1
|
Wu E, Liang J, Zhao J, Gu F, Zhang Y, Hong B, Wang Q, Shao W, Sun X. Identification of potential shared gene signatures between periodontitis and breast cancer by integrating bulk RNA-seq and scRNA-seq data. Sci Rep 2025; 15:11216. [PMID: 40175565 PMCID: PMC11965459 DOI: 10.1038/s41598-025-95703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Studies have shown that patients with periodontitis (PD) have an increased risk of breast cancer (BC). However, the exact mechanism remains to be further investigated. This study aimed to investigate the genes, pathways and immune cells that may interact with PD and BC. From the Gene Expression Omnibus (GEO) and TCGA databases, we retrieved the gene expression profiles of samples with PD and BC, respectively. Common genes between two diseases were found using differential expression analysis and weighted gene co-expression network analysis (WGCNA). Machine learning methods were used to find shared diagnostic genes. Single-sample GSEA (ssGSEA) was performed to study the expression profiles of 28 immune cells in PD and BC, and single-cell RNA sequencing (scRNA-seq) data was used to visualize localization of shared genes. Finally, we employed qRT-PCR and immunohistochemistry staining to confirm the expression of hub genes in two diseases. PD and BC had 21 shared crosstalk genes, which were primarily related to peptide hormone response, organic acid transmembrane transport, and carboxylic acid transmembrane transport. By using machine learning methods, ANKRD29 and TDO2 were the most efficient shared diagnostic biomarkers, which were confirmed by Immunohistochemical staining and qRT-PCR. ssGSEA showed that immunology was involved in both diseases and that ANKRD29 and TDO2 may be involved in both diseases by mediating immune cells. scRNA-seq further confirms the importance of these genes in regulating immunity in both diseases. In brief, our study identified 2 genes that may serve as biomarkers and targets for the diagnosis and treatment of PD and BC.
Collapse
Affiliation(s)
- Erli Wu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jiahui Liang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, People's Republic of China
| | - Jingxin Zhao
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Feihan Gu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yuanyuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Biao Hong
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
- Department of Periodontology, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China
| | - Qingqing Wang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Periodontology, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China.
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Xiaoyu Sun
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Periodontology, Anhui Stomatology Hospital Affiliated to Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Lone IM, Zohud O, Midlej K, Brenner C, Iraqi FA. System genetic analysis of intestinal cancer and periodontitis development as influenced by aging and diabesity using Collaborative Cross mice. Animal Model Exp Med 2025; 8:758-770. [PMID: 39921239 PMCID: PMC12008441 DOI: 10.1002/ame2.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/09/2025] [Indexed: 02/10/2025] Open
Abstract
It is increasingly recognized that young, chow-fed inbred mice poorly model the complexity of human carcinogenesis. In humans, age and adiposity are major risk factors for malignancies, but most genetically engineered mouse models (GEMM) induce carcinogenesis too rapidly to study these influences. Standard strains, such as C57BL/6, commonly used in GEMMs, further limit the exploration of aging and metabolic health effects. A similar challenge arises in modeling periodontitis, a disease influenced by aging, diabesity, and genetic architecture. We propose using diverse mouse populations with hybrid vigor, such as the Collaborative Cross (CC) × ApcMin hybrid, to slow disease progression and better model human colorectal cancer (CRC) and comorbidities. This perspective highlights the advantages of this model, where delayed carcinogenesis reveals interactions with aging and adiposity. Unlike ApcMin mice, which develop cancer rapidly, CC × ApcMin hybrids recapitulate human-like progression. This facilitates the identification of modifier loci affecting inflammation, diet susceptibility, organ size, and polyposis distribution. The CC × ApcMin model offers a transformative platform for studying CRC as a disease of adulthood, reflecting its complex interplay with aging and comorbidities. The insights gained from this approach will enhance early detection, management, and treatment strategies for CRC and related conditions.
Collapse
Affiliation(s)
- Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| | - Charles Brenner
- Department of Diabetes and Cancer MetabolismBeckman Research InstituteDuarteCaliforniaUSA
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health SciencesTel Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
3
|
Chapple ILC, Hirschfeld J, Cockwell P, Dietrich T, Sharma P. Interplay between periodontitis and chronic kidney disease. Nat Rev Nephrol 2025; 21:226-240. [PMID: 39658571 DOI: 10.1038/s41581-024-00910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Periodontitis is a ubiquitous chronic inflammatory disease affecting the supporting tissues of the teeth and is a major cause of multiple tooth loss. Despite being preventable, periodontitis and dental caries are responsible for more years lost to disability than any other human condition. The most severe form of periodontitis affects 1 billion individuals, and its prevalence is increasing globally. Periodontitis arises from a dysregulated and hyperactive inflammatory response to dysbiosis in the periodontal microbiome. This response has systemic effects associated with premature mortality and elevated risk of several systemic non-communicable diseases (NCDs), including atheromatous cardiovascular disease, type 2 diabetes and chronic kidney disease (CKD). This risk association between periodontitis and NCDs is independent of their shared common risk factors, suggesting that periodontitis is a non-traditional risk factor for NCDs such as CKD. As periodontitis progresses, the immune cells and mediators underpinning its pathophysiology leak into the systemic circulation through the ulcerated oral mucosal lining, inducing in a systemic inflammatory profile that closely mirrors that observed in patients with CKD. The relationship between periodontitis and CKD seems to be bi-directional, but large-scale intervention studies are required to clarify causality and could lead to new care pathways for managing each condition as an exposure for the other.
Collapse
Affiliation(s)
- Iain L C Chapple
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK.
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK.
| | - Josefine Hirschfeld
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK
| | - Paul Cockwell
- Department of Nephrology, University Hospital Birmingham, Birmingham, UK
| | - Thomas Dietrich
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK
| | - Praveen Sharma
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK
| |
Collapse
|
4
|
Lang Y, Song X, Chen Y, Mei H, Wu C, Zhang R, Xue C. Association between the indicators of insulin resistance and periodontitis: a study using data from the National Health and Nutrition Examination Survey 2009-2014. BMC Oral Health 2025; 25:404. [PMID: 40108596 PMCID: PMC11924845 DOI: 10.1186/s12903-025-05752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The rising obesity rates are accompanied by an increasing prevalence of insulin resistance (IR) associated with obesity. To ascertain the best index for replacing IR, this study aimed to investigate the possible association between IR, which was assessed using the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), and the triglyceride-glucose (TyG) index and its derived indexes and periodontitis. METHODS The association between the indicators of IR and periodontitis was assessed via multivariate-adjusted logistic regression analyses using data from the National Health and Nutrition Examination Survey (NHANES) 2009-2014. In addition, subgroup analyses and receiver operating characteristic curve analyses were conducted to explore possible influencing factors. RESULTS Our study encompassed 1,588 participants, and 41.0% were diagnosed with periodontitis. Based on the multivariate logistic regression analysis, a higher TyG-waist-to-height ratio (WHtR) (odds ratio [OR] = 1.14, 95% confidence interval [CI]: 1.02-1.27, P = 0.0244) and HOMA-IR score (OR = 1.00, 95% CI: 1.00-1.00, P = 0.0028) were associated with an increased risk of periodontitis. Conversely, the TyG index, TyG-adjusted for body mass index, and TyG-adjusted for waist circumference (WC) were not associated with periodontitis. According to further subgroup analyses and interaction result analyses, sex affected the association between the TyG index, TyG-WC, and TyG-WHtR and periodontitis (P < 0.05 for interaction). Moreover, the influence of age regulated the association between periodontitis and both TyG and HOMA-IR score. In terms of diagnostic accuracy, the area under the receiver operating characteristic curve analysis revealed that HOMA-IR score and TyG-WHtR slightly outperformed the TyG index, TyG-body mass index, and TyG-WC. Thus, they can be robust markers for assessing IR-related periodontitis risk. CONCLUSION A consistent and positive association was found between HOMA-IR score and TyG-WHtR and the odds of periodontitis prevalence. Hence, HOMA-IR score and TyG-WHtR were significantly associated with periodontitis in this cross-sectional study. However, prospective studies are needed to determine whether higher TyG-waist-to-height ratio and HOMA-IR score can predict the occurrence of periodontitis.
Collapse
Affiliation(s)
- Yiyuan Lang
- Department of Stomatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Third Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xin Song
- Department of Stomatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Chen
- Department of Stomatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Mei
- Department of Stomatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- The Third Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengyu Wu
- Department of Stomatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Zhang
- Department of Stomatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Changao Xue
- Department of Stomatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
- The Third Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Huang Z, Hao M, Shi N, Wang X, Yuan L, Yuan H, Wang X. Porphyromonas gingivalis: a potential trigger of neurodegenerative disease. Front Immunol 2025; 16:1482033. [PMID: 40028317 PMCID: PMC11867964 DOI: 10.3389/fimmu.2025.1482033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a gram-negative bacterium and the main causative agent of periodontitis, a disease closely associated with the development of periodontal disease. The progression of periodontitis, a chronic infectious disease, is intricately linked to the inflammatory immune response. Inflammatory cytokines act on periodontal tissues via immunomodulation, resulting in the destruction of the periodontal tissue. Recent studies have established connections between periodontitis and various systemic diseases, including cardiovascular diseases, tumors, and neurodegenerative diseases. Neurodegenerative diseases are neurological disorders caused by immune system dysfunction, including Alzheimer's and Parkinson's diseases. One of the main characteristics of neurodegenerative diseases is an impaired inflammatory response, which mediates neuroinflammation through microglial activation. Some studies have shown an association between periodontitis and neurodegenerative diseases, with P. gingivalis as the primary culprit. P. gingivalis can cross the blood-brain barrier (BBB) or mediate neuroinflammation and injury through a variety of pathways, including the gut-brain axis, thereby affecting neuronal growth and survival and participating in the onset and progression of neurodegenerative diseases. However, comprehensive and systematic summaries of studies on the infectious origin of neurodegenerative diseases are lacking. This article reviews and summarizes the relationship between P. gingivalis and neurodegenerative diseases and its possible regulatory mechanisms. This review offers new perspectives into the understanding of neurodegenerative disease development and highlights innovative approaches for investigating and developing tailored medications for treating neurodegenerative conditions, particularly from the viewpoint of their association with P. gingivalis.
Collapse
Affiliation(s)
- Ziyan Huang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Naixu Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Yuan
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Haotian Yuan
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Ma L, Cao Z. Periodontopathogen-Related Cell Autophagy-A Double-Edged Sword. Inflammation 2025; 48:1-14. [PMID: 38762837 DOI: 10.1007/s10753-024-02049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The periodontium is a highly organized ecosystem, and the imbalance between oral microorganisms and host defense leads to periodontal diseases. The periodontal pathogens, mainly Gram-negative anaerobic bacteria, colonize the periodontal niches or enter the blood circulation, resulting in periodontal tissue destruction and distal organ damage. This phenomenon links periodontitis with various systemic conditions, including cardiovascular diseases, malignant tumors, steatohepatitis, and Alzheimer's disease. Autophagy is an evolutionarily conserved cellular self-degradation process essential for eliminating internalized pathogens. Nowadays, increasing studies have been carried out in cells derived from periodontal tissues, immune system, and distant organs to investigate the relationship between periodontal pathogen infection and autophagy-related activities. On one hand, as a vital part of innate and adaptive immunity, autophagy actively participates in host resistance to periodontal bacterial infection. On the other, certain periodontal pathogens exploit autophagic vesicles or pathways to evade immune surveillance, therefore achieving survival within host cells. This review provides an overview of the autophagy process and focuses on periodontopathogen-related autophagy and their involvements in cells of different tissue origins, so as to comprehensively understand the role of autophagy in the occurrence and development of periodontal diseases and various periodontitis-associated systemic illnesses.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
7
|
Chen J, Dong S. Polymer-based antimicrobial strategies for periodontitis. Front Pharmacol 2025; 15:1533964. [PMID: 39834832 PMCID: PMC11743519 DOI: 10.3389/fphar.2024.1533964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Periodontitis is a chronic inflammatory condition driven by plaque-associated microorganisms, where uncontrolled bacterial invasion and proliferation impair host immune responses, leading to localized periodontal tissue inflammation and bone destruction. Conventional periodontal therapies face challenges, including incomplete microbial clearance and the rise of antibiotic resistance, limiting their precision and effectiveness in managing periodontitis. Recently, nanotherapies based on polymeric materials have introduced advanced approaches to periodontal antimicrobial therapy through diverse antimicrobial mechanisms. This review explored specific mechanisms, emphasizing the design of polymer-based agents that employ individual or synergistic antimicrobial actions, and evaluated the innovations and limitations of current strategies while forecasting future trends in antimicrobial development for periodontitis.
Collapse
Affiliation(s)
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
8
|
Zeng Y, Lin D, Chen A, Ning Y, Li X. Periodontal Treatment to Improve General Health and Manage Systemic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:245-260. [PMID: 40111696 DOI: 10.1007/978-3-031-79146-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Periodontitis is increasingly recognized for its role in overall health and its associations with systemic conditions. Shared etiological factors, including microbiological, immunological, genetic, and environmental influences, have prompted interest in the potential impact of periodontal therapy on broader health outcomes. The oral microbiome plays a key role in the pathogenesis of periodontitis, with microbial imbalances (dysbiosis) contributing to inflammation and systemic disease progression. Additionally, immune responses to periodontal infection, such as chronic inflammation and dysregulated immune activity, are central to linking periodontitis with conditions like diabetes, cardiovascular disease, and autoimmune disorders. This chapter explores the connections between periodontal treatment and systemic diseases, such as diabetes, rheumatoid arthritis, cardiovascular disease, chronic kidney disease, Alzheimer's disease, digestive disorders, and respiratory disease. It also reviews the current research on the mechanisms, including microbial and immune factors, that underlie these associations. By emphasizing the role of periodontal health, the oral microbiome, and immune regulation in disease prevention and management, this chapter underscores the importance of integrated healthcare approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Yanlin Zeng
- Guanghua School of Stomatology & Hospital of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dongjia Lin
- Guanghua School of Stomatology & Hospital of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Aijia Chen
- Guanghua School of Stomatology & Hospital of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yang Ning
- Guanghua School of Stomatology & Hospital of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Xiaolan Li
- Guanghua School of Stomatology & Hospital of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Shine BK, Son M, Moon SY, Han SH. Metabolic Dysfunction-Associated Steatotic Liver Disease and the Risk of Chronic Periodontitis: A Nationwide Cohort Study. Nutrients 2024; 17:125. [PMID: 39796559 PMCID: PMC11723414 DOI: 10.3390/nu17010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Chronic periodontitis (CP) and metabolic dysfunction-associated steatotic liver disease (MASLD) have emerged as interconnected conditions with shared mechanisms, such as systemic inflammation and metabolic dysregulation. However, the risk of CP in the newly classified subgroups of steatotic liver disease (SLD), including MASLD and metabolic alcohol-associated liver disease (MetALD), has not been extensively studied. This study investigated the association between SLD subtypes and the incidence of CP in a nationwide cohort. Methods: This retrospective cohort study used data from the Korean National Health Insurance Service database. The study included 115,619 participants aged 40 and older who underwent health screenings between 2009 and 2010. The participants were classified into four groups: normal without risk factors, normal with risk factors, MASLD, and MetALD. The primary outcome was the incidence of CP as defined by ICD-10 codes and dental treatment records. Hazard ratios (HRs) were calculated using the Cox proportional hazards model and adjusted for demographic, clinical, and lifestyle factors. Results: Over a mean follow-up of 7.4 years, individuals with MASLD and MetALD had significantly higher risks of developing CP compared with the normal group without risk factors (MASLD: adjusted HR 1.14, 95% confidence interval (CI): 1.11-1.17; MetALD: adjusted HR 1.21, 95% CI: 1.15-1.27). The risk was more pronounced for severe CP, particularly for those with MetALD (adjusted HR 1.29, 95% CI: 1.22-1.36). Subgroup and sensitivity analyses confirmed these findings across the various definitions of hepatic steatosis and metabolic risk factors. Conclusions: This study reveals that individuals with MASLD and MetALD are at an elevated risk of developing CP, highlighting the need for integrated care strategies that address both periodontal health and metabolic liver conditions. These findings underscore the importance of periodontal health management in reducing the risk of CP among SLD populations.
Collapse
Affiliation(s)
- Bo-Kyung Shine
- Department of Family Medicine, College of Medicine, Dong-A University, Busan 49201, Republic of Korea;
| | - Minkook Son
- Department of Physiology, College of Medicine, Dong-A University, Busan 49201, Republic of Korea;
- Interdisciplinary Program, Department of Data Sciences Convergence, Dong-A University, Busan 49201, Republic of Korea
| | - Sang Yi Moon
- Interdisciplinary Program, Department of Data Sciences Convergence, Dong-A University, Busan 49201, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Dong-A University, Busan 49201, Republic of Korea
| | - Seong-Ho Han
- Department of Family Medicine, College of Medicine, Dong-A University, Busan 49201, Republic of Korea;
| |
Collapse
|
10
|
Sapra L, Srivastava RK. Immunotherapy in the management of inflammatory bone loss in osteoporosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:461-491. [PMID: 39978975 DOI: 10.1016/bs.apcsb.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Osteoporosis, a progressive skeletal disorder characterized by decreased bone mass and increased fracture risk, has traditionally been treated with pharmacological agents targeting bone remodeling. However, emerging research highlights the critical role of immune system in regulating bone metabolism, introducing the concept of Osteoimmunology. Chronic low-grade inflammation is now recognized as a significant contributor to osteoporosis, particularly in postmenopausal women and the elderly. Immune cells, such as T cells and B cells, and their secreted cytokines directly influence bone resorption and formation, tipping the balance toward net bone loss in inflammatory environments. Immunotherapy, a treatment modality traditionally associated with cancer and autoimmune diseases, is now gaining attention in the management of osteoporosis. By targeting immune dysregulation and reducing inflammatory bone loss, immunotherapies offer a novel approach to treating osteoporosis that goes beyond merely inhibiting bone resorption or promoting bone formation. This therapeutic strategy includes monoclonal antibodies targeting inflammatory cytokines, cell-based therapies to enhance the function of regulatory T and B cells, and interventions aimed at modulating immune pathways linked to bone health. This chapter reviews the emerging role of immunotherapy in addressing inflammatory bone loss in osteoporosis. Present chapter also explores the underlying immune mechanisms contributing to bone degradation, current immunotherapeutic strategies under investigation, and the potential of these approaches to revolutionize the management of osteoporosis.
Collapse
Affiliation(s)
- Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
11
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024; 22:791-805. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
12
|
Zhong Y, Kang X, Bai X, Pu B, Smerin D, Zhao L, Xiong X. The Oral-Gut-Brain Axis: The Influence of Microbes as a Link of Periodontitis With Ischemic Stroke. CNS Neurosci Ther 2024; 30:e70152. [PMID: 39675010 DOI: 10.1111/cns.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Periodontitis, a non-communicable chronic inflammation disease resulting from dysbiosis of the oral microbiota, has been demonstrated to have a positive association with the risk of ischemic stroke (IS). The major periodontal pathogens contribute to the progression of stroke-related risk factors such as obesity, diabetes, atherosclerosis, and hypertension. Transcriptional changes in periodontitis pathogens have been detected in oral samples from stroke patients, suggesting a new conceptual framework involving microorganisms. The bidirectional regulation between the gut and the central nervous system (CNS) is mediated by interactions between intestinal microflora and brain cells. The connection between the oral cavity and gut through microbiota indicates that the oral microbial community may play a role in mediating complex communication between the oral cavity and the CNS; however, underlying mechanisms have yet to be fully understood. In this review, we present an overview of key concepts and potential mechanisms of interaction between the oral-gut-brain axis based on previous research, focusing on how the oral microbiome (especially the periodontal pathogens) impacts IS and its risk factors, as well as the mediating role of immune system homeostasis, and providing potential preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianhui Kang
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Bei Pu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daniel Smerin
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Liang Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Xi M, Ruan Q, Zhong S, Li J, Qi W, Xie C, Wang X, Abuduxiku N, Ni J. Periodontal bacteria influence systemic diseases through the gut microbiota. Front Cell Infect Microbiol 2024; 14:1478362. [PMID: 39619660 PMCID: PMC11604649 DOI: 10.3389/fcimb.2024.1478362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
Many systemic diseases, including Alzheimer disease (AD), diabetes mellitus (DM) and cardiovascular disease, are associated with microbiota dysbiosis. The oral and intestinal microbiota are directly connected anatomically, and communicate with each other through the oral-gut microbiome axis to establish and maintain host microbial homeostasis. In addition to directly, periodontal bacteria may also be indirectly involved in the regulation of systemic health and disease through the disturbed gut. This paper provides evidence for the role of periodontal bacteria in systemic diseases via the oral-gut axis and the far-reaching implications of maintaining periodontal health in reducing the risk of many intestinal and parenteral diseases. This may provide insight into the underlying pathogenesis of many systemic diseases and the search for new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qijun Ruan
- Department of Periodontics, Shenzhen Longgang Otolaryngology hospital, Shenzhen, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Congman Xie
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Periodontics, Shenzhen Longgang Otolaryngology hospital, Shenzhen, China
| | - Nuerbiya Abuduxiku
- Department of Stomatology, The First People’s Hospital of Kashi, Kashi, China
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
López-Valverde N, Rueda JAB. Effect of Periodontal Treatment in Patients with Periodontitis and Diabetes: Review of Systematic Reviews with Meta-Analyses in the Last Five Years. Healthcare (Basel) 2024; 12:1844. [PMID: 39337185 PMCID: PMC11431200 DOI: 10.3390/healthcare12181844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic infectious-inflammatory pathology, with a high prevalence, which destroys the dental support and, if left untreated, leads to tooth loss. It is associated with other pathologies, particularly diabetes mellitus. OBJECTIVES Our objective was to conduct a review of systematic reviews with meta-analyses to determine the evidence for periodontal treatment on periodontitis and diabetes. Second, we assessed the risk of bias and methodological quality using the AMSTAR-2 and ROBIS tools. METHODS We performed bibliographic searches in PubMed/Medline, Embase, Cochrane Central, Dentistry & Oral Sciences Source databases and in the Web of Science (WOS) scientific information service to identify systematic reviews with meta-analyses from the last five years. RESULTS Eighteen studies that met the inclusion criteria and evaluated 16,247 subjects were included. The most studied parameters were probing pocket depth, clinical attachment level, bleeding on probing and the glycated hemoglobin. Most of the included meta-analyses evaluated adult patients with periodontitis and type 2 diabetes mellitus (T2DM). Most of the meta-analyses considered and assessed by AMSTAR-2 showed significant methodological errors. The risk of bias was the domain with the worst assessment with the ROBIS tool. CONCLUSIONS Despite the weaknesses of the included meta-analyses in terms of methodological quality and the risk of bias, periodontal treatment and DM treatment appear to contribute to improved clinical outcomes in a bidirectional manner between periodontitis and DM.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, University of Salamanca, 37008 Salamanca, Spain;
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José Antonio Blanco Rueda
- Department of Surgery, University of Salamanca, 37008 Salamanca, Spain;
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
15
|
Reytor-González C, Parise-Vasco JM, González N, Simancas-Racines A, Zambrano-Villacres R, Zambrano AK, Simancas-Racines D. Obesity and periodontitis: a comprehensive review of their interconnected pathophysiology and clinical implications. Front Nutr 2024; 11:1440216. [PMID: 39171112 PMCID: PMC11335523 DOI: 10.3389/fnut.2024.1440216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Obesity and periodontitis are significant health problems with a complex bidirectional relationship. Excess body fat is linked to systemic diseases and can lead to persistent inflammation, potentially harming periodontal health. Periodontitis, a chronic inflammatory condition affecting the supporting structures of teeth, poses substantial health risks. Both conditions share pathological processes such as inflammation and oxidative stress, which aggravate health status and make treatment more challenging. Understanding this interaction is crucial for developing effective management strategies for both diseases. This study explores the multifaceted aspects of obesity and periodontitis and their reciprocal relationship.
Collapse
Affiliation(s)
- Claudia Reytor-González
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Juan Marcos Parise-Vasco
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Natali González
- Facultad de Odontología, Universidad UTE, Santo Domingo, Ecuador
| | - Alison Simancas-Racines
- Carrera de Medicina Veterinaria, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad Técnica de Cotopaxi, Latacunga, Ecuador
| | | | - Ana Karina Zambrano
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| | - Daniel Simancas-Racines
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| |
Collapse
|
16
|
Kandaswamy E, Lee CT, Gururaj SB, Shivanaikar S, Joshi VM. Association of adipokine levels with obesity in periodontal health and disease: A systematic review with meta-analysis and meta-regression. J Periodontal Res 2024; 59:623-635. [PMID: 38594806 DOI: 10.1111/jre.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
This study aimed to investigate the levels of serum, gingival crevicular fluid (GCF), and salivary adipokines and their possible relationship with periodontitis and obesity. An electronic search was conducted in the following databases: PubMed/ Medline, Scopus, and EBSCOhost through February 2023. Two independent reviewers screened the titles, abstracts, and full text of all the studies. Studies comparing the levels of adipokines in GCF, serum, and/or saliva in subjects with obesity and periodontitis (group 1), subjects with normal weight and periodontitis (group 2), and subjects with obesity and gingival health (group 3) were included. Meta-analyses and meta-regression were performed on the data from included studies. Seventeen studies with study participants ranging from 30 to 120 were included with subjects in each group ranging from 10 to 40. There was a significant increase in levels of serum TNF-α, leptin, IL-6, and CRP between groups 1 and 2 (p < .05). In GCF, TNF-α and resistin levels were significantly higher (p < .05) in Group 1 vs. 2. Serum level of leptin was higher for group 1 vs. 3 (p < .05). Meta-regression analysis revealed that the obesity definition (body mass index (BMI) cut-off value >25 or >30) was significant for serum resistin (p < .05) and GCF resistin (p < .05) between group 1 and 2. The current analysis indicates that both periodontitis and obesity can modulate the pro-inflammatory cytokines at systemic and local levels. This bidirectional interaction of periodontitis and obesity via the inflammation pathway seems likely plausible. Further studies are required to elucidate this mechanism in more detail.
Collapse
Affiliation(s)
- Eswar Kandaswamy
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Chun-Teh Lee
- Department of Periodontics and Dental Hygiene, The University of Texas Health Science Center at Houston School of Dentistry, Houston, Texas, USA
| | - Soumya Bardvalli Gururaj
- Department of Periodontics, Sharavathi Dental College and Hospital, Rajiv University of Health Sciences, Bangalore, Karnataka, India
| | - Sachin Shivanaikar
- Department of Periodontology, Maratha Mandal's Nathajirao G Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Vinayak M Joshi
- Department of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
17
|
Liu F, Zhu B, An Y, Zhou Z, Xiong P, Li X, Mi Y, He T, Chen F, Wu B. Gingipain from Porphyromonas gingivalis causes insulin resistance by degrading insulin receptors through direct proteolytic effects. Int J Oral Sci 2024; 16:53. [PMID: 39085196 PMCID: PMC11291925 DOI: 10.1038/s41368-024-00313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 08/02/2024] Open
Abstract
Periodontitis is a critical risk factor for the occurrence and development of diabetes. Porphyromonas gingivalis may participate in insulin resistance (IR) caused by periodontal inflammation, but the functional role and specific mechanisms of P. gingivalis in IR remain unclear. In the present study, clinical samples were analysed to determine the statistical correlation between P. gingivalis and IR occurrence. Through culturing of hepatocytes, myocytes, and adipocytes, and feeding mice P. gingivalis orally, the functional correlation between P. gingivalis and IR occurrence was further studied both in vitro and in vivo. Clinical data suggested that the amount of P. gingivalis isolated was correlated with the Homeostatic Model Assessment for IR score. In vitro studies suggested that coculture with P. gingivalis decreased glucose uptake and insulin receptor (INSR) protein expression in hepatocytes, myocytes, and adipocytes. Mice fed P. gingivalis tended to undergo IR. P. gingivalis was detectable in the liver, skeletal muscle, and adipose tissue of experimental mice. The distribution sites of gingipain coincided with the downregulation of INSR. Gingipain proteolysed the functional insulin-binding region of INSR. Coculture with P. gingivalis significantly decreased the INSR-insulin binding ability. Knocking out gingipain from P. gingivalis alleviated the negative effects of P. gingivalis on IR in vivo. Taken together, these findings indicate that distantly migrated P. gingivalis may directly proteolytically degrade INSR through gingipain, thereby leading to IR. The results provide a new strategy for preventing diabetes by targeting periodontal pathogens and provide new ideas for exploring novel mechanisms by which periodontal inflammation affects the systemic metabolic state.
Collapse
Affiliation(s)
- Fen Liu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, Department of Paediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ying An
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa, China
| | - Peiying Xiong
- Department of Stomatology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Tongqiang He
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Faming Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China.
| |
Collapse
|
18
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
19
|
MohanaSundaram A, Gohil NV, Etekochay MO, Patel P, Gurajala S, Sathanantham ST, Nsengiyumva M, Kumar S, Emran TB. Mycobacterium tuberculosis : a new hitchhiker in the etiopathogenesis of periodontitis. Int J Surg 2024; 110:3606-3616. [PMID: 38231241 PMCID: PMC11175725 DOI: 10.1097/js9.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Periodontitis, a chronic inflammatory disease of the gums affects both the ligament and alveolar bone. A severe form of periodontal disease affects a strikingly high number of one billion adults globally. The disease permutes both the soft and hard tissues of the oral cavity leading to localized and systemic diseases. Periodontitis has a deleterious impact on systemic health causing diabetes, cardiovascular diseases (CVD), and other disease. The cause of the enhanced inflammatory process is due to dysbiosis and an unregulated immune response. Innate immune response and T cells trigger uninhibited cytokine release causing an unwarranted inflammatory response. The RANK- RANKL interaction between osteoblasts, immune cells, and progenitor osteoclasts results in the maturation of osteoclasts, which promote bone resorption. It is well established that dysbiosis of the oral cavity has been implicated in periodontitis. But emerging reports suggest that the pulmonary pathogen, Mycobacterium tuberculosis (Mtb), causes extrapulmonary diseases such as periodontitis. Many clinical case reports advocate the involvement of Mtb in periodontitis, which poses a threat with the surge of tuberculosis in HIV and other immunocompromised individuals. Fostering a better understanding of the mechanism, causative agents and control on inflammatory response is imperative in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
| | | | | | | | - Swathi Gurajala
- College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | | | | | - Santosh Kumar
- Karnavati School of Dentistry Karnavati University Gandhinagar Gujarat, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Ma Z, Jiang Z, Dong H, Xu W, Yan S, Chen J, Li A, Wang X. Microbial Communities and Functional Genes in Periodontitis and Healthy Controls. Int Dent J 2024; 74:638-646. [PMID: 38448300 PMCID: PMC11123521 DOI: 10.1016/j.identj.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic progressive disease and the leading cause of tooth loss in adults. Recent studies have shown the impact of oral microbial communities on systemic health and diseases such as cancer, atherosclerosis, rheumatoid arthritis, inflammatory bowel disease, diabetes, hypertension, and Alzheimer's disease. In previous case control studies investigatin the relationship between periodontal disease and the oral microbiota, little attention has been paid to the intersections of these domains. METHODS Here, we used high-throughput 16S rRNA sequencing to analyse the differences in the microbial composition in saliva between a group of patients with chronic periodontitis (C; n = 51) and a healthy control group (H; n = 61) and predicted the functional gene composition by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. RESULTS We found significant alterations in oral microbial diversity between C and H (P = 0.002). Sixteen genera were significantly different between C and H, and 15 of them were enriched in C linear discriminant analysis (LDA > 2). Fifty functional genes were significantly different between C and H, and 34 of them were enriched in C (P < .025). CONCLUSIONS Periodontitis is associated with significant changes in the oral microbial community.
Collapse
Affiliation(s)
- Zhonghui Ma
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ze Jiang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoxin Dong
- Department of Stomatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Wenhua Xu
- Department of Stomatology, Zhengzhou People's Hospital, Zhengzhou, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Li Y, Liu Y, Cui J, Zhu M, Wang W, Chen K, Huang L, Liu Y. Oral-gut microbial transmission promotes diabetic coronary heart disease. Cardiovasc Diabetol 2024; 23:123. [PMID: 38581039 PMCID: PMC10998415 DOI: 10.1186/s12933-024-02217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Diabetes is a predominant driver of coronary artery disease worldwide. This study aims to unravel the distinct characteristics of oral and gut microbiota in diabetic coronary heart disease (DCHD). Simultaneously, we aim to establish a causal link between the diabetes-driven oral-gut microbiota axis and increased susceptibility to diabetic myocardial ischemia-reperfusion injury (MIRI). METHODS We comprehensively investigated the microbial landscape in the oral and gut microbiota in DCHD using a discovery cohort (n = 183) and a validation chohort (n = 68). Systematically obtained oral (tongue-coating) and fecal specimens were subjected to metagenomic sequencing and qPCR analysis, respectively, to holistically characterize the microbial consortia. Next, we induced diabetic MIRI by administering streptozotocin to C57BL/6 mice and subsequently investigated the potential mechanisms of the oral-gut microbiota axis through antibiotic pre-treatment followed by gavage with specific bacterial strains (Fusobacterium nucleatum or fecal microbiota from DCHD patients) to C57BL/6 mice. RESULTS Specific microbial signatures such as oral Fusobacterium nucleatum and gut Lactobacillus, Eubacterium, and Roseburia faecis, were identified as potential microbial biomarkers in DCHD. We further validated that oral Fusobacterium nucleatum and gut Lactobacillus are increased in DCHD patients, with a positive correlation between the two. Experimental evidence revealed that in hyperglycemic mice, augmented Fusobacterium nucleatum levels in the oral cavity were accompanied by an imbalance in the oral-gut axis, characterized by an increased coexistence of Fusobacterium nucleatum and Lactobacillus, along with elevated cardiac miRNA-21 and a greater extent of myocardial damage indicated by TTC, HE, TUNEL staining, all of which contributed to exacerbated MIRI. CONCLUSION Our findings not only uncover dysregulation of the oral-gut microbiota axis in diabetes patients but also highlight the pivotal intermediary role of the increased abundance of oral F. nucleatum and gut Lactobacillus in exacerbating MIRI. Targeting the oral-gut microbiota axis emerges as a potent strategy for preventing and treating DCHD. Oral-gut microbial transmission constitutes an intermediate mechanism by which diabetes influences myocardial injury, offering new insights into preventing acute events in diabetic patients with coronary heart disease.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100078, China
| | - Yanfei Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jing Cui
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wenting Wang
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, 100078, China
| | - Yue Liu
- National Clinical Research Center for TCM Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
22
|
Huang X, Zhu L, Gong Y. Rhein induces bone regeneration via alleviating inflammation in murine periodontitis model. Oral Dis 2024; 30:1506-1515. [PMID: 36630585 DOI: 10.1111/odi.14502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To evaluate the effect of rhein on eliminating the inflammation and promoting bone regeneration of periodontitis after local administration. MATERIALS AND METHODS In vivo, periodontitis model was established in murine mandibular first molar by using ligature for 7 days, followed by ligature removal and local administration of rhein/vehicle for 7 consecutive days. In vitro, periodontal ligament fibroblasts were treated by LPS, along with the applications of rhein/vehicle. Histology and molecular biology approaches were applied for analysis. RESULTS In vivo, rhein alleviated periodontitis inflammation through downregulating the inflammatory index and promoted the osteogenic potential of PDL fibroblasts in a dosage-dependent manner. The result of micro-CT validated this phenomenon. In vitro, rhein administration inhibited the phosphorylation and nuclear translocation of P65, along with the arose runx2 level of PDL fibroblasts with the stimulus of LPS in mimicking periodontitis. CONCLUSION Rhein played its inhibitory role on inflammation via curbing the activation of P65 but uprising the activities of Runx2 in PDL fibroblasts in periodontitis microenvironment. These data suggested that rhein could be an effective and potential clinical choice for the treatment of periodontitis.
Collapse
Affiliation(s)
- Xi Huang
- Department of Stomatology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lifang Zhu
- Department of Stomatology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yin Gong
- Department of Stomatology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Meng X, Du L, Xu S, Zhou L, Chen B, Li Y, Chen C, Ye H, Zhang J, Tian G, Bai X, Dong T, Lin W, Sun M, Zhou K, Liu Y, Zhang W, Duan S. Periodontitis exacerbates pulmonary hypertension by promoting IFNγ + T cell infiltration in mice. Int J Oral Sci 2024; 16:27. [PMID: 38548721 PMCID: PMC10978940 DOI: 10.1038/s41368-024-00291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 04/01/2024] Open
Abstract
Uncovering the risk factors of pulmonary hypertension and its mechanisms is crucial for the prevention and treatment of the disease. In the current study, we showed that experimental periodontitis, which was established by ligation of molars followed by orally smearing subgingival plaques from patients with periodontitis, exacerbated hypoxia-induced pulmonary hypertension in mice. Mechanistically, periodontitis dysregulated the pulmonary microbiota by promoting ectopic colonization and enrichment of oral bacteria in the lungs, contributing to pulmonary infiltration of interferon gamma positive (IFNγ+) T cells and aggravating the progression of pulmonary hypertension. In addition, we identified Prevotella zoogleoformans as the critical periodontitis-associated bacterium driving the exacerbation of pulmonary hypertension by periodontitis, and the exacerbation was potently ameliorated by both cervical lymph node excision and IFNγ neutralizing antibodies. Our study suggests a proof of concept that the combined prevention and treatment of periodontitis and pulmonary hypertension are necessary.
Collapse
Affiliation(s)
- Xiaoqian Meng
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Linjuan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shuo Xu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lujun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Boyan Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yulin Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chumao Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huilin Ye
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jun Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Guocai Tian
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xuebing Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Dong
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzhen Lin
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengjun Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Periodontology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kecong Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Periodontology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wuchang Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Shengzhong Duan
- Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
24
|
Márquez-Arrico CF, Silvestre FJ, Marquez-Arrico JE, Silvestre-Rangil J. Could Periodontitis Increase the Risk of Suffering from Pancreatic Cancer?-A Systematic Review. Cancers (Basel) 2024; 16:1257. [PMID: 38610935 PMCID: PMC11010905 DOI: 10.3390/cancers16071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
(1) Background: The relationship between periodontitis and systemic pathologies continues to grow. Recently, the presence of periodontal pathogens has been linked to an increased risk of pancreatic cancer (PC) and its mortality. Thus, a systematic review is needed to identify whether an association between the two diseases can be established. The objective of this review is to elucidate the mechanisms responsible for this association. (2) Methods: A systematic review was carried out using three databases (PubMed, Embase and Scopus) with the following keywords "Periodontitis AND pancreatic cancer". A total of 653 articles were retrieved; before selection and screening, the inclusion and exclusion criteria were defined, resulting in a total of 13 articles being included in the review. (3) Results: The increase in low-grade systemic inflammation, pH changes, and the cytotoxicity of certain periodontopathogenic bacteria were found in the scientific literature reviewed as mechanisms linking periodontitis with the risk of PC. (4) Conclusions: Through this systematic review, we have seen how periodontitis can be related to PC and how it worsens its prognosis. Knowing the behavior of periodontopathogenic bacteria and the influence they have on our immune and inflammatory system may help to achieve an interdisciplinary approach to both pathologies.
Collapse
Affiliation(s)
| | - Francisco Javier Silvestre
- Stomatology Department, University of Valencia, 46010 Valencia, Spain; (F.J.S.); (J.S.-R.)
- Doctor Peset University Hospital, University of Valencia, 46017 Valencia, Spain
| | - Julia Elena Marquez-Arrico
- Department of Clinical Psychology and Psychobiology, University of Barcelona, 08035 Barcelona, Spain;
- Institut de Neurociències, University of Barcelona, 08035 Barcelona, Spain
| | | |
Collapse
|
25
|
Augimeri G, Caparello G, Caputo I, Reda R, Testarelli L, Bonofiglio D. Mediterranean diet: a potential player in the link between oral microbiome and oral diseases. J Oral Microbiol 2024; 16:2329474. [PMID: 38510981 PMCID: PMC10953787 DOI: 10.1080/20002297.2024.2329474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Background The oral microbiome is a complex and dynamic assemblage of microorganisms that colonize different sites of the oral cavity maintaining both oral and systemic health. Therefore, when its composition is altered, oral diseases occur. Among oral inflammatory pathologies, periodontal diseases affect the tissues surrounding the teeth, representing the main cause of tooth loss and one of the most important threats to the oral health. Lifestyle and eating habits influence the composition of the human oral microbiota and the development and progression of oral diseases. In this context, the Mediterranean Diet (MD) model, comprising both healthy dietary choices and lifestyle, is linked to the prevention of several metabolic and chronic-degenerative pathological processes, including oral diseases. Indeed, the MD is a plant-based diet, enriched of anti-inflammatory and antioxidant nutrients, which may induce beneficial effects against dental caries and periodontal diseases. Aim This review summarizes the role of the oral microbiome in the development of the oral diseases and the potential of MD in modulating the oral microbiome leading to implications for oral health. Conclusions The data collected highlight the need to promote the MD pattern along with the correct hygiene habits to prevent the development of oral diseases.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Giovanna Caparello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ippolito Caputo
- Department of Oral and Maxillo Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Rodolfo Reda
- Department of Oral and Maxillo Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Testarelli
- Department of Oral and Maxillo Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
26
|
Li W, Peng J, Shang Q, Yang D, Zhao H, Xu H. Periodontitis and the risk of all-cause and cause-specific mortality among US adults with diabetes: A population-based cohort study. J Clin Periodontol 2024; 51:288-298. [PMID: 37967814 DOI: 10.1111/jcpe.13901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/09/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023]
Abstract
AIM To evaluate the association between periodontitis, all-cause and cause-specific mortality, and its prognostic utility among adults with diabetes. MATERIALS AND METHODS Periodontal health records were retrieved from the NHANES database for 4297 participants with diabetes aged >30 years at baseline during 1988-1994, 1999-2004 and 2009-2014. Multivariable Cox proportional hazards regression model was applied to calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) for moderate/severe periodontitis with all-cause and cause-specific mortality in participants with diabetes. Area under the curve (AUC) was used to assess predictive value. RESULTS During a median follow-up of 15.41 years, 1701 deaths occurred. After multivariate adjustments, moderate/severe periodontitis was significantly associated with increased risk of all-cause (HR: 1.27; 95% CI: 1.07-1.50; p = .005) and cardiovascular disease (CVD)-related (HR: 1.35, 95% CI: 1.03-1.76, p = .031) mortality in participants with diabetes. The absolute risk difference based on the cumulative incidence information was 0.022 (5-year, 95% CI: 0.021-0.023) and 0.044 (10-year, 95% CI: 0.041-0.048). Periodontitis improved the prediction of all-cause (AUC: 0.652; 95% CI: 0.627-0.676) and CVD-related (AUC: 0.649; 95% CI: 0.624-0.676) mortality over standard risk factors (all-cause: AUC: 0.631; 95% CI: 0.606-0.656; CVD-related: AUC: 0.629; 95% CI: 0.604-0.655). CONCLUSIONS Moderate/severe periodontitis is associated with an increased risk of all-cause and CVD-related mortality in adults with diabetes. Periodontitis might represent a marker for residual risk.
Collapse
Affiliation(s)
- Weiqi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Jiakuan Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Qianhui Shang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
27
|
Zhang Y, He TC, Zhang H. The impact of metabolic disorders on management of periodontal health in children. PEDIATRIC DISCOVERY 2024; 2:e38. [PMID: 38784180 PMCID: PMC11115384 DOI: 10.1002/pdi3.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 05/25/2024]
Abstract
Periodontitis is a chronic inflammatory disease caused by plaque biofilm which shares risk factors with systemic chronic diseases such as diabetes, cardiovascular disease, and osteoporosis. Many studies have found increased prevalence and rate of progression of periodontal disease in children with common metabolic disorders. Although the causal relationship and specific mechanism between them has not been determined yet. The aim of this paper is to progress on the impact of metabolic disorders on periodontal health in children and the underlying mechanisms, which provides new evidences for the prevention and intervention of metabolic disorders and periodontitis in children.
Collapse
Affiliation(s)
- Yunyan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hongmei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
- Department of Pediatric Dentistry, The Affiliated Hospital of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Jin B, Wang P, Liu P, Wang Y, Guo Y, Wang C, Jia Y, Zou R, Dong S, Niu L. Association between periodontitis and endometriosis: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1271351. [PMID: 38487346 PMCID: PMC10937447 DOI: 10.3389/fendo.2024.1271351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction A potential association between periodontitis and endometriosis has been indicated in previous observational studies. Nevertheless, the causal link between these two disorders has not been clarified. Methods Based on publicly available genome-wide association study (GWAS) summary datasets, we conducted a bidirectional Mendelian randomization (MR) study to investigate the relationship between periodontitis and endometriosis and its subtypes. Single nucleotide polymorphisms (SNPs) strongly associated with candidate exposures at the genome-wide significance level (P < 5 × 10-8) were selected as instrumental variables (IVs). The inverse variance-weighted regression (IVW) was performed to estimate the causal effect of periodontitis on endometriosis. We further conducted two sensitivity analyses, MR-Egger and weighted median, to test the validity of our findings. The main results were replicated via data from the UK Biobank. Finally, a reverse MR analysis was performed to evaluate the possibility of reverse causality. Results The IVW method suggested that periodontitis was positively associated with endometriosis of the pelvic peritoneum (OR = 1.079, 95% CI = 1.016 to 1.146, P = 0.014). No causal association was indicated between periodontitis and other subtypes of endometriosis. In reversed analyses, no causal association between endometriosis or its subtypes and periodontitis was found. Conclusions Our study provided genetic evidence on the causal relationship between periodontitis and endometriosis of the pelvic peritoneum. More studies are necessary to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Bilun Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Pengfei Wang
- Centre of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Peiqi Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Chenxu Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yue Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
29
|
Liu Y, Cui B, Zhang P, Xiao S, Duan D, Ding Y. Polymicrobial Infection Induces Adipose Tissue Dysfunction via Gingival Extracellular Vesicles. J Dent Res 2024; 103:187-196. [PMID: 38095271 DOI: 10.1177/00220345231211210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Recent studies have indicated that periodontitis promotes metabolic dysregulation and insulin resistance by affecting the function of white adipose tissue (WAT). However, the mechanisms linking periodontitis to adipose tissue dysfunction still need to be explored. Extracellular vesicles (EVs) deliver messages to distal sites and regulate their function. Also, recent studies have shown that periodontitis changes the composition of EVs in body fluids and that EVs might be one of the mechanisms underlying the relationship between periodontitis and insulin resistance. Herein, we explored the impact of polymicrobial oral infection with periodontal pathogens on the function of WAT and the role of gingival EVs (gEVs) in the process. Mice were subjected to oral inoculation with 109 Porphyromonas gingivalis and 108 Fusobacterium nucleatum every other day for 14 wk. This prolonged bacterial infection induced WAT dysfunction, characterized by reduced levels of AKT phosphorylation, adiponectin, leptin, and genes associated with adipogenesis and lipogenesis. We successfully isolated gEVs with satisfactory yield and purity. The RNA sequencing results showed that the differentially expressed microRNAs in the gEVs of mice with polymicrobial oral infection were involved in insulin signaling and adipose tissue function. Notably, our in vitro experiments and RNA sequencing results revealed the functional similarities between gEVs and plasma-derived EVs. Furthermore, intraperitoneal injection with gEVs derived from mice with oral infection induced the dysfunction of WAT in healthy mice. Overall, our findings provide evidence for the influence of polymicrobial oral infection on WAT function and propose gEVs as a novel pathway through which periodontal infection may exert its effects on WAT.
Collapse
Affiliation(s)
- Y Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - B Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - P Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Yan P, Ke B, Fang X. Bioinformatics reveals the pathophysiological relationship between diabetic nephropathy and periodontitis in the context of aging. Heliyon 2024; 10:e24872. [PMID: 38304805 PMCID: PMC10830875 DOI: 10.1016/j.heliyon.2024.e24872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus. Periodontitis (PD) is a microbially-induced chronic inflammatory disease that is thought to have a bidirectional relationship with diabetes mellitus. DN and PD are recognized as models associated with accelerated aging. This study is divided into two parts, the first of which explores the bidirectional causal relationship through Mendelian randomization (MR). The second part aims to investigate the relationship between PD and DN in terms of potential crosstalk genes, aging-related genes, biological pathways, and processes using bioinformatic methods. MR analysis showed no evidence to support a causal relationship between DN and PD (P = 0.34) or PD and DN (P = 0.77). Using the GEO database, we screened 83 crosstalk genes overlapping in two diseases. Twelve paired genes identified by Pearson correlation and the four hub genes in the key cluster were jointly evaluated as key crosstalk-aging genes. Using support vector machine recursive feature elimination (SVM-RFE) and maximal clique centrality (MCC) algorithms, feature selection established five genes as the key crosstalk-aging genes. Based on five key genes, an ANN diagnostic model with reliable diagnosis of two diseases was developed. Gene enrichment analysis indicates that AGE-RAGE pathway signaling, the complement system, and multiple immune inflammatory pathways may be involved in common features of both diseases. Immune infiltration analysis reveals that most immune cells are differentially expressed in PD and DN, with dendritic cells and T cells assuming vital roles in both diseases. Overall, although there is no causal link, CSF1R, CXCL6, VCAM1, JUN and IL1B may be potential crosstalk-aging genes linking PD and DN. The common pathways and markers explored in this study could contribute to a deeper understanding of the common pathogenesis of both diseases in the context of aging and provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Peng Yan
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Kuraji R, Ye C, Zhao C, Gao L, Martinez A, Miyashita Y, Radaic A, Kamarajan P, Le C, Zhan L, Range H, Sunohara M, Numabe Y, Kapila YL. Nisin lantibiotic prevents NAFLD liver steatosis and mitochondrial oxidative stress following periodontal disease by abrogating oral, gut and liver dysbiosis. NPJ Biofilms Microbiomes 2024; 10:3. [PMID: 38233485 PMCID: PMC10794237 DOI: 10.1038/s41522-024-00476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Oral microbiome dysbiosis mediates chronic periodontal disease, gut microbial dysbiosis, and mucosal barrier disfunction that leads to steatohepatitis via the enterohepatic circulation. Improving this dysbiosis towards health may improve liver disease. Treatment with antibiotics and probiotics have been used to modulate the microbial, immunological, and clinical landscape of periodontal disease with some success. The aim of the present investigation was to evaluate the potential for nisin, an antimicrobial peptide produced by Lactococcus lactis, to counteract the periodontitis-associated gut dysbiosis and to modulate the glycolipid-metabolism and inflammation in the liver. Periodontal pathogens, namely Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and Fusobacterium nucleatum, were administrated topically onto the oral cavity to establish polymicrobial periodontal disease in mice. In the context of disease, nisin treatment significantly shifted the microbiome towards a new composition, commensurate with health while preventing the harmful inflammation in the small intestine concomitant with decreased villi structural integrity, and heightened hepatic exposure to bacteria and lipid and malondialdehyde accumulation in the liver. Validation with RNA Seq analyses, confirmed the significant infection-related alteration of several genes involved in mitochondrial dysregulation, oxidative phosphorylation, and metal/iron binding and their restitution following nisin treatment. In support of these in vivo findings indicating that periodontopathogens induce gastrointestinal and liver distant organ lesions, human autopsy specimens demonstrated a correlation between tooth loss and severity of liver disease. Nisin's ability to shift the gut and liver microbiome towards a new state commensurate with health while mitigating enteritis, represents a novel approach to treating NAFLD-steatohepatitis-associated periodontal disease.
Collapse
Affiliation(s)
- Ryutaro Kuraji
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Changchang Ye
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chuanjiang Zhao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - April Martinez
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Yukihiro Miyashita
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Allan Radaic
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Pachiyappan Kamarajan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Charles Le
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ling Zhan
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Helene Range
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Periodontology, University of Rennes, UFR of Odontology; Service d'Odontologie, CHU de Rennes, Rennes, France
- INSERM CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer); CIC 1414, Rennes, France
| | - Masataka Sunohara
- Department of Anatomy, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yukihiro Numabe
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Yvonne L Kapila
- Orofacial Sciences Department, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA.
- Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Zhao Y, Su J, Xu CY, Li YB, Hu T, Li Y, Yang L, Zhao Q, Zhang WY. Establishment of a mandible defect model in rabbits infected with multiple bacteria and bioinformatics analysis. Front Bioeng Biotechnol 2024; 12:1350024. [PMID: 38282893 PMCID: PMC10811100 DOI: 10.3389/fbioe.2024.1350024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Objective: A model of chronic infectious mandibular defect (IMD) caused by mixed infection with Staphylococcus aureus and Pseudomonas aeruginosa was established to explore the occurrence and development of IMD and identify key genes by transcriptome sequencing and bioinformatics analysis. Methods: S. aureus and P. aeruginosa were diluted to 3 × 108 CFU/mL, and 6 × 3 × 3 mm defects lateral to the Mandibular Symphysis were induced in 28 New Zealand rabbits. Sodium Morrhuate (0.5%) and 50 μL bacterial solution were injected in turn. The modeling was completed after the bone wax closed; the effects were evaluated through postoperative observations, imaging and histological analyses. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein‒protein interaction (PPI) network analyses were performed to investigate the function of the differentially expressed genes (DEGs). Results: All rabbits showed characteristics of infection. The bacterial cultures were positive, and polymerase chain reaction (PCR) was used to identify S. aureus and P. aeruginosa. Cone beam CT and histological analyses showed inflammatory cell infiltration, pus formation in the medullary cavity, increased osteoclast activity in the defect area, and blurring at the edge of the bone defect. Bioinformatics analysis showed 1,804 DEGs, 743 were upregulated and 1,061 were downregulated. GO and KEGG analyses showed that the DEGs were enriched in immunity and osteogenesis inhibition, and the core genes identified by the PPI network were enriched in the Hedgehog pathway, which plays a role in inflammation and tissue repair; the MEF2 transcription factor family was predicted by IRegulon. Conclusion: By direct injection of bacterial solution into the rabbit mandible defect area, the rabbit chronic IMD model was successfully established. Based on the bioinformatics analysis, we speculate that the Hedgehog pathway and the MEF2 transcription factor family may be potential intervention targets for repairing IMD.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Jun Su
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Chong-yan Xu
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Yan-bo Li
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Tong Hu
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Yi Li
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
- Postgraduate Research Institute, Kunming Medical University, Kunming, China
| | - Li Yang
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Qiang Zhao
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| | - Wen-yun Zhang
- Department of Stomatology, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming, China
| |
Collapse
|
33
|
Agarwal J, Pandey P, Saxena SK, Kumar S. Comparative analysis of salivary microbiota in diabetic and non-diabetic individuals of North India using metagenomics. J Oral Biol Craniofac Res 2024; 14:22-26. [PMID: 38130425 PMCID: PMC10733697 DOI: 10.1016/j.jobcr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Background Saliva, an oral secretion is considered an essential biological modulator involved in maintaining oral homeostasis. Increased glucose levels in diabetic patients' saliva may have an impact on diversity of microbes. Comparing the salivary microflora of diabetic and non-diabetic cohorts will help in diagnosis and risk assessment of oral health complications. This will provide greater knowledge about the contribution of oral microbes to the development of oral illnesses. The association between salivary microbiota and diabetic state is less explored in the North Indian population, hence current observational study was performed to analyze the salivary microflora of diabetic and non-diabetic individuals using metagenomic analysis. Materials and methods This single-center non-randomized observational trial was conducted in Uttar Pradesh, India. Participants were enrolled into either diabetic (n = 68) or non-diabetic groups (n = 68) based on their diabetes status. Following saliva collection, DNA was extracted and metagenomic sequencing was performed. Results Phylum Bacteroidetes and Fusobacteria were significantly abundant in diabetic individuals (p < 0.0001), while Proteobacteria was significantly higher among non-diabetic individuals (p < 0.0001). No statistical difference in phylum Actinobacteria and Firmicutes among diabetics and non-diabetics. Veillonella, Prevotella, Porphyromonas, Leptotrichia, Lactobacillus, and Streptococcus were greater in diabetics whereas the abundance of Capnocytophaga and Neisseria was more among non-diabetics (p < 0.05). Conclusions The genera Veillonella, Prevotella, Porphyromonas, Leptotrichia, Lactobacillus, and Streptococcus were comparatively over the odds with the diabetics in India. The association between microbiota in diabetic population and risk related to increase in occurrence of caries, gingivitis, and periodontitis in diabetic population prevalence should be investigated.
Collapse
Affiliation(s)
- Jyotsana Agarwal
- Department of Conservative Dentistry & Endodontics, King George's Medical University, Lucknow, India
| | - Pragya Pandey
- Department of Conservative Dentistry & Endodontics, King George's Medical University, Lucknow, India
| | | | - Swatantra Kumar
- Centre for Advanced Research, King George's Medical University, Lucknow, India
| |
Collapse
|
34
|
Saito M, Shimazaki Y, Yoshii S, Takeyama H. Periodontitis and the incidence of metabolic syndrome: An 8-year longitudinal study of an adult Japanese cohort. J Clin Periodontol 2024; 51:54-62. [PMID: 37743671 DOI: 10.1111/jcpe.13881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
AIM To examine the effect of periodontitis on the development of metabolic syndrome (MetS) and MetS components. MATERIALS AND METHODS This study included 4761 participants aged 30-74 years who underwent health examinations at both baseline and 8-year follow-up. The Japanese MetS criteria were used for diagnosis. The Community Periodontal Index was used to assess periodontal status. The association between periodontal status and MetS incidence was examined by Poisson regression analysis. RESULTS Multivariate analysis revealed that individuals with a ≥6 mm periodontal pocket had a significantly higher relative risk (RR) for MetS onset, as compared to individuals without deep periodontal pockets (adjusted RR 1.30, 95% confidence interval [CI]: 1.01-1.67). Compared to individuals without a deep periodontal pocket, individuals with a ≥6 mm periodontal pocket had significantly higher RRs for developing two components of MetS; the RRs were 1.25 (95% CI: 1.01-1.56) for abdominal obesity and 1.39 (95% CI: 1.03-1.86) for hyperglycaemia. CONCLUSIONS Individuals with periodontitis had a significantly higher risk of MetS onset, possibly due to the influence of periodontitis on abdominal obesity and hyperglycaemia.
Collapse
Affiliation(s)
- Mizuki Saito
- Department of Preventive Dentistry and Dental Public Health, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshihiro Shimazaki
- Department of Preventive Dentistry and Dental Public Health, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Saori Yoshii
- Aichi Health Promotion Foundation, Nagoya, Japan
| | | |
Collapse
|
35
|
Lê S, Minty M, Boyer É, Blasco-Baque V, Bonnaure-Mallet M, Meuric V. [Oral microbiota and liver]. Med Sci (Paris) 2024; 40:42-48. [PMID: 38299902 DOI: 10.1051/medsci/2023194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
The liver has many important biological functions for the body, as it is involved in the storage and distribution of nutrients (carbohydrates to glycogen, lipids to triglycerides), the digestion of fats, the synthesis of blood proteins, and the detoxification of alcohol and drugs. The liver can be affected by various diseases such as viral or drug-induced hepatitis, fibrosis and cirrhosis, in which damaged hepatocytes are progressively replaced by scar tissue.
Collapse
Affiliation(s)
- Sylvie Lê
- Département dentaire, université Paul Sabatier III (UPS), Toulouse, France - Service d'odontologie Toulouse, CHU Toulouse, Toulouse, France - UMR1297 Inserm, équipe InCOMM (Intestine ClinicOmics Metabolism & Microbiota), Institut des maladies métaboliques et cardiovasculaires (I2MC), université Paul Sabatier, Toulouse, France
| | - Matthieu Minty
- Département dentaire, université Paul Sabatier III (UPS), Toulouse, France - Service d'odontologie Toulouse, CHU Toulouse, Toulouse, France - UMR1297 Inserm, équipe InCOMM (Intestine ClinicOmics Metabolism & Microbiota), Institut des maladies métaboliques et cardiovasculaires (I2MC), université Paul Sabatier, Toulouse, France
| | - Émile Boyer
- Inserm U1317, Inrae, université de Rennes, CHU de Rennes, site Pontchaillou-Villejean, Rennes, France
| | - Vincent Blasco-Baque
- Département dentaire, université Paul Sabatier III (UPS), Toulouse, France - Service d'odontologie Toulouse, CHU Toulouse, Toulouse, France - UMR1297 Inserm, équipe InCOMM (Intestine ClinicOmics Metabolism & Microbiota), Institut des maladies métaboliques et cardiovasculaires (I2MC), université Paul Sabatier, Toulouse, France
| | - Martine Bonnaure-Mallet
- Inserm U1317, Inrae, université de Rennes, CHU de Rennes, site Pontchaillou-Villejean, Rennes, France
| | - Vincent Meuric
- Inserm U1317, Inrae, université de Rennes, CHU de Rennes, site Pontchaillou-Villejean, Rennes, France
| |
Collapse
|
36
|
Wu Q, Yan L, Wu X, Chen Y, Ye L, Lv Y, Su Y. Experimental periodontitis induced hypoadiponectinemia by IRE1α-mediated endoplasmic reticulum stress in adipocytes. BMC Oral Health 2023; 23:1032. [PMID: 38129878 PMCID: PMC10740306 DOI: 10.1186/s12903-023-03758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUD Hypoadiponectinemia is the important cause of insulin resistance. Recent studies have shown that periodontitis is associated with hypoadiponectinemia. The purpose of this study was to investigate the effect of periodontitis-induced endoplasmic reticulum stress (ERS) in visceral adipocytes on hypoadiponectinemia. METHODS Rat periodontitis models were established by local ligation with silk around the bilateral maxillary second molars. Porphyromonas gingivalis-lipopolysaccharid (P.g-LPS) was also used to stimulate the visceral adipocytes in vitro. The protein expression levels of glucose regulated protein 78 (GRP78), inositol-requiring protein 1α (IRE1α), protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6) and adiponectin were detected. IRE1α lentiviruses were transfected into visceral adipocytes in vitro, and an IRE1α inhibitor (KIRA6) was injected in epididymal adipose tissue of rats to detect and verify the effect of ERS on adiponectin expression in visceral adipocytes in vivo. RESULTS Hypoadiponectinemia was observed in periodontitis rat, and the expression levels of ERS key proteins GRP78 and the phosphorylation levels of IRE1α (p-IRE1α)/IRE1α in visceral adipocytes were increased, while the expression levels of adiponectin protein were decreased. After KIRA6 injection into epididymal adipose tissue of rats with periodontitis, adiponectin levels in visceral adipocytes increased, and serum adiponectin levels recovered to a certain extent. The protein expression levels of GRP78 and p-IRE1α/IRE1α were increased and adiponectin protein expression was decreased in P.g-LPS-induced visceral adipocytes. Overexpression of IRE1α further inhibited adiponectin expression in P.g-LPS-stimulated visceral adipocytes, and conversely, IRE1α inhibition restored adiponectin expression. CONCLUSIONS Our findings suggest that periodontitis induces ERS in visceral adipocytes leading to hypoadiponectinemia. IRE1α is a key protein regulating adiponectin expression in visceral adipocytes.
Collapse
Affiliation(s)
- Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Li Yan
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Xiao Wu
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China
| | - Leilei Ye
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yingtao Lv
- Department of Implantology and Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, NO.1 Jiazi Road, Foshan, 528300, Guangdong, China.
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
37
|
Qian Y, Cai B, Chi F, Yao C, Zhang L, Qi L, Jiang Y, Wang X. Alveolar bone loss and tooth loss contribute to increase in cancer mortality among older patients. BMC Oral Health 2023; 23:1023. [PMID: 38114973 PMCID: PMC10731843 DOI: 10.1186/s12903-023-03543-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/15/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Both cancer and periodontitis are more prevalent with age. Information on their relationship in older patients is limited. This study aims to examine whether periodontitis is associated with increased risk of cancer mortality with a ≥ 75-year age group cohort. METHODS A retrospective cohort study was conducted on 1146 patients who had digital radiographic examinations. Alveolar bone loss and loss of teeth were measured as indicators of periodontitis. Hazard ratio (HR) with 95% confidence interval (CI) were taken as the effect size to summarize the associations between periodontitis and risks of cancer mortality using the multivariate adjusted cox proportional hazards model and competing risk hazard model. RESULTS Totally, 104 total cancer, 28 lip, oral cavity and pharynx (LOP) cancer, 39 digestive cancer and 13 respiratory cancer cases were documented over 10 years of follow-up. Total cancer (HR 1.27, 95% CI 1.06-1.53) displayed statistically significant associations with alveolar bone loss and tooth loss after adjusting for relevant confounding variables. We also observed borderline significant association between alveolar bone loss and LOP cancer (HR 1.45, 95% CI 0.99-2.12). The above associations were consistent with the results observed from the competing risk hazard models. CONCLUSION Our results indicate that older patients suffering from tooth loss or alveolar bone loss are at increased risks of cancer mortality, especially for total cancer and LOP cancer.
Collapse
Affiliation(s)
- Yifeng Qian
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Binxin Cai
- Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Fangfang Chi
- Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Chunxia Yao
- Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Lei Zhang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Qi
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yonggen Jiang
- Songjiang District Center for Disease Control and Prevention, Shanghai, China
| | - Xudong Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai JiaoTong University School of Medicine, 639 Zhizaoju Road, Huangpu District, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
- College of Stomatology, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
Boitor O, Stoica F, Mihăilă R, Stoica LF, Stef L. Automated Machine Learning to Develop Predictive Models of Metabolic Syndrome in Patients with Periodontal Disease. Diagnostics (Basel) 2023; 13:3631. [PMID: 38132215 PMCID: PMC10743072 DOI: 10.3390/diagnostics13243631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Metabolic syndrome is experiencing a concerning and escalating rise in prevalence today. The link between metabolic syndrome and periodontal disease is a highly relevant area of research. Some studies have suggested a bidirectional relationship between metabolic syndrome and periodontal disease, where one condition may exacerbate the other. Furthermore, the existence of periodontal disease among these individuals significantly impacts overall health management. This research focuses on the relationship between periodontal disease and metabolic syndrome, while also incorporating data on general health status and overall well-being. We aimed to develop advanced machine learning models that efficiently identify key predictors of metabolic syndrome, a significant emphasis being placed on thoroughly explaining the predictions generated by the models. We studied a group of 296 patients, hospitalized in SCJU Sibiu, aged between 45-79 years, of which 57% had metabolic syndrome. The patients underwent dental consultations and subsequently responded to a dedicated questionnaire, along with a standard EuroQol 5-Dimensions 5-Levels (EQ-5D-5L) questionnaire. The following data were recorded: DMFT (Decayed, Missing due to caries, and Filled Teeth), CPI (Community Periodontal Index), periodontal pockets depth, loss of epithelial insertion, bleeding after probing, frequency of tooth brushing, regular dental control, cardiovascular risk, carotid atherosclerosis, and EQ-5D-5L score. We used Automated Machine Learning (AutoML) frameworks to build predictive models in order to determine which of these risk factors exhibits the most robust association with metabolic syndrome. To gain confidence in the results provided by the machine learning models provided by the AutoML pipelines, we used SHapley Additive exPlanations (SHAP) values for the interpretability of these models, from a global and local perspective. The obtained results confirm that the severity of periodontal disease, high cardiovascular risk, and low EQ-5D-5L score have the greatest impact in the occurrence of metabolic syndrome.
Collapse
Affiliation(s)
- Ovidiu Boitor
- Dental Medicine Research Center, Faculty of Medicine, “Lucian Blaga” University, 550024 Sibiu, Romania;
| | - Florin Stoica
- Department of Mathematics and Informatics, Research Center in Informatics and Information Technology, Faculty of Sciences, “Lucian Blaga” University, 550024 Sibiu, Romania;
| | - Romeo Mihăilă
- Department of Internal Medicine, Faculty of Medicine, “Lucian Blaga” University, 550024 Sibiu, Romania;
| | - Laura Florentina Stoica
- Department of Mathematics and Informatics, Research Center in Informatics and Information Technology, Faculty of Sciences, “Lucian Blaga” University, 550024 Sibiu, Romania;
| | - Laura Stef
- Department of Oral Health, Dental Medicine Research Center, Faculty of Medicine, “Lucian Blaga” University, 550024 Sibiu, Romania;
| |
Collapse
|
39
|
Li S, Li H, Kong H, Wu SY, Cheng CK, Xu J. Endogenous and microbial biomarkers for periodontitis and type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1292596. [PMID: 38149100 PMCID: PMC10750125 DOI: 10.3389/fendo.2023.1292596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
It has been well documented that there is a two-way relationship between diabetes mellitus and periodontitis. Diabetes mellitus represents an established risk factor for chronic periodontitis. Conversely, chronic periodontitis adversely modulates serum glucose levels in diabetic patients. Activated immune and inflammatory responses are noted during diabetes and periodontitis, under the modulation of similar biological mediators. These activated responses result in increased activity of certain immune-inflammatory mediators including adipokines and microRNAs in diabetic patients with periodontal disease. Notably, certain microbes in the oral cavity were identified to be involved in the occurrence of diabetes and periodontitis. In other words, these immune-inflammatory mediators and microbes may potentially serve as biomarkers for risk assessment and therapy selection in diabetes and periodontitis. In this review, we briefly provide an updated overview on different potential biomarkers, providing novel diagnostic and therapeutic insights on periodontal complications and diabetes mellitus.
Collapse
Affiliation(s)
- Songjun Li
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
| | - Hongwen Li
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
- Shenzhen Longgang Institute of Stomatology, Longgang Ear-Nose-Throat (ENT) Hospital, Shenzhen, China
| | - Haiying Kong
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
| | - Shang Ying Wu
- Department of Laboratory Medicine, Shenzhen Hospital, Peking University, Shenzhen, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Jian Xu
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
- Shenzhen Longgang Institute of Stomatology, Longgang Ear-Nose-Throat (ENT) Hospital, Shenzhen, China
| |
Collapse
|
40
|
Ye L, Lv Y, Wu Q, Chen Y, Zhang X, Su Y. Chronic periodontitis induces the proliferation of pancreatic β-cells to cause hyperinsulinemia in a rat model. J Periodontal Res 2023; 58:1290-1299. [PMID: 37723987 DOI: 10.1111/jre.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to determine if chronic periodontitis (CP) may induce hyperinsulinemia and may have the effect of on pancreatic β-cell proliferation in a rat model. MATERIALS AND METHODS Twelve male Sprague-Dawley rats were divided into two groups: the CP group and the control group (Con group). The following contents were evaluated: pathological changes in periodontal soft and hard tissues; serum lipopolysaccharide (LPS) level, serum fasting insulin (FINS) level, fasting blood glucose (FBG) level, and homeostasis model assessment (HOMA) β (HOMA-β) index; histopathological examination of islets; immunohistochemistry of insulin and p-Smad2 expression in islets; immunofluorescence of changes in the relative number of β-cells and the number of Ki67-positive β-cells. Western blotting was used to analyze p-Smad2/Smad2 levels. Results were analyzed by two independent samples t tests. RESULTS Increased serum LPS level, FINS level, and HOMA-β index were observed in the rats of the CP group; FBG level did not change significantly; histological assessments showed an enlarged islet area, increased insulin content, relatively increased β-cells, increased Ki67-positive β-cells, and decreased p-Smad2 expression in islets in the rats of the CP group. CONCLUSION Our study results link CP-induced hyperinsulinemia with changes in islets, such as islet hyperplasia and compensatory β-cell proliferation, by using a CP rat model.
Collapse
Affiliation(s)
- Leilei Ye
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yingtao Lv
- Department of Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Qianqi Wu
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yiyan Chen
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xueyang Zhang
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| |
Collapse
|
41
|
Wu Y, Xing YH, Tao S, Jiao M, Zhu M, Han YT, Guo W, Tao XB. Integrated analysis of potential biomarkers associated with diabetic periodontitis development based on bioinformatics: An observational study. Medicine (Baltimore) 2023; 102:e36019. [PMID: 37986309 PMCID: PMC10659692 DOI: 10.1097/md.0000000000036019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
Based on the importance of chronic inflammation in the pathogenesis of periodontitis and diabetes, the bidirectional relationship between these 2 diseases has been widely confirmed. However, the molecular mechanisms of bidirectional relationship still need to be studied further. In this study, gene expression profile data for diabetes and periodontitis were obtained from Gene Expression Omnibus (GEO) database. Integrative analytical platform were constructed, including common differentially expressed genes (cDEGs), Gene Ontology-Kyoto Encyclopedia of Genes and Genomes (GO-KEGG), and protein-protein interaction. Hub genes and essential modules were detected via Cytoscape. Key hub genes and signaling pathway that mediate chronic inflammation were validated by qPCR and Western blot. Eleven cDEGs were identified. Function analysis showed that cDEGs plays an important role in inflammatory response, cytokine receptor binding, TNF signaling pathway. As hub genes, CXCR4, IL1B, IL6, CXCL2, and MMP9 were detected based on the protein-protein interactions network. IL1B, CXCR4 mRNA were up-regulated in gingivitis samples compared with normal tissues (P < .05). Western blot indicated that the levels of TNF were enhanced in gingivitis of type 2 diabetes compared with normal tissues (P < .01). Hub gene and TNF signaling pathway are helpful to elucidate the molecular mechanism of the bidirectional relationship between periodontitis and diabetes.
Collapse
Affiliation(s)
- Yiran Wu
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yong-Hu Xing
- Oral Medical Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shuai Tao
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Min Jiao
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Min Zhu
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Ya-Ting Han
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Wei Guo
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Xiu-Bin Tao
- Department of Nursing, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
42
|
Zhang Y, Lu M, Zhang Y, Yuan X, Zhou M, Xu X, Zhang T, Song J. Clostridium butyricum MIYAIRI 588 alleviates periodontal bone loss in mice with diabetes mellitus. Ann N Y Acad Sci 2023; 1529:84-100. [PMID: 37658670 DOI: 10.1111/nyas.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The gut microbiota is a bridge linking periodontitis and systemic diseases, such as diabetes mellitus (DM). The probiotic Clostridium butyricum MIYAIRI 588 (CBM588) is reportedly an effective therapeutic approach for gut dysbiosis. Here, in a mouse model, we explored the therapeutic effect of CBM588 on periodontal bone destruction in DM and DM-associated periodontitis (DMP), as well as the underlying mechanism. Micro-computed tomography revealed that DM and DMP both aggravated periodontal bone destruction, which was alleviated by intragastric supplementation with CBM588. Moreover, 16S rRNA sequencing and untargeted metabolite analysis indicated that CBM588 ameliorated DMP-triggered dysbiosis and led to reduced oxidative stress associated with elevated 4-hydroxybenzenemethanol (4-HBA) in serum. Furthermore, in vitro and in vivo experiments found that the metabolite 4-HBA promoted nuclear factor erythroid 2-related factor 2 (Nrf2) signaling activation and modulated the polarization of macrophages, thus ameliorating inflammatory bone destruction in DMP. Our study demonstrates the protective effects of CBM588 in DM-induced mice, with and without ligature-induced periodontitis. The mechanism involves regulation of the gut microbiota and restoration of the integrity of the gut barrier to alleviate oxidative damage by elevating serum 4-HBA. This study suggests the possibility of CBM588 as a therapeutic adjuvant for periodontal treatment in diabetes patients.
Collapse
Affiliation(s)
- Yanan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Lu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xulei Yuan
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Mengjiao Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Xu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Tingwei Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory for Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Wu Y, Du L, Fan M, Chen X, Tang Y, Wang Y, Wang K, Wang S, Li G. Association between oral infections, triglyceride-glucose index, and in-stent restenosis. Oral Dis 2023; 29:3698-3706. [PMID: 36321885 DOI: 10.1111/odi.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES To investigate oral infections in patients suffering in-stent restenosis (ISR) and non-ISR and analyze the possible correlation between the oral infection and triglyceride-glucose (TyG) index, a clinical surrogate indicator of insulin resistance (IR). MATERIALS AND METHODS A cross-sectional design was used, in which 586 patients with acute coronary syndrome who underwent coronary angiography 6-24 months after coronary stent implantation were recruited. The modified total dental index (TDI) was used to evaluate the status of oral inflammation. RESULTS In both univariate analyses, TDI scores [3 (1.5, 4.5) vs. 2.5 (1.5, 4.0), p < 0.01] and a multivariate regression model (OR = 1.202, 95% CI = 1.085-1.333, p < 0.01), the TDI significantly correlated with ISR. The TyG index was positively associated with ISR (OR = 1.766, 95% CI = 1.055-2.957, p < 0.05). Correlation analysis showed that TDI was positively correlated with TyG index (r = 0.190, p < 0.01). Using linear regression analysis, higher TDI scores were significantly associated with IR (95% CI = 0.029-0.063, p < 0.01). CONCLUSIONS Oral infections and TyG index were independently and positively correlated with ISR in patients with acute coronary syndrome. Oral inflammatory burden assessed by TDI score was associated with IR.
Collapse
Affiliation(s)
- Yingle Wu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Cardiology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Laijing Du
- Department of Cardiology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Mengnan Fan
- Department of Medical Record, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xinzhao Chen
- Department of Stomatology, The Second Affiliated Hospital of Air Force Medical University, Xian, China
| | - Yanyan Tang
- Department of Stomatology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanyu Wang
- Department of Cardiology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ke Wang
- Department of Cardiology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shaoxin Wang
- Department of Cardiology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
44
|
Pacheco-Yanes J, Reynolds E, Li J, Mariño E. Microbiome-targeted interventions for the control of oral-gut dysbiosis and chronic systemic inflammation. Trends Mol Med 2023; 29:912-925. [PMID: 37730461 DOI: 10.1016/j.molmed.2023.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Recent research has confirmed the strong connection between imbalances in the oral and gut microbiome (oral-gut dysbiosis), periodontitis, and inflammatory conditions such as diabetes, Alzheimer's disease, and cardiovascular diseases. Microbiome modulation is crucial for preventing and treating several autoimmune and inflammatory diseases, including periodontitis. However, the causal relationships between the microbiome and its derived metabolites that mediate periodontitis and chronic inflammation constitute a notable knowledge gap. Here we review the mechanisms involved in the microbiome-host crosstalk, and describe novel precision medicine for the control of systemic inflammation. As microbiome-targeted therapies begin to enter clinical trials, the success of these approaches relies upon understanding these reciprocal microbiome-host interactions, and it may provide new therapeutic avenues to reduce the risk of periodontitis-associated diseases.
Collapse
Affiliation(s)
- Juan Pacheco-Yanes
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eric Reynolds
- Oral Health Collaborative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; ImmunoBiota Therapeutics Pty Ltd, Melbourne, Australia.
| |
Collapse
|
45
|
Wang A, Sun Y, Xu M, Qin Q, Zhu W, Xu Y. The relationship with and effect of oral microbiota on NLRP3 inflammatory pathway in type 2 diabetes mellitus. Arch Oral Biol 2023; 155:105801. [PMID: 37696160 DOI: 10.1016/j.archoralbio.2023.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/20/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE The aim of this study was to explore the correlation between oral microbiota and NLRP3 inflammasome in type 2 diabetes, and to preliminarily explore their possible impact on type 2 diabetes. DESIGN The 16S rDNA sequencing technique was used to analyze the microbial composition in the saliva of patients with T2DM and healthy people. Real-time quantitative PCR (RT-qPCR) was used to detect the expression levels of T2DM-related inflammatory cytokines in the blood of two groups. RESULTS The relative abundances of Fusobacteriota and Campilobacterota in the saliva of patients with T2DM were lower than those of healthy people (P < 0.05), whereas the relative abundance of Proteobacteria in patients with T2DM was higher than that of healthy people (P < 0.05). In addition, real-time quantitative PCR results showed changes in inflammasome-associated factors in the blood of patients with T2DM and healthy people. Compared with healthy individuals, the relative expression levels of lipopolysaccharide (LPS), apoptosis-associated point-like protein (ASC), Caspase-1, Caspase-11, nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), and interleukin (IL)-1β were significantly higher in the blood of patients with T2DM, whereas the expression level of insulin receptor substrate-1 (IRS-1) was reduced (P < 0.05). CONCLUSIONS Our research suggested that changes in the ratio of oral microbial taxa might increase the expression levels of inflammatory and T2DM-related factors by activating the NLRP3 inflammasome pathway. This discovery indicated the imbalance in oral microbiota might have a certain influence on diabetes by triggering an inflammatory response, and provided a new idea for the relationship between T2DM and oral microbiota.
Collapse
Affiliation(s)
- Ailin Wang
- Qingdao Medical College, Qingdao University, Qingdao 266071, China; Qingdao Youfu Hospital, Qingdao 266071, China
| | - Yu Sun
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Ming Xu
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Qi Qin
- School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Wenlong Zhu
- Business School, Qingdao University of Technology, Qingdao 266520, China.
| | - Yingjie Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao 266001, Shandong Province, China.
| |
Collapse
|
46
|
Bassani B, Cucchiara M, Butera A, Kayali O, Chiesa A, Palano MT, Olmeo F, Gallazzi M, Dellavia CPB, Mortara L, Parisi L, Bruno A. Neutrophils' Contribution to Periodontitis and Periodontitis-Associated Cardiovascular Diseases. Int J Mol Sci 2023; 24:15370. [PMID: 37895050 PMCID: PMC10607037 DOI: 10.3390/ijms242015370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Neutrophils represent the primary defense against microbial threats playing a pivotal role in maintaining tissue homeostasis. This review examines the multifaceted involvement of neutrophils in periodontitis, a chronic inflammatory condition affecting the supporting structures of teeth summarizing the contribution of neutrophil dysfunction in periodontitis and periodontal-related comorbidities. Periodontitis, a pathological condition promoted by dysbiosis of the oral microbiota, is characterized by the chronic inflammation of the gingiva and subsequent tissue destruction. Neutrophils are among the first immune cells recruited to the site of infection, releasing antimicrobial peptides, enzymes, and reactive oxygen species to eliminate pathogens. The persistent inflammatory state in periodontitis can lead to aberrant neutrophil activation and a sustained release of proinflammatory mediators, finally resulting in tissue damage, bone resorption, and disease progression. Growing evidence now points to the correlation between periodontitis and systemic comorbidities. Indeed, the release of inflammatory mediators, immune complexes, and oxidative stress by neutrophils, bridge the gap between local and systemic immunity, thus highlighting neutrophils as key players in linking periodontal inflammation to chronic conditions, including cardiovascular diseases, diabetes mellitus, and rheumatoid arthritis. This review underscores the crucial role of neutrophils in the pathogenesis of periodontitis and the complex link between neutrophil dysfunction, local inflammation, and systemic comorbidities. A comprehensive understanding of neutrophil contribution to periodontitis development and their impact on periodontal comorbidities holds significant implications for the management of oral health. Furthermore, it highlights the need for the development of novel approaches aimed at limiting the persistent recruitment and activation of neutrophils, also reducing the impact of periodontal inflammation on broader health contexts, offering promising avenues for improved disease management and patient care.
Collapse
Affiliation(s)
- Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Martina Cucchiara
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.B.); (A.C.)
| | - Omar Kayali
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Alessandro Chiesa
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (A.B.); (A.C.)
| | - Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Francesca Olmeo
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | - Matteo Gallazzi
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
| | | | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Luca Parisi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy;
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy; (B.B.); (M.C.); (O.K.); (M.T.P.); (F.O.); (M.G.)
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
47
|
Lê S, Cecchin-Albertoni C, Thomas C, Kemoun P, Minty M, Blasco-Baque V. The Role of Dysbiotic Oral Microbiota in Cardiometabolic Diseases: A Narrative Review. Diagnostics (Basel) 2023; 13:3184. [PMID: 37892006 PMCID: PMC10605832 DOI: 10.3390/diagnostics13203184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Over the past decade, there have been significant advancements in the high-flow analysis of "omics," shedding light on the relationship between the microbiota and the host. However, the full recognition of this relationship and its implications in cardiometabolic diseases are still underway, despite advancements in understanding the pathophysiology of these conditions. Cardiometabolic diseases, which include a range of conditions from insulin resistance to cardiovascular disease and type 2 diabetes, continue to be the leading cause of mortality worldwide, with a persistently high morbidity rate. While the link between the intestinal microbiota and cardiometabolic risks has been extensively explored, the role of the oral microbiota, the second-largest microbiota in the human body, and specifically the dysbiosis of this microbiota in causing these complications, remains incompletely defined. This review aims to examine the association between the oral microbiota and cardiometabolic diseases, focusing on the dysbiosis of the oral microbiota, particularly in periodontal disease. Additionally, we will dive into the mechanistic aspects of this dysbiosis that contribute to the development of these complications. Finally, we will discuss potential prevention and treatment strategies, including the use of prebiotics, probiotics, and other interventions.
Collapse
Affiliation(s)
- Sylvie Lê
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Chiara Cecchin-Albertoni
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- RESTORE Research Center, CNRS, EFS, ENVT, Batiment INCERE, INSERM, Université de Toulouse, 4 bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Charlotte Thomas
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Philippe Kemoun
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- RESTORE Research Center, CNRS, EFS, ENVT, Batiment INCERE, INSERM, Université de Toulouse, 4 bis Avenue Hubert Curien, 31100 Toulouse, France
| | - Matthieu Minty
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Vincent Blasco-Baque
- Département Dentaire, Université Paul Sabatier III (UPS), 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (C.C.-A.); (C.T.); (P.K.); (M.M.)
- Service d’Odontologie Toulouse, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC)—UMR1297 Inserm, Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| |
Collapse
|
48
|
Lê S, Laurencin-Dalicieux S, Minty M, Assoulant-Anduze J, Vinel A, Yanat N, Loubieres P, Azalbert V, Diemer S, Burcelin R, Canceill T, Thomas C, Blasco-Baque V. Obesity Is Associated with the Severity of Periodontal Inflammation Due to a Specific Signature of Subgingival Microbiota. Int J Mol Sci 2023; 24:15123. [PMID: 37894804 PMCID: PMC10606428 DOI: 10.3390/ijms242015123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this study was to analyze the link between periodontal microbiota and obesity in humans. We conducted a cohort study including 45 subjects with periodontitis divided into two groups: normo-weighted subjects with a body mass index (BMI) between 20 and 25 kg/m2 (n = 34) and obese subjects with a BMI > 30 kg/m2 (n = 11). Our results showed that obesity was associated with significantly more severe gingival inflammation according to Periodontal Inflamed Surface Area (PISA index). Periodontal microbiota taxonomic analysis showed that the obese (OB) subjects with periodontitis were characterized by a specific signature of subgingival microbiota with an increase in Gram-positive bacteria in periodontal pockets, associated with a decrease in microbiota diversity compared to that of normo-weighted subjects with periodontitis. Finally, periodontal treatment response was less effective in OB subjects with persisting periodontal inflammation, reflecting a still unstable periodontal condition and a risk of recurrence. To our knowledge, this study is the first exploring both salivary and subgingival microbiota of OB subjects. Considering that OB subjects are at higher periodontal risk, this could lead to more personalized preventive or therapeutic strategies for obese patients regarding periodontitis through the specific management of oral microbiota of obese patients.
Collapse
Affiliation(s)
- Sylvie Lê
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Sara Laurencin-Dalicieux
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- INSERM U1295, CERPOP, Epidémiologie et Analyse en Santé Publique, Risques, Maladies Chroniques et Handicaps, 37 Allées Jules Guesdes, 31000 Toulouse, France
| | - Matthieu Minty
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Justine Assoulant-Anduze
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Alexia Vinel
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR 1297 Inserm, Team ESTER, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France
| | - Noor Yanat
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
| | - Pascale Loubieres
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Vincent Azalbert
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Swann Diemer
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Remy Burcelin
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Thibault Canceill
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Charlotte Thomas
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| | - Vincent Blasco-Baque
- Département d’Odontologie, Faculté de Santé, Université Paul Sabatier Toulouse III, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (S.L.); (S.L.-D.); (M.M.); (A.V.); (N.Y.); (P.L.)
- Service d’Odontologie Toulouse Rangueil, CHU Toulouse, 3 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France
- UMR1297 Inserm, Team InCOMM/Intestine ClinicOmics Metabolism & Microbiota, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier, 1 Avenue Jean Poulhes, 31432 Toulouse, France; (J.A.-A.); (V.A.); (S.D.); (R.B.)
| |
Collapse
|
49
|
Mao H, Gong T, Sun Y, Yang S, Qiao X, Yang D. Bacterial growth stage determines the yields, protein composition, and periodontal pathogenicity of Porphyromonas gingivalis outer membrane vesicles. Front Cell Infect Microbiol 2023; 13:1193198. [PMID: 37900318 PMCID: PMC10602934 DOI: 10.3389/fcimb.2023.1193198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction P. gingivalis (W83), as the keystone pathogen in chronic periodontitis, has been found to be tightly bound to systemic diseases. Outer membrane vesicles (OMVs) produced by P. gingivalis (W83) are thought to serve key functions in bacterial virulence and pathogenicity. This study aims to comprehend the biological functions of P. gingivalis OMVs isolated from different growth stages by comparing their physicochemical properties and pathogenicity. Methods Protein composition was analyzed via isotope-labeled relative and absolute quantification (iTRAQ). Macrophage polarization and the expression of IL-6 and IL-1β were detected. The proliferation, migration, osteogenic differentiation, and IL-1b/NLRP3 expression of periodontal ligament stem cells (PDLSCs) were evaluated. P. gingivalis/P. gingivalis OMVs-induced periodontal models were also constructed in Sprague Dawley rats. Results The protein composition of P. gingivalis OMVs isolated from different growth stages demonstrated obvious differences ranging from 25 KDa to 75 KDa. In the results of flow cytometry, we found that in vitro experiments the M1 subtype of macrophages was more abundant in the late-log OMVs and stationary OMVs groups which boosted the production of inflammatory cytokines more than pre-log OMVs. Compared to pre-log OMVs, late-log OMVs and stationary OMVs had more pronounced inhibitory effects on proliferation, migration, and early osteogenesis of PDLSCs. The NLRP3 inflammasome was activated to a larger extent in the stationary OMVs group. Micro-computed tomography (Micro CT), hematoxylin-eosin staining (HE), and tartrate acid phosphatase (TRAP) results showed that the periodontal damage in the stationary OMVs group was worse than that in the pre-log OMVs and late-log OMVs group, but almost equal to that in the positive control group (P. gingivalis). Discussion In general, both in vivo and in vitro experiments showed that late-log OMVs and stationary OMVs have more significant pathogenicity in periodontal disease.
Collapse
Affiliation(s)
- Hongchen Mao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ting Gong
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuting Sun
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shiyao Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Xin Qiao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
50
|
Gong J, Ye C, Ran J, Xiong X, Fang X, Zhou X, Yi Y, Lu X, Wang J, Xie C, Liu J. Polydopamine-Mediated Immunomodulatory Patch for Diabetic Periodontal Tissue Regeneration Assisted by Metformin-ZIF System. ACS NANO 2023; 17:16573-16586. [PMID: 37578444 DOI: 10.1021/acsnano.3c02407] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
An essential challenge in diabetic periodontal regeneration is achieving the transition from a hyperglycemic inflammatory microenvironment to a regenerative one. Here, we describe a polydopamine (PDA)-mediated ultralong silk microfiber (PDA-mSF) and metformin (Met)-loaded zeolitic imidazolate framework (ZIF) incorporated into a silk fibroin/gelatin (SG) patch to promote periodontal soft and hard tissue regeneration by regulating the immunomodulatory microenvironment. The PDA-mSF endows the patch with a reactive oxygen species (ROS)-scavenging ability and anti-inflammatory activity, reducing the inflammatory response by suppressing M1 macrophage polarization. Moreover, PDA improves periodontal ligament reconstruction via its cell affinity. Sustained release of Met from the Met-ZIF system confers the patch with antiaging and immunomodulatory abilities by activating M2 macrophage polarization to secrete osteogenesis-related cytokines, while release of Zn2+ also promotes bone regeneration. Consequently, the Met-ZIF system creates a favorable microenvironment for periodontal tissue regeneration. These features synergistically accelerate diabetic periodontal bone and ligament regeneration. Thus, our findings offer a potential therapeutic strategy for hard and soft tissue regeneration in diabetic periodontitis.
Collapse
Affiliation(s)
- Jinglei Gong
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengxinyue Ye
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinhui Ran
- Institute of Biomedical Engineering, Haihe Laboratory of Cell Ecosystem, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinyi Fang
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueman Zhou
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiong Lu
- Institute of Biomedical Engineering, Haihe Laboratory of Cell Ecosystem, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, Haihe Laboratory of Cell Ecosystem, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jin Liu
- Lab for Aging Research and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|