1
|
Breideband L, Wächtershäuser KN, Sarkar R, Puspathasan M, Stelzer EH, Pampaloni F. Gravitational forces and matrix stiffness modulate the invasiveness of breast cancer cells in bioprinted spheroids. Mater Today Bio 2025; 31:101640. [PMID: 40124331 PMCID: PMC11930500 DOI: 10.1016/j.mtbio.2025.101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/29/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
The progression of breast cancer is influenced by the stiffness of the extracellular matrix (ECM), which becomes stiffer as cancer advances due to increased collagen IV and laminin secretion by cancer-associated fibroblasts. Intriguingly, breast cancer cells cultivated in two-dimensions exhibit a less aggressive behavior when exposed to weightlessness, or microgravity conditions. This study aims to elucidate the interplay between matrix stiffness and microgravity on breast cancer progression. For this purpose, three-dimensional spheroids of breast cancer cell lines (MCF-7 and MDA-MB-231) were formed. These spheroids were subsequently bioprinted in hydrogels of varying stiffness, obtained by the mixing of gelatin methacrylate and poly(ethylene) glycol diacrylate mixed at different ratios. The constructs were printed with a custom stereolithography (SLA) bioprinter converted from a low-cost, commercially available 3D printer. These bioprinted structures, encapsulating breast cancer spheroids, were then placed in a clinostat (microgravity simulation device) for a duration of seven days. Comparative analyses were conducted between objects cultured under microgravity and standard earth gravity conditions. Protein expression was characterized through fluorescent microscopy, while gene expression of MCF-7 constructs was analyzed via RNA sequencing. Remarkably, the influence of a stiffer ECM on the protein and gene expression levels of breast cancer cells could be modulated and sometimes even reversed in microgravity conditions. The study's findings hold implications for refining therapeutic strategies for advanced breast cancer stages - an array of genes involved in reversing aggressive or even metastatic behavior might lead to the discovery of new compounds that could be used in a clinical setting.
Collapse
Affiliation(s)
- Louise Breideband
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Kaja Nicole Wächtershäuser
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Ryan Sarkar
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Melosha Puspathasan
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Ernst H.K. Stelzer
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Biological Sciences (IZN), Buchman Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt am Main, DE-Frankfurt am Main, Germany
| |
Collapse
|
2
|
Li Y, Xiao P, Boadu F, Goldkamp AK, Nirgude S, Cheng J, Hagen DE, Kalish JM, Rivera RM. Beckwith-Wiedemann syndrome and large offspring syndrome involve alterations in methylome, transcriptome, and chromatin configuration. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2023.12.14.23299981. [PMID: 38168424 PMCID: PMC10760283 DOI: 10.1101/2023.12.14.23299981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Beckwith-Wiedemann Syndrome (BWS) is the most common epigenetic overgrowth syndrome, caused by epigenetic alterations on chromosome 11p15. In ∼50% of patients with BWS, the imprinted region KvDMR1 (IC2) is hypomethylated. Nearly all children with BWS develop organ overgrowth and up to 28% develop cancer during childhood. The global epigenetic alterations beyond the 11p15 region in BWS are not currently known. Uncovering these alterations at the methylome, transcriptome, and chromatin architecture levels are necessary steps to improve the diagnosis and understanding of patients with BWS. Here we characterized the complete epigenetic profiles of BWS IC2 individuals together with the animal model of BWS, bovine large offspring syndrome (LOS). A novel finding of this research is the identification of two molecular subgroups of BWS IC2 individuals. Genome-wide alternations were detected for DNA methylation, transcript abundance, alternative splicing events of RNA, chromosome compartments, and topologically associating domains (TADs) in BWS and LOS, with shared alterations identified between species. Altered chromosome compartments and TADs were correlated with differentially expressed genes in BWS and LOS. Together, we highlight genes and genomic regions that have the potential to serve as targets for biomarker development to improve current molecular diagnostic methodologies for BWS.
Collapse
|
3
|
Chen F, Yang A, Lu Y, Zhang Y, Zhang J, Bu J, Guo R, Han Y, Wu D, Wu Y. Differential transport pathways of saturated and unsaturated fatty acid esters in male mouse hepatocytes. Nat Commun 2025; 16:1344. [PMID: 39905035 PMCID: PMC11794647 DOI: 10.1038/s41467-025-56620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Saturated fatty acid (SFA) and unsaturated fatty acid (UFA) have distinct impacts on health. Whether SFA and UFA are differentially transported in liver remains elusive. Here, we find the secretion of UFA but not SFA esters is retarded in a male mouse hepatic endoplasmic reticulum (ER) stress model. Among 13 members of protein disulfide isomerase (PDI) family, only PDIA1 (PDI) deficiency leads to hepatosteatosis and hypolipidemia. In PDI-deficient male mouse liver, there is a severe accumulation but secretory blockade of UFA esters, whereas the accumulation and secretion of SFA esters remain normal. PDI catalyzes the oxidative folding of microsomal triglyceride transfer protein (MTP). In addition, PDI deficiency in hepatocytes abolishes Apolipoprotein B-100 (ApoB-100) very low-density lipoprotein (VLDL) secretion while maintaining partial ApoB-48 VLDL secretion. In summary, we find that the secretion of UFA esters is PDI-MTP indispensable, while SFA esters could be transferred out of liver via ApoB-48 VLDL through a PDI-MTP-independent pathway.
Collapse
Grants
- 81970128, 82170129, 82470132, 31970890, 8217011021, 82020108003, 82270136 National Natural Science Foundation of China (National Science Foundation of China)
- Translational Research Grant of NCRCH (2020ZKPA02, 2020WSA04), the collaboration fund from State Key Laboratory of Radiation Medicine and Protection (GZN1201802), the Suzhou Science and Technology Development Project (SKJY2021043), the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Collapse
Affiliation(s)
- Fengwu Chen
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China.
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Aizhen Yang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yue Lu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yuxin Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
- Department of Hematology, Key Laboratory of Hematology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jingyu Zhang
- Department of Hematology, Key Laboratory of Hematology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jianan Bu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Runlin Guo
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China.
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Rojas S, Barghouth PG, Karabinis P, Oviedo NJ. The DNA methyltransferase DMAP1 is required for tissue maintenance and planarian regeneration. Dev Biol 2024; 516:196-206. [PMID: 39179016 PMCID: PMC11521571 DOI: 10.1016/j.ydbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
The precise regulation of transcription is required for embryonic development, adult tissue turnover, and regeneration. Epigenetic modifications play a crucial role in orchestrating and regulating the transcription of genes. These modifications are important in the transition of pluripotent stem cells and their progeny. Methylation, a key epigenetic modification, influences gene expression through changes in DNA methylation. Work in different organisms has shown that the DNA methyltransferase-1-associated protein (DMAP1) may associate with other molecules to repress transcription through DNA methylation. Thus, DMAP1 is a versatile protein implicated in a myriad of events, including pluripotency maintenance, DNA damage repair, and tumor suppression. While DMAP1 has been extensively studied in vitro, its complex regulation in the context of the adult organism remains unclear. To gain insights into the possible roles of DMAP1 at the organismal level, we used planarian flatworms that possess remarkable regenerative capabilities driven by pluripotent stem cells called neoblast. Our findings demonstrate the evolutionary conservation of DMAP1 in the planarian Schmidtea mediterranea. Functional disruption of DMAP1 through RNA interference revealed its critical role in tissue maintenance, neoblast differentiation, and regeneration in S. mediterranea. Moreover, our analysis unveiled a novel function for DMAP1 in regulating cell death in response to DNA damage and influencing the expression of axial polarity markers. Our findings provide a simplified paradigm for studying DMAP1's function in adult tissues.
Collapse
Affiliation(s)
- Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Paul G Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Peter Karabinis
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA; Health Sciences Research Institute, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
5
|
Imamura I, Kiyama R. Potential involvement of KANK1 haploinsufficiency in centrosome aberrations. Biochim Biophys Acta Gen Subj 2024; 1868:130648. [PMID: 38830559 DOI: 10.1016/j.bbagen.2024.130648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
KANK1 was found as a tumor suppressor gene based on frequent deletions in renal cell carcinoma and the inhibitory activity of tumor cell proliferation. Previously, we reported that knockdown of KANK1 induced centrosomal amplification, leading to abnormal cell division, through the hyperactivation of RhoA small GTPase. Here, we investigated the loss of KANK1 function by performing CRISPR/Cas9-based genome editing to knockout the gene. After several rounds of genome editing, however, there were no cell lines with complete loss of KANK1, and the less the wild-type KANK1 dosage, the greater the number of cells with abnormal numbers of centrosomes and rates of cell-doubling and apoptosis, suggesting the involvement of KANK1 haploinsufficiency in centrosome aberrations. The rescue of KANK1-knockdown cells with a KANK1-expressing plasmid restored the rates of cells exhibiting centrosomal amplification to the control level. RNA-sequencing analysis of the cells with reduced dosages of functional KANK1 revealed potential involvement of other cell proliferation-related genes, such as EGR1, MDGA2, and BMP3, which have been reported to show haploinsufficiency when they function. When EGR1 protein expression was reduced by siRNA technology, the number of cells exhibiting centrosomal amplification increased, along with the reduction of KANK1 protein expression, suggesting their functional relationship. Thus, KANK1 haploinsufficiency may contribute to centrosome aberrations through the network of haploinsufficiency-related genes.
Collapse
Affiliation(s)
- Ikumi Imamura
- Faculty of Life Science, Kyushu Sangyo University, Japan
| | - Ryoiti Kiyama
- Faculty of Life Science, Kyushu Sangyo University, Japan.
| |
Collapse
|
6
|
Shen-Gunther J, Easley A. HPV, HBV, and HIV-1 Viral Integration Site Mapping: A Streamlined Workflow from NGS to Genomic Insights of Carcinogenesis. Viruses 2024; 16:975. [PMID: 38932267 PMCID: PMC11209625 DOI: 10.3390/v16060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Viral integration within the host genome plays a pivotal role in carcinogenesis. Various disruptive mechanisms are involved, leading to genomic instability, mutations, and DNA damage. With next-generation sequencing (NGS), we can now precisely identify viral and host genomic breakpoints and chimeric sequences, which are useful for integration site analysis. In this study, we evaluated a commercial hybrid capture NGS panel specifically designed for detecting three key viruses: HPV, HBV, and HIV-1. We also tested workflows for Viral Hybrid Capture (VHC) and Viral Integration Site (VIS) analysis, leveraging customized viral databases in CLC Microbial Genomics. By analyzing sequenced data from virally infected cancer cell lines (including SiHa, HeLa, CaSki, C-33A, DoTc2, 2A3, SCC154 for HPV; 3B2, SNU-182 for HBV; and ACH-2 for HIV-1), we precisely pinpointed viral integration sites. The workflow also highlighted disrupted and neighboring human genes that may play a crucial role in tumor development. Our results included informative virus-host read mappings, genomic breakpoints, and integration circular plots. These visual representations enhance our understanding of the integration process. In conclusion, our seamless end-to-end workflow bridges the gap in understanding viral contributions to cancer development, paving the way for improved diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Jane Shen-Gunther
- Gynecologic Oncology & Clinical Investigation, Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA
| | - Acarizia Easley
- Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| |
Collapse
|
7
|
Zhang M, Yang J, Liang G, Yuan H, Wu Y, Li L, Yu T, Zhang Y, Wang J. FOXA1-Driven pathways exacerbate Radiotherapy-Induced kidney injury in colorectal cancer. Int Immunopharmacol 2024; 131:111689. [PMID: 38471364 DOI: 10.1016/j.intimp.2024.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of FOXA1 in acute kidney injury (AKI) induced by radiotherapy in colorectal cancer. Although FOXA1 is known to be aberrantly expressed in malignant tumors, its contribution to AKI remains unclear. This study aimed to explore the involvement of FOXA1 in AKI induced by radiotherapy in colorectal cancer and its influence on the regulation of downstream target genes. METHODS Firstly, a transcriptome analysis was performed on mice to establish a radiation-induced AKI model, and qPCR was used to determine the expression of FOXA1 in renal cell injury models induced by X-ray irradiation. Additionally, FOXA1 was silenced using lentiviral vectors to investigate its effects on the apoptosis of mice with radiation-induced AKI and HK-2 cells. Next, bioinformatics analysis and various experimental validation methods such as ChIP assays, co-immunoprecipitation, and dual-luciferase reporter assays were employed to explore the relationship between FOXA1 and the downstream regulatory factors ITCH promoter and the ubiquitin ligase-degradable TXNIP. Finally, lentiviral overexpression or knockout techniques were used to investigate the impact of the FOXA1/ITCH/TXNIP axis on oxidative stress and the activation of inflammatory body NLRP3. RESULTS This study revealed that FOXA1 was significantly upregulated in the renal tissues of mice with radiation-induced AKI and in the injured HK-2 cells. Furthermore, in vitro cell experiments and animal experiments demonstrated that FOXA1 suppressed the transcription of the E3 ubiquitin ligase ITCH, thereby promoting apoptosis of renal tubular cells and causing renal tissue damage. Further in vivo animal experiments confirmed that TXNIP, a protein degraded by ITCH ubiquitination, could inhibit oxidative stress and the activation of NLRP3 inflammasome in the AKI mouse model. CONCLUSION FOXA1 enhances oxidative stress, cell apoptosis, and NLRP3 inflammasome activation by regulating the ITCH/TXNIP axis, thereby exacerbating radiotherapy-induced AKI.
Collapse
Affiliation(s)
- Minhai Zhang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China
| | - Guodong Liang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Huiqiong Yuan
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanni Wu
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Li Li
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Yu
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuling Zhang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou 510120, China.
| |
Collapse
|
8
|
Rojas S, Barghouth PG, Karabinis P, Oviedo NJ. The DNA Methyltransferase DMAP1 is Required for Tissue Maintenance and Planarian Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588909. [PMID: 38645093 PMCID: PMC11030423 DOI: 10.1101/2024.04.10.588909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The precise regulation of transcription is required for embryonic development, adult tissue turnover, and regeneration. Epigenetic modifications play a crucial role in orchestrating and regulating the transcription of genes. These modifications are important in the transition of pluripotent stem cells and their progeny. Methylation, a key epigenetic modification, influences gene expression through changes in histone tails and direct DNA methylation. Work in different organisms has shown that the DNA methyltransferase-1-associated protein (DMAP1) may associate with other molecules to repress transcription through DNA methylation. Thus, DMAP1 is a versatile protein implicated in a myriad of events, including pluripotency maintenance, DNA damage repair, and tumor suppression. While DMAP1 has been extensively studied in vitro, its complex regulation in the context of the adult organism remains unclear. To gain insights into the possible roles of DMAP1 at the organismal level, we used planarian flatworms that possess remarkable regenerative capabilities driven by pluripotent stem cells called neoblast. Our findings demonstrate the evolutionary conservation of DMAP1 in the planarian Schmidtea mediterranea. Functional disruption of DMAP1 through RNA interference revealed its critical role in tissue maintenance, neoblast differentiation, and regeneration in S. mediterranea. Moreover, our analysis unveiled a novel function for DMAP1 in regulating cell death in response to DNA damage and influencing the expression of axial polarity markers. Our findings provide a simplified paradigm for studying DMAP1's epigenetic regulation in adult tissues.
Collapse
Affiliation(s)
- Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
| | - Paul G. Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
| | - Peter Karabinis
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
| | - Néstor J. Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
- Health Sciences Research Institute, University of California, Merced, CA, 95343
| |
Collapse
|
9
|
Zhang L, Xiong Y, Zhang J, Feng Y, Xu A. Systematic proteome-wide Mendelian randomization using the human plasma proteome to identify therapeutic targets for lung adenocarcinoma. J Transl Med 2024; 22:330. [PMID: 38576019 PMCID: PMC10993587 DOI: 10.1186/s12967-024-04919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the predominant histological subtype of lung cancer and the leading cause of cancer-related mortality. Identifying effective drug targets is crucial for advancing LUAD treatment strategies. METHODS This study employed proteome-wide Mendelian randomization (MR) and colocalization analyses. We collected data on 1394 plasma proteins from a protein quantitative trait loci (pQTL) study involving 4907 individuals. Genetic associations with LUAD were derived from the Transdisciplinary Research in Cancer of the Lung (TRICL) study, including 11,245 cases and 54,619 controls. We integrated pQTL and LUAD genome-wide association studies (GWASs) data to identify candidate proteins. MR utilizes single nucleotide polymorphisms (SNPs) as genetic instruments to estimate the causal effect of exposure on outcome, while Bayesian colocalization analysis determines the probability of shared causal genetic variants between traits. Our study applied these methods to assess causality between plasma proteins and LUAD. Furthermore, we employed a two-step MR to quantify the proportion of risk factors mediated by proteins on LUAD. Finally, protein-protein interaction (PPI) analysis elucidated potential links between proteins and current LUAD medications. RESULTS We identified nine plasma proteins significantly associated with LUAD. Increased levels of ALAD, FLT1, ICAM5, and VWC2 exhibited protective effects, with odds ratios of 0.79 (95% CI 0.72-0.87), 0.39 (95% CI 0.28-0.55), 0.91 (95% CI 0.72-0.87), and 0.85 (95% CI 0.79-0.92), respectively. Conversely, MDGA2 (OR, 1.13; 95% CI 1.08-1.19), NTM (OR, 1.12; 95% CI 1.09-1.16), PMM2 (OR, 1.35; 95% CI 1.18-1.53), RNASET2 (OR, 1.15; 95% CI 1.08-1.21), and TFPI (OR, 4.58; 95% CI 3.02-6.94) increased LUAD risk. Notably, none of the nine proteins showed evidence of reverse causality. Bayesian colocalization indicated that RNASET2, TFPI, and VWC2 shared the same variant with LUAD. Furthermore, NTM and FLT1 demonstrated interactions with targets of current LUAD medications. Additionally, FLT1 and TFPI are currently under evaluation as therapeutic targets, while NTM, RNASET2, and VWC2 are potentially druggable. These findings shed light on LUAD pathogenesis, highlighting the tumor-promoting effects of RNASET2, TFPI, and NTM, along with the protective effects of VWC2 and FLT1, providing a significant biological foundation for future LUAD therapeutic targets. CONCLUSIONS Our proteome-wide MR analysis highlighted RNASET2, TFPI, VWC2, NTM, and FLT1 as potential drug targets for further clinical investigation in LUAD. However, the specific mechanisms by which these proteins influence LUAD remain elusive. Targeting these proteins in drug development holds the potential for successful clinical trials, providing a pathway to prioritize and reduce costs in LUAD therapeutics.
Collapse
Affiliation(s)
- Long Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yajun Xiong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuying Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aiguo Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Usui G, Matsusaka K, Huang KK, Zhu F, Shinozaki T, Fukuyo M, Rahmutulla B, Yogi N, Okada T, Minami M, Seki M, Sakai E, Fujibayashi K, Kwok Tsao SK, Khor C, Ang TL, Abe H, Matsubara H, Fukayama M, Gunji T, Matsuhashi N, Morikawa T, Ushiku T, Yeoh KG, Tan P, Kaneda A. Integrated environmental, lifestyle, and epigenetic risk prediction of primary gastric neoplasia using the longitudinally monitored cohorts. EBioMedicine 2023; 98:104844. [PMID: 38251469 PMCID: PMC10755115 DOI: 10.1016/j.ebiom.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND DNA methylation accumulates in non-malignant gastric mucosa after exposure to pathogens. To elucidate how environmental, methylation, and lifestyle factors interplay to influence primary gastric neoplasia (GN) risk, we analyzed longitudinally monitored cohorts in Japan and Singapore. METHODS Asymptomatic subjects who underwent a gastric mucosal biopsy on the health check-up were enrolled. We analyzed the association between clinical factors and GN development using Cox hazard models. We further conducted comprehensive methylation analysis on selected tissues, including (i) mucosae from subjects developing GN later, (ii) mucosae from subjects not developing GN later, and (iii) GN tissues and surrounding mucosae. We also use the methylation data of mucosa collected in Singapore. The association between methylation and GN risk, as well as lifestyle and methylation, were analyzed. FINDINGS Among 4234 subjects, GN was developed in 77 subjects. GN incidence was correlated with age, drinking, smoking, and Helicobacter pylori (HP) status. Accumulation of methylation in biopsied gastric mucosae was predictive of higher future GN risk and shorter duration to GN incidence. Whereas methylation levels were associated with HP positivity, lifestyle, and morphological alterations, DNA methylation remained an independent GN risk factor through multivariable analyses. Pro-carcinogenic epigenetic alterations initiated by HP exposure were amplified by unfavorable but modifiable lifestyle choices. Adding DNA methylation to the model with clinical factors improved the predictive ability for the GN risk. INTERPRETATION The integration of environmental, lifestyle, and epigenetic information can provide increased resolution in the stratification of primary GN risk. FUNDING The funds are listed in Acknowledgements section.
Collapse
Affiliation(s)
- Genki Usui
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tomohiro Shinozaki
- Faculty of Engineering, Department of Information and Computer Technology, Tokyo University of Science, Tokyo, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Norikazu Yogi
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoka Okada
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mizuki Minami
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Pathology, Chiba University Hospital, Chiba, Japan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Cancer Genomics Center, Chiba University Hospital, Chiba, Japan
| | - Eiji Sakai
- Department of Gastroenterology, NTT Medical Center Tokyo, Tokyo, Japan; Division of Gastroenterology, Yokohama Sakae Kyosai Hospital, Yokohama, Japan
| | - Kazutoshi Fujibayashi
- Center for Preventive Medicine, NTT Medical Center Tokyo, Tokyo, Japan; Department of General Medicine, Juntendo University Hospital, Tokyo, Japan
| | - Stephen Kin Kwok Tsao
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Christopher Khor
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Tiing Leong Ang
- Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore, Singapore
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Gunji
- Center for Preventive Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | | | - Teppei Morikawa
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore.
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Genome Institute of Singapore, Singapore, Singapore; Cancer Science Institute of Singapore, Singapore, Singapore.
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan; Health and Disease Omics Center, Chiba University, Chiba, Japan.
| |
Collapse
|
11
|
Kumar S, Das A. Peripheral Blood Mononuclear Cell derived Biomarker detection using eXplainable Artificial Intelligence (XAI) provides better diagnosis of Breast Cancer. Comput Biol Chem 2023; 104:107867. [PMID: 37030103 DOI: 10.1016/j.compbiolchem.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
The incidence and mortality rate of breast cancer increases yearly by an average of 1.44 % and 0.23 %, respectively. Till 2021, there were 7.8 million women who had been diagnosed with breast cancer within 5 years. Biopsies of tumors are often expensive and invasive and raise the risk of serious complications like infection, excessive bleeding, and puncture damage to nearby tissues and organs. Early detection biomarkers are often variably expressed in different patients and may even be below the detection level at an early stage. Hence PBMC that shows alteration in gene profile as a result of interaction with tumor antigens may serve as a better early detection biomarker. Also, such alterations in immune gene profile in PBMCs are more prone to detection despite variability in different breast cancer mutants.This study aimed to identify potential diagnostic biomarkers for breast cancer using eXplainable Artificial Intelligence (XAI) on XGBoost machine learning (ML) models trained on a binary classification dataset containing the expression data of PBMCs from 252 breast cancer patients and 194 healthy women.After effectively adding SHAP values further into the XGBoost model, ten important genes related to breast cancer development were discovered to be effective potential biomarkers. Our studies showed that SVIP, BEND3, MDGA2, LEF1-AS1, PRM1, TEX14, MZB1, TMIGD2, KIT, and FKBP7 are key genes that impact model prediction. These genes may serve as early, non-invasive diagnostic and prognostic biomarkers for breast cancer patients.
Collapse
|
12
|
Zhang Q, Kanyomse Q, Luo C, Mo Q, Zhao X, Wang L, Peng W, Ren G. The Prognostic Value of ADAMTS8 and Its Role as a Tumor Suppressor in Breast Cancer. Cancer Invest 2023; 41:119-132. [PMID: 36346393 DOI: 10.1080/07357907.2022.2128367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A disintegrin-like and metalloprotease with therombospondin type1 motif 8 (ADAMTS8) plays an important role in many malignancies. However, the clinical and biological significance of ADAMTS8 in breast cancer remain unknown. In this study, the clinical data from 1066 breast cancer patients were analyzed by The Cancer Genome Atlas (TCGA) database, and were analyzed using the correlation between ADAMTS8 expression and the clinicopathological features and prognoses. The CCK-8 assay, clone formation assay, flow cytometry and Transwell assay were used to characterize the effects of ADAMTS8 on proliferation, migration and invasion of breast cancer cells. Gene set enrichment analysis (GSEA) and western blotting were used to identify the potential molecular mechanism on how ADAMTS8 exert its biological function. ADAMTS8 overexpression correlated longer overall survival (OS) and progression-free survival (PFS). ADAMTS8 was considered as an independent prognostic factor for OS. ADAMTS8 overexpression inhibited breast cancer cell proliferation, migration and invasion in vitro, and induced G2/M cell cycle arrest. ADAMTS8 was also involved in cell cycle regulation and was associated with the EGFR/Akt signaling pathway. ADAMTS8 knockdown showed the reverse effect. Together, the results showed that ADAMTS8 functioned as a tumor suppressor gene (TGS) and could be a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Qia Zhang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Quist Kanyomse
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenghao Luo
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingfan Mo
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - XunPing Zhao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Long Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Gareev I, Beylerli O, Liang Y, Lu E, Ilyasova T, Sufianov A, Sufianova G, Shi H, Ahmad A, Yang G. The Role of Mitochondria-Targeting miRNAs in Intracerebral Hemorrhage. Curr Neuropharmacol 2023; 21:1065-1080. [PMID: 35524670 PMCID: PMC10286585 DOI: 10.2174/1570159x20666220507021445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/02/2022] [Accepted: 04/24/2022] [Indexed: 11/22/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Arterial hypertension (AH) is most often the cause of ICH, followed by atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication and vitamin deficiencies. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. AH is difficult to treat, requires surgery and can lead to disability or death. One of the important directions in the study of the pathogenesis of ICH is mitochondrial dysfunction and its regulation. The key role of mitochondrial dysfunction in AH and atherosclerosis, as well as in the development of brain damage after hemorrhage, has been acknowledged. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that regulate a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., primarily through gene repression. There is growing evidence to support dysregulated miRNAs in various cardiovascular diseases, including ICH. Further, the realization of miRNAs within mitochondrial compartment has challenged the traditional knowledge of signaling pathways involved in the regulatory network of cardiovascular diseases. However, the role of miRNAs in mitochondrial dysfunction for ICH is still under-appreciated, with comparatively much lesser studies and investigations reported, than those in other cardiovascular diseases. In this review, we summarize the up-to-date findings on the published role miRNAs in mitochondrial function for ICH, and the potential use of miRNAs in clinical settings, such as potential therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Federal Centre of Neurosurgery, Tyumen, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Ozal Beylerli
- Federal Centre of Neurosurgery, Tyumen, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Tatiana Ilyasova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Albert Sufianov
- Federal Centre of Neurosurgery, Tyumen, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| | - Aamir Ahmad
- Interim Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Institute of Brain Science, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
14
|
Wang X, Zhang L, Chan FKL, Ji J, Yu J, Liang JQ. Gamma-glutamyltransferase 7 suppresses gastric cancer by cooperating with RAB7 to induce mitophagy. Oncogene 2022; 41:3485-3497. [PMID: 35662282 DOI: 10.1038/s41388-022-02339-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023]
Abstract
We identified gamma-glutamyltransferase 7 (GGT7) to be frequently downregulated in gastric cancer, but its role remains unknown. Here we elucidated the clinical significance, functional roles, and molecular mechanism of GGT7 in gastric cancer. GGT7 was downregulated by promoter methylation and restored by demethylation treatment in gastric cancer cells. GGT7 methylation inversely correlated with mRNA expression in gastric tumors (n = 221; r = -0.686, P < 0.0001). High-expression of GGT7 in adjacent non-tumor tissues was significantly associated with favorable survival in gastric cancer patients (n = 138; P = 0.009), and was an independent prognostic factor by multivariate Cox regression (HR = 0.381, P < 0.05). GGT7 significantly inhibited gastric cancer cell growth, G1-S transition, and migration and invasion abilities. GGT7 also significantly attenuated the growth of subcutaneous xenograft tumors and reduced metastasis to the lung in nude mice. The mitophagy regulator RAB7 was identified as a direct downstream co-player of GGT7 by co-immunoprecipitation followed by mass spectrometry. Growth suppression effect of GGT7 was at least partly dependent on RAB7 by rescue experiments. GGT7 induced autophagy as shown by electron microscopy and confirmed by the increased LC3B and decreased p62. GGT7 recruited RAB7 by direct binding and drove RAB7 to translocate from nucleus to cytoplasm, subsequently mediating mitophagy by increasing mitophagy mediators/inducers. GGT7 inhibited intracellular ROS, which was associated with increased mitophagy, and subsequently suppressed MAPK signaling. Collectively, GGT7 plays a pivotal tumor-suppressing role in gastric cancer by directly binding with RAB7 to induce mitophagy and inhibit ROS and MAPK cascades. GGT7 is an independent prognostic factor for gastric cancer patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lianhai Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Francis K L Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jessie Qiaoyi Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
He L, Qian X, Ge P, Fan D, Ma X, Wu Q, Sun J, Yang L, Shen J, Xu L. NOL6 Regulates the Proliferation and Apoptosis of Gastric Cancer Cells via Regulating TP53I3, CDK4 and MCM7 Expression. Front Oncol 2022; 12:708081. [PMID: 35494047 PMCID: PMC9039204 DOI: 10.3389/fonc.2022.708081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
Background Gastric cancer (GC) is a prevalent cancer with high mortality and strong invasiveness, and the entire regulatory networks of GC is still unclear. Objective The aim of this study was to explore the specific mechanism of the effect of nucleolar protein 6 (NOL6) on the proliferation and apoptosis of GC cells. Methods The human gastric adenocarcinoma cell line HGC-27 and AGS were cultured. qRT-PCR was used to verify the expression level of NOL6 in GC cells; MTT and EdU were used to test cell proliferation; TUNEL staining and Flow cytometry were used to detect cell apoptosis; The downstream genes and pathways following NOL6 knockdown were explored through the microarray assay and ingenuity pathway analysis, and the downstream genes were finally verified by qRT-PCR and Western blotting. The xenograft mice were used to investigate the effect of NOL6 on GC in vivo. Results TCGA data analysis showed that NOL6 expression level was higher in GC cells than adjacent normal cells. Over-expression of NOL6 increased proliferation and colony formation, and inhibited the apoptotic rate in AGS and HGC-27 cells, while NOL6 knockdown induced the opposite effects. Through microarray assay and IPA analysis, NOL6-related downstream genes and critical signaling pathways were found. And we verified the relationship between downstream genes and GC. Additionally, NOL6 knockdown could decrease the weight and volume of tumor in the mice. Conclusion NOL6 knockdown could inhibit cell proliferation and induce cell apoptosis of GC, suggesting that NOL6 may serve as a potential therapeutic target for treating GC.
Collapse
Affiliation(s)
- Lei He
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaohan Qian
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pingping Ge
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dong Fan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Ma
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiong Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lihua Yang
- Medical Center for Digestive Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lijian Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Liu D, Li L, Wang L, Wang C, Hu X, Jiang Q, Wang X, Xue G, Liu Y, Xue D. Recognition of DNA Methylation Molecular Features for Diagnosis and Prognosis in Gastric Cancer. Front Genet 2021; 12:758926. [PMID: 34745226 PMCID: PMC8566671 DOI: 10.3389/fgene.2021.758926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/04/2021] [Indexed: 12/31/2022] Open
Abstract
Background: The management of gastric cancer (GC) still lacks tumor markers with high specificity and sensitivity. The goal of current research is to find effective diagnostic and prognostic markers and to clarify their related mechanisms. Methods: In this study, we integrated GC DNA methylation data from publicly available datasets obtained from TCGA and GEO databases, and applied random forest and LASSO analysis methods to screen reliable differential methylation sites (DMSs) for GC diagnosis. We constructed a diagnostic model of GC by logistic analysis and conducted verification and clinical correlation analysis. We screened credible prognostic DMSs through univariate Cox and LASSO analyses and verified a prognostic model of GC by multivariate Cox analysis. Independent prognostic and biological function analyses were performed for the prognostic risk score. We performed TP53 correlation analysis, mutation and prognosis analysis on eleven-DNA methylation driver gene (DMG), and constructed a multifactor regulatory network of key genes. Results: The five-DMS diagnostic model distinguished GC from normal samples, and diagnostic risk value was significantly correlated with grade and tumor location. The prediction accuracy of the eleven-DMS prognostic model was verified in both the training and validation datasets, indicating its certain potential for GC survival prediction. The survival rate of the high-risk group was significantly lower than that of the low-risk group. The prognostic risk score was an independent risk factor for the prognosis of GC, which was significantly correlated with N stage and tumor location, positively correlated with the VIM gene, and negatively correlated with the CDH1 gene. The expression of CHRNB2 decreased significantly in the TP53 mutation group of gastric cancer patients, and there were significant differences in CCDC69, RASSF2, CHRNB2, ARMC9, and RPN1 between the TP53 mutation group and the TP53 non-mutation group of gastric cancer patients. In addition, CEP290, UBXN8, KDM4A, RPN1 had high frequency mutations and the function of eleven-DMG mutation related genes in GC patients is widely enriched in multiple pathways. Conclusion: Combined, the five-DMS diagnostic and eleven-DMS prognostic GC models are important tools for accurate and individualized treatment. The study provides direction for exploring potential markers of GC.
Collapse
Affiliation(s)
- Donghui Liu
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China.,Harbin Institute of Technology, School of Life Science and Technology, Harbin, China
| | - Long Li
- Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liru Wang
- Department of Oncology, Heilongjiang Provincial Hospital, Harbin, China.,Harbin Institute of Technology, School of Life Science and Technology, Harbin, China
| | - Chao Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowei Hu
- Department of Head and Neck and Genito-Urinary Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qingxin Jiang
- Department of General Surgery, Harbin 242 Hospital of Genertec Medical, Harbin, China
| | - Xuyao Wang
- Department of Pharmacy, Harbin Second Hospital, Harbin, China
| | - Guiqin Xue
- Department of General Surgery, Daqing Fifth Hospital, Daqing, China
| | - Yu Liu
- Department of Endocrine, Heilongjiang Provincial Hospital, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Comprehensive Combined Proteomics and Genomics Analysis Identifies Prognostic Related Transcription Factors in Breast Cancer and Explores the Role of DMAP1 in Breast Cancer. J Pers Med 2021; 11:jpm11111068. [PMID: 34834420 PMCID: PMC8625386 DOI: 10.3390/jpm11111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Transcription factors (TFs) are important for regulating gene transcription and are the hallmark of many cancers. The identification of breast cancer TFs will help in developing new diagnostic and individualized cancer treatment tools. In this study, we used quantitative proteomic analyses of nuclear proteins and massive transcriptome data to identify enriched potential TFs and explore the possible role of the transcription factor DMAP1 in breast cancer. We identified 13 prognostic-related TFs and constructed their regulated genes, alternative splicing (AS) events, and splicing factor (SF) regulation networks. DMAP1 was reported less in breast cancer. The expression of DMAP1 decreased in breast cancer tumors compared with normal tissues. The poor prognosis of patients with low DMAP1 expression may relate to the activated PI3K/Akt signaling pathway, as well as other cancer-relevant pathways. This may be due to the low methylation and high expression of these pathway genes and the fact that such patients show more sensitivity to some PI3K/Akt signaling pathway inhibitors. The high expression of DMAP1 was correlated with low immune cell infiltration, and the response to immune checkpoint inhibitor treatment in patients with high DMAP1 expression was low. Our study identifies some transcription factors that are significant for breast cancer progression, which can be used as potential personalized prognostic markers in the future.
Collapse
|
18
|
Xiao Z, Zheng YB, Dao WX, Luo JF, Deng WH, Yan RC, Liu JS. MicroRNA-328-3p facilitates the progression of gastric cancer via KEAP1/NRF2 axis. Free Radic Res 2021; 55:720-730. [PMID: 34160338 DOI: 10.1080/10715762.2021.1923705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gastric cancer is a common lethal malignancy and causes great cancer-related mortality worldwide. MicroRNA (miR)-328-3p is implicated in the progression of various human cancers; however, its role and mechanism in the progression of gastric cancer remain unclear.Human gastric cancer cells were incubated with miR-328-3p mimic, inhibitor or the matched negative control. Cell viability, colony formation, migrative and invasive capacity, cell apoptosis and oxidative stress were measured. To clarify the involvement of nuclear factor-E2-related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1), small interfering RNA was used. miR-328-3p was upregulated in human gastric cancer cells and tissues, and its level positively correlated with the progression of gastric cancer. miR-328-3p promoted cell viability, colony formation, migration and invasion, thereby facilitating the progression of gastric cancer. miR-328-3p mimic reduced, while miR-328-3p inhibitor increased apoptosis and oxidative stress of human gastric cancer cells. Mechanistically, miR-328-3p upregulated NRF2 via targeting KEAP1to attenuate excessive free radical production and cell apoptosis. miR-328-3p functions as an oncogenic gene and inhibiting miR-328-3p may help to develop novel therapeutic strategies of human gastric cancer.
Collapse
Affiliation(s)
- Zhe Xiao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong-Bin Zheng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Xin Dao
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jian-Fei Luo
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wen-Hong Deng
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui-Cheng Yan
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jia-Sheng Liu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Liu F, Zou J, Luo X, Liu Y, Huang C, He X, Wang Y. A point-of-care chemiluminescence immunoassay for pepsinogen I enables large-scale community health screening. Anal Bioanal Chem 2021; 413:4493-4500. [PMID: 34041573 DOI: 10.1007/s00216-021-03412-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Pepsinogen I (PGI) can reflect the morphology and function of the gastric mucosa. Accordingly, the large-scale community health screening of PGI can dramatically increase the early diagnosis rate of gastric cancer. However, PGI testing can only be carried out in comprehensive hospitals and health examination centers. To ameliorate this issue, a point-of-care chemiluminescent immunoassay for PGI was developed in a fully automated miniaturized instrument. This instrument was especially developed for health check-ups in the grassroots communities; its volume of which is only 0.18 m3. Critically, the entire detection process for a single sample only requires 20 min, and the samples can be loaded continuously, making the method suitable for high-throughput analysis. The assay displayed an excellent detection limit of 0.048 ng/mL with a broad detection range of 0-200 ng/mL. Furthermore, this assay exhibited high sensitivity and specificity, had low intra- and inter-assay coefficients of variation (<10%), and was not affected after storage at 37 °C for 7 days. The assay was used to detect PGI in 95 clinical serum samples, and the results were highly correlated with those that were clinically tested (correlation coefficient, R2 = 0.998). Hence, the method established in this work has great application value and can be broadly applied for the large-scale screening of gastric cancer in resource-limited areas.
Collapse
Affiliation(s)
- Fangfang Liu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jingjing Zou
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiangxiang Luo
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yu Liu
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chunrong Huang
- National & Local United Engineering Lab of Rapid Diagnostic Test, Guangzhou Wondfo Biotech Co., Ltd., Guangzhou, 5l0663, China
| | - Xiaowei He
- College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Yu Wang
- Department of Laboratory Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
20
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
21
|
Zhang H, Xu C, Shi C, Zhang J, Qian T, Wang Z, Ma R, Wu J, Jiang F, Feng J. Hypermethylation of heparanase 2 promotes colorectal cancer proliferation and is associated with poor prognosis. J Transl Med 2021; 19:98. [PMID: 33663522 PMCID: PMC7934273 DOI: 10.1186/s12967-021-02770-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The epigenetic abnormality of tumor-associated genes contributes to the pathogenesis of colorectal carcinoma (CRC). However, methylation in colorectal cancer is still poorly characterized. METHOD By integration of DNA methylation data from the GEO database and gene expression data from The Cancer Genome Atlas database, the aberrantly methylated genes involved in CRC tumorigenesis were identified. Subsequent in vitro experiments further validated their role in CRC. RESULTS We performed integrative genomic analysis and identified HPSE2, a novel tumor suppressor gene that is frequently inactivated through promoter methylation in CRC. K-M survival analysis showed that hypermethylation-low expression of heparanase 2 (HPSE2) was related to poor patient prognosis. Overexpression of HPSE2 reduced cell proliferation in vivo and in vitro. HPSE2 could regulate the p53 signaling pathway to block the cell cycle in G1 phase. CONCLUSION HPSE2, a novel tumor suppressor gene that is frequently inactivated through promoter methylation in CRC. HPSE2 performs a tumor suppressive function by activating the p53/ p21 signaling cascade. The promoter hypermethylation of HPSE2 is a potential therapeutic target in patients with CRC, especially those with late-stage CRC.
Collapse
Affiliation(s)
- Hui Zhang
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Chenxin Xu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Chen Shi
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Junying Zhang
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Ting Qian
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Zhuo Wang
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China
| | - Feng Jiang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China.
| | - Jifeng Feng
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210000, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Zhu M, Liang Q, Chen T, Kong Q, Ye G, Yu S, Li X, He Q, Liu H, Hu Y, Yu J, Li G. Identification and validation of methylated differentially expressed miRNAs and immune infiltrate profile in EBV-associated gastric cancer. Clin Epigenetics 2021; 13:22. [PMID: 33514440 PMCID: PMC7845045 DOI: 10.1186/s13148-020-00989-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The recent discovery of cancer/tissue specificity of miRNA has indicated its great potential as a therapeutic target. In Epstein-Barr virus-associated gastric cancer (EBVaGC), host genes are affected by extensive DNA methylation, including miRNAs. However, the role of methylated miRNA in the development of EBVaGC and immune cell infiltration has largely remained elusive. RESULTS After crossmatching the DNA methylation and expression profile of miRNA and mRNA in the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas Research Network (TCGA), we discovered that miR-129-2-3p was significantly suppressed due to hypermethylation on its enhancer in EBVaGC. The differentially expressed genes (DEGs) added up to 30, among which AKAP12 and LARP6 were predicted to be the target genes of miR-129-2-3p and negatively correlated with patients' survival. Accordingly, miR-129-2-3p was significantly down-regulated in tumor samples in 26 (65%) out of 40 cases in our cohort (P < 0.0001). The proliferation, migration and invasion functions of GC cells were significantly promoted when transfected with miR-129-2-3p inhibitor and suppressed when transfected with mimics or treated with 5-aza-2'-deoxycytidine. Moreover, a comprehensive regulation network was established by combining the putative transcription factors, miRNA-mRNA and protein-protein interaction (PPI) analysis. Pathway enrichment analysis showed that cytokine activity, especially CCL20, was the most prominent biological process in EBVaGC development. Immune cell infiltration analysis demonstrated CD4+ T cell, macrophage and dendritic cell infiltrates were significantly enriched for the prognostic-indicated hub genes. CONCLUSION This study has provided a comprehensive analysis of differentially expressed miRNAs and mRNAs associated with genome-wide DNA methylation by integrating multi-source data including transcriptome, methylome and clinical data from GEO and TCGA, QPCR of tumor samples and cell function assays. It also gives a hint on the relationships between methylated miRNA, DEGs and the immune infiltration. Further experimental and clinical investigations are warranted to explore the underlying mechanism and validate our findings.
Collapse
Affiliation(s)
- Mansheng Zhu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qixiang Liang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Qian Kong
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Gengtai Ye
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Shitong Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Xunjun Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qinglie He
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China.
| |
Collapse
|
23
|
Bian J, Long JY, Yang X, Yang XB, Xu YY, Lu X, Sang XT, Zhao HT. Signature based on molecular subtypes of deoxyribonucleic acid methylation predicts overall survival in gastric cancer. World J Gastroenterol 2020; 26:6414-6430. [PMID: 33244202 PMCID: PMC7656213 DOI: 10.3748/wjg.v26.i41.6414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) ranks as the third leading cause of cancer-related death worldwide. Epigenetic alterations contribute to tumor heterogeneity in early stages.
AIM To identify the specific deoxyribonucleic acid (DNA) methylation sites that influence the prognosis of GC patients and explore the prognostic value of a model based on subtypes of DNA methylation.
METHODS Patients were randomly classified into training and test sets. Prognostic DNA methylation sites were identified by integrating DNA methylation profiles and clinical data from The Cancer Genome Atlas GC cohort. In the training set, unsupervised consensus clustering was performed to identify distinct subgroups based on methylation status. A risk score model was built based on Kaplan-Meier, least absolute shrinkage and selector operation, and multivariate Cox regression analyses. A test set was used to validate this model.
RESULTS Three subgroups based on DNA methylation profiles in the training set were identified using 1061 methylation sites that were significantly associated with survival. These methylation subtypes reflected differences in T, N, and M category, age, stage, and prognosis. Forty-one methylation sites were screened as specific hyper- or hypomethylation sites for each specific subgroup. Enrichment analysis revealed that they were mainly involved in pathways related to carcinogenesis, tumor growth, and progression. Finally, two methylation sites were chosen to generate a prognostic model. The high-risk group showed a markedly poor prognosis compared to the low-risk group in both the training [hazard ratio (HR) = 2.24, 95% confidence interval (CI): 1.28-3.92, P < 0.001] and test (HR = 2.12, 95%CI: 1.19-3.78, P = 0.002) datasets.
CONCLUSION DNA methylation-based classification reflects the epigenetic heterogeneity of GC and may contribute to predicting prognosis and offer novel insights for individualized treatment of patients with GC.
Collapse
Affiliation(s)
- Jin Bian
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jun-Yu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
24
|
Wang S, Feng C, Dong D, Li H, Zhou J, Ye Y, Liu Z, Tian J, Wang Y. Preoperative computed tomography-guided disease-free survival prediction in gastric cancer: a multicenter radiomics study. Med Phys 2020; 47:4862-4871. [PMID: 32592224 DOI: 10.1002/mp.14350] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/24/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Preoperative and noninvasive prognosis evaluation remains challenging for gastric cancer. Novel preoperative prognostic biomarkers should be investigated. This study aimed to develop multidetector-row computed tomography (MDCT)-guided prognostic models to direct follow-up strategy and improve prognosis. METHODS A retrospective dataset of 353 gastric cancer patients were enrolled from two centers and allocated to three cohorts: training cohort (n = 166), internal validation cohort (n = 83), and external validation cohort (n = 104). Quantitative radiomic features were extracted from MDCT images. The least absolute shrinkage and selection operator penalized Cox regression was adopted to construct a radiomic signature. A radiomic nomogram was established by integrating the radiomic signature and significant clinical risk factors. We also built a preoperative tumor-node-metastasis staging model for comparison. All models were evaluated considering the abilities of risk stratification, discrimination, calibration, and clinical use. RESULTS In the two validation cohorts, the established four-feature radiomic signature showed robust risk stratification power (P = 0.0260 and 0.0003, log-rank test). The radiomic nomogram incorporated radiomic signature, extramural vessel invasion, clinical T stage, and clinical N stage, outperforming all the other models (concordance index = 0.720 and 0.727) with good calibration and decision benefits. Also, the 2-yr disease-free survival (DFS) prediction was most effective (time-dependent area under curve = 0.771 and 0.765). Moreover, subgroup analysis indicated that the radiomic signature was more sensitive in risk stratifying patients with advanced clinical T/N stage. CONCLUSIONS The proposed MDCT-guided radiomic signature was verified as a prognostic factor for gastric cancer. The radiomic nomogram was a noninvasive auxiliary model for preoperative individualized DFS prediction, holding potential in promoting treatment strategy and clinical prognosis.
Collapse
Affiliation(s)
- Siwen Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Caizhen Feng
- Department of Radiology, Peking University People's Hospital, Beijing, 100044, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hailin Li
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yingjiang Ye
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Yi Wang
- Department of Radiology, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
25
|
Wang K, Li E, Busuttil RA, Kong JC, Pattison S, Sung JJY, Yu J, El-Omar EM, Simpson JA, Boussioutas A. A cohort study and meta-analysis of the evidence for consideration of Lauren subtype when prescribing adjuvant or palliative chemotherapy for gastric cancer. Ther Adv Med Oncol 2020; 12:1758835920930359. [PMID: 32754227 PMCID: PMC7378722 DOI: 10.1177/1758835920930359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background The association between the survival or efficacy of chemotherapy and the Lauren subtype of gastric cancer (GC) remains unclear. We aimed to clarify whether patients with different Lauren subtypes have different survival after treatment with systemic chemotherapy: intestinal gastric cancer (IGC) patients survived better than patients with mixed type gastric cancer (MGC) or diffuse gastric cancer (DGC) after treatment with systemic chemotherapy. Patients & methods Relevant studies for the meta-analysis were identified through searching Pubmed, Embase, Cochrane and Ovid up to March 2020. We also included our own prospectively collected cohort of patients that were followed over a 10-year period. Sub-group and sensitivity analyses were also performed. Results In our prospective cohort, the overall survival (OS) of IGC patients receiving systemic chemotherapy (chemoIGC) [median OS 5.01 years, interquartile range (IQR) 2.63-6.71] was significantly higher than that of DGC patients receiving the same chemotherapy (chemoDGC) (median OS 1.33 years, IQR 0.78-3.33, p = 0.0001). After adjusting for age, gender and cancer stage, there was a significant difference in OS in patients treated with chemotherapy based on the Lauren classification of GC {hazard ratio (HR) for OS of the IGC versus DGC 0.33, [95% confidence interval (CI), 0.17-0.65; p < 0.001]}. In the IGC patients, the adjusted HR associated with chemotherapy was 0.26 (95% CI, 0.12-0.56; p = 0.001), whereas the association was 0.64 (95% CI, 0.30-1.33; p = 0.23) in the DGC patient group.In our meta-analysis, 33 studies comprising 10,246 patients treated with systemic chemotherapy (chemoIGC n = 4888, chemoDGC n = 5358) met all the selection criteria. While we accounted for much of the heterogeneity in these studies, we found that chemoIGC patients showed significantly improved OS [HR, 0.76 (95% CI, 0.71-0.82); p < 0.00001] when compared with similarly treated chemoDGC patients. Conclusion Our results support the consideration of Lauren subtype when prescribing systemic chemotherapy for GC, particularly for MGC or DGC, which may not benefit from chemotherapy. Lauren classification should be considered to stratify chemotherapy regimens to GC patients in future clinical trials, with particular relevance to MGC or DGC, which is more difficult to treat with current regimens.
Collapse
Affiliation(s)
- Kunning Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Rita A Busuttil
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Joseph C Kong
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Sharon Pattison
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Emad M El-Omar
- Department of Medicine, St George & Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Alex Boussioutas
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Wei C, Zhao L, Liang H, Zhen Y, Han L. Recent advances in unraveling the molecular mechanisms and functions of HOXA11‑AS in human cancers and other diseases (Review). Oncol Rep 2020; 43:1737-1754. [PMID: 32236611 PMCID: PMC7160552 DOI: 10.3892/or.2020.7552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
A large number of previously published research articles have demonstrated that the expression levels of long noncoding RNAs (lncRNAs) are generally dysregulated, either through overexpression or underexpression, in cancer and other types of disease. As a recently discovered lncRNA, HOXA11 antisense RNA (HOXA11‑AS) is able to serve as an oncogenic or tumor‑suppressor gene and serves a vital role in the processes of proliferation, invasion, and migration of cancer cells. HOXA11‑AS appears to be a major factor contributing to epigenetic modification, and exerts transcriptional, post‑transcriptional, translational and post‑translational regulatory effects on genes through a variety of mechanisms; for example, by competing endogenous RNA (ceRNA) and a molecular scaffold mechanism. A number of reports have demonstrated that HOXA11‑AS functions as a protein scaffold for polycomb repressive complex 2 (PRC2), lysine‑specific histone demethylase 1 (LSD1) and DNA methyltransferase 1 (DNMT1) to perform epigenetic modifications on chromosomes in the nucleus. Furthermore, HOXA11‑AS is also located in the cytoplasm and can act as a ceRNA, which sponges miRNAs. In addition, HOXA11‑AS may be useful as a biomarker for the diagnosis and prognosis of cancer. In the present review article, the clinical value, phenotype and mechanism of HOXA11‑AS in a variety of tumors types are briefly summarized, as well as its clinical value in certain additional diseases. The perspective of the authors is that HOXA11‑AS may represent an effective tumor marker and therapeutic target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Cheng Wei
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Liangjuan Zhao
- Tianjin Customs District China, Heping, Tianjin 300041, P.R. China
| | - Hao Liang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Yingwei Zhen
- Department of Neurosurgery, The First Affliated Hospital of Zhengzhou University, Zhengzhou, Henan 453002, P.R. China
| | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
27
|
Xu X, Dai Y, Feng L, Zhang H, Hu Y, Xu L, Zhu X, Jiang Y. Knockdown of Nav1.5 inhibits cell proliferation, migration and invasion via Wnt/β-catenin signaling pathway in oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2020; 52:527-535. [PMID: 32400862 DOI: 10.1093/abbs/gmaa021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/14/2019] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common type of malignant oral cancer that has a high recurrence rate. Voltage-gated sodium channel Nav1.5 was reported to be highly up-regulated in various types of cancers. However, the regulatory mechanism of Nav1.5 in cancers including OSCC still remains elusive. In this study, Nav1.5 was found to be highly expressed in OSCC tissues and cells. Through the analysis of clinical characteristics of patients, we found that the expression level of Nav1.5 was closely related to neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, tumor-node-metastasis stage, and lymph node metastasis. Moreover, we found that Nav1.5 mainly located on the cell membrane as well as cytoplasm and knockdown of Nav1.5 promoted cell apoptosis and decreased proliferation in OSCC. Transwell assay results showed that knockdown of Nav1.5 effectively suppressed the migration and invasion in OSCC. In addition, knockdown of Nav1.5 was found to inhibit the protein and mRNA expression levels of β-catenin, cyclin D1, and c-Myc in the Wnt/β-catenin signaling pathway. In summary, these results indicated that Nav1.5 may be involved in the progression of OSCC through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoli Xu
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yongzheng Dai
- Hefei School of Stomatology, Anhui Medical University, Hefei 230001, China
- Department of General Dentistry, Hefei Stomatological Hospital, Hefei 230001, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongli Zhang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yukun Hu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Le Xu
- Department of Stomatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Xinwei Zhu
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
- Binhu Clinical Division, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei 230601, China
| | - Yong Jiang
- College and Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei 230032, China
- Department of Stomatology, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| |
Collapse
|
28
|
Lee YJ, Son SH, Lim CS, Kim MY, Lee SW, Lee S, Jeon J, Ha DH, Jung NR, Han SY, Do BR, Na I, Uversky VN, Kim CG. MMTR/Dmap1 Sets the Stage for Early Lineage Commitment of Embryonic Stem Cells by Crosstalk with PcG Proteins. Cells 2020; 9:1190. [PMID: 32403252 PMCID: PMC7290897 DOI: 10.3390/cells9051190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/13/2023] Open
Abstract
Chromatin remodeling, including histone modification, chromatin (un)folding, and nucleosome remodeling, is a significant transcriptional regulation mechanism. By these epigenetic modifications, transcription factors and their regulators are recruited to the promoters of target genes, and thus gene expression is controlled through either transcriptional activation or repression. The Mat1-mediated transcriptional repressor (MMTR)/DNA methyltransferase 1 (DNMT1)-associated protein (Dmap1) is a transcription corepressor involved in chromatin remodeling, cell cycle regulation, DNA double-strand break repair, and tumor suppression. The Tip60-p400 complex proteins, including MMTR/Dmap1, interact with the oncogene Myc in embryonic stem cells (ESCs). These proteins interplay with the stem cell-related proteome networks and regulate gene expressions. However, the detailed mechanisms of their functions are unknown. Here, we show that MMTR/Dmap1, along with other Tip60-p400 complex proteins, bind the promoters of differentiation commitment genes in mouse ESCs. Hence, MMTR/Dmap1 controls gene expression alterations during differentiation. Furthermore, we propose a novel mechanism of MMTR/Dmap1 function in early stage lineage commitment of mouse ESCs by crosstalk with the polycomb group (PcG) proteins. The complex controls histone mark bivalency and transcriptional poising of commitment genes. Taken together, our comprehensive findings will help better understand the MMTR/Dmap1-mediated transcriptional regulation in ESCs and other cell types.
Collapse
Affiliation(s)
- Young Jin Lee
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Chang Su Lim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Min Young Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Si Woo Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Sangwon Lee
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Jinseon Jeon
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Dae Hyun Ha
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Na Rae Jung
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Su Youne Han
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
- Biotechnology Research Institute, Hurim BioCell Inc, Seoul 07531, Korea;
| | - Byung-Rok Do
- Biotechnology Research Institute, Hurim BioCell Inc, Seoul 07531, Korea;
| | - Insung Na
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Institute for Biological Instrumentation of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (S.H.S.); (C.S.L.); (M.Y.K.); (S.W.L.); (S.L.); (J.J.); (D.H.H.); (N.R.J.); (S.Y.H.); (I.N.)
| |
Collapse
|
29
|
Ma X, Chen H, Wang G, Li L, Tao K. DNA methylation profiling to predict overall survival risk in gastric cancer: development and validation of a nomogram to optimize clinical management. J Cancer 2020; 11:4352-4365. [PMID: 32489454 PMCID: PMC7255367 DOI: 10.7150/jca.44436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
DNA methylation has been reported to serve an important role in the carcinogenesis and development of gastric cancer. Our aim was to systematically develop an individualized prediction model of the survival risk combing clinical and methylation factors in gastric cancer. A univariate Cox proportional risk regression analysis was used to identify the prognosis-associated methylation sites based on the differentially expressed methylation sites between early and advanced gastric cancer group, then we applied least absolute shrinkage and selection operator (LASSO) Cox regression model to screen candidate methylation sites. Subsequently, multivariate Cox proportional risk regression analysis was conducted to identify predictive signature according to the candidate sites. Relative operating characteristic curve (ROC) analysis manifested that an 11-methylation signature exhibited great predictive efficiency for 1-, 3-, 5-year survival events. Patients in the low-risk group classified according to 11-methylation signature-based risk score yield significantly better survival than that in high-risk group. Moreover, Cox regression analysis combing methylation-based risk score and other clinical factors indicated that 11-methylation signature served as an independent risk factor. The predictive value of risk score was validated in the testing dataset. In addition, a nomogram was constructed and the ROC as well as calibration plots analysis demonstrated the good performance and clinical application of the nomogram. In conclusion, the result suggested the 11-DNA methylation signature may be potentially independent prognostic marker and functioned as a significant tool for guiding the clinical prediction of gastric cancer patients' overall survival.
Collapse
Affiliation(s)
- Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hengyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin 300070, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
30
|
Cai T, Zhang C, Zeng X, Zhao Z, Yan Y, Yu X, Wu L, Lin L, Pan H. Protective effects of Weipixiao decoction against MNNG-induced gastric precancerous lesions in rats. Biomed Pharmacother 2019; 120:109427. [PMID: 31648165 DOI: 10.1016/j.biopha.2019.109427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer is recognized as one of the most common cancer. In-depth research of gastric precancerous lesions (GPL) plays an important role in preventing the occurrence of gastric cancer. Meanwhile, traditional treatment provides a novel sight in the prevention of occurrence and development of gastric cancer. The current study was designed to assess the effects of therapy with Weipixiao (WPX) decoction on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced GPL rats and the underlying molecular mechanisms. After 10-weeks treatment, all rats were sacrificed. Histopathological changes of gastric tissue were assessed via hematoxylin-eosin (HE) and High-iron diamine-Alcian blue-Periodic acid-Schiff (HID-AB-PAS) staining. To be fully evidenced, RT-qPCR, Western blot and immunohistochemistry were used to detect the expressions of LDHA, CD147, HIF-1α, MCT4, PI3K, AKT, mTOR and miRNA-34a, which were crucial factors for evaluating GPL in the aspect of glycolysis pathogenesis. According to the results of HE and HID-AB-PAS staining, it could be confirmed that MNNG-induced GPL rats were obviously reversed by WPX decoction. Additionally, the increased gene levels of LDHA, CD147, MCT4, PI3K, AKT, mTOR and HIF-1α in model group were down-regulated by WPX decoction, while miRNA-34a expression was decreased and up-regulated by WPX decoction. The significantly increased protein levels of LDHA, CD147, MCT4, PI3K, AKT, mTOR and HIF-1α induced by MNNG were attenuated in rats treated with WPX decoction. In brief, the findings of this study imply that abnormal glycolysis in MNNG-induced GPL rats was relieved by WPX decoction via regulation of the expressions of LDHA, CD147, HIF-1α, MCT4, PI3K, AKT, mTOR and miRNA-34a.
Collapse
Affiliation(s)
- Tiantian Cai
- Guangzhou University of Chinese Medicine, Guangzhou, Guanghdong, 510000, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,Guanghdong, 510000, China
| | - Chengzhe Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guanghdong, 510000, China; Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China
| | - Xiaohui Zeng
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China
| | - Ziming Zhao
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guanghdong, 510000, China
| | - Yan Yan
- Guangzhou University of Chinese Medicine, Guangzhou, Guanghdong, 510000, China
| | - Xuhua Yu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,Guanghdong, 510000, China; Department of Respiratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou,Guanghdong, 510000, China
| | - Lei Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,Guanghdong, 510000, China; Department of Respiratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou,Guanghdong, 510000, China
| | - Lin Lin
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou,Guanghdong, 510000, China; Department of Respiratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou,Guanghdong, 510000, China.
| | - Huafeng Pan
- Guangzhou University of Chinese Medicine, Guangzhou, Guanghdong, 510000, China.
| |
Collapse
|
31
|
Zheng B, Mai Q, Jiang J, Zhou Q. The Therapeutic Potential of Small Activating RNAs for Colorectal Carcinoma. Curr Gene Ther 2019; 19:140-146. [PMID: 31284860 DOI: 10.2174/1566523219666190708111404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/17/2019] [Accepted: 06/02/2019] [Indexed: 12/15/2022]
Abstract
Small double-strand RNAs have been recognized as master regulators of gene expression.
In contrast to the evolutionary conserved RNA interference machinery, which degrades or inhibits the
translation of target mRNAs, small activating RNA (saRNA) activates the specific gene in a target dependent
manner through a similar mechanism as RNAi. Recently, saRNA mediated expression regulation
of specific genes has been extensively studied in cancer researches. Of particular interest is the
application of the RNA mediated gene activation within colorectal cancer (CRC) development, due to
the high incidence of the CRC. In this review, we summarize the current knowledge of saRNA mediated
genetic activation and its underlying mechanisms. Furthermore, we highlight the advantages of
the utilization of saRNAs induced gene expression as an investigating tool in colorectal cancer research.
Finally, the possibility and the challenge of the saRNA application as a potential therapy for
colorectal cancer are addressed.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - QingYun Mai
- The Center for Reproductive medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - JinXing Jiang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - QinQin Zhou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
32
|
Application value of CyTOF 2 mass cytometer technology at single-cell level in human gastric cancer cells. Exp Cell Res 2019; 384:111568. [PMID: 31446162 DOI: 10.1016/j.yexcr.2019.111568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022]
Abstract
Chemotherapy and radiotherapy are main adjuvant therapies for the treatment of gastric cancer, the treatment effects are individual difference, but the specific mechanism is unknown. CyTOF 2 mass cytometer (CyTOF) enables the detecting up to 135 parameters on single cell, the emergence of which is an opportunity for proteomics research. We first tried to apply CyTOF technique to gastric cancer cells. We verified applicability of CyTOF in gastric cancer cells, and analyzed the responses of seventeen proteins to chemoradiotherapy in human gastric cancer AGS cells. To analyze the high dimensional CyTOF data, we used two statistical and visualization tools including viSNE and Citrus. Two specific clusters were found which had differences in protein expression profiles. CyTOF technology is proved feasibility and value at single cell level of gastric cancer.
Collapse
|
33
|
Gou H, Liang JQ, Zhang L, Chen H, Zhang Y, Li R, Wang X, Ji J, Tong JH, To KF, Sung JJY, Chan FKL, Fang JY, Yu J. TTPAL Promotes Colorectal Tumorigenesis by Stabilizing TRIP6 to Activate Wnt/β-Catenin Signaling. Cancer Res 2019; 79:3332-3346. [PMID: 31018940 DOI: 10.1158/0008-5472.can-18-2986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/16/2019] [Accepted: 04/19/2019] [Indexed: 11/16/2022]
Abstract
Copy number alterations are crucial for the development of colorectal cancer. Our whole-genome analysis identified tocopherol alpha transfer protein-like (TTPAL) as preferentially amplified in colorectal cancer. Here we demonstrate that frequent copy number gain of TTPAL leads to gene overexpression in colorectal cancer from a Chinese cohort (n = 102), which was further validated by a The Cancer Genome Atlas (TCGA) cohort (n = 376). High expression of TTPAL was significantly associated with shortened survival in patients with colorectal cancer. TTPAL promoted cell viability and clonogenicity, accelerated cell-cycle progression, inhibited cell apoptosis, increased cell migration/invasion ability in vitro, and promoted tumorigenicity and cancer metastasis in vivo. TTPAL significantly activated Wnt signaling and increased β-catenin activation and protein expression of cyclin D1 and c-Myc. Coimmunoprecipitation followed by mass spectrometry identified thyroid receptor-interacting protein 6 (TRIP6) as a direct downstream effector of TTPAL. Depletion of TRIP6 significantly abolished the effects of TTPAL on cell proliferation and Wnt activation. Direct binding of TTPAL with TRIP6 in the cytoplasm inhibited ubiquitin-mediated degradation of TRIP6 and, subsequently, increased levels of TRIP6 displaced β-catenin from the tumor suppressor MAGI1 via competitive binding. This sequence of events allows β-catenin to enter the nucleus and promotes oncogenic Wnt/β-catenin signaling. In conclusion, TTPAL is commonly overexpressed in colorectal cancer due to copy number gain, which promotes colorectal tumorigenesis by activating Wnt/β-catenin signaling via stabilization of TRIP6. TTPAL overexpression may serve as an independent new biomarker for the prognosis of patients with colorectal cancer. SIGNIFICANCE: TTPAL, a gene preferentially amplified in colorectal cancer, promotes colon tumorigenesis via activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hongyan Gou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jessie Qiaoyi Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Lijing Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yanquan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Rui Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Xiaohong Wang
- Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Department of Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Joanna H Tong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, The Chinese University of Hong Kong, Hong Kong
| | - Joseph J Y Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Francis K L Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
34
|
Mir YR, Kuchay RAH. Advances in identification of genes involved in autosomal recessive intellectual disability: a brief review. J Med Genet 2019; 56:567-573. [PMID: 30842223 DOI: 10.1136/jmedgenet-2018-105821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1%-3% of the general population. The number of ID-causing genes is high. Many X-linked genes have been implicated in ID. Autosomal dominant genes have recently been the focus of several large-scale studies. The total number of autosomal recessive ID (ARID) genes is estimated to be very high, and most are still unknown. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause ARID has lagged behind, predominantly due to non-availability of sizeable families. A commonly used approach to identify genetic loci for recessive disorders in consanguineous families is autozygosity mapping and whole-exome sequencing. Combination of these two approaches has recently led to identification of many genes involved in ID. These genes have diverse function and control various biological processes. In this review, we will present an update regarding genes that have been recently implicated in ID with focus on ARID.
Collapse
Affiliation(s)
- Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Raja Amir Hassan Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| |
Collapse
|
35
|
Wang X, Liang Q, Zhang L, Gou H, Li Z, Chen H, Dong Y, Ji J, Yu J. C8orf76 Promotes Gastric Tumorigenicity and Metastasis by Directly Inducing lncRNA DUSP5P1 and Associates with Patient Outcomes. Clin Cancer Res 2019; 25:3128-3140. [PMID: 30733230 DOI: 10.1158/1078-0432.ccr-18-2804] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/23/2018] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE We identified for the first time that C8orf76 (chromosome 8 open reading frame 76) is preferentially amplified in gastric cancer. We elucidated its role and clinical significance in gastric carcinogenesis. EXPERIMENTAL DESIGN The clinical impact of C8orf76 was assessed in 592 patients with gastric cancer. The biological function of C8orf76 was studied in vitro, in vivo, and in gastric cancer patient-derived organoid models. C8orf76 downstream effector and pathways were identified by RNA sequencing, chromatin immunoprecipitation sequencing, luciferase reporter, and electrophoretic mobility shift assay. RESULTS C8orf76 was upregulated in 69.74% and 65.71% of two independent cohorts of gastric cancers and was positively associated with C8orf76 amplification. Multivariate analysis showed that gastric cancer patients with C8orf76 amplification (cohort I, n = 129; cohort II, n = 107) or overexpression (n = 356) had a significantly shortened survival. C8orf76 significantly promoted gastric cancer cell proliferation, cell-cycle transformation, and migration/invasion, but suppressed cell apoptosis. Silencing C8orf76 expression exerted opposite effects in vitro and significantly inhibited xenograft tumor growth, lung metastasis, and liver metastasis in nude mice. Silencing C8orf76 also significantly suppressed the growth of patient-derived organoids. Mechanically, C8orf76 activated MAPK/ERK signaling cascade. C8orf76 directly bound to the promoter region of lncRNA dual specificity phosphatase 5 pseudogene 1 (DUSP5P1) with a binding motif of AGGCTG and activated DUSP5P1 transcription. DUSP5P1 induced MAPK/ERK signaling and promoted gastric tumorigenesis. Knockdown DUSP5P1 abrogated the effect of C8orf76 in activating MAPK/ERK cascade and the tumor-promoting function. CONCLUSIONS C8orf76 directly binds to oncogenic lncRNA DUSP5P1 to induce its expression and activates MAPK signaling. C8orf76 plays a pivotal oncogenic role in gastric carcinogenesis and is an independent prognostic factor for gastric cancer patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China.,Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Qiaoyi Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lianhai Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ziyu Li
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yujuan Dong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
36
|
Wang H, Deng G, Ai M, Xu Z, Mou T, Yu J, Liu H, Wang S, Li G. Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression. Oncogene 2019; 38:1489-1507. [PMID: 30305727 PMCID: PMC6372478 DOI: 10.1038/s41388-018-0532-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
Hsp90ab1 is upregulated in numerous solid tumors, which is thought to induce the angiogenesis and promote cancer metastasis. However, it's actions in gastric cancer (GC) has not been exhibited. In this study, Hsp90ab1 was demonstrated to be overexpressed and correlated with the poor prognosis, proliferation and invasion of GC. Ectopic expression of Hsp90ab1 promoted the proliferation and metastasis of GC cells both in vitro in cell line models of GC and in vivo using two different xenograft mouse models, while opposite effects were observed in Hsp90ab1 silenced cells. Moreover, the underlining molecular mechanism was explored by the co-immunoprecipitation, immunofluorescence, GST pull-down and in vitro ubiquitination assay. Namely, Hsp90ab1 exerted these functions via the interaction of LRP5 and inhibited ubiquitin-mediated degradation of LRP5, an indispensable coreceptor of the Wnt/β-catenin signaling pathway. In addition, the crosstalk between Hsp90ab1 and LRP5 contributed to the upregulation of multiple mesenchymal markers, which are also targets of Wnt/β-catenin. Collectively, this study uncovers the details of the Hsp90ab1-LRP5 axis, providing novel insights into the role and mechanism of invasion and metastasis in GC.
Collapse
Affiliation(s)
- Huanan Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Guangxu Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Meiling Ai
- Department of Pathology, Southern Medical University, Nanfang Hospital, Guangzhou, 510515, China
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510515, China
| | - Zhijun Xu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China
| | - Shuang Wang
- Department of Pathology, Southern Medical University, Nanfang Hospital, Guangzhou, 510515, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, 510515, China.
| |
Collapse
|
37
|
Zhang N, Wei ZL, Yin J, Zhang L, Wang J, Jin ZL. MiR-106a* inhibits oral squamous cell carcinoma progression by directly targeting MeCP2 and suppressing the Wnt/β-Catenin signaling pathway. Am J Transl Res 2018; 10:3542-3554. [PMID: 30662606 PMCID: PMC6291734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) play critical roles in the tumorigenesis and progression of oral squamous cell carcinoma (OSCC). MiR-106a* functions as a tumor suppressor miRNA in several cancers; however, its role in OSCC has not been elucidated. We investigated the role of miR-106a* in human OSCC and explored its relevant mechanisms. The expression of miR-106a* was significantly downregulated in OSCC tissues and cell lines. The overexpression of miR-106a* inhibited OSCC cell proliferation and the cell cycle G1-S transition, and induced apoptosis. In contrast, inhibition of miR-106a* promoted cell proliferation and G1-S transition and suppressed apoptosis. The expression of miR-106a* inversely correlated with methyl-CpG binding protein 2 (MeCP2) expression in OSCC tissues. Using a luciferase reporter assay, MeCP2 was determined to be a direct target of miR-106a*. Overexpression of miR-106a* decreased MeCP2 expression at both the mRNA and protein levels, while inhibition of miR-106a* increased MeCP2 expression. Importantly, overexpression of MeCP2 eliminated the effects of miR-106a* overexpression in OSCC cells and silencing of MeCP2 recapitulated the cellular and molecular effects observed with miR-106a* overexpression. MeCP2 may promote OSCC cell proliferation by activating the Wnt/β-Catenin signaling pathway. Taken together, our study demonstrated that miR-106a* inhibited OSCC cell proliferation by suppression of the Wnt/β-Catenin signaling pathway and induced apoptosis through regulation of Caspase 3/9 expression via targeting MeCP2. These findings suggest that miR-106a* acted as a tumor suppressor in the progression of OSCC and may be a potential new target for OSCC diagnosis and therapy.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
- Department of Stomatology, The First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710061, Shaanxi, China
| | - Zhu-Liang Wei
- Department of Orthodontics, Jinan Stomatological HospitalJinan 250001, Shandong, China
| | - Jing Yin
- Jinan Stomatological HospitalJinan 250001, Shandong, China
| | - Lu Zhang
- Department of Foreign Languages, Ming De College of Northwestern Polytechnical UniversityXi’an 710124, Shaanxi, China
| | - Jin Wang
- Department of Oral and Maxillofacial Surgery, Jinan Stomatological HospitalJinan 250001, Shandong, China
| | - Zuo-Lin Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| |
Collapse
|
38
|
Ma M, Zhang Y, Weng M, Hu Y, Xuan Y, Hu Y, Lv K. lncRNA GCAWKR Promotes Gastric Cancer Development by Scaffolding the Chromatin Modification Factors WDR5 and KAT2A. Mol Ther 2018; 26:2658-2668. [PMID: 30274785 PMCID: PMC6225079 DOI: 10.1016/j.ymthe.2018.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to play a role in carcinogenesis, but their mechanisms of function remain elusive. We explored the mechanisms of the oncogenic role of GCAWKR in gastric cancer (GC) using human tissues and cell lines. The in situ hybridization analysis was utilized to determine GCAWKR levels in samples from 42 GC patients and real-time qPCR in tissues from 123 patients. The GCAWKR levels were modulated in GC cell lines, and relevant biological and molecular analyses were performed. Levels of the GCAWKR were upregulated in GC tissues compared with normal tissues and associated with tumor size, lymph node metastasis, TNM stage, and patient outcomes. GCAWKR affected cell proliferation and cell invasion in multiple GC models. Mechanistically, GCAWKR bound WDR5 and KAT2A and acted as a molecular scaffold of WDR5/KAT2A complexes, modulating the affinity for WDR5/KAT2A complexes in the target gene's promoter region. Thus, our data defined a mechanism of lncRNA-mediated carcinogenesis in GC, suggesting new therapeutic targets in GC.
Collapse
Affiliation(s)
- Mingzhe Ma
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yan Zhang
- Department of Gastroenterology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Mingzhe Weng
- Department of General Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Hu
- State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xuan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - YiRen Hu
- Department of General Surgery, Wenzhou No. 3 Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China.
| | - Kun Lv
- Central Laboratory of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
39
|
CAB39L elicited an anti-Warburg effect via a LKB1-AMPK-PGC1α axis to inhibit gastric tumorigenesis. Oncogene 2018; 37:6383-6398. [PMID: 30054562 PMCID: PMC6296350 DOI: 10.1038/s41388-018-0402-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Metabolic dysfunction is a hallmark of gastric cancer (GC). In this study, we reported the identification of Calcium Binding Protein 39-Like (CAB39L) as a novel regulator of tumor metabolism in GC. CAB39L mRNA was frequently silenced by promoter methylation in GC cell lines and tissues. Functional studies suggested that CAB39L functions as a tumor suppressor, as overexpression of CAB39L elicited suppression of multiple cancer phenotypes both in GC cells and an orthotopic mouse model; whilst its knockdown promoted tumorigenesis. Mechanistically, CAB39L interacted with LKB1-STRAD complex and induced LKB1, leading to the phosphorylation and activation of AMPKα/β. LKB1-AMPK activation in GC cell lines was tumor suppressive, as metformin (an AMPK activator) inhibited GC cell growth in the CAB39L-silenced cells. Moreover, knockdown of LKB1 reversed growth inhibitory effect of CAB39L, indicating that tumor suppression by CAB39L depended on LKB1-AMPK. RNAseq and gene set enrichment analysis revealed that CAB39L was closely correlated with oxidative phosphorylation and mitochondrial biogenesis. Consistently, CAB39L-induced p-AMPK elicited PGC1α phosphorylation and increased the expression of genes involved in mitochondrial respiration complexes. Accordingly, CAB39L reversed the Warburg effect in GC, as evidenced by enhanced oxygen consumption rate and reduced extracellular acidification rate; inversely, CAB39L knockdown promoted a metabolic shift towards the Warburg phenotype. In GC patients, CAB39L promoter hypermethylation was correlated with poor prognosis. Our data demonstrate that CAB39L is a novel tumor suppressor which suppresses tumorigenesis by promoting LKB1-AMPK-PGC1α axis, thereby preventing a metabolic shift that drives carcinogenesis. CAB39L methylation is a potential prognostic biomarker for GC patients.
Collapse
|
40
|
Molnár B, Galamb O, Péterfia B, Wichmann B, Csabai I, Bodor A, Kalmár A, Szigeti KA, Barták BK, Nagy ZB, Valcz G, Patai ÁV, Igaz P, Tulassay Z. Gene promoter and exon DNA methylation changes in colon cancer development - mRNA expression and tumor mutation alterations. BMC Cancer 2018; 18:695. [PMID: 29945573 PMCID: PMC6020382 DOI: 10.1186/s12885-018-4609-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/18/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND DNA mutations occur randomly and sporadically in growth-related genes, mostly on cytosines. Demethylation of cytosines may lead to genetic instability through spontaneous deamination. Aims were whole genome methylation and targeted mutation analysis of colorectal cancer (CRC)-related genes and mRNA expression analysis of TP53 pathway genes. METHODS Long interspersed nuclear element-1 (LINE-1) BS-PCR followed by pyrosequencing was performed for the estimation of global DNA metlyation levels along the colorectal normal-adenoma-carcinoma sequence. Methyl capture sequencing was done on 6 normal adjacent (NAT), 15 adenomatous (AD) and 9 CRC tissues. Overall quantitative methylation analysis, selection of top hyper/hypomethylated genes, methylation analysis on mutation regions and TP53 pathway gene promoters were performed. Mutations of 12 CRC-related genes (APC, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, MSH6, PIK3CA, SMAD2, SMAD4, TP53) were evaluated. mRNA expression of TP53 pathway genes was also analyzed. RESULTS According to the LINE-1 methylation results, overall hypomethylation was observed along the normal-adenoma-carcinoma sequence. Within top50 differential methylated regions (DMRs), in AD-N comparison TP73, NGFR, PDGFRA genes were hypermethylated, FMN1, SLC16A7 genes were hypomethylated. In CRC-N comparison DKK2, SDC2, SOX1 genes showed hypermethylation, while ERBB4, CREB5, CNTN1 genes were hypomethylated. In certain mutation hot spot regions significant DNA methylation alterations were detected. The TP53 gene body was addressed by hypermethylation in adenomas. APC, TP53 and KRAS mutations were found in 30, 15, 21% of adenomas, and in 29, 53, 29% of CRCs, respectively. mRNA expression changes were observed in several TP53 pathway genes showing promoter methylation alterations. CONCLUSIONS DNA methylation with consecutive phenotypic effect can be observed in a high number of promoter and gene body regions through CRC development.
Collapse
Affiliation(s)
- Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Bálint Péterfia
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Barnabás Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - István Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Hungary
| | - András Bodor
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117 Hungary
- Institute of Mathematics and Informatics, Faculty of Sciences, University of Pécs, Ifjúság útja 6, Pécs, H-7624 Hungary
| | - Alexandra Kalmár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Krisztina Andrea Szigeti
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Barbara Kinga Barták
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Zsófia Brigitta Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Gábor Valcz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Árpád V. Patai
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Péter Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Szentkirályi str 46, Budapest, H-1088 Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi str 46, Budapest, H-1088 Hungary
| |
Collapse
|
41
|
MicroRNA and transcriptome analysis in periocular Sebaceous Gland Carcinoma. Sci Rep 2018; 8:7531. [PMID: 29760516 PMCID: PMC5951834 DOI: 10.1038/s41598-018-25900-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Sebaceous gland carcinoma (SGC) is a rare, but life-threatening condition with a predilection for the periocular region. Eyelid SGC can be broadly categorised into two subtypes, namely either nodular or pagetoid with the latter being more aggressive and requiring radical excision to save life. We have identified key altered microRNAs (miRNA) involved in SGC shared by both subtypes, hsa-miR-34a-5p and hsa-miR-16-5p. However, their gene targets BCL2 and MYC were differentially expressed with both overexpressed in pagetoid but unchanged in nodular suggesting different modes of action of these two miRNAs on BCL/MYC expression. Hsa-miR-150p is nodular-specifically overexpressed, and its target ZEB1 was significantly downregulated in nodular SGC suggesting a tumour suppressor role. Invasive pagetoid subtype demonstrated specific overexpression of hsa-miR-205 and downregulation of hsa-miR-199a. Correspondingly, miRNA gene targets, EZH2 (by hsa-miR-205) and CD44 (by hsa-miR-199a), were both overexpressed in pagetoid SGC. CD44 has been identified as a potential cancer stem cell marker in head and neck squamous cell carcinoma and its overexpression in pagetoid cells represents a novel treatment target. Aberrant miRNAs and their gene targets have been identified in both SGC subtypes, paving the way for better molecular understanding of these tumours and identifying new treatment targets.
Collapse
|
42
|
Zhang C, Cai T, Zeng X, Cai D, Chen Y, Huang X, Gan H, Zhuo J, Zhao Z, Pan H, Li S. Astragaloside IV reverses MNNG-induced precancerous lesions of gastric carcinoma in rats: Regulation on glycolysis through miRNA-34a/LDHA pathway. Phytother Res 2018; 32:1364-1372. [DOI: 10.1002/ptr.6070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Chengzhe Zhang
- Guangzhou University of Chinese Medicine; Guangzhou 510405 China
- Guangdong Province Engineering Technology Research Institute of T.C.M.; Guangzhou 510095 China
- Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 China
| | - Tiantian Cai
- Guangzhou University of Chinese Medicine; Guangzhou 510405 China
| | - Xiaohui Zeng
- Guangdong Province Engineering Technology Research Institute of T.C.M.; Guangzhou 510095 China
- Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 China
| | - Dake Cai
- Guangdong Province Engineering Technology Research Institute of T.C.M.; Guangzhou 510095 China
- Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 China
| | - Yuxing Chen
- Guangdong Province Engineering Technology Research Institute of T.C.M.; Guangzhou 510095 China
- Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 China
| | - Xuejun Huang
- Guangdong Province Engineering Technology Research Institute of T.C.M.; Guangzhou 510095 China
- Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 China
| | - Haining Gan
- Guangdong Province Engineering Technology Research Institute of T.C.M.; Guangzhou 510095 China
- Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 China
| | - Juncheng Zhuo
- Guangzhou University of Chinese Medicine; Guangzhou 510405 China
- Guangdong Province Engineering Technology Research Institute of T.C.M.; Guangzhou 510095 China
- Guangdong Provincial key Laboratory of Research and Development in Traditional Chinese Medicine; Guangzhou Guangdong 510095 China
| | - Ziming Zhao
- Guangdong Province Engineering Technology Research Institute of T.C.M.; Guangzhou 510095 China
| | - Huafeng Pan
- Guangzhou University of Chinese Medicine; Guangzhou 510405 China
| | - Siyi Li
- Guangzhou University of Chinese Medicine; Guangzhou 510405 China
| |
Collapse
|
43
|
Avilés-Vázquez S, Chávez-González A, Hidalgo-Miranda A, Moreno-Lorenzana D, Arriaga-Pizano L, Sandoval-Esquivel MÁ, Ayala-Sánchez M, Aguilar R, Alfaro-Ruiz L, Mayani H. Global gene expression profiles of hematopoietic stem and progenitor cells from patients with chronic myeloid leukemia: the effect of in vitro culture with or without imatinib. Cancer Med 2017; 6:2942-2956. [PMID: 29030909 PMCID: PMC5727298 DOI: 10.1002/cam4.1187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 01/04/2023] Open
Abstract
In this study, we determined the gene expression profiles of bone marrow‐derived cell fractions, obtained from normal subjects and Chronic Myeloid Leukemia (CML) patients, that were highly enriched for hematopoietic stem (HSCs) and progenitor (HPCs) cells. Our results indicate that the profiles of CML HSCs and HPCs were closer to that of normal progenitors, whereas normal HSCs showed the most different expression profile of all. We found that the expression profiles of HSCs and HPCs from CML marrow were closer to each other than those of HSCs and HPCs from normal marrow. The major biologic processes dysregulated in CML cells included DNA repair, cell cycle, chromosome condensation, cell adhesion, and the immune response. We also determined the genomic changes in both normal and CML progenitor cells under culture conditions, and found that several genes involved in cell cycle, steroid biosynthesis, and chromosome segregation were upregulated, whereas genes involved in transcription regulation and apoptosis were downregulated. Interestingly, these changes were the same, regardless of the addition of Imatinib (IM) to the culture. Finally, we identified three genes—PIEZO2, RXFP1, and MAMDC2‐ that are preferentially expressed by CML primitive cells and that encode for cell membrane proteins; thus, they could be used as biomarkers for CML stem cells.
Collapse
Affiliation(s)
- Sócrates Avilés-Vázquez
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| | - Antonieta Chávez-González
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| | | | - Dafne Moreno-Lorenzana
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| | - Lourdes Arriaga-Pizano
- Immunochemistry Research Unit, National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| | - Miguel Á Sandoval-Esquivel
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| | - Manuel Ayala-Sánchez
- Department of Hematology, La Raza Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| | - Rafael Aguilar
- Department of Hip Surgery, Villa Coapa General Hospital, Mexican Institute for Social Security, Mexico City, Mexico
| | | | - Hector Mayani
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute for Social Security, Mexico City, Mexico
| |
Collapse
|
44
|
Zheng L, Chen J, Zhou Z, He Z. Knockdown of long non-coding RNA HOXD-AS1 inhibits gastric cancer cell growth via inactivating the JAK2/STAT3 pathway. Tumour Biol 2017; 39:1010428317705335. [PMID: 28475004 DOI: 10.1177/1010428317705335] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA HOXD-AS1 (HOXD cluster antisense RNA 1) has been demonstrated to be closely associated with the progression of several tumors. However, the biological function of HOXD-AS1 and the underlying molecular mechanism in gastric cancer are still unclear. The expression of HOXD-AS1 in gastric cancer cell lines was evaluated by quantitative real-time polymerase chain reaction. The association of HOXD-AS1 expression and clinical parameters was statistically analyzed by chi-square test. Cell viability, colony formation capacity, and phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 3 in treated SGC-7901 and BGC-823 cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, and western blot analysis, respectively. The results indicated that HOXD-AS1 was significantly upregulated in gastric cancer cells and clinically involved in tumor size, invasion depth, tumor-node-metastasis stages, regional lymph nodes, lymphatic metastasis, as well as distant metastasis. HOXD-AS1 knockdown dramatically inhibited gastric cancer cell proliferation, colony formation capacity, and phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 3 in vitro. In addition, HOXD-AS1 overexpression significantly promoted gastric cancer cell proliferation and colony formation capacity, whereas both Janus kinase small interfering RNAs and Janus kinase 2 inhibitor AG490 overturned these effects. Furthermore, xenograft assays confirmed the biological function of HOXD-AS1 in vivo. Taken together, our data elucidate that knockdown of HOXD-AS1 dramatically suppresses gastric cancer cell growth by inactivating the Janus kinase 2/signal transducer and activator of transcription 3 pathway in vitro and in vivo, contributing to a better understanding of gastric cancer pathogenesis and providing a possible theoretical foundation for long non-coding RNA-directed diagnosis and therapy against this disease.
Collapse
Affiliation(s)
- Li Zheng
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jiangtao Chen
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhongyong Zhou
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhikuan He
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
45
|
Wu G, Zhang DY, Duan YH, Zhang YQ, Cui XN, Luo Z. Correlations of Hemoglobin Level and Perioperative Blood Transfusion with the Prognosis of Gastric Cancer: A Retrospective Study. Med Sci Monit 2017; 23:2470-2478. [PMID: 28535151 PMCID: PMC5450681 DOI: 10.12659/msm.900907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background This study was designed to explore the correlations of hemoglobin level (Hb) and perioperative blood transfusion with the prognosis of gastric cancer (GC). Material/Methods Our study consisted of 210 patients with GC who all received a D2 radical operation. These patients were assigned into three groups: 68 cases in group A (blood transfusion >5 U); 59 cases in group B (blood transfusion <5 U); 83 cases in group C (without blood transfusion). A 5-year follow-up was conducted to evaluate the disease-free survival of the patients. Univariate analysis was performed to reveal the relationship between the indicators and the patients with GC. Kaplan-Meier method was employed to analyze the survival rate of patients, and Cox regression analysis was applied to determine the independent prognostic factors of GC. Results The univariate analysis indicated that age, perioperative blood transfusion amount, TNM staging, maximal tumor diameter, differentiation degree and invasion degree were associated with the prognosis of GC. The Kaplan-Meier curve showed that the disease-free survival rate was declined in the patients who were older, those received more amount of blood transfusion, those in advanced TNM staging, those had larger tumor diameter, and those with decreased degree of differentiation and invasion. Cox regression analysis indicated that perioperative blood transfusion, maximal tumor diameter and invasion degree were the independent factors affecting disease-free survival of the GC. Conclusions Our study revealed that large amount of perioperative blood transfusion leads to poor prognosis of GC.
Collapse
Affiliation(s)
- Gang Wu
- Department of Clinical Blood Transfusion, The Central Hospital of Hubei Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Dai-Yang Zhang
- Spinal Surgical Diagnosis and Treatment Center, The Central Hospital of Hubei Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Yu-Han Duan
- Clinical Test Center, The Central Hospital of Hubei Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Ying-Qiong Zhang
- Department of Thoracic Surgeons, The Central Hospital of Hubei Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Xian-Nian Cui
- Clinical Laboratory Center, Hubei Province National Hospital, Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| | - Zheng Luo
- Spinal Surgical Diagnosis and Treatment Center, The Central Hospital of Hubei Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China (mainland)
| |
Collapse
|
46
|
Guo C, Li X, Ye M, Xu F, Yu J, Xie C, Cao X, Guo M, Yuan Y, Zheng S. Discriminating patients with early-stage breast cancer from benign lesions by detection of oxidative DNA damage biomarker in urine. Oncotarget 2017; 8:53100-53109. [PMID: 28881796 PMCID: PMC5581095 DOI: 10.18632/oncotarget.17831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is one of the most commonly diagnosed and death-related cancers in women worldwide. Mammography is routinely used for screening and invasive examinations such as painful tissue biopsies were recommended for patients with abnormal screening outcomes. However, a considerable proportion of these cases turn out to be benign lesions. Thus, novel non-invasive approach for discriminating breast cancer from benign lesions is desirable. Herein, we applied a high-throughput ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis to determine the oxidative DNA damage biomarker, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) in urine samples from 60 patients with early-stage breast cancer (stage I, II), 51 patients with benign breast diseases and 73 healthy volunteers. We demonstrated that the concentration of urinary 8-oxodG in patients with early-stage breast cancer was significantly higher not only than that in healthy controls, but also than that in patients with benign breast diseases, whereas no significant difference of urinary 8-oxodG level was observed between benign breast diseases group and healthy control group. Moreover, there was significant difference between early-stage breast cancer group and non-cancerous group which consisted of benign breast diseases patients and healthy controls. Besides, logistic regression analysis and receiver operator characteristic (ROC) curve analysis were also performed. Our findings indicate that the marked increase of 8-oxodG in urine may serve as a potential biomarker for the risk estimation, early screening and detection of breast cancer, particularly for discriminating early-stage breast cancer from benign lesions.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Minfeng Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, China
| | - Fei Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Cong Xie
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
47
|
Ma G, Liu H, Hua Q, Wang M, Du M, Lin Y, Ge Y, Gong W, Zhao Q, Qiang F, Tao G, Zhang Z, Chu H. KCNMA1 cooperating with PTK2 is a novel tumor suppressor in gastric cancer and is associated with disease outcome. Mol Cancer 2017; 16:46. [PMID: 28231797 PMCID: PMC5324255 DOI: 10.1186/s12943-017-0613-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 02/05/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inactivation of tumor suppressor genes by promoter hypermethylation plays a key role in the tumorgenesis. It is necessary to uncover the detailed pattern of whole genome-wide abnormal DNA methylation during the development of gastric cancer (GC). METHOD We performed a genome-wide methylation detection using 12 paired of GC tissues and their corresponding normal tissues. Methylation-specific PCR (MSP) and bisulphite sequencing (BSP) were used to measure methylation status of specific CpG site. Based on the bioinformatic analysis, the cell phenotypes and mouse model experiments were constructed to detect effect of the target gene. Using the Kaplan-Meier survival curve, the clinical value of KCNMA1 was assessed in GC patients. RESULTS The CpG site cg24113782 located at the promoter of KCNMA1 showed the most significant difference, contributing to the commonly silenced KCNMA1in gastric cancer cells and primary GC tissues. The promoter methylation of KCNMA1 was detected in 68.7% (77/112) of tumor tissues, compared with 16.2% (18/112) of normal tissues (P < 0.001). The survival curve indicated that KCNMA1 hypermethylation was significantly associated with the shortened survival in GC patients (P = 0.036). KCNMA1 significantly inhibited biological malignant behavior of gastric cancer cell by inducing cell apoptosis in vitro, and suppressed xenograft tumor growth in subcutaneous mouse models (both P < 0.001). Furthermore, the anti-tumor effect of KCNMA1was mediated through suppressing the expression of PTK2. CONCLUSION KCNMA1 is a critical tumor suppressor in gastric carcinogenesis and its hypermethylation is an independent prognostic factor in patients with gastric cancer.
Collapse
Affiliation(s)
- Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuhan Hua
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yadi Lin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weida Gong
- Department of General Surgery, Yixing Tumor Hospital, Yixing, China
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fulin Qiang
- Core Laboratory, Nantong Tumor Hospital, Nantong, China
| | - Guoquan Tao
- Department of General Surgery, Huai-An First People's Hospital Affiliated to Nanjing Medical University, Huai-An, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China. .,Department of Environmental Genomics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China. .,Department of Environmental Genomics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.
| |
Collapse
|
48
|
Decreased Sp1 Expression Mediates Downregulation of SHIP2 in Gastric Cancer Cells. Int J Mol Sci 2017; 18:ijms18010220. [PMID: 28117748 PMCID: PMC5297849 DOI: 10.3390/ijms18010220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 02/06/2023] Open
Abstract
Past studies have shown that the Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) is commonly downregulated in gastric cancer, which contributes to elevated activation of PI3K/Akt signaling, proliferation and tumorigenesis of gastric cancer cells. However, the mechanisms underlying the reduced expression of SHIP2 in gastric cancer remain unclear. While gene copy number variation analysis and exon sequencing indicated the absence of genomic alterations of SHIP2, bisulfite genomic sequencing (BGS) showed promoter hypomethylation of SHIP2 in gastric cancer cells. Analysis of transcriptional activity of SHIP2 promoter revealed Specificity protein 1 (Sp1) was responsible for the regulation of SHIP2 expression in gastric cancer cells. Furthermore, Sp1 expression, but not Sp3, was frequently downregulated in gastric cancer compared with normal gastric mucosa, which was associated with a paralleled reduction in SHIP2 levels in gastric cancer. Moreover, overexpression of Sp1 inhibited cell proliferation, induced apoptosis, suppressed cell motility and invasion in gastric cancer cells in vitro, which was, at least in part, due to transcriptional activation of SHIP2 mediated by Sp1, thereby inactivating Akt. Collectively, these results indicate that decreased expression of transcription factor Sp1 contributes to suppression of SHIP2 in gastric cancer cells.
Collapse
|
49
|
MeCP2 Promotes Gastric Cancer Progression Through Regulating FOXF1/Wnt5a/β-Catenin and MYOD1/Caspase-3 Signaling Pathways. EBioMedicine 2017; 16:87-100. [PMID: 28131747 PMCID: PMC5474507 DOI: 10.1016/j.ebiom.2017.01.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 01/25/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) has recently been characterized as an oncogene frequently amplified in several types of cancer. However, its precise role in gastric cancer (GC) and the molecular mechanism of MeCP2 regulation are still largely unknown. Here we report that MeCP2 is highly expressed in primary GC tissues and the expression level is correlated with the clinicopathologic features of GC. In our experiments, knockdown of MeCP2 inhibited tumor growth. Molecular mechanism of MeCP2 regulation was investigated using an integrated approach with combination of microarray analysis and chromatin immunoprecipitation sequencing (ChIP-Seq). The results suggest that MeCP2 binds to the methylated CpG islands of FOXF1 and MYOD1 promoters and inhibits their expression at the transcription level. Furthermore, we show that MeCP2 promotes GC cell proliferation via FOXF1-mediated Wnt5a/β-Catenin signaling pathway and suppresses apoptosis through MYOD1-mediated Caspase-3 signaling pathway. Due to its high expression level in GC and its critical function in driving GC progression, MeCP2 represents a promising therapeutic target for GC treatment. MeCP2 inhibits FOXF1 and MYOD1 transcription by binding to their promoter regions. MeCP2 promotes GC cell proliferation via FOXF1-mediated Wnt/β-Catenin signaling pathway. MeCP2 suppresses GC cell apoptosis through MYOD1-mediated Caspase-3 signaling pathway.
Gastric cancer is the fourth most common malignant cancer and the third most frequent cause of cancer-related deaths worldwide. The molecular mechanism underlying gastric carcinogenesis and progression is still unknown. Methyl-CpG binding protein 2 (MeCP2) has recently been characterized as an oncogene frequently amplified in several types of cancer. However, its precise role and the molecular mechanism of MeCP2 regulation in gastric cancer are largely unknown. Our results show that MeCP2 promotes gastric cancer cell proliferation via FOXF1-mediated Wnt5a/β-Catenin signaling pathway and suppresses cell apoptosis through MYOD1-mediated Caspase-3 signaling pathway. MeCP2 represents a promising therapeutic target for gastric cancer treatment.
Collapse
|
50
|
Jia W, Yu T, Cao X, An Q, Yang H. Clinical effect of DAPK promoter methylation in gastric cancer: A systematic meta-analysis. Medicine (Baltimore) 2016; 95:e5040. [PMID: 27787359 PMCID: PMC5089088 DOI: 10.1097/md.0000000000005040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The loss of death-associated protein kinase (DAPK) gene expression through promoter methylation is involved in many tumors. However, the relationship between DAPK promoter methylation and clinicopathological features of gastric cancer (GC) remains to be done. Therefore, we performed a meta-analysis to assess the role of DAPK promoter methylation in GC. METHODS Literature databases were searched to retrieve eligible studies. The pooled odds ratios (ORs) with its 95% confidence intervals (CIs) were calculated using the Stata 12.0 software. RESULTS Final 22 available studies with 1606 GC patients and 1508 nonmalignant controls were analyzed. A significant correlation was found between DAPK promoter methylation and GC (OR = 3.23, 95% CI = 1.70-6.14, P < 0.001), but we did not find any significant association in Caucasian population, and in blood samples in subgroup analyses. DAPK promoter methylation was associated with tumor stage and lymph node status (OR = 0.69, 95% CI = 0.49-0.96, P = 0.03; OR = 1.50, 95% CI = 1.12-2.01, P = 0.007; respectively). However, we did not find that DAPK promoter methylation was associated with gender status and tumor histology. CONCLUSION Our findings suggested that DAPK promoter methylation may play a key role in the carcinogenesis and progression of GC. In addition, methylated DAPK was a susceptible gene for Asian population. However, more studies with larger subjects should be done to further evaluate the effect of DAPK promoter methylation in GC patients, especially in blood and Caucasian population subgroup.
Collapse
Affiliation(s)
- Wenzhuo Jia
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, China
- Correspondence: Wenzhuo Jia, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Dong Dan, Beijing, China (e-mail: )
| | | | | | | | | |
Collapse
|