.M.M.-V.); (F.S.-T.)
- Instituto de Investigacion Sanitaria Gegorio Marañon, 28009 Madrid, Spain
| |
Collapse
|
10
|
Matera M, Guandalini S. How the Microbiota May Affect Celiac Disease and What We Can Do. Nutrients 2024; 16:1882. [PMID: 38931237 PMCID: PMC11206804 DOI: 10.3390/nu16121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Celiac disease (CeD) is an autoimmune disease with a strong association with human leukocyte antigen (HLA), characterized by the production of specific autoantibodies and immune-mediated enterocyte killing. CeD is a unique autoimmune condition, as it is the only one in which the environmental trigger is known: gluten, a storage protein present in wheat, barley, and rye. How and when the loss of tolerance of the intestinal mucosa to gluten occurs is still unknown. This event, through the activation of adaptive immune responses, enhances epithelial cell death, increases the permeability of the epithelial barrier, and induces secretion of pro-inflammatory cytokines, resulting in the transition from genetic predisposition to the actual onset of the disease. While the role of gastrointestinal infections as a possible trigger has been considered on the basis of a possible mechanism of antigen mimicry, a more likely alternative mechanism appears to involve a complex disruption of the gastrointestinal microbiota ecosystem triggered by infections, rather than the specific effect of a single pathogen on intestinal mucosal homeostasis. Several lines of evidence show the existence of intestinal dysbiosis that precedes the onset of CeD in genetically at-risk subjects, characterized by the loss of protective bacterial elements that both epigenetically and functionally can influence the response of the intestinal epithelium leading to the loss of gluten tolerance. We have conducted a literature review in order to summarize the current knowledge about the complex and in part still unraveled dysbiosis that precedes and accompanies CeD and present some exciting new data on how this dysbiosis might be prevented and/or counteracted. The literature search was conducted on PubMed.gov in the time frame 2010 to March 2024 utilizing the terms "celiac disease and microbiota", "celiac disease and microbiome", and "celiac disease and probiotics" and restricting the search to the following article types: Clinical Trials, Meta-Analysis, Review, and Systematic Review. A total of 364 papers were identified and reviewed. The main conclusions of this review can be outlined as follows: (1) quantitative and qualitative changes in gut microbiota have been clearly documented in CeD patients; (2) intestinal microbiota's extensive and variable interactions with enterocytes, viral and bacterial pathogens and even gluten combine to impact the inflammatory immune response to gluten and the loss of gluten tolerance, ultimately affecting the pathogenesis, progression, and clinical expression of CeD; (3) gluten-free diet fails to restore the eubiosis of the digestive tract in CeD patients, and also negatively affects microbial homeostasis; (4) new tools allowing targeted microbiota therapy, such as the use of probiotics (a good example being precision probiotics like the novel strain of B. vulgatus (20220303-A2) begin to show exciting potential applications.
Collapse
Affiliation(s)
- Mariarosaria Matera
- Pediatric Clinical Microbiomics Service, Misericordia Hospital, Via Senese 161, 58100 Grosseto, Italy;
| | - Stefano Guandalini
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Celiac Disease Center, University of Chicago Medicine, 5841 S. Maryland Ave. MC 4065, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients 2024; 16:1762. [PMID: 38892695 PMCID: PMC11174782 DOI: 10.3390/nu16111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Autoimmune thyroid diseases (AITD) are among the most frequent autoimmune disorders, with a multifactorial etiology in which both genetic and environmental determinants are probably involved. Celiac disease (CeD) also represents a public concern, given its increasing prevalence due to the recent improvement of screening programs, leading to the detection of silent subtypes. The two conditions may be closely associated due to common risk factors, including genetic setting, changes in the composition and diversity of the gut microbiota, and deficiency of nutrients like vitamin D. This comprehensive review discussed the current evidence on the pivotal role of vitamin D in modulating both gut microbiota dysbiosis and immune system dysfunction, shedding light on the possible relevance of an adequate intake of this nutrient in the primary prevention of AITD and CeD. While future technology-based strategies for proper vitamin D supplementation could be attractive in the context of personalized medicine, several issues remain to be defined, including standardized assays for vitamin D determination, timely recommendations on vitamin D intake for immune system functioning, and longitudinal studies and randomized controlled trials to definitely establish a causal relationship between serum vitamin D levels and the onset of AITD and CeD.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
12
|
Galipeau HJ, Hinterleitner R, Leonard MM, Caminero A. Non-Host Factors Influencing Onset and Severity of Celiac Disease. Gastroenterology 2024; 167:34-50. [PMID: 38286392 PMCID: PMC11653303 DOI: 10.1053/j.gastro.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Celiac disease (CeD) is a chronic autoimmune condition driven by gluten ingestion in genetically predisposed individuals, resulting in inflammatory lesions in the proximal small intestine. Although the presence of specific HLA-linked haplotypes and gluten consumption are necessary for disease development, they alone do not account for the variable onset of CeD in susceptible individuals. This review explores the multifaceted role of non-host factors in CeD development, including dietary and microbial influences. We discuss clinical associations and observations highlighting the impact of these factors on disease onset and severity. Furthermore, we discuss studies in CeD-relevant animal models that offer mechanistic insights into how diet, the microbiome, and enteric infections modulate CeD pathogenesis. Finally, we address the clinical implications and therapeutic potential of understanding these cofactors offering a promising avenue for preventive and therapeutic interventions in CeD management.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts; Center for Celiac Research and Treatment, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Ahrens AP, Hyötyläinen T, Petrone JR, Igelström K, George CD, Garrett TJ, Orešič M, Triplett EW, Ludvigsson J. Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 2024; 187:1853-1873.e15. [PMID: 38574728 DOI: 10.1016/j.cell.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.
Collapse
Affiliation(s)
- Angelica P Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - Joseph R Petrone
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Kajsa Igelström
- Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping 58185, Sweden
| | - Christian D George
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 702 81, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
14
|
Sun J, Xie F, Wang J, Luo J, Chen T, Jiang Q, Xi Q, Liu GE, Zhang Y. Integrated meta-omics reveals the regulatory landscape involved in lipid metabolism between pig breeds. MICROBIOME 2024; 12:33. [PMID: 38374121 PMCID: PMC10877772 DOI: 10.1186/s40168-023-01743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Domesticated pigs serve as an ideal animal model for biomedical research and also provide the majority of meat for human consumption in China. Porcine intramuscular fat content associates with human health and diseases and is essential in pork quality. The molecular mechanisms controlling lipid metabolism and intramuscular fat accretion across tissues in pigs, and how these changes in response to pig breeds, remain largely unknown. RESULTS We surveyed the tissue-resident cell types of the porcine jejunum, colon, liver, and longissimus dorsi muscle between Lantang and Landrace breeds by single-cell RNA sequencing. Combining lipidomics and metagenomics approaches, we also characterized gene signatures and determined key discriminating markers of lipid digestibility, absorption, conversion, and deposition across tissues in two pig breeds. In Landrace, lean-meat swine mainly exhibited breed-specific advantages in lipid absorption and oxidation for energy supply in small and large intestinal epitheliums, nascent high-density lipoprotein synthesis for reverse cholesterol transport in enterocytes and hepatocytes, bile acid formation, and secretion for fat emulsification in hepatocytes, as well as intestinal-microbiota gene expression involved in lipid accumulation product. In Lantang, obese-meat swine showed a higher synthesis capacity of chylomicrons responsible for high serum triacylglycerol levels in small intestinal epitheliums, the predominant characteristics of lipid absorption in muscle tissue, and greater intramuscular adipcytogenesis potentials from muscular fibro-adipogenic progenitor subpopulation. CONCLUSIONS The findings enhanced our understanding of the cellular biology of lipid metabolism and opened new avenues to improve animal production and human diseases. Video Abstract.
Collapse
Affiliation(s)
- Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, USDA-ARS, BARC-East, Beltsville, MD, 20705, USA.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
15
|
Fasano A, Matera M. Probiotics to Prevent Celiac Disease and Inflammatory Bowel Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:95-111. [PMID: 39060733 DOI: 10.1007/978-3-031-58572-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The incidence of chronic inflammatory diseases (CIDs) is dramatically increasing in the developed world, resulting in an increased burden of disease in childhood. Currently, there are limited effective strategies for treating or preventing these conditions. To date, myriads of cross-sectional studies have described alterations in the composition of the gut microbiota in a variety of disease states, after the disease has already occurred. We suggest that to mechanically link these microbiome changes with disease pathogenesis, a prospective cohort design is needed to capture changes that precede or coincide with disease onset and symptoms. In addition, these prospective studies must integrate microbiological, metagenomic, meta transcriptomic and metabolomic data with minimal and standardized clinical and environmental metadata that allow to correctly compare and interpret the results of the analysis of the human microbiota in order to build a system-level model of the interactions between the host and the development of the disease. The creation of new biological computational models thus constructed will allow us to finally move from the detection of simple elements of "association" to the identification of elements of real "causality" allowing to provide a mechanistic approach to the exploration of the development of CIDs.This can only be done when these diseases are studied as complex biological networks. In this chapter we discuss the current knowledge regarding the contribution of the microbiome to CID in childhood, focusing on celiac disease and inflammatory bowel disease, with the overall aim of identifying pathways to shift research from descriptive to mechanistic approaches. We then examine how some components of the microbiota, through epigenetic reprogramming, can start the march from genetic predisposition to clinical expression of CIDs, thus opening up new possibilities for intervention, through microbiota therapy targeting the manipulation of the composition and function of the microbiota, for future applications of precision medicine and primary prevention.
Collapse
Affiliation(s)
- Alessio Fasano
- Research Centre for Immunology and Mucosal Biology and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children - Harvard Medical School, Boston, USA, MA.
- Mucosal Immunology and Biology Research Center and Division of Pediatric Gastroenterology and Nutrition, Mass General for Children - Harvard Medical School, Boston, MA, USA.
| | - Mariarosaria Matera
- Neonatologist, Neurodevelopmental Clinics and Pediatric Clinical Microbiomic - Misericordia Hospital, Grosseto, Italy
| |
Collapse
|
16
|
Cortazar-Chinarro M, Richter-Boix A, Rödin-Mörch P, Halvarsson P, Logue JB, Laurila A, Höglund J. Association between the skin microbiome and MHC class II diversity in an amphibian. Mol Ecol 2024; 33:e17198. [PMID: 37933583 DOI: 10.1111/mec.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Microbiomes play an important role in determining the ecology and behaviour of their hosts. However, questions remain pertaining to how host genetics shape microbiomes, and how microbiome composition influences host fitness. We explored the effects of geography, evolutionary history and host genetics on the skin microbiome diversity and structure in a widespread amphibian. More specifically, we examined the association between bacterial diversity and composition and the major histocompatibility complex class II exon 2 diversity in 12 moor frog (Rana arvalis) populations belonging to two geographical clusters that show signatures of past and ongoing differential selection. We found that while bacterial alpha diversity did not differ between the two clusters, MHC alleles/supertypes and genetic diversity varied considerably depending on geography and evolutionary history. Bacterial alpha diversity was positively correlated with expected MHC heterozygosity and negatively with MHC nucleotide diversity. Furthermore, bacterial community composition showed significant variation between the two geographical clusters and between specific MHC alleles/supertypes. Our findings emphasize the importance of historical demographic events on hologenomic variation and provide new insights into how immunogenetic host variability and microbial diversity may jointly influence host fitness with consequences for disease susceptibility and population persistence.
Collapse
Affiliation(s)
- M Cortazar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Lund University, Lund, Sweden
- Department of Earth Ocean and Atmospheric Sciences, Faculty of Science 2020-2207, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Richter-Boix
- Department of Political and Social Science, Pompeu Fabra University, Barcelona, Spain
| | - P Rödin-Mörch
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - P Halvarsson
- Parasitology/Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J B Logue
- Aquatic Ecology/Department of Biology, Lund University, Lund, Sweden
- SLU University Library, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - J Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Li M, Gou D, Gong P, Di W, Wang L, Ding J, Chang Y, Zuo R. An Investigation on the Effects of Dietary Vitamin E on Juvenile Sea Urchin ( Strongylocentrotus intermedius): Growth, Intestinal Microbiota, Immune Response, and Related Gene Expression. BIOLOGY 2023; 12:1523. [PMID: 38132349 PMCID: PMC10740812 DOI: 10.3390/biology12121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
A 90 d feeding experiment was conducted to investigate the effects of vitamin E (VE) on growth, intestinal microbiota, immune response, and related gene expression of juvenile sea urchin (Strongylocentrotus intermedius). Six dry feeds were made to contain graded levels of VE (78, 105, 152, 235, 302, and 390 mg/kg); these were named E78, E105, E152, E235, E302, and E390, respectively. Dry feed E50 and fresh kelp (HD) were used as the control diets. There were six replicates of cages in each dietary group, and each cage held 20 sea urchins with an initial body weight of approximately 1.50 g. Results exhibited that weight gain rate and gonadosomatic index (GSI) of the sea urchins were not significantly affected by dietary VE ranging from 78 to 390 mg/kg. Sea urchins in the dry feed groups showed poorer growth performance, but significantly higher GSI than those in the fresh kelp groups. The pepsin and lipase activities were not significantly promoted by low or moderate VE, but were inhibited by a high level of VE (302-390 mg/kg), while amylase and cellulase activities were significantly increased by low or moderate VE, with the highest values observed in the E105 and E235 groups, respectively. VE addition at a low dosage (105-152 mg/kg) showed inhibitory effects on immune and antioxidant enzyme activities and expression of inflammation-related genes, but showed no beneficial effects at moderate or high dosage (235-390 mg/kg), while a moderate or relatively higher level of VE (235-302 mg/kg) significantly increased the expression of several immune-related genes. The relative abundance of Proteobacteria, Actinobacteria, Ruegeria, and Maliponia in the intestine of the sea urchins increased with the increase in VE in the dry feeds. On the contrary, the relative abundance of the Firmicutes, Bacteroidetes, Escherichia-Shigella, Bacteroides, and Clostridium sensu stricto 1 gradually decreased as VE content increased. These results indicated that a moderate level of VE (172.5-262.4) can achieve ideal digestive enzyme activities and growth performance, but a relatively higher level of VE (235-302 mg/kg) was beneficial for maintaining the immune and antioxidant capacity of juvenile S. intermedius by regulating the expression of inflammation- and immune-related genes and abundance of some bacteria to a healthy state.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
- Department of Marine Biology, Weihai Ocean Vocational College, Weihai 264300, China
| | - Dan Gou
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Panke Gong
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Weixiao Di
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Lina Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Jun Ding
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Yaqing Chang
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| | - Rantao Zuo
- Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea (Ministry of Agriculture and Rural Affairs), Dalian Ocean University, Dalian 116023, China; (M.L.); (Y.C.)
| |
Collapse
|
18
|
Besser HA, Khosla C. Celiac disease: mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44:949-962. [PMID: 37839914 PMCID: PMC10843302 DOI: 10.1016/j.tips.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Celiac disease (CeD) is a widespread, gluten-induced, autoimmune disorder that lacks any medicinal therapy. Towards the goal of developing non-dietary treatments for CeD, research has focused on elucidating its molecular and cellular etiology. A model of pathogenesis has emerged centered on interactions between three molecular families: specific class II MHC proteins on antigen-presenting cells (APCs), deamidated gluten-derived peptides, and T cell receptors (TCRs) on inflammatory CD4+ T cells. Growing evidence suggests that this pathogenic axis can be pharmacologically targeted to protect patients from some of the adverse effects of dietary gluten. Further studies have revealed the existence of additional host and environmental contributors to disease initiation and tissue damage. This review summarizes our current understanding of CeD pathogenesis and how it is being harnessed for therapeutic design and development.
Collapse
Affiliation(s)
- Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H (Chemistry, Engineering and Medicine for Human Health), Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Chadwick C, Lehman H, Luebbert S, Abdul-Aziz R, Borowitz D. Autoimmunity in people with cystic fibrosis. J Cyst Fibros 2023; 22:969-979. [PMID: 36966037 DOI: 10.1016/j.jcf.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Cystic fibrosis (CF) clinicians may see patients who have difficult-to-manage symptoms that do not have a clear CF-related etiology, such as unusual gastrointestinal (GI) complaints, vasculitis, or arthritis. Alterations in immunity, inflammation and intraluminal dysbiosis create a milieu that may lead to autoimmunity, and the CF transmembrane regulator protein may have a direct role as well. While autoantibodies and other autoimmune markers may develop, these may or may not lead to organ involvement, therefore they are helpful but not sufficient to establish an autoimmune diagnosis. Autoimmune involvement of the GI tract is the best-established association. Next steps to understand autoimmunity in CF should include a more in-depth assessment of the community perspective on its impact. In addition, bringing together specialists in various fields including, but not limited to, pulmonology, gastroenterology, immunology, and rheumatology, would lead to cross-dissemination and help define the path forward in basic science and clinical practice.
Collapse
Affiliation(s)
| | - Heather Lehman
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | | | - Rabheh Abdul-Aziz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Drucy Borowitz
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
20
|
Belei O, Jugănaru I, Basaca DG, Munteanu AI, Mărginean O. The Role of Intestinal Microbiota in Celiac Disease and Further Therapeutic Perspectives. Life (Basel) 2023; 13:2039. [PMID: 37895421 PMCID: PMC10608277 DOI: 10.3390/life13102039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy caused by exposure to gluten and related prolamins in genetically susceptible individuals. It is a complex genetic disorder with multiple contributing genes. Linkage studies have identified several genomic regions that probably contain CD susceptibility genes. The most important genetic factors are HLA-DQ2 and DQ8. Several known environmental triggers promote the onset of CD at any age after gluten introduction in individuals with a genetic background, such as viral infections and intestinal dysbiosis. Recent publications have described the interference of the intestinal microbiome in gluten metabolism, modulation of local immune reactions, and in maintaining normal gut permeability. These results have promoted further lines of research on the benefit of probiotic administration to prevent disease onset or alleviate clinical symptoms along with a gluten-free diet (GFD). The relationship between gut microbiome changes and the onset of CD is incompletely understood, still being the subject of current research. This narrative review analyzes the interplay between environmental factors, intestinal microbiome alterations, and the course of CD. Furthermore, this review sets out to discuss if modulation of intestinal microflora with pre- and probiotics along with a GFD could represent a reliable therapeutic target for celiac patients.
Collapse
Affiliation(s)
- Oana Belei
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Iulius Jugănaru
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Diana-Georgiana Basaca
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Andrei Ioan Munteanu
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Otilia Mărginean
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
21
|
Berryman MA, Ilonen J, Triplett EW, Ludvigsson J. Important denominator between autoimmune comorbidities: a review of class II HLA, autoimmune disease, and the gut. Front Immunol 2023; 14:1270488. [PMID: 37828987 PMCID: PMC10566625 DOI: 10.3389/fimmu.2023.1270488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Human leukocyte antigen (HLA) genes are associated with more diseases than any other region of the genome. Highly polymorphic HLA genes produce variable haplotypes that are specifically correlated with pathogenically different autoimmunities. Despite differing etiologies, however, many autoimmune disorders share the same risk-associated HLA haplotypes often resulting in comorbidity. This shared risk remains an unanswered question in the field. Yet, several groups have revealed links between gut microbial community composition and autoimmune diseases. Autoimmunity is frequently associated with dysbiosis, resulting in loss of barrier function and permeability of tight junctions, which increases HLA class II expression levels and thus further influences the composition of the gut microbiome. However, autoimmune-risk-associated HLA haplotypes are connected to gut dysbiosis long before autoimmunity even begins. This review evaluates current research on the HLA-microbiome-autoimmunity triplex and proposes that pre-autoimmune bacterial dysbiosis in the gut is an important determinant between autoimmune comorbidities with systemic inflammation as a common denominator.
Collapse
Affiliation(s)
- Meghan A. Berryman
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eric W. Triplett
- Triplett Laboratory, Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
22
|
Parihar N, Bhatt LK. The emerging paradigm of Unconventional T cells as a novel therapeutic target for celiac disease. Int Immunopharmacol 2023; 122:110666. [PMID: 37473709 DOI: 10.1016/j.intimp.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Celiac disease (CD) is an organ-specific autoimmune disorder that occurs in genetically predisposed individuals when exposed to exogenous dietary gluten. This exposure to wheat gluten and related proteins from rye and barley triggers an immune response which leads to the development of enteropathy associated with symptoms of bloating, diarrhea, or malabsorption. The sole current treatment is to follow a gluten-free diet for the rest of one's life. Intestinal barriers are enriched with Unconventional T cells such as iNKT, MAIT, and γδ T cells, which lack or express only a limited range of rearranged antigen receptors. Unconventional T cells play a crucial role in regulating mucosal barrier function and microbial colonization. Unconventional T cell populations are widely represented in diseased conditions, where changes in disease activity related to iNKT and MAIT cell reduction, as well as γδ T cell expansion, are demonstrated. In this review, we discuss the role and potential employment of Unconventional T cells as a therapeutic target in the pathophysiology of celiac disease.
Collapse
Affiliation(s)
- Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
23
|
Lombardi L, Le Clerc S, Wu CL, Bouassida J, Boukouaci W, Sugusabesan S, Richard JR, Lajnef M, Tison M, Le Corvoisier P, Barau C, Banaschewski T, Holt R, Durston S, Persico AM, Oakley B, Loth E, Buitelaar J, Murphy D, Leboyer M, Zagury JF, Tamouza R. A human leukocyte antigen imputation study uncovers possible genetic interplay between gut inflammatory processes and autism spectrum disorders. Transl Psychiatry 2023; 13:244. [PMID: 37407551 DOI: 10.1038/s41398-023-02550-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental conditions that are for subsets of individuals, underpinned by dysregulated immune processes, including inflammation, autoimmunity, and dysbiosis. Consequently, the major histocompatibility complex (MHC)-hosted human leukocyte antigen (HLA) has been implicated in ASD risk, although seldom investigated. By utilizing a GWAS performed by the EU-AIMS consortium (LEAP cohort), we compared HLA and MHC genetic variants, single nucleotide polymorphisms (SNP), and haplotypes in ASD individuals, versus typically developing controls. We uncovered six SNPs, namely rs9268528, rs9268542, rs9268556, rs14004, rs9268557, and rs8084 that crossed the Bonferroni threshold, which form the underpinnings of 3 independent genetic pathways/blocks that differentially associate with ASD. Block 1 (rs9268528-G, rs9268542-G, rs9268556-C, and rs14004-A) afforded protection against ASD development, whilst the two remaining blocks, namely rs9268557-T, and rs8084-A, associated with heightened risk. rs8084 and rs14004 mapped to the HLA-DRA gene, whilst the four other SNPs located in the BTNL2 locus. Different combinations amongst BTNL2 SNPs and HLA amino acid variants or classical alleles were found either to afford protection from or contribute to ASD risk, indicating a genetic interplay between BTNL2 and HLA. Interestingly, the detected variants had transcriptional and/or quantitative traits loci implications. As BTNL2 modulates gastrointestinal homeostasis and the identified HLA alleles regulate the gastrointestinal tract in celiac disease, it is proposed that the data on ASD risk may be linked to genetically regulated gut inflammatory processes. These findings might have implications for the prevention and treatment of ASD, via the targeting of gut-related processes.
Collapse
Affiliation(s)
- Laura Lombardi
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Ching-Lien Wu
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Jihène Bouassida
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Wahid Boukouaci
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Sobika Sugusabesan
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Jean-Romain Richard
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Mohamed Lajnef
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
| | - Maxime Tison
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Philippe Le Corvoisier
- Université Paris Est Créteil, Inserm, Centre Investigation Clinique, CIC 1430, Henri Mondor, Créteil, F94010, France
| | - Caroline Barau
- Plateforme de Ressources Biologiques, HU Henri Mondor, Créteil, F94010, France
| | - Tobias Banaschewski
- Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rosemary Holt
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Sarah Durston
- Education Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonio M Persico
- Child and Adolescent Neuropsychiatry Program at Modena University Hospital, & Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Bethany Oakley
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Eva Loth
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Declan Murphy
- Department of Forensic and Neurodevelopemental Science, Institute of Psychatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marion Leboyer
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT) and Fondation FondaMental, Créteil, F-94010, France
| | - Jean-François Zagury
- Laboratoire Génomique, Bio-informatique et Chimie Moléculaire (EA7528), Conservatoire National des Arts et Métiers, 292, rue Saint Martin, 75003, Paris, France
- HESAM Université, Paris, France
| | - Ryad Tamouza
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.
- Université Paris Est Créteil, INSERM U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, AP-HP, Hôpital Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision (FHU ADAPT) and Fondation FondaMental, Créteil, F-94010, France.
| |
Collapse
|
24
|
Vaccari F, Zhang L, Giuberti G, Grasso A, Bandini F, García-Pérez P, Copat C, Lucini L, Dall'Asta M, Ferrante M, Puglisi E. The impact of metallic nanoparticles on gut fermentation processes: An integrated metabolomics and metagenomics approach following an in vitro digestion and fecal fermentation model. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131331. [PMID: 37060751 DOI: 10.1016/j.jhazmat.2023.131331] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Metallic nanoparticles (MNPs) are becoming widespread environmental contaminants. They are currently added to several food preparations and cause a fast-growing concern for human health. The present work aims to assess the impact of zinc oxide (ZnO), titanium dioxide (TiO2), and silver (Ag) nanoparticles (NPs) on the human gut metabolome and microbiome. Water samples spiked with two different concentrations of each MNPs were subjected to in-vitro gastrointestinal digestion and in-vitro large intestine fermentation. The effects of the treatments were determined through 16 S amplicon sequencing and untargeted metabolomics. Multi-omics data integration was then applied to correlate the two datasets. MNPs treatments modulated the microbial genera Bifidobacterium, Sutterella, Escherichia and Bacteroides. The treatments, especially the lower concentrations of Ag and ZnO, caused modulation of indole derivatives, peptides, and metabolites related to protein metabolism in the large intestine. Notably, these metabolites are implicated in ulcerative colitis and inflammatory bowel disease. TiO2 NPs treatment in all concentrations increased E.coli relative abundance and decreased the abundance of B. longum. Moreover, for TiO2, an enrichment in proinflammatory lipid mediators of arachidonic acid metabolites, such as prostaglandin E2 and leukotrienes B4, was detected. For all metals except TiO2, low NP concentrations promoted differentiated profiles, thus suggesting that MNPs aggregation can limit adverse effects on living cells.
Collapse
Affiliation(s)
- Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Alfina Grasso
- Department of Medical, Surgical Sciences and Advanced Tehnologies Università degli studi di Catania, Piazza dell'Università 2, 95131 Catania, Italy
| | - Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy; Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Univesidade de Vigo, Ourense Campus, 32004 Ourense, Spain
| | - Chiara Copat
- Department of Medical, Surgical Sciences and Advanced Tehnologies Università degli studi di Catania, Piazza dell'Università 2, 95131 Catania, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Margherita Dall'Asta
- Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Tehnologies Università degli studi di Catania, Piazza dell'Università 2, 95131 Catania, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
25
|
González-García BP, Marí S, Cilleros-Portet A, Hernangomez-Laderas A, Fernandez-Jimenez N, García-Santisteban I, Bilbao JR. Two-Sample Mendelian Randomization detects bidirectional causality between gut microbiota and celiac disease in individuals with high genetic risk. Front Immunol 2023; 14:1082862. [PMID: 37457693 PMCID: PMC10347381 DOI: 10.3389/fimmu.2023.1082862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Background Celiac Disease (CeD) is an autoimmune disorder triggered by gluten intake in genetically susceptible individuals. Highest risk individuals are homozygous for the Human Leucocyte Antigen (HLA) DQ2.5 haplotype or DQ2.5/DQ2.2 heterozygous. Both the HLA-DQ2-positive high genetic risk individuals and those that have developed the disease have altered intestinal microbiota, but it remains unclear whether these alterations are a cause or a consequence of CeD. Objective To investigate a potential bidirectional causality between gut microbiota (GM) and CeD in HLA-DQ2 high genetic risk individuals. Materials and Methods We performed a bidirectional Two-Sample Mendelian Randomization (2SMR) test using summary statistics from the largest publicly available Genome-Wide Association Study (GWAS) of GM and the summary statistics of the Immunochip CeD study of those individuals with the HLA-DQ2 high-risk haplotype. To test whether changes in GM composition were causally linked to CeD, GM data were used as exposure and CeD data as outcome; to test for reverse causation, the exposure and outcome datasets were inverted. Results We identified several bacteria from Ruminococcaceae and Lachnospiraceae families of the Firmicutes phylum as potentially causal in both directions. In addition, our results suggest that changes in the abundance of Veillonellaceae family might be causal in the development of CeD, while alterations in Pasteurellaceae family might be a consequence of the disease itself. Conclusion Our results suggest that the relationship between GM and HLA-DQ2 high risk individuals is highly complex and bidirectional.
Collapse
Affiliation(s)
- Bárbara P. González-García
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Sergi Marí
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Alba Hernangomez-Laderas
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU) and Biocruces Bizkaia Health Research Institute, Leioa, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
26
|
Aguayo-Patrón SV, Trujillo-Rivera OA, Cornejo-Granados F, Ochoa-Leyva A, Calderón de la Barca AM. HLA-Haplotypes Influence Microbiota Structure in Northwestern Mexican Schoolchildren Predisposed for Celiac Disease or Type 1 Diabetes. Microorganisms 2023; 11:1412. [PMID: 37374914 DOI: 10.3390/microorganisms11061412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
To contribute to and elucidate the participation of microbiota in celiac disease (CD) and type 1 diabetes (T1D) development, we evaluated the influence of HLA haplotypes, familial risk, and diet on the microbiota of schoolchildren. We conducted a cross-sectional study on 821 apparently healthy schoolchildren, genotyping HLA DQ2/DQ8, and registering familial risk. We analyzed the fecal microbiota using 16S rRNA gene sequencing, and autoantibodies for CD or T1D by ELISA. After analyses, we created three groups: at-high-risk children (Group 1), at-high-risk children plus autoantibodies (Group 2), and nonrisk children (Group 3). HLA influenced the microbiota of Groups 1 and 2, decreasing phylogenetic diversity in comparison to Group 3. The relative abundance of Oscillospiraceae UCG_002, Parabacteroides, Akkermansia, and Alistipes was higher in Group 3 compared to Groups 1 and 2. Moreover, Oscillospiraceae UCG_002 and Parabacteroides were protectors of the autoantibodies' positivity (RRR = 0.441 and RRR = 0.034, respectively). Conversely, Agathobacter was higher in Group 2, and Lachnospiraceae was in both Groups 1 and 2. Lachnospiraceae correlated positively with the sucrose degradation pathway, while the principal genera in Group 3 were associated with amino acid biosynthesis pathways. In summary, HLA and familial risk influence microbiota composition and functionality in children predisposed to CD or T1D, increasing their autoimmunity risk.
Collapse
Affiliation(s)
- Sandra V Aguayo-Patrón
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| | - Omar A Trujillo-Rivera
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico
| | - Ana M Calderón de la Barca
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| |
Collapse
|
27
|
Li T, Feng Y, Wang C, Shi T, Abudurexiti A, Zhang M, Gao F. Assessment of causal associations among gut microbiota, metabolites, and celiac disease: a bidirectional Mendelian randomization study. Front Microbiol 2023; 14:1087622. [PMID: 37250054 PMCID: PMC10213403 DOI: 10.3389/fmicb.2023.1087622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND A growing number of studies have implicated that gut microbial abundance and metabolite concentration alterations are associated with celiac disease (CD). However, the causal relationship underlying these associations is unclear. Here, we used Mendelian randomization (MR) to reveal the causal effect of gut microbiota and metabolites on CD. METHODS Genome-wide association study (GWAS) summary-level data for gut microbiota, metabolites, and CD were extracted from published GWASs. Causal bacterial taxa and metabolites for CD were determined by two-sample MR analyses. The robustness of the results was assessed with sensitivity analyses. Finally, reverse causality was investigated with a reverse MR analysis. RESULTS Genetically, increased genus Bifidobacterium was potentially associated with higher CD risk (odds ratio [OR] = 1.447, 95% confidence interval [CI]: 1.054-1.988, p = 0.022) while phylum Lentisphaerae (OR = 0.798, 95% CI: 0.648-0.983, p = 0.034) and genus Coprobacter (OR = 0.683, 95% CI: 0.531-0.880, p = 0.003) were related to lower CD risk. Moreover, there were suggestive associations between CD and the following seven metabolites: 1-oleoylglycerophosphoethanolamine, 1-palmitoylglycerophosphoethanolamine, 1,6-anhydroglucose, phenylacetylglutamine, tryptophan betaine, 10-undecenoate, and tyrosine. Sensitivity analyses deemed the results reliable without pleiotropy. CONCLUSION We investigated the causal relationships between gut microbiota, metabolites, and CD with two-sample MR. Our findings suggest several novel potential therapeutic targets for CD treatment. Further understanding of the underlying mechanism may provide insights into CD pathogenesis.
Collapse
Affiliation(s)
- Ting Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yan Feng
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Chun Wang
- Department of Pathology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Tian Shi
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Adilai Abudurexiti
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Mengxia Zhang
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Feng Gao
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, Xinjiang, China
| |
Collapse
|
28
|
Colard-Thomas J, Thomas QD, Viala M. Comedications with Immune Checkpoint Inhibitors: Involvement of the Microbiota, Impact on Efficacy and Practical Implications. Cancers (Basel) 2023; 15:2276. [PMID: 37190203 PMCID: PMC10136801 DOI: 10.3390/cancers15082276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been a major breakthrough in solid oncology over the past decade. The immune system and the gut microbiota are involved in their complex mechanisms of action. However, drug interactions have been suspected of disrupting the fine equilibrium necessary for optimal ICI efficacy. Thus, clinicians are facing a great deal of sometimes contradictory information on comedications with ICIs and must at times oppose conflicting objectives between oncological response and comorbidities or complications. We compiled in this review published data on the role of the microbiota in ICI efficacy and the impact of comedications. We found mostly concordant results on detrimental action of concurrent corticosteroids, antibiotics, and proton pump inhibitors. The timeframe seems to be an important variable each time to preserve an initial immune priming at ICIs initiation. Other molecules have been associated with improved or impaired ICIs outcomes in pre-clinical models with discordant conclusions in retrospective clinical studies. We gathered the results of the main studies concerning metformin, aspirin, and non-steroidal anti-inflammatory drugs, beta blockers, renin-angiotensin-aldosterone system inhibitors, opioids, and statins. In conclusion, one should always assess the necessity of concomitant treatment according to evidence-based recommendations and discuss the possibility of postponing ICI initiation or switching strategies to preserve the critical window.
Collapse
Affiliation(s)
- Julien Colard-Thomas
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), University of Montpellier (UM), 34090 Montpellier, France
| | - Quentin Dominique Thomas
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), University of Montpellier (UM), 34090 Montpellier, France
- Oncogenic Pathways in Lung Cancer, Montpellier Cancer Research Institute (IRCM) INSERM U1194, University of Montpellier (UM), 34090 Montpellier, France
| | - Marie Viala
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), University of Montpellier (UM), 34090 Montpellier, France
| |
Collapse
|
29
|
Rossi RE, Dispinzieri G, Elvevi A, Massironi S. Interaction between Gut Microbiota and Celiac Disease: From Pathogenesis to Treatment. Cells 2023; 12:823. [PMID: 36980164 PMCID: PMC10047417 DOI: 10.3390/cells12060823] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 03/09/2023] Open
Abstract
Celiac disease (CD) is a common systemic disorder that results from an abnormal response of human immunity to gluten intake, affecting the small intestine. In individuals who carry a genetic susceptibility, CD is triggered by environmental factors, including viral infections and dysbiosis of the gut microbiota. The gut microbiome is essential in controlling the immune system, and recent findings indicate that changes in the gut microbiome may contribute to various chronic immune disorders, such as CD through mechanisms that still require further exploration. Some bacteria exhibit epitopes that mimic gliadin and may enhance an immune response in the host. Other bacteria, including Pseudomonas aeruginosa, may work in conjunction with gluten to trigger and escalate intestinal inflammation. The microbiota may also directly influence antigen development through the production of immunogenic or tolerogenic gluten peptides or directly influence intestinal permeability through the release of zonulin. Finally, the gut microbiome can impact intestinal inflammation by generating proinflammatory or anti-inflammatory cytokines and metabolites. It is crucial to consider the impact of genetic factors (specifically, HLA-DQ haplotypes), perinatal elements such as birth mode, type of infant feeding, and antibiotic and infection exposure on the composition of the early intestinal microbiome. According to the available studies, the gut microbiome alterations associated with CD tend to exhibit a decreased presence of beneficial bacteria, including some anti-inflammatory Bifidobacterium species. However, some controversy remains as some reports have found no significant differences between the gut microbiomes of individuals with and without CD. A better understanding of the gut microbiome's role in the development of CD would greatly benefit both prevention and treatment efforts, especially in complicated or treatment-resistant cases. Here, we have attempted to summarize the available evidence on the relationship between the gut microbiota and CD, with a particular focus on potential therapeutic targets.
Collapse
Affiliation(s)
- Roberta Elisa Rossi
- Gastroenterology and Endoscopy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Giulia Dispinzieri
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | - Sara Massironi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| |
Collapse
|
30
|
Skoracka K, Hryhorowicz S, Rychter AM, Ratajczak AE, Szymczak-Tomczak A, Zawada A, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Why are western diet and western lifestyle pro-inflammatory risk factors of celiac disease? Front Nutr 2023; 9:1054089. [PMID: 36742009 PMCID: PMC9895111 DOI: 10.3389/fnut.2022.1054089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
The prevalence of celiac disease increased in recent years. In addition to the genetic and immunological factors, it appears that environmental determinants are also involved in the pathophysiology of celiac disease. Gastrointestinal infections impact the development of celiac disease. Current research does not directly confirm the protective effect of natural childbirth and breastfeeding on celiac disease. However, it seems that in genetically predisposed children, the amount of gluten introduced into the diet may have an impact on celiac disease development. Also western lifestyle, including western dietary patterns high in fat, sugar, and gliadin, potentially may increase the risk of celiac disease due to changes in intestinal microbiota, intestinal permeability, or mucosal inflammation. Further research is needed to expand the knowledge of the relationship between environmental factors and the development of celiac disease to define evidence-based preventive interventions against the development of celiac disease. The manuscript summarizes current knowledge on factors predisposing to the development of celiac disease including factors associated with the western lifestyle.
Collapse
Affiliation(s)
- Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland,*Correspondence: Kinga Skoracka ✉
| | | | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
31
|
Advances in Lactobacillus Restoration for β-Lactam Antibiotic-Induced Dysbiosis: A System Review in Intestinal Microbiota and Immune Homeostasis. Microorganisms 2023; 11:microorganisms11010179. [PMID: 36677471 PMCID: PMC9861108 DOI: 10.3390/microorganisms11010179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
A balanced gut microbiota and their metabolites are necessary for the maintenance of the host's health. The antibiotic-induced dysbiosis can cause the disturbance of the microbial community, influence the immune homeostasis and induce susceptibility to metabolic- or immune-mediated disorders and diseases. The Lactobacillus and their metabolites or components affect the function of the host's immune system and result in microbiota-mediated restoration. Recent data have indicated that, by altering the composition and functions of gut microbiota, antibiotic exposure can also lead to a number of specific pathologies, hence, understanding the potential mechanisms of the interactions between gut microbiota dysbiosis and immunological homeostasis is very important. The Lactobacillus strategies for detecting the associations between the restoration of the relatively imbalanced microbiome and gut diseases are provided in this discussion. In this review, we discuss the recently discovered connections between microbial communities and metabolites in the Lactobacillus treatment of β-lactam antibiotic-induced dysbiosis, and establish the relationship between commensal bacteria and host immunity under this imbalanced homeostasis of the gut microbiota.
Collapse
|
32
|
Rubio-Tapia A, Hill ID, Semrad C, Kelly CP, Greer KB, Limketkai BN, Lebwohl B. American College of Gastroenterology Guidelines Update: Diagnosis and Management of Celiac Disease. Am J Gastroenterol 2023; 118:59-76. [PMID: 36602836 DOI: 10.14309/ajg.0000000000002075] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/23/2022] [Indexed: 01/06/2023]
Abstract
This guideline presents an update to the 2013 American College of Gastroenterology Guideline on the Diagnosis and Management of Celiac Disease with updated recommendations for the evaluation and management of patients with celiac disease (CD). CD is defined as a permanent immune-mediated response to gluten present in wheat, barley, and rye. CD has a wide spectrum of clinical manifestations that resemble a multisystemic disorder rather than an isolated intestinal disease, and is characterized by small bowel injury and the presence of specific antibodies. Detection of CD-specific antibodies (e.g., tissue transglutaminase) in the serum is very helpful for the initial screening of patients with suspicion of CD. Intestinal biopsy is required in most patients to confirm the diagnosis. A nonbiopsy strategy for the diagnosis of CD in selected children is suggested and discussed in detail. Current treatment for CD requires strict adherence to a gluten-free diet (GFD) and lifelong medical follow-up. Most patients have excellent clinical response to a GFD. Nonresponsive CD is defined by persistent or recurrent symptoms despite being on a GFD. These patients require a systematic workup to rule out specific conditions that may cause persistent or recurrent symptoms, especially unintentional gluten contamination. Refractory CD is a rare cause of nonresponsive CD often associated with poor prognosis.
Collapse
Affiliation(s)
- Alberto Rubio-Tapia
- Division of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ivor D Hill
- Division of Gastroenterology, Hepatology, and Nutrition, Nationwide Children Hospital, Columbus, Ohio, USA
| | - Carol Semrad
- Division of Gastroenterology, University of Chicago, Chicago, Illinois, USA
| | - Ciarán P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Katarina B Greer
- Department of Medicine, Section of Gastroenterology and Hepatology, Louis Stokes VA Medical Center, Cleveland, Ohio, USA
| | - Berkeley N Limketkai
- Division of Digestive Diseases, UCLA School of Medicine, Los Angeles, California, USA
| | - Benjamin Lebwohl
- Division of Gastroenterology and Hepatology, Columbia University, New York, USA
| |
Collapse
|
33
|
Shi T, Feng Y, Liu W, Liu H, Li T, Wang M, Li Z, Lu J, Abudurexiti A, Maimaitireyimu A, Hu J, Gao F. Characteristics of gut microbiota and fecal metabolomes in patients with celiac disease in Northwest China. Front Microbiol 2022; 13:1020977. [PMID: 36519162 PMCID: PMC9742481 DOI: 10.3389/fmicb.2022.1020977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 06/30/2024] Open
Abstract
Celiac disease (CD) is an autoimmune small bowel disease. The pattern of gut microbiota is closely related to dietary habits, genetic background, and geographical factors. There is a lack of research on CD-related gut microbiota in China. This study aimed to use 16S rDNA sequencing and metabolomics to analyze the fecal microbial composition and metabolome characteristics in patients diagnosed with CD in Northwest China, and to screen potential biomarkers that could be used for its diagnosis. A significant difference in the gut microbiota composition was observed between the CD and healthy controls groups. At the genus level, the abundance of Streptococcus, Lactobacillus, Veillonella, and Allisonella communities in the CD group were increased (Q < 0.05). Furthermore, the abundance of Ruminococcus, Faecalibacterium, Blautia, Gemmiger, and Anaerostipes community in this group were decreased (Q < 0.05). A total of 222 different fecal metabolites were identified in the two groups, suggesting that CD patients have a one-carbon metabolism defect. Four species of bacteria and six metabolites were selected as potential biomarkers using a random forest model. Correlation analysis showed that changes in the gut microbiota were significantly correlated with changes in fecal metabolite levels. In conclusion, the patterns of distribution of gut microbiota and metabolomics in patients with CD in Northwest China were found to be unique to these individuals. This has opened up a new way to explore potential beneficial effects of supplementing specific nutrients and potential diagnostic and therapeutic targets in the future.
Collapse
Affiliation(s)
- Tian Shi
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Yan Feng
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Weidong Liu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Huan Liu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ting Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Man Wang
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ziqiong Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Jiajie Lu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Adilai Abudurexiti
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Ayinuer Maimaitireyimu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Jiali Hu
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| | - Feng Gao
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Xinjiang Clinical Research Center for Digestive Diseases, Urumqi, China
| |
Collapse
|
34
|
Constante M, Libertucci J, Galipeau HJ, Szamosi JC, Rueda G, Miranda PM, Pinto-Sanchez MI, Southward CM, Rossi L, Fontes ME, Chirdo FG, Surette MG, Bercik P, Caminero A, Verdu EF. Biogeographic Variation and Functional Pathways of the Gut Microbiota in Celiac Disease. Gastroenterology 2022; 163:1351-1363.e15. [PMID: 35810781 DOI: 10.1053/j.gastro.2022.06.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Genes and gluten are necessary but insufficient to cause celiac disease (CeD). Altered gut microbiota has been implicated as an additional risk factor. Variability in sampling site may confound interpretation and mechanistic insight, as CeD primarily affects the small intestine. Thus, we characterized CeD microbiota along the duodenum and in feces and verified functional impact in gnotobiotic mice. METHODS We used 16S rRNA gene sequencing (Illumina) and predicted gene function (PICRUSt2) in duodenal biopsies (D1, D2 and D3), aspirates, and stool from patients with active CeD and controls. CeD alleles were determined in consented participants. A subset of duodenal samples stratified according to similar CeD risk genotypes (controls DQ2-/- or DQ2+/- and CeD DQ2+/-) were used for further analysis and to colonize germ-free mice for gluten metabolism studies. RESULTS Microbiota composition and predicted function in CeD was largely determined by intestinal location. In the duodenum, but not stool, there was higher abundance of Escherichia coli (D1), Prevotella salivae (D2), and Neisseria (D3) in CeD vs controls. Predicted bacterial protease and peptidase genes were altered in CeD and impaired gluten degradation was detected only in mice colonized with CeD microbiota. CONCLUSIONS Our results showed luminal and mucosal microbial niches along the gut in CeD. We identified novel microbial proteolytic pathways involved in gluten detoxification that are impaired in CeD but not in controls carrying DQ2, suggesting an association with active duodenal inflammation. Sampling site should be considered a confounding factor in microbiome studies in CeD.
Collapse
Affiliation(s)
- Marco Constante
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Josie Libertucci
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Heather J Galipeau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jake C Szamosi
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Gaston Rueda
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Pedro M Miranda
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Maria Ines Pinto-Sanchez
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Carolyn M Southward
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Laura Rossi
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michelle E Fontes
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Fernando G Chirdo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos, Universidad Nacional de La Plata-National Scientific and Technical Research Council, La Plata, Argentina
| | - Michael G Surette
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Ontario, Canada
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| | - Elena F Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
35
|
Zoghi S, Abbasi A, Heravi FS, Somi MH, Nikniaz Z, Moaddab SY, Ebrahimzadeh Leylabadlo H. The gut microbiota and celiac disease: Pathophysiology, current perspective and new therapeutic approaches. Crit Rev Food Sci Nutr 2022; 64:2176-2196. [PMID: 36154539 DOI: 10.1080/10408398.2022.2121262] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Celiac disease (CD) as a chronic gluten-sensitive intestinal condition, mainly affects genetically susceptible hosts. The primary determinants of CD have been identified as environmental and genetic variables. The development of CD is significantly influenced by environmental factors, including the gut microbiome. Therefore, gut microbiome re-programming-based therapies using probiotics, prebiotics, postbiotics, gluten-free diet, and fecal microbiota transplantation have shown promising results in the modification of the gut microbiome. Due to the importance and paucity of information regarding the CD pathophysiology, in this review, we have covered the association between CD development and gut microbiota, the effects of infectious agents, particularly the recent Covid-19 infection in CD patients, and the efficacy of potential therapeutic approaches in the CD have been discussed. Hence, scientific literature indicates that the diverse biological functions of the gut microbiota against immunomodulatory responses have made microbiome-based therapy an alternative therapeutic paradigm to ameliorate the symptoms of CD and quality of life. However, the exact potential of microbiota-based techniques that aims to quantitatively and qualitatively alter the gut microbiota to be used in the treatment and ameliorate the symptoms of CD will be determined with further research in the future.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
36
|
Gerasimidis K, Gkikas K, Stewart C, Neelis E, Svolos V. Microbiome and paediatric gut diseases. Arch Dis Child 2022; 107:784-789. [PMID: 34716173 DOI: 10.1136/archdischild-2020-320875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/16/2021] [Indexed: 11/04/2022]
Abstract
In the human gut resides a vast community of microorganisms which perform critical functions for the maintenance of whole body homeostasis. Changes in the composition and function of this community, termed microbiome, are believed to provoke disease onset, including non-communicable diseases. In this review, we debate the current evidence on the role of the gut microbiome in the pathogenesis, outcomes and management of paediatric gut disease. We conclude that even though the gut microbiome is altered in paediatric inflammatory bowel disease, coeliac disease, intestinal failure, necrotising enterocolitis and irritable bowel syndrome, there are currently very few implications for unravelling disease pathogenesis or guiding clinical practice. In the future, the gut microbiome may aid in disease differential diagnosis and prediction of clinical outcomes, and comprise a target for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Christopher Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Esther Neelis
- Paediatric Gastroenterology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Vaios Svolos
- Human Nutrition, University of Glasgow, Glasgow, UK
| |
Collapse
|
37
|
Lebwohl B, Greco L. Can We Predict the Onset of Celiac Disease? Gastroenterology 2022; 163:368-369. [PMID: 35661721 DOI: 10.1053/j.gastro.2022.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Benjamin Lebwohl
- The Celiac Disease Center, Columbia University, New York, New York.
| | - Luigi Greco
- European Laboratory for Food Induced Disease, University of Naples Federico II, Naples, Italy
| |
Collapse
|
38
|
Milletich PL, Ahrens AP, Russell JT, Petrone JR, Berryman MA, Agardh D, Ludvigsson JF, Triplett EW, Ludvigsson J. Gut microbiome markers in subgroups of HLA class II genotyped infants signal future celiac disease in the general population: ABIS study. Front Cell Infect Microbiol 2022; 12:920735. [PMID: 35959362 PMCID: PMC9357981 DOI: 10.3389/fcimb.2022.920735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Although gut microbiome dysbiosis has been illustrated in celiac disease (CD), there are disagreements about what constitutes these microbial signatures and the timeline by which they precede diagnosis is largely unknown. The study of high-genetic-risk patients or those already with CD limits our knowledge of dysbiosis that may occur early in life in a generalized population. To explore early gut microbial imbalances correlated with future celiac disease (fCD), we analyzed the stool of 1478 infants aged one year, 26 of whom later acquired CD, with a mean age of diagnosis of 10.96 ± 5.6 years. With a novel iterative control-matching algorithm using the prospective general population cohort, All Babies In Southeast Sweden, we found nine core microbes with prevalence differences and seven differentially abundant bacteria between fCD infants and controls. The differences were validated using 100 separate, iterative permutations of matched controls, which suggests the bacterial signatures are significant in fCD even when accounting for the inherent variability in a general population. This work is the first to our knowledge to demonstrate that gut microbial differences in prevalence and abundance exist in infants aged one year up to 19 years before a diagnosis of CD in a general population.
Collapse
Affiliation(s)
- Patricia L. Milletich
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Angelica P. Ahrens
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jordan T. Russell
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph R. Petrone
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Meghan A. Berryman
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jonas F. Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- *Correspondence: Eric W. Triplett,
| | - Johnny Ludvigsson
- Crown Princess Victoria’s Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
39
|
Sahin Y, Mermer S. Frequency of celiac disease and distribution of HLA-DQ2/DQ8 haplotypes among siblings of children with celiac disease. World J Clin Pediatr 2022; 11:351-359. [PMID: 36052110 PMCID: PMC9331400 DOI: 10.5409/wjcp.v11.i4.351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is a multifactorial disease, but genetic factors play a major role in its etiology. It has been known that human leucocyte antigen (HLA)-DQ2/DQ8 haplotypes are one of the most important predisposing genetic factors. The risk of developing CD in first-degree relatives and especially siblings of celiac patients is quite high because of having the same HLA haplotypes. AIM To evaluate the frequency of CD and the distribution of the HLA-DQ2/DQ8 haplotypes in siblings of celiac patients. METHODS Patients with biopsy-proven CD and their siblings were included in the study; those who did not have HLA genotyping were excluded from the study. All siblings were on a gluten-containing diet. The HLA genotyping, tissue transglutaminase antibody IgA antibody test, and total IgA test were performed in all participants. RESULTS A total of 57 celiac patients and their 112 siblings were included in the study. The mean age of celiac patients and siblings were 10.30 ± 3.87 years and 9.90 ± 6.11 years, respectively. HLA-DQ2/DQ8 alleles were detected in 98.2% of patients with CD and 90.2% of siblings of celiac patients. HLA-DQ genotypes were present in all siblings diagnosed with CD. Tissue transglutaminase antibody IgA test was found to be positive in 16 siblings. CD was diagnosed in 12 siblings (10.7%) by intestinal biopsy. CONCLUSION The prevalence of CD was found to be 10.7% in siblings of celiac patients in our study. One-third of the siblings diagnosed with CD were asymptomatic. We detected HLA-DQ alleles in 98.2% of celiac patients and 100% in siblings diagnosed with CD. In addition, 1 of the 2 siblings was diagnosed with CD 1 year later and the other 4 years later. Therefore, we suggest that siblings of celiac patients should be followed up with clinical findings as well as HLA analysis and serological examination. Since the risk of developing CD is much higher in asymptomatic siblings, we recommend that siblings should be screened for CD even if they are asymptomatic.
Collapse
Affiliation(s)
- Yasin Sahin
- Department of Pediatric Gastroenterology, Mersin Training and Research Hospital, Mersin 33240, Mersin, Turkey
| | - Serdar Mermer
- Department of Medical Genetics, Mersin Training and Research Hospital, Mersin 33240, Mersin, Turkey
| |
Collapse
|
40
|
Chang D, O’Shea D, Therrien A, Silvester JA. Review article: Becoming and being coeliac-special considerations for childhood, adolescence and beyond. Aliment Pharmacol Ther 2022; 56 Suppl 1:S73-S85. [PMID: 35815825 PMCID: PMC9441244 DOI: 10.1111/apt.16851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/09/2022]
Abstract
Classically considered a disease of early childhood characterised by malabsorption and failure to thrive, coeliac disease is now recognised to arise in genetically susceptible individuals at any age. Although permissive HLA genotypes are the strongest predictor of coeliac disease, they are not sufficient. Several prospective cohort studies enrolling genetically at-risk infants have investigated the role of potential triggers of coeliac disease autoimmunity, such as timing of gluten introduction, viral infections and dietary patterns. Much less is known about triggers of coeliac disease in adulthood. Better understanding of factors leading to coeliac disease may be helpful in the management of those with potential coeliac disease (elevated serum celiac antibodies without villous atrophy in the small intestine), many of whom initiate a gluten-free diet without demonstration of villous atrophy. There are a range of clinical presentations of celiac disease in childhood and patterns of coeliac serology, including fluctuation and spontaneous reversion on a gluten-containing diet, vary. There is a current debate over best strategies to manage adults and children with potential coeliac disease to avoid over-treatment and under-treatment. Childhood and adolescence carry unique issues pertaining to the diagnosis and management of coeliac disease, and include nutrition and growth, rescreening, repeat biopsy, dietary adherence concerns and transition to adult care. In conclusion, while coeliac disease has similar pathogenesis and general clinical manifestations in paediatric and adult populations, diagnostic and management approaches need to adapt to the developmental stages.
Collapse
Affiliation(s)
- Denis Chang
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA
| | - Delia O’Shea
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA
| | - Amelie Therrien
- 2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA,3. Beth Israel Deaconess Medical Center, Boston, MA
| | - Jocelyn A Silvester
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA,3. Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
41
|
Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds. Biomed Pharmacother 2022; 151:113158. [PMID: 35644116 DOI: 10.1016/j.biopha.2022.113158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Autoimmune diseases are caused by the overactivity of the immune system towards self-constituents. Risk factors of autoimmune diseases are multiple and include genetic, epigenetic, environmental, and psychological. Autoimmune chronic inflammatory bowel diseases, including celiac and inflammatory diseases (Crohn's disease and ulcerative colitis), constitute a significant health problem worldwide. Besides the complexity of the symptoms of these diseases, their treatments have only been palliative. Numerous investigations showed that natural phytochemicals could be promising strategies to fight against these autoimmune diseases. In this respect, plant-derived natural compounds such as flavonoids, phenolic acids, and terpenoids exhibited significant effects against three autoimmune diseases affecting the intestine, particularly bowel diseases. This review focuses on the role of natural compounds obtained from medicinal plants in modulating inflammatory auto-immune diseases of the intestine. It covers the most recent literature related to the effect of these natural compounds in the treatment and prevention of auto-immune diseases of the intestine.
Collapse
|
42
|
Calabriso N, Scoditti E, Massaro M, Maffia M, Chieppa M, Laddomada B, Carluccio MA. Non-Celiac Gluten Sensitivity and Protective Role of Dietary Polyphenols. Nutrients 2022; 14:2679. [PMID: 35807860 PMCID: PMC9268201 DOI: 10.3390/nu14132679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Pathogenetically characterized by the absence of celiac disease and wheat allergy, non-celiac gluten sensitivity (NCGS) is a clinical entity triggered by the consumption of gluten-containing foods that relieved by a gluten-free diet. Since it is very difficult to maintain a complete gluten-free diet, there is a high interest in discovering alternative strategies aimed at reducing gluten concentration or mitigating its toxic effects. Plant-based dietary models are usually rich in bioactive compounds, such as polyphenols, recognized to prevent, delay, or even reverse chronic diseases, including intestinal disorders. However, research on the role of polyphenols in mitigating the toxicity of gluten-containing foods is currently limited. We address the metabolic fate of dietary polyphenols, both as free and bound macromolecule-linked forms, with particular reference to the gastrointestinal compartment, where the concentration of polyphenols can reach high levels. We analyze the potential targets of polyphenols including the gluten peptide bioavailability, the dysfunction of the intestinal epithelial barrier, intestinal immune response, oxidative stress and inflammation, and dysbiosis. Overall, this review provides an updated overview of the effects of polyphenols as possible dietary strategies to counteract the toxic effects of gluten, potentially resulting in the improved quality of life of patients with gluten-related disorders.
Collapse
Affiliation(s)
- Nadia Calabriso
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Marcello Chieppa
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; (M.M.); (M.C.)
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 73100 Lecce, Italy
| | - Maria Annunziata Carluccio
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy; (N.C.); (E.S.); (M.M.)
| |
Collapse
|
43
|
Stricker S, Hain T, Chao CM, Rudloff S. Respiratory and Intestinal Microbiota in Pediatric Lung Diseases-Current Evidence of the Gut-Lung Axis. Int J Mol Sci 2022; 23:ijms23126791. [PMID: 35743234 PMCID: PMC9224356 DOI: 10.3390/ijms23126791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota is known to influence local immune homeostasis in the gut and to shape the developing immune system towards elimination of pathogens and tolerance towards self-antigens. Even though the lung was considered sterile for a long time, recent evidence using next-generation sequencing techniques confirmed that the lower airways possess their own local microbiota. Since then, there has been growing evidence that the local respiratory and intestinal microbiota play a role in acute and chronic pediatric lung diseases. The concept of the so-called gut–lung axis describing the mutual influence of local microbiota on distal immune mechanisms was established. The mechanisms by which the intestinal microbiota modulates the systemic immune response include the production of short-chain fatty acids (SCFA) and signaling through pattern recognition receptors (PRR) and segmented filamentous bacteria. Those factors influence the secretion of pro- and anti-inflammatory cytokines by immune cells and further modulate differentiation and recruitment of T cells to the lung. This article does not only aim at reviewing recent mechanistic evidence from animal studies regarding the gut–lung axis, but also summarizes current knowledge from observational studies and human trials investigating the role of the respiratory and intestinal microbiota and their modulation by pre-, pro-, and synbiotics in pediatric lung diseases.
Collapse
Affiliation(s)
- Sebastian Stricker
- Department of Pediatrics, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Correspondence: ; Tel.: +49-641-985-56617
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, 35392 Giessen, Germany;
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Silvia Rudloff
- Department of Pediatrics, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Department of Nutritional Science, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
44
|
Morrison HA, Liu Y, Eden K, Nagai-Singer MA, Wade PA, Allen IC. NLRX1 Deficiency Alters the Gut Microbiome and Is Further Exacerbated by Adherence to a Gluten-Free Diet. Front Immunol 2022; 13:882521. [PMID: 35572547 PMCID: PMC9097893 DOI: 10.3389/fimmu.2022.882521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Patients with gluten sensitivities present with dysbiosis of the gut microbiome that is further exacerbated by a strict adherence to a gluten-free diet (GFD). A subtype of patients genetically susceptible to gluten sensitivities are Celiac Disease (CeD) patients, who are carriers of the HLA DR3/DQ2 or HLA DR4/DQ8 haplotypes. Although 85-95% of all CeD patients carry HLA DQ2, up to 25-50% of the world population carry this haplotype with only a minority developing CeD. This suggests that CeD and other gluten sensitivities are mediated by factors beyond genetics. The contribution of innate immune system signaling has been generally understudied in the context of gluten sensitivities. Thus, here we examined the role of NOD-like receptors (NLRs), a subtype of pattern recognition receptors, in maintaining the composition of the gut microbiome in animals maintained on a GFD. Human transcriptomics data revealed significant increases in the gene expression of multiple NLR family members, across functional groups, in patients with active CeD compared to control specimens. However, NLRX1 was uniquely down-regulated during active disease. NLRX1 is a negative regulatory NLR that functions to suppress inflammatory signaling and has been postulate to prevent inflammation-induced dysbiosis. Using Nlrx1-/- mice maintained on either a normal or gluten-free diet, we show that loss of NLRX1 alters the microbiome composition, and a distinctive shift further ensues following adherence to a GFD, including a reciprocal loss of beneficial microbes and increase in opportunistic bacterial populations. Finally, we evaluated the functional impact of an altered gut microbiome by assessing short- and medium-chain fatty acid production. These studies revealed significant differences in a selection of metabolic markers that when paired with 16S rRNA sequencing data could reflect an overall imbalance and loss of immune system homeostasis in the gastrointestinal system.
Collapse
Affiliation(s)
- Holly A Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Yang Liu
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Paul A Wade
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
45
|
Kalogeropoulos D, Barry R, Kalogeropoulos C. The association between intestinal microbiome and autoimmune uveitis. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2022; 97:264-275. [PMID: 35526950 DOI: 10.1016/j.oftale.2021.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION AND OBJECTIVES The microbiome is strongly implicated in a wide spectrum of immune-mediated diseases, whereas gut commensal microbiota plays a pivotal role in immune and intestinal homeostasis. MATERIALS AND METHODS A thorough literature search was performed in PubMed database. An additional search was made in Google Scholar to complete the collected items. RESULTS Due to complex interactions with the host genetics and other factors, intestinal dysbiosis has been linked to various immune-mediated disorders. In particular, the role of intestinal microbiota in the pathogenesis of uveitis has been demonstrated by several studies, indicating that changes in the microbiome can trigger autoimmune ocular inflammatory processes or affect their severity. CONCLUSIONS This review summarizes how alterations in the intestinal microbiota can conduce to immune-mediated ocular pathologies and how microbiome can be targeted in order to form novel therapeutic approaches to treat these severe and potentially blinding conditions.
Collapse
Affiliation(s)
- D Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - R Barry
- Institute of Clinical Sciences, University of Birmingham, College of Medical and Dental Sciences, Birmingham, United Kingdom; Department of Ophthalmology, Birmingham & Midland Eye Centre, Sandwell & West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - C Kalogeropoulos
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
46
|
Wessels M, Auricchio R, Dolinsek J, Donat E, Gillett P, Mårild K, Meijer C, Popp A, Mearin ML. Review on pediatric coeliac disease from a clinical perspective. Eur J Pediatr 2022; 181:1785-1795. [PMID: 35034201 DOI: 10.1007/s00431-022-04379-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
Abstract
Coeliac disease is an immune-mediated condition characterized by chronic inflammation of the small bowel with villous atrophy driven by gluten ingestion in genetically predisposed individuals. It occurs frequently in both children and adults, affecting 1-4% of the population. The disease is associated with both gastrointestinal and extra-intestinal symptoms related to malabsorption and/or immune activation, and autoantibodies to tissue transglutaminase. Removal of gluten from the diet results in resolution of symptoms and enteropathy in the majority of patients. A good diagnostic work-up is important to avoid unnecessary restrictive diets in children. In this review on pediatric coeliac disease, we address epidemiology including predisposing environmental factors and possible preventive strategies, as well as the clinical presentation, diagnosis and follow-up. What is Known: •Primary prevention of coeliac disease is not possible; however, secondary prevention by targeting high-risk groups is recommended. •The diagnosis is safe without duodenal biopsies if specific conditions are met, also in asymptomatic children. What is New: •HLA-DQ typing is not routinely required for the diagnosis, whereas it can rule out coeliac disease if HLA-DQ2 and HLA-DQ8 are absent. •Follow-up could be improved by a more rational use of (laboratory) tests, increased intention to dietary compliance and quality of life.
Collapse
Affiliation(s)
- Margreet Wessels
- Department of Pediatrics, Rijnstate Hospital, Arnhem, the Netherlands.
| | - Renata Auricchio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Jernej Dolinsek
- Department of Pediatrics, Hepatology and Nutrition Unit and Medical Faculty, Dept. of Pediatrics, University Medical Centre Maribor, GastroenterologyMaribor, Slovenia
| | - Ester Donat
- Pediatric Gastroenterology and Hepatology Unit, Celiac Disease and Digestive Immunopathology Unit, Hospital Universitari I Politècnic La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Peter Gillett
- Department of Pediatric Gastroenterology, Royal Hospital for Children and Young People, Scotland, Edinburgh, UK
| | - Karl Mårild
- Department of Pediatrics, Institute of Clinical Sciences, Department of Pediatric Gastroenterology, Sahlgrenska Academy, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Caroline Meijer
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alina Popp
- University of Medicine and Pharmacy ''Carol Davila'', National Institute for Mother and Child Health, Bucharest, Romania
| | - M Luisa Mearin
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
47
|
Štšepetova J, Simre K, Tagoma A, Uibo O, Peet A, Siljander H, Tillmann V, Knip M, Mändar R, Uibo R. Maternal breast milk microbiota and immune markers in relation to subsequent development of celiac disease in offspring. Sci Rep 2022; 12:6607. [PMID: 35459889 PMCID: PMC9033794 DOI: 10.1038/s41598-022-10679-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The potential impact of the composition of maternal breast milk is poorly known in children who develop celiac disease (CD). The aim of our study was to compare the microbiota composition and the concentrations of immune markers in breast milk from mothers whose offspring carried the genetic predisposition to CD, and whether they did or did not develop CD during follow-up for the first 3 years of life. Maternal breast milk samples [CD children (n = 6) and healthy children (n = 18)] were collected 3 months after delivery. Enzyme-linked immunosorbent assays were used to measure TGF-β1, TGF-β2, sIgA, MFG-E8 and sCD14. For microbiota analysis, next generation (Illumina) sequencing, real-time PCR and denaturing gradient gel electrophoresis were used. Phylotype abundance and the Shannon ‘H’ diversity index were significantly higher in breast milk samples in the CD group. There was higher prevalence of the phyla Bacteroidetes and Fusobacteria, the classes Clostridia and Fusobacteriia, and the genera Leptotrichia, Anaerococcus, Sphingomonas, Actynomyces and Akkermansia in the CD group. The immunological markers were differently associated with some Gram-negative bacterial genera and species (Chryseobacterium, Sphingobium) as well as Gram-positive species (Lactobacillusreuteri, Bifidobacteriumanimalis). In conclusion, the microbiota in breast milk from mothers of genetically predisposed offspring who presented CD showed a higher bacterial phylotype abundance and diversity, as well as a different bacterial composition, as compared with the mothers of unaffected offspring. These immune markers showed some associations with bacterial composition and may influence the risk for development of CD beyond early childhood.
Collapse
Affiliation(s)
- Jelena Štšepetova
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Street 19, 50411, Tartu, Estonia.
| | - Kärt Simre
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia. .,Children's Clinic, Tartu University Hospital, Lunini 6, 50406, Tartu, Estonia.
| | - Aili Tagoma
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Oivi Uibo
- Children's Clinic, Tartu University Hospital, Lunini 6, 50406, Tartu, Estonia.,Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Lunini 6, 50406, Tartu, Estonia
| | - Aleksandr Peet
- Children's Clinic, Tartu University Hospital, Lunini 6, 50406, Tartu, Estonia.,Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Lunini 6, 50406, Tartu, Estonia
| | - Heli Siljander
- Pediatric Research Center, Children's Hospital, University of Helsinki, Helsinki University Hospital, Stenbäckinkatu 9, PO Box 347, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland.,Center of Military Medicine, Finnish Defence Forces Logistics Command, Tampere, Finland
| | - Vallo Tillmann
- Children's Clinic, Tartu University Hospital, Lunini 6, 50406, Tartu, Estonia.,Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Lunini 6, 50406, Tartu, Estonia
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki, Helsinki University Hospital, Stenbäckinkatu 9, PO Box 347, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Biomedicum 1, Haartmaninkatu 8, 00290, Helsinki, Finland.,Center for Child Health Research, Tampere University Hospital, Teiskontie 35, 33520, Tampere, Finland
| | - Reet Mändar
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila Street 19, 50411, Tartu, Estonia.,Competence Center on Health Technologies, Teaduspargi 13, 50411, Tartu, Estonia
| | - Raivo Uibo
- Department of Immunology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| |
Collapse
|
48
|
Low L, Suleiman K, Shamdas M, Bassilious K, Poonit N, Rossiter AE, Acharjee A, Loman N, Murray PI, Wallace GR, Rauz S. Gut Dysbiosis in Ocular Mucous Membrane Pemphigoid. Front Cell Infect Microbiol 2022; 12:780354. [PMID: 35493740 PMCID: PMC9046938 DOI: 10.3389/fcimb.2022.780354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
Mucous Membrane Pemphigoid is an orphan multi-system autoimmune scarring disease involving mucosal sites, including the ocular surface (OcMMP) and gut. Loss of tolerance to epithelial basement membrane proteins and generation of autoreactive T cell and/or autoantibodies are central to the disease process. The gut microbiome plays a critical role in the development of the immune system. Alteration in the gut microbiome (gut dysbiosis) affects the generation of autoreactive T cells and B cell autoantibody repertoire in several autoimmune conditions. This study examines the relationship between gut microbiome diversity and ocular inflammation in patients with OcMMP by comparing OcMMP gut microbiome profiles with healthy controls. DNA was extracted from faecal samples (49 OcMMP patients, 40 healthy controls), amplified for the V4 region of the 16S rRNA gene and sequenced using Illumina Miseq platform. Sequencing reads were processed using the bioinformatics pipeline available in the mothur v.1.44.1 software. After adjusting for participant factors in the multivariable model (age, gender, BMI, diet, proton pump inhibitor use), OcMMP cohort was found to be associated with lower number of operational taxonomic units (OTUs) and Shannon Diversity Index when compared to healthy controls. Within the OcMMP cohort, the number of OTUs were found to be significantly correlated with both the bulbar conjunctival inflammation score (p=0.03) and the current use of systemic immunotherapy (p=0.02). The linear discriminant analysis effect size scores indicated that Streptococcus and Lachnoclostridium were enriched in OcMMP patients whilst Oxalobacter, Clostridia uncultured genus-level group (UCG) 014, Christensenellaceae R-7 group and butyrate-producing bacteria such as Ruminococcus, Lachnospiraceae, Coprococcus, Roseburia, Oscillospiraceae UCG 003, 005, NK4A214 group were enriched in healthy controls (Log10 LDA score < 2, FDR-adjusted p <0.05). In conclusion, OcMMP patients have gut dysbiosis correlating with bulbar conjunctival inflammation and the use of systemic immunotherapies. This provides a framework for future longitudinal deep phenotyping studies on the role of the gut microbiome in the pathogenesis of OcMMP.
Collapse
Affiliation(s)
- Liying Low
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kusy Suleiman
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Mohith Shamdas
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kerolos Bassilious
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Natraj Poonit
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Amanda E. Rossiter
- Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, United Kingdom
- Institute of Translational Medicine, University Hospitals Birmingham National Health Service (NHS), Foundation Trust, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, United Kingdom
| | - Nicholas Loman
- Institute for Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Philip I. Murray
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Graham R. Wallace
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham National Health Service (NHS) Trust, Birmingham, United Kingdom
- *Correspondence: Saaeha Rauz,
| |
Collapse
|
49
|
Liu ZZ, Sun JH, Wang WJ. Gut microbiota in gastrointestinal diseases during pregnancy. World J Clin Cases 2022; 10:2976-2989. [PMID: 35647135 PMCID: PMC9082698 DOI: 10.12998/wjcc.v10.i10.2976] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/18/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota (GM) is a micro-ecosystem composed of all microorganisms in the human intestine. The interaction between GM and the host plays an important role in maintaining normal physiological functions in the host. Dysbiosis of the GM may cause various diseases. GM has been demonstrated to be associated with human health and disease, and changes during individual development and disease. Pregnancy is a complicated physiological process. Hormones, the immune system, metabolism, and GM undergo drastic changes during pregnancy. Gastrointestinal diseases during pregnancy, such as hepatitis, intrahepatic cholestasis of pregnancy, and pre-eclampsia, can affect both maternal and fetal health. The dysregulation of GM during pregnancy may lead to a variety of diseases, including gastrointestinal diseases. Herein, we review recent research articles on GM in pregnancy-related gastrointestinal diseases, discuss the interaction of the GM with the host under normal physiological conditions, gastrointestinal diseases, and pregnancy-specific disorders. As more attention is paid to reproductive health, the pathogenic mechanism of GM in gastrointestinal diseases during pregnancy will be further studied to provide a theoretical basis for the use of probiotics to treat these diseases.
Collapse
Affiliation(s)
- Zhong-Zhen Liu
- BGI-Shenzhen, Shenzhen 518083, Guangdong Province, China
| | - Jing-Hua Sun
- BGI-Shenzhen, Shenzhen 518083, Guangdong Province, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jing Wang
- BGI-Shenzhen, Shenzhen 518083, Guangdong Province, China
| |
Collapse
|
50
|
Maintaining, Managing, and Tele-Monitoring a Nutritionally Adequate Mediterranean Gluten-Free Diet and Proper Lifestyle in Adult Patients. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The gluten-free diet (GFD) is a restrictive diet. In many cases, it must be permanent and strict, and it may be associated with both nutritional deficiencies and excesses, which can be prevented by following a healthy, natural Mediterranean GFD (Med-GFD). In this paper, we describe the importance of the Mediterranean diet, the correct intake of vitamins and minerals, and how they may play an important protective role against chronic or degenerative conditions. Herewith, we analyze different aspects that influence the ability to maintain a correct and balanced Med-GFD, which may contribute to the health status of patients, including a conscious use of gluten-free products to maintain a healthy lifestyle. Monitoring the Med-GFD remains a pivotal issue: to evaluate the presence of gluten peptides in urine, it could be important to introduce point-of-care testing, an efficient method for GFD self-monitoring (immunochromatographic technique), together with online nutritional questionnaires. Indeed, medical care via telemedicine can provide practical indications aimed at supporting patients and doctors. A natural Med-GFD can ensure the correct intake of nutrients and could be important for patients affected by gluten-related disorders, helping them to maintain a correct and healthy lifestyle.
Collapse
|