1
|
Zhang L, Li X, Gao H, Chang W, Li P. Gut microbiota-lncRNA/circRNA crosstalk: implications for different diseases. Crit Rev Microbiol 2025; 51:499-513. [PMID: 38967384 DOI: 10.1080/1040841x.2024.2375516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The gut microbiota features an abundance of diverse microorganisms and represents an important component of human physiology and metabolic homeostasis, indicating their roles in a wide array of physiological and pathological processes in the host. Maintaining balance in the gut microbiota is critical for normal functionality as microbial dysbiosis can lead to the occurrence and development of diseases through various mechanisms. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are non-coding RNAs that perform important regulatory functions for many processes. Furthermore, the gut microbiota and lncRNAs/circRNAs are known to interact in a range of both physiological and pathological activities. In this article, we review existing research relevant to the interaction between the gut microbiota and lncRNAs/circRNAs and investigate the role of their crosstalk in the pathogenesis of different diseases. Studies have shown that, the gut microbiota can target lncRNAs ENO1-IT1, BFAL1, and LINC00152 to regulate colorectal cancer development via various signaling pathways. In addition, the gut microbiota can influence mental diseases and lung tumor metastasis by modulating circRNAs such as circNF1-419, circ_0001239, circHIPK2 and mmu_circ_0000730. These findings provide a theoretical basis for disease prevention and treatment and suggest that gut microbiota-lncRNA/circRNA crosstalk has high clinical value.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Garfinkle R, Bennett RD, Dantu S, Gasior A, Hawkins AT, Holland J, Ore AS, Shaffer VO, Taylor JP, Sylla P, McLemore EC, Boutros M. SAGES white paper on antibiotic omission in the management of acute uncomplicated diverticulitis: why, when, who, and most importantly, how. Surg Endosc 2025:10.1007/s00464-025-11738-w. [PMID: 40263135 DOI: 10.1007/s00464-025-11738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/06/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Historically, the management of acute uncomplicated diverticulitis was centered on antibiotics. However, modern theories regarding the pathogenesis of diverticulitis have challenged the notion that antibiotics are necessary in all cases. Despite major reform in many societal guidelines, the adoption of non-antibiotic therapy for uncomplicated diverticulitis has been limited, especially in North America. The purpose of this SAGES White Paper was to review the available evidence on antibiotic omission in uncomplicated diverticulitis and to explore methods of safe implementation. METHODS A task force within the SAGES Colorectal Surgery Committee was formed to work on this White Paper. The committee and its leadership approved an outline that would focus on the following topics: (1) Defining the problem with unnecessary antibiotic exposure; (2) Evaluating the evidence on antibiotic omission in uncomplicated diverticulitis; (3) Identifying the appropriate patient for antibiotic omission; (4) Outlining how to counsel patients who are treated without antibiotics; (5) Reviewing methods to safely implement this practice in both the hospital and community setting. These topics were divided up among members of the task force who performed a structured literature search in preparation for their assignments. RESULTS Antibiotics are associated with several patient and societal adverse effects, including the rising problem of antimicrobial resistance. Randomized controlled trials have demonstrated no superiority to the routine administration of antibiotics in acute uncomplicated diverticulitis. Appropriate patients for antibiotic omission include those who are immunocompetent, non-septic, and have mild symptoms/disease severity on imaging. Existing frameworks for the safe implementation of new practices can be referenced to help increase adoption of non-antibiotic therapy. CONCLUSION The existing body of evidence supports antibiotic omission in appropriate cases of acute uncomplicated diverticulitis. In order to increase the widespread adoption of this practice, buy-in from key stakeholders (both healthcare professionals and patients) is necessary.
Collapse
Affiliation(s)
- Richard Garfinkle
- Division of Colon and Rectal Surgery, Department of Surgery, Jewish General Hospital, McGill University, 3755 Cote Saint-Catherine Road, Montreal, QC, H3T1E2, Canada.
| | - Robert D Bennett
- Division of Colon and Rectal Surgery, University of South Florida Morsani College of Medicine, Tampa Bay, FL, USA
| | - Siva Dantu
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alessandra Gasior
- Nationwide Children's Hospital, Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Alexander T Hawkins
- Section of Colon and Rectal Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jessica Holland
- Department of Surgery, Thunder Bay Regional Health Sciences Center, Thunder Bay, ON, USA
| | - Ana Sofia Ore
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | | | - James P Taylor
- Department of Surgery, Montefiore Medical Center, Bronx, NY, USA
| | - Patricia Sylla
- Department of Surgery, Mount Sinai Hospital, New York, NY, USA
| | - Elisabeth C McLemore
- Department of Surgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, USA
| | - Marylise Boutros
- Department of Colorectal Surgery, Cleveland Clinic Florida, Weston, FL, USA
| |
Collapse
|
3
|
Park SJ, Kim M, Jeong J, Park YJ, Jeong S, Kim M, Kim HJ, Song J, Kim SM, Chang J, Kim KH, Ko A, Park SM. Association between antibiotic use and the risk of rheumatoid arthritis: a retrospective cohort study in South Korea. Rheumatology (Oxford) 2025; 64:1732-1740. [PMID: 39340800 DOI: 10.1093/rheumatology/keae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/28/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Certain studies propose that antibiotic use may influence RA incidence, but the clear association between antibiotics and RA remains unclear. Therefore, this study aimed to examine the relationship between antibiotics and RA risk to provide additional epidemiological evidence. METHODS This population-based retrospective cohort study was conducted with adults aged 40 years or older using the Korean National Health Insurance Service database. Antibiotic exposure was measured from 2003 to 2007. Study participants were followed up from 1 January 2008 to 31 December 2019. Multivariable Cox hazard regression was utilized to evaluate adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for the risk of RA according to accumulative days of antibiotic use and the number of antibiotic classes used, respectively. RESULTS During 3 395 590 person-years of follow-up, 29 274 cases of RA were identified. Participants who used antibiotics for 91 or more days had a higher risk of RA (aHR, 1.79; 95% CI, 1.67-1.92) than antibiotic non-users. Additionally, individuals who used four or more kinds of antibiotic classes had a higher risk of RA (aHR, 1.61; 95% CI, 1.51-1.71) than those who did not prescribe antibiotics. The risk of RA was positively associated with both higher cumulative days of antibiotic exposure and a larger number of drug classes. These trends were maintained in sensitivity analyses, including variations in antibiotic exposure periods. CONCLUSION Our findings suggest a possible association between the long-term use of antibiotics and RA incidence. Further studies are necessary for a clearer understanding of this association.
Collapse
Affiliation(s)
- Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Minkyung Kim
- College of Nursing, Korea University, Seoul, South Korea
| | - Jihui Jeong
- Department of Medicine, Inje University, Busan, South Korea
| | - Young Jun Park
- Medical Research Center, Genomic Medicine Institute, Seoul National University, Seoul, South Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
| | - Minseo Kim
- College of Medicine, Jeonbuk National University, Jeonju, South Korea
| | - Hye Jun Kim
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jihun Song
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung Min Kim
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyae Hyung Kim
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Public Healthcare Center, Seoul National University Hospital, Seoul, South Korea
| | - Ahryoung Ko
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
5
|
Chen S, Yi M, Yi X, Zhou Y, Song H, Zeng M. Unveiling the fungal frontier: mycological insights into inflammatory bowel disease. Front Immunol 2025; 16:1551289. [PMID: 40207229 PMCID: PMC11979276 DOI: 10.3389/fimmu.2025.1551289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal disease that seriously affects the quality of life of patients around the world. It is characterized by recurrent abdominal pain, diarrhea, and mucous bloody stools. There is an urgent need for more accurate diagnosis and effective treatment of IBD. Accumulated evidence suggests that gut microbiota plays an important role in the occurrence and development of gut inflammation. However, most studies on the role of gut microbiota in IBD have focused on bacteria, while fungal microorganisms have been neglected. Fungal dysbiosis can activate the host protective immune pathway related to the integrity of the epithelial barrier and release a variety of pro-inflammatory cytokines to trigger the inflammatory response. Dectin-1, CARD9, and IL-17 signaling pathways may be immune drivers of fungal dysbacteriosis in the development of IBD. In addition, fungal-bacterial interactions and fungal-derived metabolites also play an important role. Based on this information, we explored new strategies for IBD treatment targeting the intestinal fungal group and its metabolites, such as fungal probiotics, antifungal drugs, diet therapy, and fecal microbiota transplantation (FMT). This review aims to summarize the fungal dysbiosis and pathogenesis of IBD, and provide new insights and directions for further research in this emerging field.
Collapse
Affiliation(s)
- Silan Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meijing Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinying Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuxuan Zhou
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Houpan Song
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Zhu D, Li S, Xu Z, Kulyar MF, Bai X, Wang Y, Wang B, Khateeb E, Deng D, Wang L, Chen Y, Guo A, Shen Y. Comparative analysis of gut microbiota in healthy and diarrheic foals. Microbiol Spectr 2025:e0087124. [PMID: 40105330 DOI: 10.1128/spectrum.00871-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/01/2025] [Indexed: 03/20/2025] Open
Abstract
Diarrhea presents a substantial risk of high morbidity and mortality among foals. Although studies have shown connections between gut microbiota and several gastrointestinal diseases, there is still inadequate information on gut microbial alterations in foals during diarrhea. In this study, we conducted 16S rRNA and ITS gene amplicon sequencing to investigate gut bacterial and fungal differences between healthy and diarrheic foals. The results unveiled significant reductions in gut bacterial and fungal diversities among foals experiencing diarrhea, accompanied by notable shifts in the composition of gut microbial communities. A considerable decrease was observed in the relative abundance of 30 bacterial and 34 fungal genera. Moreover, two bacterial and eight fungal genera were utterly undetectable in the gut microbiota of diarrheic foals. Some decreased genera, such as Bifidobacterium and Saccharomyces, were deemed beneficial and recognized as probiotics. The study revealed significant alterations in foals' gut bacterial and fungal communities during diarrhea, which enriched our comprehension of gut microbial dynamics in foals across varying health statuses. These findings offer valuable insights for managing diarrhea through gut microbiota modulation, suggesting that probiotics may be superior to antibiotics in preventing and controlling foal diarrhea.IMPORTANCEThis research advances the understanding of gut bacterial and fungal dynamics in foals, highlighting gut microbiota dysbiosis as a potential contributor to foal diarrhea. Additionally, we observed that many altered bacteria and fungi were downregulated during diarrhea, including some probiotic strains. Consequently, our findings provide evidence that probiotics may offer superior efficacy compared with antibiotics as potential candidates for preventing and treating foal diarrhea.
Collapse
Affiliation(s)
- Di Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Siyu Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhixiang Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xu Bai
- China Horse Industry Association, Beijing, China
| | - Yu Wang
- China Horse Industry Association, Beijing, China
| | - Boya Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Emaan Khateeb
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dandan Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lidan Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuji Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yaoqin Shen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Kaur N, Kumar P, Dhami M, Aran KR. Antibiotic-induced gut dysbiosis: unraveling the gut-heart axis and its impact on cardiovascular health. Mol Biol Rep 2025; 52:319. [PMID: 40095156 DOI: 10.1007/s11033-025-10425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Abstract
Cardiovascular diseases (CVDs) remain the major cause of morbidity and mortality amongst people of all ages across the world. Research suggests that the initiation and progression of CVDs are associated with antibiotic-induced gut dysbiosis. Antibiotics are primarily intended to be used to treat bacterial infections, which can alter gut microbiota (GM) composition, by lowering the abundance of beneficial bacteria, like Firmicutes, Bacteroidetes, and increasing the profusion of Enterobacteriaceae, leading to harm on gut health. Additionally, it reduces short-chain fatty acids (SCFAs) and bile acid metabolism, increases trimethylamine N-oxide (TMAO) production, intestinal permeability allowing lipopolysaccharide (LPS) and TMAO into systemic circulation. SCFAs play a key role in lipid metabolism, inflammation, and strengthening of the intestinal barrier, and participate in CVDs through FFAR2 and FFAR3 receptors, whereas dysbiosis reduces SCFAs levels and worsens these effects. TMAO enhances oxidative stress, inflammation, endothelial dysfunction, and cholesterol dysregulation, thus worsening CVDs. Furthermore, LPS develops systemic inflammation, insulin resistance, and endothelial dysfunction by activating the NF-κB pathway. Dysbiosis also affects bile acid synthesis, disrupting lipid and glucose metabolism, further participating in the progression of CVDs. This article aims to explore the role of gut dysbiosis in various CVDs, including congenital heart disease, hypertension, valvular heart disease, coronary heart disease, and heart failure. Furthermore, this article aims to bridge the knowledge gap regarding the gut-heart axis by exploring how antibiotics alter the gut microbiota homeostasis, further contributing to the development of CVDs and therapeutic interventions that reduce cardiovascular risks and restore the gut microbiota homeostasis.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Pankaj Kumar
- Department of Pharmacology, Himachal Institute of Pharmaceutical Education and Research (HIPER), Tehsil-Nadaun, Hamirpur, Himachal Pradesh, 177033, India
| | - Mahadev Dhami
- Bhimdatta Polytechnic Institute, Patan, Baitadi, 10200, Nepal
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
Szajewska H, Scott KP, de Meij T, Forslund-Startceva SK, Knight R, Koren O, Little P, Johnston BC, Łukasik J, Suez J, Tancredi DJ, Sanders ME. Antibiotic-perturbed microbiota and the role of probiotics. Nat Rev Gastroenterol Hepatol 2025; 22:155-172. [PMID: 39663462 DOI: 10.1038/s41575-024-01023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
The disruptive effect of antibiotics on the composition and function of the human microbiota is well established. However, the hypothesis that probiotics can help restore the antibiotic-disrupted microbiota has been advanced, with little consideration of the strength of evidence supporting it. Some clinical data suggest that probiotics can reduce antibiotic-related side effects, including Clostridioides difficile-associated diarrhoea, but there are no data that causally link these clinical effects to microbiota protection or recovery. Substantial challenges hinder attempts to address this hypothesis, including the absence of consensus on the composition of a 'normal' microbiota, non-standardized and evolving microbiome measurement methods, and substantial inter-individual microbiota variation. In this Review, we explore these complexities. First, we review the known benefits and risks of antibiotics, the effect of antibiotics on the human microbiota, the resilience and adaptability of the microbiota, and how microbiota restoration might be defined and measured. Subsequently, we explore the evidence for the efficacy of probiotics in preventing disruption or aiding microbiota recovery post-antibiotic treatment. Finally, we offer insights into the current state of research and suggest directions for future research.
Collapse
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Karen P Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a joint cooperation of Max Delbruck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Paul Little
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Bradley C Johnston
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Jan Łukasik
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Consulting Scientific Advisor, Centennial, CO, USA.
| |
Collapse
|
9
|
Song X, Li X, Wang Y, Wu YJ. Involvement of gut microbiota in chlorpyrifos-induced subchronic toxicity in mice. Arch Toxicol 2025; 99:1237-1252. [PMID: 39714733 DOI: 10.1007/s00204-024-03934-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF. In this study, we explored if the intestinal microbial community is involved in regulating the toxicity of CPF. Adult mice were continuously exposed to CPF (4 mg/kg body weight /day) for 10 weeks with or without a 2-week pretreatment of antibiotics to change the ecological structure of intestinal microorganisms in advance. Pathological changes in the liver and kidneys were examined and the biochemical parameters in serum for liver and kidney functions were detected, and changes in the intestinal microbial community of the mice were measured. The results showed that subchronic exposure to low-dose CPF caused an ecological imbalance in the intestinal flora and caused pathological damage to the liver and kidneys. Serum biochemical indicators for liver function such as alanine aminotransferase and total bile acids contents and renal biochemical indicators such as urea nitrogen and creatinine were disrupted. Changes in intestinal microbial community structure by using antibiotics in advance can effectively alleviate the pathological and functional damage to the liver and kidneys caused by CPF exposure. Further analysis showed that intestinal microorganisms such as Saccharibacteria (TM7), Odoribacter, Enterococcus and AF12 genera may be involved in managing the toxicity of CPF. Together, our results indicated that long-term low-dose CPF exposure could induce hepatotoxicity and nephrotoxicity, and liver and kidney damage may be mitigated by altering the ecology of intestinal microorganisms.
Collapse
Affiliation(s)
- Xiaohua Song
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyi Li
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China
- College of Life Sciences, Inner Mongolia Agricultural University, Saihan District, Hohhot, 010018, China
| | - Yuzhen Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Saihan District, Hohhot, 010018, China.
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.
| |
Collapse
|
10
|
Lista S, Munafò A, Caraci F, Imbimbo C, Emanuele E, Minoretti P, Pinto-Fraga J, Merino-País M, Crespo-Escobar P, López-Ortiz S, Monteleone G, Imbimbo BP, Santos-Lozano A. Gut microbiota in Alzheimer's disease: Understanding molecular pathways and potential therapeutic perspectives. Ageing Res Rev 2025; 104:102659. [PMID: 39800223 DOI: 10.1016/j.arr.2025.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks. Additionally, we examine other pathophysiological mechanisms by which GM may influence AD risk, including the production of short-chain fatty acids, secondary bile acids, and tryptophan metabolites. The role of the vagus nerve in gut-brain communication is also addressed. We highlight potential therapeutic implications of targeting GM in AD, focusing on antibiotics, probiotics, prebiotics, postbiotics, phytochemicals, and fecal microbiota transplantation. While preclinical studies showed promise, clinical evidence remains limited and inconsistent. We critically assess clinical trials, emphasizing challenges in translating GM-based therapies to AD patients. The reviewed evidence underscores the need for further research to elucidate precise molecular mechanisms linking GM to AD and determine whether GM dysbiosis is a contributing factor or consequence of AD pathology. Future studies should focus on large-scale clinical trials to validate GM-based interventions' efficacy and safety in AD.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Antonio Munafò
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | | | | | - José Pinto-Fraga
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - María Merino-País
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Paula Crespo-Escobar
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Rome 00133, Italy.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| |
Collapse
|
11
|
Scharf E, Schlattmann P, Stallhofer J, Stallmach A. Do Antibiotics Cause Inflammatory Bowel Disease? A Systematic Review and Meta-Analysis. Visc Med 2025; 41:32-47. [PMID: 39927188 PMCID: PMC11801854 DOI: 10.1159/000541601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), exhibits a multifactorial pathogenesis influenced by genetic and environmental factors. Antibiotic usage has been implicated in modifying the gut microbiome, potentially leading to dysbiosis and contributing to IBD risk. Despite existing literature, the relationship remains inconclusive. This meta-analysis aimed to evaluate the association between prior antibiotic use and the onset of IBD. Methods A systematic literature search in PubMed was conducted to identify studies exploring the link between antibiotic use and subsequent IBD diagnosis. Studies reporting CD, UC, or both as primary outcomes were included. The meta-analysis, performed according to PRISMA guidelines, summarized risk estimates, represented as odds ratios (ORs), and corresponding confidence intervals (CIs). Subgroup analyses involved the categorization of antibiotics and the determination of the minimum number of antibiotic therapy courses administered. Results Out of 722 publications, 31 studies comprising 102,103 individuals met eligibility criteria. The pooled OR for IBD in those with prior antibiotic exposure was 1.40 (95% CI: 1.25-1.56). Antibiotic use was associated with an increased risk of IBD (OR: 1.52, 95% CI: 1.19-1.94). Notably, this association was confined to CD (OR: 1.50, 95% CI: 1.27-1.77), while no significant association was observed with UC (OR: 1.21, 95% CI: 1.00-1.47). Risk augmentation for IBD correlated positively with the number of antibiotic courses (OR: 1.08, 95% CI: 1.05-1.12). Conclusion Previous antibiotic use is associated with the later development of CD. A positive dose-response effect was also observed. Against this background, antibiotics should be used rationally.
Collapse
Affiliation(s)
- Ellen Scharf
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Peter Schlattmann
- Institute for Medical Statistics, Informatics, and Data Science, Jena University Hospital, Jena, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Liu C, Ma Z, Zhao X, Luo F, Li H, Shen D, Zhou W, Cao P, Su C, Zhu J. Association of antibiotic use with rheumatoid arthritis: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41397. [PMID: 39889164 PMCID: PMC11789869 DOI: 10.1097/md.0000000000041397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 02/02/2025] Open
Abstract
Previous observational studies have suggested an association between antibiotic use and rheumatoid arthritis (RA), though the causal relationship remains unclear. This study aimed to investigate the causal link between antibiotic use and RA in a European population using Mendelian randomization (MR). We utilized pooled genome-wide association study (GWAS) data on 12 antibiotics and RA from European populations, extracted from the GWAS Catalog. Both univariate MR and multivariate MR were employed to examine the causal relationship. Three analysis methods were applied: inverse variance weighting, MR-Egger, and weighted median, with inverse variance weighting as the primary method. Sensitivity analyses were conducted using Cochran Q statistics, MR-PRESSO, the MR-Egger intercept, and the leave-one-out test. Univariate MR revealed that tetracycline use was positively associated with RA (odds ratio = 1.013, 95% confidence interval = 1.001-1.024, P = .028), while none of the other 11 antibiotics exhibited a causal relationship with RA. However, further multivariate MR analysis found no causal association between tetracycline use and RA. Our results do not support a direct causal relationship between RA and antibiotic use, which may help alleviate some concerns among clinicians. Further MR studies are needed to validate these findings as additional datasets from other cohorts and GWASs with more detailed information become available.
Collapse
Affiliation(s)
- Chang Liu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Zhijun Ma
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Xin Zhao
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fang Luo
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Huinan Li
- The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dingkun Shen
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Wei Zhou
- The Third Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Puhua Cao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Chengguo Su
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Jun Zhu
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
13
|
Khatib MA, Aljaaly EA, Albajri E, Khalifa NA, Khateeb S, Ajabnoor SM, Radhwan D, Aljohani K, Hussein AY. Prevalence of Functional Gastrointestinal Disorders and Associated Risk Factors Among Preschool Children in the City of Jeddah and Surrounding Areas: A Cross-Sectional Study. Diagnostics (Basel) 2025; 15:242. [PMID: 39941171 PMCID: PMC11817443 DOI: 10.3390/diagnostics15030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Functional gastrointestinal disorders (FGIDs) affect children's daily activities and overall performance due to gastrointestinal symptoms. This study assesses the prevalence and types of FGIDs in children living in Jeddah City and its countryside. It also examines factors that contribute to the incidence of these disorders and their impact on children's lifestyles. Methods: This cross-sectional study was conducted among 285 mothers of preschool children enrolled in kindergartens during the academic year 2020-2021. The Rome IV Diagnostic Questionnaire was sent out online through kindergartens to be filled out by the children's mothers. The questionnaire assessed the prevalence of FGIDs subjectively through symptoms and their frequency. Results: Among the 285 participants, 9% (n = 27) fit the diagnostic criteria for FGIDs. Common FGIDs included functional constipation, 3.5% (n = 10); postprandial distress syndrome, 2.4% (n = 7); functional abdominal pain-not otherwise specified, 1% (n = 3); and functional epigastric pain, 0.7% (n = 2). Significant risk factors for developing FGIDs among the children in the sample included being a preterm baby (p < 0.01), being previously diagnosed with a gastrointestinal condition (p < 0.010), having a family history of diarrhea or nausea and vomiting (p < 0.001 and p < 0.01, respectively), skipping lunch at kindergarten (p < 0.01), and having pre-existing food allergies (p < 0.01). Conclusions: FGIDs were prevalent among 9% of children in Jeddah City and its countryside. Functional constipation was the most common disorder. Factors associated with FGIDs in children included preterm birth, being previously diagnosed with a GI condition, a family history of gastrointestinal conditions, irregular eating habits, and food allergies.
Collapse
Affiliation(s)
- Mai A. Khatib
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.A.); (E.A.); (S.M.A.); (D.R.); (K.A.); (A.Y.H.)
- Food, Nutrition, and Lifestyle Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Obesity and Lifestyle Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Saudi Diabetes Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Elham A. Aljaaly
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.A.); (E.A.); (S.M.A.); (D.R.); (K.A.); (A.Y.H.)
- Medical Nutrition Therapy Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eram Albajri
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.A.); (E.A.); (S.M.A.); (D.R.); (K.A.); (A.Y.H.)
- Obesity and Lifestyle Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nahlaa A. Khalifa
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Saleh Khateeb
- Faculty of Clinical Sciences, Fakeeh College for Medical Sciences, Jeddah 23323, Saudi Arabia;
| | - Sarah M. Ajabnoor
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.A.); (E.A.); (S.M.A.); (D.R.); (K.A.); (A.Y.H.)
- Food, Nutrition, and Lifestyle Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Daniah Radhwan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.A.); (E.A.); (S.M.A.); (D.R.); (K.A.); (A.Y.H.)
| | - Khawlah Aljohani
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.A.); (E.A.); (S.M.A.); (D.R.); (K.A.); (A.Y.H.)
| | - Aisha Y. Hussein
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (E.A.A.); (E.A.); (S.M.A.); (D.R.); (K.A.); (A.Y.H.)
| |
Collapse
|
14
|
Azhar Ud Din M, Lin Y, Lyu C, Yi C, Fang A, Mao F. Advancing therapeutic strategies for graft-versus-host disease by targeting gut microbiome dynamics in allogeneic hematopoietic stem cell transplantation: current evidence and future directions. Mol Med 2025; 31:2. [PMID: 39754054 PMCID: PMC11699782 DOI: 10.1186/s10020-024-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system. Consequently, it significantly affects the overall well-being and susceptibility of the host to disease. Patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) may experience a disruption in the balance between the immune system and gut bacteria when treated with medicines and foreign cells. This can lead to secondary intestinal inflammation and GVHD. Thus, GM is both a reliable indicator of post-transplant mortality and a means of enhancing GVHD prevention and treatment after allo-HSCT. This can be achieved through various strategies, including nutritional support, probiotics, selective use of antibiotics, and fecal microbiota transplantation (FMT) to target gut microbes. This review examines research advancements and the practical use of intestinal bacteria in GVHD following allo-HSCT. These findings may offer novel insights into the prevention and treatment of GVHD after allo-HSCT.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yan Lin
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, 212399, Jiangsu, People's Republic of China
| | - Changkun Lyu
- School of Medical Technology, Shangqiu Medical College Shangqiu, Shangqiu, 476100, Henan, People's Republic of China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, 212028, Jiangsu, People's Republic of China
| | - Anning Fang
- Basic Medical School, Anhui Medical College, 632 Furong Road, Economic and Technological Development Zone, Hefei, 230061, Anhui, People's Republic of China.
| | - Fei Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
- Institute of Hematology, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Wang C, Zhao L, Xu J, Li X, Liu S, Du J, Jia X, Wang Z, Ge L, Yan Z, Xia X. Trace antibiotic exposure affects murine gut microbiota and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177033. [PMID: 39447894 DOI: 10.1016/j.scitotenv.2024.177033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Gut microbiota is important for host metabolism regulation. Antibiotic exposure disturbs this regulation by affecting the microbiome. Trace levels of antibiotics in water have been widely reported and the impact on gut microbiota remains understudied. We provide evidence of trace antibiotic exposure affecting the host's gut microbiota using a mouse model exposed to trace amounts of azithromycin (AZI) or ciprofloxacin (CIP) in drinking water. AZI exposure in males changed the distribution of gram-positive (Firmicutes and Bacteroidetes) and gram-negative (Proteobacteria, Fusobacteria, and Verrucomicrobia) bacteria at an early age. Both AZI and CIP resulted in abnormal microbiota maturation. Additionally, the production of short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, in females is affected. Serum hormone and metabolome levels shifted after trace antibiotic exposure. AZI and CIP exposure broadly disrupted original host-microbe interaction relationships between the gut microbiota and SCFAs or serum metabolites. In this study, we demonstrated that trace antibiotic exposure was associated with extensive gut microbiota and metabolism perturbation in mice and that the potential health risks in susceptible populations should be considered.
Collapse
Affiliation(s)
- Chengfei Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Liang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaowei Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Saiwa Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - JingJing Du
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xixi Jia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhinan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lirui Ge
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zuhao Yan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xi Xia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
16
|
Airola C, Severino A, Spinelli I, Gasbarrini A, Cammarota G, Ianiro G, Ponziani FR. "Pleiotropic" Effects of Antibiotics: New Modulators in Human Diseases. Antibiotics (Basel) 2024; 13:1176. [PMID: 39766566 PMCID: PMC11727521 DOI: 10.3390/antibiotics13121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/15/2025] Open
Abstract
Antibiotics, widely used medications that have significantly increased life expectancy, possess a broad range of effects beyond their primary antibacterial activity. While some are recognized as adverse events, others have demonstrated unexpected benefits. These adjunctive effects, which have been defined as "pleiotropic" in the case of other pharmacological classes, include immunomodulatory properties and the modulation of the microbiota. Specifically, macrolides, tetracyclines, and fluoroquinolones have been shown to modulate the immune system in both acute and chronic conditions, including autoimmune disorders (e.g., rheumatoid arthritis, spondyloarthritis) and chronic inflammatory pulmonary diseases (e.g., asthma, chronic obstructive pulmonary disease). Azithromycin, in particular, is recommended for the long-term treatment of chronic inflammatory pulmonary diseases due to its well-established immunomodulatory effects. Furthermore, antibiotics influence the human microbiota. Rifaximin, for example, exerts a eubiotic effect that enhances the balance between the gut microbiota and the host immune cells and epithelial cells. These pleiotropic effects offer new therapeutic opportunities by interacting with human cells, signaling molecules, and bacteria involved in non-infectious diseases like spondyloarthritis and inflammatory bowel diseases. The aim of this review is to explore the pleiotropic potential of antibiotics, from molecular and cellular evidence to their clinical application, in order to optimize their use. Understanding these effects is essential to ensure careful use, particularly in consideration of the threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Carlo Airola
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Andrea Severino
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Irene Spinelli
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giovanni Cammarota
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Gianluca Ianiro
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (C.A.); (A.S.); (I.S.); (A.G.); (G.C.); (G.I.)
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
17
|
Atif M, Babuççu G, Riool M, Zaat S, Jonas U. Antimicrobial Peptide SAAP-148-Functionalized Hydrogels from Photocrosslinkable Polymers with Broad Antibacterial Activity. Macromol Rapid Commun 2024; 45:e2400785. [PMID: 39530205 DOI: 10.1002/marc.202400785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Antimicrobial peptides (AMPs) are promising alternatives to traditional antibiotics for treating skin wound infections. Nonetheless, their short half-life in biological environments restricts clinical applicability. Covalent immobilization of AMPs onto suitable substrates offers a comprehensive solution, creating contact-killing surfaces with long-term functionality. Here, a copolymer of poly[(hydroxy ethyl acrylamide)-co-(4-benzophenone acrylamide)-co-(pentafluorophenyl acrylate)-co-(ECOSURF EH-3 acrylate)], in short poly(HEAAm-co-BPAAm-co-PFPA-co-EH3A), is synthesized by free radical polymerization. Subsequent modification of active ester groups with the amine groups of SAAP-148, results in a copolymer, that is non-cytotoxic to human lung fibroblasts. UV photocrosslinking of the benzophenone units yields a polymer network that forms a hydrogel after swelling with aqueous medium. Both the SAAP-148-modified polymer in solution and the photocrosslinked hydrogels show good antimicrobial activity against strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, including multidrug-resistant strains, frequently found in wound infections. The covalent attachment of SAAP-148 prevents leaching, ensuring sustained antimicrobial activity for at least 48 h in diluted human blood plasma and 14 days in PBS. This prolonged retention of antimicrobial activity in human blood plasma significantly enhances its clinical potential. Overall, this study shows the potential of the AMP-functionalized photocrosslinkable polymer as antimicrobial wound dressings, providing an effective alternative to antibiotics.
Collapse
Affiliation(s)
- Muhammad Atif
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| | - Gizem Babuççu
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Immunology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Immunology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Hospital Regensburg, Am Biopark 9, 93053, Regensburg, Germany
| | - Sebastian Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam institute for Immunology and Infectious Diseases, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57076, Siegen, Germany
| |
Collapse
|
18
|
Wang Z, Zhao S, Zhong X, Su Y, Song Y, Li J, Shi Y. Debate on the relationship between Helicobacter pylori infection and inflammatory bowel disease: a bibliometric analysis. Front Microbiol 2024; 15:1479941. [PMID: 39569001 PMCID: PMC11576472 DOI: 10.3389/fmicb.2024.1479941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Background Inflammatory bowel diseases (IBD) are chronic inflammation conditions affecting the gastrointestinal tract. Studies point out an association between Helicobacter pylori (H. pylori) infection and IBD. This study aims to visually assess the research trends and hotspots in the field of H. pylori infection and IBD, review mainstream perspectives in this field, and provide a foundation for future research and treatment. Methods We searched the Web of Science Core Collection Database for literature related to H. pylori and IBD, using VOS viewer to generate visual charts. Results A total of 246 publications were included, with articles being the predominant type of document. A significant increase in the number of publications was observed after 2011. China contributed the most of researches. Keyword clusters revealed that the researches primarily focused on immune mechanism, gut microbiome, diagnosis and treatment of IBD. Time trend results indicated that current researches centered on gut microbiota and immune mechanisms. Conclusion H. pylori infection may have a protective effect on IBD. The exact mechanisms remain unclear and may involve immunomodulation and changes of gut microbiota. Further researches are necessary for better understanding this relationship and its implications for clinical practice. Further researches and clinical practice should pay attention to this topic.
Collapse
Affiliation(s)
- Ziye Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xiaotian Zhong
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yi Su
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yahan Song
- Library, Peking University Third Hospital, Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
19
|
Xu WB, Wang YF, Meng SY, Zhang XT, Wang YR, Liu ZY. Effects of antibiotic and disinfectant exposure on the mouse gut microbiome and immune function. Microbiol Spectr 2024; 12:e0061124. [PMID: 39292002 PMCID: PMC11536992 DOI: 10.1128/spectrum.00611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
This study explores the effects of disinfectant and antibiotic exposure on gut health, focusing on gut microbiota balance and gut immune function. Our analysis indicates that disinfectants increase the proportion of Gram-positive bacteria, particularly increasing Staphylococcus levels, while antibiotics increase the proportion of Gram-negative bacteria, especially Bacteroides levels. These changes disrupt microbial harmony and affect the gut microbiome's functional capacity. Additionally, our research reveals that both disinfectants and antibiotics reduce colon length and cause mucosal damage. A significant finding is the downregulation of NLRC4, a key immune system regulator in the gut, accompanied by changes in immune factor expression. This interaction between chemical exposure and immune system dysfunction increases susceptibility to inflammatory bowel disease and other gut conditions. Given the importance of disinfectants in disease prevention, this study advocates for a balanced approach to their use, aiming to protect public health while minimizing adverse effects on the gut microbiome and immune function. IMPORTANCE Disinfectants are extensively employed across various sectors, such as the food sector. Disinfectants are widely used in various sectors, including the food processing industry, animal husbandry, households, and pharmaceuticals. Their extensive application risks environmental contamination, impacting water and soil quality. However, the effect of disinfectant exposure on the gut microbiome and the immune function of animals remains a significant, unresolved issue with profound public health implications. This highlights the need for increased scrutiny and more regulated use of disinfectants to mitigate unintended consequences on gut health and maintain immune system integrity.
Collapse
Affiliation(s)
- Wen-Bo Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yun-Fan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Si-Yu Meng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Xiao-Tong Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Yi-Rong Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, China
| |
Collapse
|
20
|
Chen L, Zhang K, Liu J, Li X, Liu Y, Ma H, Yang J, Li J, Chen L, Hsu C, Zeng J, Xie X, Wang Q. The role of the microbiota-gut-brain axis in methamphetamine-induced neurotoxicity: Disruption of microbial composition and short-chain fatty acid metabolism. Acta Pharm Sin B 2024; 14:4832-4857. [PMID: 39664442 PMCID: PMC11628825 DOI: 10.1016/j.apsb.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/08/2024] [Accepted: 07/24/2024] [Indexed: 12/13/2024] Open
Abstract
Methamphetamine (METH) abuse is associated with significant neurotoxicity, high addiction potential, and behavioral abnormalities. Recent studies have identified a connection between the gut microbiota and METH-induced neurotoxicity and behavioral disorders. However, the underlying causal mechanisms linking the gut microbiota to METH pathophysiology remain largely unexplored. In this study, we employed fecal microbiota transplantation (FMT) and antibiotic (Abx) intervention to manipulate the gut microbiota in mice administered METH. Furthermore, we supplemented METH-treated mice with short-chain fatty acids (SCFAs) and pioglitazone (Pio) to determine the protective effects on gut microbiota metabolism. Finally, we assessed the underlying mechanisms of the gut-brain neural circuit in vagotomized mice. Our data provide compelling evidence that modulation of the gut microbiome through FMT or microbiome knockdown by Abx plays a crucial role in METH-induced neurotoxicity, behavioral disorders, gut microbiota disturbances, and intestinal barrier impairment. Furthermore, our findings highlight a novel prevention strategy for mitigating the risks to both the nervous and intestinal systems caused by METH, which involves supplementation with SCFAs or Pio.
Collapse
Affiliation(s)
- Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Kaikai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiali Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiuwen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongsheng Ma
- Shunde Police in Foshan City, Foshan 528300, China
| | - Jianzheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoli Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
Che J, Hu S, Fang Q, Liu B, Liu Z, Hu C, Wang L, Li L, Bao B. Construction and characterization of different hemolysin gene deletion strains in Vibrio parahaemolyticus (ΔhlyA, ΔhlyIII) and evaluation of their virulence. J Invertebr Pathol 2024; 207:108210. [PMID: 39343130 DOI: 10.1016/j.jip.2024.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Vibrio parahaemolyticus, a halophilic food-borne pathogen, possesses an arsenal of virulence factors. The pathogenicity of V. parahaemolyticus results from a combination of various virulence factors. HlyA and hlyIII genes are presumed to function in hemolysis, in addition to tdh and trh in V. parahaemolyticus. To confirm the hemolytic function of genes hlyA and hlyIII, ΔhlyA and ΔhlyIII strains of V. parahaemolyticus were separately constructed via homologous recombination. The cytotoxicity and pathogenicity of the ΔhlyA and ΔhlyIII strains were evaluated using a Tetrahymena-Vibrio co-culture model and an immersion challenge in Litopenaeus vannamei. Results indicated that the hemolytic activity of the ΔhlyA and ΔhlyIII strains decreased by approximately 31.4 % and 24.9 % respectively, compared to the WT strain. Both ΔhlyA and ΔhlyIII exhibited reduced cytotoxicity towards Tetrahymena. Then shrimp infection experiments showed LD50 values for ΔhlyA and ΔhlyIII of 3.06 × 108 CFU/mL and 1.23 × 108 CFU/mL, respectively, both higher than the WT strain's value of 2.57 × 107 CFU/mL. Histopathological observations revealed that hepatopancreas from shrimps challenged with ΔhlyA and ΔhlyIII exhibited mild symptoms, whereas those challenged with the WT strain displayed severe AHPND. These findings indicate that the ΔhlyA and ΔhlyIII strains are significantly less virulent than the WT strain. In conclusion, both hlyA and hlyIII are vital virulence genes involved in hemolytic and cytotoxic of V. parahaemolyticus.
Collapse
Affiliation(s)
- Jinyuan Che
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaojie Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qitong Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Binghong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhuochen Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Cunjie Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lekang Li
- Jiujiang Academy of Fishery Sciences, Jiujiang 332000, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
22
|
Liu J, Chen Y, Laurent I, Yang P, Xiao X, Li X. Gestational diabetes exacerbates intrauterine microbial exposure induced intestinal microbiota change in offspring contributing to increased immune response. Nutr Diabetes 2024; 14:87. [PMID: 39424815 PMCID: PMC11489853 DOI: 10.1038/s41387-024-00346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND maternal health during pregnancy can affect the intestinal microbial community of offspring, but currently the impact of intrauterine environmental changes resulting from gestational diabetes mellitus (GDM) on the microbiota of offspring as well as its interaction with the immune system remains unclear. AIMS to explore the impact of intrauterine microbial exposure during pregnancy of gestational diabetes mellitus on the development of neonate's intestinal microbiota and activation of immune responses. METHODS Levels of lipopolysaccharides in cord blood from GDM and expression of microbial recognition-related proteins in the placenta were measured. To evaluate embryonic intestinal colonization, pregnant mice with GDM were administered with labeled Escherichia coli or Lactobacillus. The intestinal colonization of pups was analyzed through 16S rRNA gene sequencing and labeled microbial culture. Additionally, memory T lymphocyte and dendritic cell co-culture experiments were conducted to elucidate the immune memory of intestinal microbes during the embryonic stages. RESULT Gestational diabetes mellitus led to elevated umbilical cord blood LPS level and increased GFP labeled Escherichia coli in the offspring's intestine after gestational microbial exposure. The mouse model of GDM exhibited increased immune markers including TLR4, TLR5, IL-22 and IL-23 in the placenta and a recall response from memory T cells in offspring's intestines, with similar observations found in human experiments. Furthermore, reduced intestinal microbiome diversity and an increased ratio of Firmicutes/Bacteroidetes was found in GDM progeny, with the stability of bacterial colonization been interfered. CONCLUSIONS Our investigation has revealed a noteworthy correlation between gestational diabetes and intrauterine microbial exposure, as well as alterations in the neonatal microbiota and activation of immune responses. These findings highlight the gestational diabetes's role on offspring's gut microbiota and immune system interactions with early-life pathogen exposure.
Collapse
Affiliation(s)
- Juncheng Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yan Chen
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrinology and Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Irakoze Laurent
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yang
- Yongchuan Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaoqiu Xiao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyu Li
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Pharmacy, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
23
|
Yang W, Cui H, Wang C, Wang X, Yan C, Cheng W. A review of the pathogenesis of epilepsy based on the microbiota-gut-brain-axis theory. Front Mol Neurosci 2024; 17:1454780. [PMID: 39421261 PMCID: PMC11484502 DOI: 10.3389/fnmol.2024.1454780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of epilepsy is related to the microbiota-gut-brain axis, but the mechanism has not been clarified. The microbiota-gut-brain axis is divided into the microbiota-gut-brain axis (upward pathways) and the brain-gut-microbiota axis (downward pathways) according to the direction of conduction. Gut microorganisms are involved in pathological and physiological processes in the human body and participate in epileptogenesis through neurological, immunological, endocrine, and metabolic pathways, as well as through the gut barrier and blood brain barrier mediated upward pathways. After epilepsy, the downward pathway mediated by the HPA axis and autonomic nerves triggers "leaky brain "and "leaky gut," resulting in the formation of microbial structures and enterobacterial metabolites associated with epileptogenicity, re-initiating seizures via the upward pathway. Characteristic changes in microbial and metabolic pathways in the gut of epileptic patients provide new targets for clinical prevention and treatment of epilepsy through the upward pathway. Based on these changes, this review further redescribes the pathogenesis of epilepsy and provides a new direction for its prevention and treatment.
Collapse
Affiliation(s)
- Wentao Yang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Cui
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ciai Yan
- Department of Fist Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiping Cheng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
24
|
Arduini M, Laurenti E, Cazzaniga M, Bertuccioli A, Cavecchia I, Matera M, Zerbinati N, Di Pierro F. A Controlled, Retrospective, Single-Center Study to Evaluate the Role of a Probiotic Mixture Administered during Pregnancy in Reducing Streptococcus Agalactiae Swab Positivity and the Frequency of Premature Rupture of Amniochorionic Membranes. Microorganisms 2024; 12:1979. [PMID: 39458288 PMCID: PMC11509217 DOI: 10.3390/microorganisms12101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Intrapartum antibiotic prophylaxis, considered able to prevent streptococcal transmission from mother to newborn and its severe negative consequences, leads to microbiota dysbiosis, described as having a negative impact on well-being in both elements of the dyad. Enterococcus faecium L3 is a probiotic strain capable of exerting strong antagonistic activity against most streptococci, including S. agalactiae, due to the production of bacteriocins (known as enterocins A and B). A proprietary probiotic mixture containing the strain L3 demonstrated, in 2016, a significant reduction in episodes of PROM in pregnant women, with a less-than-expected effect on the vaginal-rectal presence of the pathogen S. agalactiae. With the aim of confirming the role exerted by the probiotic mixture in PROM episodes and to better understand the value of its impact on the clinical detection of S. agalactiae, we have retrospectively analyzed the results obtained in 125 L3-treated (over 12 weeks) women versus 125 untreated controls. Despite some limitations, our analysis has confirmed the role exerted by the probiotic in significantly reducing the following: (1) episodes of PROM, (2) vaginal-rectal positivity for S. agalactiae, and (3) the need to administer intrapartum antibiotics for prophylaxis. It likely also suggests operating using a cultural method very specific to S. agalactiae when testing women who were administered an Enterococcus-based probiotic.
Collapse
Affiliation(s)
- Maurizio Arduini
- Obstetrics and Gynecology Department, S. Maria della Misericordia Hospital, 06129 Perugia, Italy; (M.A.); (E.L.)
| | - Elena Laurenti
- Obstetrics and Gynecology Department, S. Maria della Misericordia Hospital, 06129 Perugia, Italy; (M.A.); (E.L.)
| | | | - Alexander Bertuccioli
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.B.); (I.C.); (M.M.)
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.B.); (I.C.); (M.M.)
- Microbiomic Department, Koelliker Hospital, 10134 Turin, Italy
| | - Mariarosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.B.); (I.C.); (M.M.)
- Department of Paediatric Emergencies, Misericordia Hospital, 58100 Grosseto, Italy
| | - Nicola Zerbinati
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy;
| | - Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy;
- Microbiota International Clinical Society, 10123 Torino, Italy; (A.B.); (I.C.); (M.M.)
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
25
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Severino A, Tohumcu E, Tamai L, Dargenio P, Porcari S, Rondinella D, Venturini I, Maida M, Gasbarrini A, Cammarota G, Ianiro G. The microbiome-driven impact of western diet in the development of noncommunicable chronic disorders. Best Pract Res Clin Gastroenterol 2024; 72:101923. [PMID: 39645277 DOI: 10.1016/j.bpg.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
Noncommunicable chronic disorders (NCDs) are multifactorial disorders that share a state of chronic, low-grade inflammation together with an imbalance of gut microbiota. NCDs are becoming increasingly prevalent worldwide, and mainly in Western countries, with a significant impact on global health. Societal changes, together with the widespread diffusion of modern agricultural methods and food processing, have led to a significant shift in dietary habits over the past century, with an increased diffusion of the Western diet (WD). WD includes foods high in saturated fat, refined sugars, salt, sweeteners, and low in fiber, and is characterized by overeating, frequent snacking, and a prolonged postprandial state. An increasing body of evidence supports the association between the diffusion of WD and the rising prevalence of NCDs. WD also negatively affects both gut microbiota and the immune system by driving to microbial alterations, gut barrier dysfunction, increased intestinal permeability, and leakage of harmful bacterial metabolites into the bloodstream, with consequent contribution to the development of systemic low-grade inflammation. In this review article we aim to dissect the role of gut microbiota imbalance and gut barrier impairment in mediating the detrimental effects of WD on the development of NCDs, and to identify potential therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy.
| | - Ege Tohumcu
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Luca Tamai
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Pasquale Dargenio
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Debora Rondinella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Irene Venturini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Marcello Maida
- Department of Medicine and Surgery, University of Enna 'Kore', Enna, Italy; Gastroenterology Unit, Umberto I Hospital, Enna, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
27
|
Bricca L, Porcari S, Savarino E, Rugge M. Microbiota in gastrointestinal malignancies. Best Pract Res Clin Gastroenterol 2024; 72:101953. [PMID: 39645287 DOI: 10.1016/j.bpg.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 12/09/2024]
Abstract
This manuscript provides an overview of the microbiota profile associated with precancerous lesions in the esophagus, stomach, and large bowel. The critical review of the available data reveals significant variability in the methods used for microbiota profiling. This variability may affect the reliable identification of specific biological links between histologically profiled neoplastic diseases and the microbiota population. Overall, this critical review reveals significant links between microbiota communities and the different lesions within the spectrum of the oncogenetic cascade in various epidemiological contexts and anatomical districts.
Collapse
Affiliation(s)
- Ludovica Bricca
- Department of Surgical Oncological and Gastroenterological Science (DiSCOG), Gastroenterology Unit, University of Padova, Padova, Italy
| | - Serena Porcari
- Department of Medical and Surgical Sciences, University Cattolica del Sacro Cuore - IRCCS Policlinico A. Gemelli, Roma, Italy
| | - Edoardo Savarino
- Department of Surgical Oncological and Gastroenterological Science (DiSCOG), Gastroenterology Unit, University of Padova, Padova, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy.
| |
Collapse
|
28
|
Li S, Zhao L, Xiao J, Guo Y, Fu R, Zhang Y, Xu S. The gut microbiome: an important role in neurodegenerative diseases and their therapeutic advances. Mol Cell Biochem 2024; 479:2217-2243. [PMID: 37787835 DOI: 10.1007/s11010-023-04853-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/06/2023] [Indexed: 10/04/2023]
Abstract
There are complex interactions between the gut and the brain. With increasing research on the relationship between gut microbiota and brain function, accumulated clinical and preclinical evidence suggests that gut microbiota is intimately involved in the pathogenesis of neurodegenerative diseases (NDs). Increasingly studies are beginning to focus on the association between gut microbiota and central nervous system (CNS) degenerative pathologies to find potential therapies for these refractory diseases. In this review, we summarize the changes in the gut microbiota in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis and contribute to our understanding of the function of the gut microbiota in NDs and its possible involvement in the pathogenesis. We subsequently discuss therapeutic approaches targeting gut microbial abnormalities in these diseases, including antibiotics, diet, probiotics, and fecal microbiota transplantation (FMT). Furthermore, we summarize some completed and ongoing clinical trials of interventions with gut microbes for NDs, which may provide new ideas for studying NDs.
Collapse
Affiliation(s)
- Songlin Li
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Jie Xiao
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Rong Fu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
29
|
Lee JW, Park SJ, Park YJ, Jeong S, Song J, Kim HJ, Chang J, Kim KH, Kim JS, Oh YH, Cho Y, Park SM. Association between antibiotics use and osteoporotic fracture risk: a nationally representative retrospective cohort study. Arch Osteoporos 2024; 19:81. [PMID: 39212806 PMCID: PMC11364706 DOI: 10.1007/s11657-024-01438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This population-based retrospective cohort study aimed to estimate the association between antibiotic exposure and osteoporotic fracture risk. Long-term antibiotic use was associated with the risk of osteoporotic fracture. An increase in the number of antibiotic classes prescribed may also be associated with an increased osteoporotic fracture risk. PURPOSE This study aims to examine the association between antibiotic usage and osteoporotic fractures in a large cohort of Korean adults, with a specific focus on the duration of antibiotic exposure and the number of antibiotic classes used. METHODS This retrospective cohort study from the National Health Insurance Service-National Health Screening Cohort (NHIS-HEALS) database from January 1, 2002, to December 31, 2019, included 167,370 Korean adults aged 50 years or older (mean [SD] age, 59.3 [7.82] years; 65,425 [39.09%] women). The cumulative antibiotic prescription days and the classes of antibiotics prescribed between 2004 and 2008 were exposure variables, respectively. The main outcome was a newly diagnosed osteoporotic fracture during follow-up. Cox proportional hazard regression was used to determine the adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for the incident osteoporotic fractures associated with antibiotic exposure. RESULTS The antibiotic user group with 91 days had a higher risk of osteoporotic fracture in comparison to the antibiotic non-user group (aHR, 1.12; 95% CI, 1.03-1.21). Additionally, those who used more than four different antibiotic classes had an elevated risk of osteoporotic fracture compared to the non-user group (aHR, 1.10; 95% CI, 1.02-1.18). CONCLUSION This extensive population-based cohort study conducted on a large population has identified an association between the utilization of antibiotics and an elevated risk of osteoporotic fractures. The cumulative days exposed to antibiotics and osteoporotic fractures may be positively associated.
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Health Convergence, Ewha Womans University, Seoul, South Korea
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Jun Park
- Medical Research Center, Genomic Medicine Institute, Seoul National University, Seoul, South Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, Korea University College of Medicine, Seoul, South Korea
| | - Jihun Song
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Jun Kim
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jooyoung Chang
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyae Hyung Kim
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Public Healthcare Center, Seoul National University Hospital, Seoul, South Korea
| | - Ji Soo Kim
- International Healthcare Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yun Hwan Oh
- Department of Family Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-Si, South Korea
| | - Yoosun Cho
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
30
|
Xia L, Zhu X, Wang Y, Lu S. The gut microbiota improves the efficacy of immune-checkpoint inhibitor immunotherapy against tumors: From association to cause and effect. Cancer Lett 2024; 598:217123. [PMID: 39033797 DOI: 10.1016/j.canlet.2024.217123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Immune-checkpoint inhibitors (ICIs), including anti-PD-1/PD-L1 therapeutic antibodies, have markedly enhanced survival across numerous cancer types. However, the limited number of patients with durable benefits creates an urgent need to identify response biomarkers and to develop novel strategies so as to improve response. It is widely recognized that the gut microbiome is a key mediator in shaping immunity. Additionally, the gut microbiome shows significant potential in predicting the response to and enhancing the efficacy of ICI immunotherapy against cancer. Recent studies encompassing mechanistic analyses and clinical trials of microbiome-based therapy have shown a cause-and-effect relationship between the gut microbiome and the modulation of the ICI immunotherapeutic response, greatly contributing to the establishment of novel strategies that will improve response and overcome resistance to ICI treatment. In this review, we outline the current state of research advances and discuss the future directions of utilizing the gut microbiome to enhance the efficacy of ICI immunotherapy against tumors.
Collapse
Affiliation(s)
- Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Xiaokuan Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| |
Collapse
|
31
|
Niu Y, Li J, Qian H, Liang C, Shi X, Bu S. Evaluation of efficacy and safety of Lacticaseibacillus rhamnosus LRa05 in the eradication of Helicobacter pylori: a randomized, double-blind, placebo-controlled trial. Front Immunol 2024; 15:1450414. [PMID: 39234246 PMCID: PMC11371625 DOI: 10.3389/fimmu.2024.1450414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Aim This study aims to evaluate the efficacy of Lacticaseibacillus rhamnosus LRa05 supplementation in enhancing Helicobacter pylori (H. pylori) eradication rate and alleviating the gastrointestinal side effects associated with bismuth quadruple therapy. Methods H. pylori-positive patients were randomized to receive levofloxacin-based bismuth quadruple therapy combined either probiotic LRa05 or a placebo for two weeks, followed by LRa05 (1 × 1010 CFU) or maltodextrin for the next two weeks. H. pylori infection was detected by 13C breath test pre- and post-treatment. Blood and stool samples were collected at week 0 and week 4 for routine and biochemical analysis, and serum inflammatory markers. Gastrointestinal symptoms were evaluated using the gastrointestinal symptom rating scale (GSRS). Intestinal microbiota was analyzed using 16S rRNA sequencing. The research was listed under the Chinese Clinical Trial Registry (ChiCTR2300072220), and written informed consent was obtained from all participants. Results The LRa05 group exhibited a trend toward higher H. pylori eradication rates (86.11%) compared to the placebo group (82.86%), though the difference was not statistically significant. Significant reductions in neutrophil count, alanine aminotransferase, aspartate aminotransferase, pepsinogen I, interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) (p < 0.05) suggest that LRa05 supplementation may mitigate inflammation, enhance liver function, and potential aid in early cancer prevention. GSRS symptom scores showed that LRa05 alleviated abdominal pain, acid reflux, bloating, and diarrhea, enhancing patient compliance. Furthermore, 16S rRNA sequencing showed that LRa05 countered the antibiotic-induced disruption of gut microbiota diversity, primarily by increasing beneficial bacteria. Conclusion Although LRa05 did not significantly improve the success rate of H. pylori eradication therapy, it has the potential to improve liver function and reduced levels of inflammatory markers such as IL-6 and TNF-α in the body, regulating the inflammatory response. In addition, it played a positive role in alleviating the adverse symptoms and gut microbiota disturbances caused by eradication therapy, providing a possible way to improve the overall health of patients and demonstrating promising clinical potential. Clinical Trial Registration http://www.chictr.org.cn, identifier ChiCTR2300072220.
Collapse
Affiliation(s)
- Yue Niu
- Department of Gastroenterology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Gastroenterology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Hongwei Qian
- Department of General Practice, Shihua Community Health Service Center in Jinshan District, Shanghai, China
| | - Chunli Liang
- Department of Gastroenterology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Shi
- Department of General Practice, Shihua Community Health Service Center in Jinshan District, Shanghai, China
| | - Shurui Bu
- Department of Gastroenterology, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Han ZY, Fu ZJ, Wang YZ, Zhang C, Chen QW, An JX, Zhang XZ. Probiotics functionalized with a gallium-polyphenol network modulate the intratumor microbiota and promote anti-tumor immune responses in pancreatic cancer. Nat Commun 2024; 15:7096. [PMID: 39154092 PMCID: PMC11330462 DOI: 10.1038/s41467-024-51534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
The intratumor microbiome imbalance in pancreatic cancer promotes a tolerogenic immune response and triggers immunotherapy resistance. Here we show that Lactobacillus rhamnosus GG probiotics, outfitted with a gallium-polyphenol network (LGG@Ga-poly), bolster immunotherapy in pancreatic cancer by modulating microbiota-immune interactions. Upon oral administration, LGG@Ga-poly targets pancreatic tumors specifically, and selectively eradicates tumor-promoting Proteobacteria and microbiota-derived lipopolysaccharides through a gallium-facilitated disruption of bacterial iron respiration. This elimination of intratumor microbiota impedes the activation of tumoral Toll-like receptors, thus reducing immunosuppressive PD-L1 and interleukin-1β expression by tumor cells, diminishing immunotolerant myeloid populations, and improving the infiltration of cytotoxic T lymphocytes in tumors. Moreover, LGG@Ga-poly hampers pancreatic tumor growth in both preventive and therapeutic contexts, and amplifies the antitumor efficacy of immune checkpoint blockade in preclinical cancer models in female mice. Overall, we offer evidence that thoughtfully designed biomaterials targeting intratumor microbiota can efficaciously augment immunotherapy for the challenging pancreatic cancer.
Collapse
Affiliation(s)
- Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhuang-Jiong Fu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu-Zhang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jia-Xin An
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.
| |
Collapse
|
33
|
Hirsch A, Tyagi N, Goel S, Chhabra HS, Fallah N, Noonan VK, Sehrawat S, Saini A, Barnwal A, Krassioukov AV. Bowel and Bladder Dysfunction after SCI: A Comparison between India and Canada. Top Spinal Cord Inj Rehabil 2024; 30:1-9. [PMID: 39139774 PMCID: PMC11317642 DOI: 10.46292/sci23-00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Background The inclusion of people living with spinal cord injury (SCI) in research has allowed for an informed understanding of priorities of recovery of which bowel dysfunction and bladder dysfunction have been continuously identified. Research has also demonstrated the global disparities in SCI outcomes particularly when comparing high- and low-income countries. Currently, there is a lack of direct comparison between countries when assessing SCI outcomes. Objectives This is an exploratory study to better understand bowel and bladder dysfunction amongst individuals with SCI in India and Canada. Methods Data from 33 participants were analyzed. Participants completed an online questionnaire assessing demographic information and the Neurogenic Bowel Dysfunction (NBD) score, Wexner score, Neurogenic Bladder Symptom Score (NBSS), and the Incontinence Quality of Life Instrument (I-QOL). Continuous data were compared using t tests. For not normally distributed data, the independent Mann-Whitney U test was used. Categorical variables were evaluated for association using Fisher's exact or chi-square test, depending on the sample size. Results Independent Mann-Whitney U test demonstrated that the Canadian participants had poorer bowel function with higher total NBD scores (p = .007) and less frequent bowel movements (p = .036), and they were more likely to experience uneasiness, headaches, and perspiration during bowel movements (p < .001). NBSS results indicated a small but significantly higher proportion of the Indian participants were unsatisfied or unhappy with their bladder function (p = .049). The distribution of Wexner and I-QOL scores were the same across countries. Conclusion Potential explanations for differences include lifestyle, management, financial resources, patient and caregiver education, and societal pressures, which are all heavily influenced by cultural, geographical, and economic circumstances.
Collapse
Affiliation(s)
- Aliza Hirsch
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- MD Undergraduate Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nishu Tyagi
- Spine & Rehabilitation Center, Sri Balaji Action Medical Institute, New Delhi, India
| | - Shakti Goel
- Spine & Rehabilitation Center, Sri Balaji Action Medical Institute, New Delhi, India
| | | | - Nader Fallah
- Praxis Spinal Cord Institute, Vancouver, BC, Canada
| | | | | | - Aditya Saini
- Spine & Rehabilitation Center, Sri Balaji Action Medical Institute, New Delhi, India
| | | | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- G.F. Strong Rehabilitation Centre, Vancouver, BC, Canada
| |
Collapse
|
34
|
Wortelboer K, Herrema H. Opportunities and challenges in phage therapy for cardiometabolic diseases. Trends Endocrinol Metab 2024; 35:687-696. [PMID: 38637223 DOI: 10.1016/j.tem.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
The worldwide prevalence of cardiometabolic diseases (CMD) is increasing, and emerging evidence implicates the gut microbiota in this multifactorial disease development. Bacteriophages (phages) are viruses that selectively target a bacterial host; thus, phage therapy offers a precise means of modulating the gut microbiota, limiting collateral damage on the ecosystem. Several studies demonstrate the potential of phages in human disease, including alcoholic and steatotic liver disease. In this opinion article we discuss the potential of phage therapy as a predefined medicinal product for CMD and discuss its current challenges, including the generation of effective phage combinations, product formulation, and strict manufacturing requirements.
Collapse
Affiliation(s)
- Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Diabetes, and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Gastroenterology, Endocrinology, and Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Diabetes, and Metabolism, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Dehghan Manshadi M, Setoodeh P, Zare H. Systematic analysis of microorganisms' metabolism for selective targeting. Sci Rep 2024; 14:16446. [PMID: 39014020 PMCID: PMC11252421 DOI: 10.1038/s41598-024-65936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Selective drugs with a relatively narrow spectrum can reduce the side effects of treatments compared to broad-spectrum antibiotics by specifically targeting the pathogens responsible for infection. Furthermore, combating an infectious pathogen, especially a drug-resistant microorganism, is more efficient by attacking multiple targets. Here, we combined synthetic lethality with selective drug targeting to identify multi-target and organism-specific potential drug candidates by systematically analyzing the genome-scale metabolic models of six different microorganisms. By considering microorganisms as targeted or conserved in groups ranging from one to six members, we designed 665 individual case studies. For each case, we identified single essential reactions as well as double, triple, and quadruple synthetic lethal reaction sets that are lethal for targeted microorganisms and neutral for conserved ones. As expected, the number of obtained solutions for each case depends on the genomic similarity between the studied microorganisms. Mapping the identified potential drug targets to their corresponding pathways highlighted the importance of key subsystems such as cell envelope biosynthesis, glycerophospholipid metabolism, membrane lipid metabolism, and the nucleotide salvage pathway. To assist in the validation and further investigation of our proposed potential drug targets, we introduced two sets of targets that can theoretically address a substantial portion of the 665 cases. We expect that the obtained solutions provide valuable insights into designing narrow-spectrum drugs that selectively cause system-wide damage only to the target microorganisms.
Collapse
Affiliation(s)
- Mehdi Dehghan Manshadi
- Department of Chemical Engineering, School of Chemical, Petroleum and Gas Engineering, Shiraz University, Shiraz, Iran
| | - Payam Setoodeh
- Department of Chemical Engineering, School of Chemical, Petroleum and Gas Engineering, Shiraz University, Shiraz, Iran.
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON, Canada.
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
36
|
Meidaninikjeh S, Mohammadi P, Elikaei A. A simplified method of bacteriophage preparation for transmission electron microscope. J Virol Methods 2024; 328:114951. [PMID: 38750823 DOI: 10.1016/j.jviromet.2024.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
Bacteriophages are viruses that infect bacteria. Researchers use different methods to study the characteristics of bacteriophages. Transmission electron microscope (TEM) is considered the best method to analyze these characteristics. However, the quality of TEM micrographs is significantly influenced by the preparation methods used to prepare the bacteriophages sample. In this study, researchers compared two different methods for preparing the bacteriophage samples. In one method was used SM buffer, while in the other used deionized water. The results were analyzed by TEM and compared with each other. Additionally, the viability of bacteriophage in deionized water and SM buffer at 4°C was determined through plaque assay within 72 hours. TEM micrographs showed that the quality of bacteriophage sample prepared with deionized water is superior to those prepared with SM buffer. Furthermore, the titer of the bacteriophages did not show a significant reduction during 72 hours in both SM and deionized water. In conclusion, the results suggested that preparation method can significantly impact the quality of TEM micrographs. Using sterile deionized water for the preparation of bacteriophages is a simple way to improve the quality of TEM micrographs and it is advisable to send the samples to the laboratory within 72 hours.
Collapse
Affiliation(s)
- Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Ameneh Elikaei
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran
| |
Collapse
|
37
|
Kim TH, Shin JS, Kim SY, Kim J. Association of Previous Antibiotics Use and Kawasaki Disease: A Cohort Study of 106,908 Patients. Pediatr Infect Dis J 2024; 43:643-650. [PMID: 38534913 DOI: 10.1097/inf.0000000000004335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
BACKGROUND Microbial imbalance in the gut from antibiotic use may be an etiologic factor of Kawasaki disease (KD). We aimed to identify the association between the use of antibiotics and the development of KD, considering various antibiotic profiles. METHODS A population-based, case-control study was performed using data from the Health Insurance Review and Assessment Service database. Children <5 years of age, who were diagnosed with KD between 2016 and 2019, were identified. Propensity score-matched controls were selected from the general population in a 1:5 ratio. Four separate study cohorts were created according to different periods of antibiotic use: (1) within 28 days and (2) 12 months after birth and (3) within 6 months and (4) 12 months from the index date. Profiles regarding antibiotic use were compared between patients with KD and matched controls. RESULTS We included 17,818 patients with KD and 89,090 matched controls. Use of antibiotics within 6 months [odds ratio (OR): 1.18; 95% confidence interval (CI): 1.12-1.26] and 12 months (OR: 1.23; 95% CI: 1.14-1.32) from the index date were associated with the development of KD. The association between antibiotic use and KD was most prominent in patients who had received 3 or more types of antibiotics within 12 months from the index date (OR: 1.26; 95% CI: 1.17-1.37). CONCLUSIONS Antibiotic use within the preceding 6 or 12 months was associated with KD. Alteration in gut microbiota due to antibiotic usage might play a role in the development of KD.
Collapse
Affiliation(s)
- Tae-Hwan Kim
- From the Spine Center, Department of Orthopedics, Hallym University Sacred Heart Hospital
| | - Ji Seong Shin
- Division of Infection, Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Sin Young Kim
- Division of Infection, Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Jihye Kim
- Division of Infection, Department of Pediatrics, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
38
|
Reveles KR, Gonzales-Luna AJ, Golan Y, Alonso CD, Guthmueller B, Tan X, Bidell MR, Pokhilko V, Crawford CV, Skinner AM. Efficacy of Fecal Microbiota, Live-jslm (REBYOTA®), Among Patients Exposed to Non- Clostridioides difficile Infection Antibiotics: Post Hoc Subgroup Analysis of a Phase 2 Open-Label Study. Open Forum Infect Dis 2024; 11:ofae341. [PMID: 39006315 PMCID: PMC11244191 DOI: 10.1093/ofid/ofae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
Background Antibiotic use is a major risk factor for recurrent Clostridioides difficile infection (CDI) due to the associated disruption in gut microbiota. Fecal microbiota, live-jslm (REBYOTA®; RBL, previously RBX2660), is the first microbiota-based live biotherapeutic approved by the US Food and Drug Administration to prevent recurrent CDI in adults following standard-of-care antibiotic treatment. To investigate the impact of non-CDI antibiotics on the durability of RBL, a subgroup analysis was conducted on PUNCH™ Open-Label study participants who received non-CDI antibiotics during the period between RBL administration and up to 2 years after. Methods Participants in PUNCH™ Open-Label who received non-CDI antibiotics after RBL administration were included in this subgroup analysis. Treatment response was defined as the absence of CDI diarrhea needing retreatment at the last evaluable time point (8 weeks, 6 months, 1 year, or 2 years) after RBL administration. Results Among participants from PUNCH™ Open-Label, 43 received non-CDI antibiotics after RBL administration but before CDI recurrence as evaluated over a 2-year period. Across all evaluable time points, 86% (37/43) of participants had a treatment response regardless of when non-CDI antibiotic exposure occurred. Treatment response was sustained for a median 470 days (IQR, 212-648) from the first day of non-CDI antibiotic use. Most participants (5/6) with CDI recurrences received a high-risk antibiotic. Conclusions RBL remained efficacious in participants with a history of recurrent CDI after subsequent non-CDI antibiotic exposure. Clinical Trials Registration NCT02589847 (https://clinicaltrials.gov/study/NCT02589847).
Collapse
Affiliation(s)
- Kelly R Reveles
- College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Anne J Gonzales-Luna
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Yoav Golan
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Carolyn D Alonso
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Xing Tan
- Ferring Pharmaceuticals, Parsippany, New Jersey, USA
| | | | | | - Carl V Crawford
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Andrew M Skinner
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Infectious Diseases Section, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
39
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
40
|
Wang Y, Zhang Z, Chen Q, Chen T. Simultaneous application of oral and intravaginal probiotics for Helicobacter pylori and its antibiotic-therapy-induced vaginal dysbacteriosis. NPJ Biofilms Microbiomes 2024; 10:49. [PMID: 38902244 PMCID: PMC11190290 DOI: 10.1038/s41522-024-00521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Helicobacter pylori is a prevalent bacterial pathogen globally, implicated in various gastrointestinal disorders. Current recommended antibiotic therapies for H. pylori infection have been proven to be therapeutically insufficient, with low eradication rates and high recurrence rates. Emerging evidence suggests that antibiotic therapy for H. pylori can lead to gastrointestinal and subsequent vaginal dysbiosis, posing challenges for conventional antibiotic approaches. Thus, this article proposes a novel probiotic therapy involving simultaneous oral and intra-vaginal probiotic administration alongside antibiotics for H. pylori treatment, aiming to enhance eradication rates and mitigate dysbiosis. We begin by providing an overview of gastrointestinal and vaginal microbiota and their interconnectedness through the vagina-gut axis. We then review the efficacy of current antibiotic regimens for H. pylori and discuss how antibiotic treatment impacts the vaginal microenvironment. To explore the feasibility of this approach, we evaluate the effectiveness of oral and intra-vaginal probiotics in restoring normal microbiota in the gastrointestinal and vaginal tracts, respectively. Additionally, we analyze the direct mechanisms by which oral and intra-vaginal probiotics act on their respective tracts and discuss potential cross-tract mechanisms. Considering the potential synergistic therapeutic effects of probiotics in both the gastrointestinal and vaginal tracts, dual-channel probiotic therapy holds promise as a more effective approach for H. pylori eradication and dysbiosis mitigation, presenting a novel concept in the collaborative treatment of gastrointestinal and genital disorders.
Collapse
Affiliation(s)
- Yufan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
41
|
Yang S, Qiao J, Zhang M, Kwok LY, Matijašić BB, Zhang H, Zhang W. Prevention and treatment of antibiotics-associated adverse effects through the use of probiotics: A review. J Adv Res 2024:S2090-1232(24)00230-3. [PMID: 38844120 DOI: 10.1016/j.jare.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND The human gut hosts a diverse microbial community, essential for maintaining overall health. However, antibiotics, commonly prescribed for infections, can disrupt this delicate balance, leading to antibiotic-associated diarrhea, inflammatory bowel disease, obesity, and even neurological disorders. Recognizing this, probiotics have emerged as a promising strategy to counteract these adverse effects. AIM OF REVIEW This review aims to offer a comprehensive overview of the latest evidence concerning the utilization of probiotics in managing antibiotic-associated side effects. KEY SCIENTIFIC CONCEPTS OF REVIEW Probiotics play a crucial role in preserving gut homeostasis, regulating intestinal function and metabolism, and modulating the host immune system. These mechanisms serve to effectively alleviate antibiotic-associated adverse effects and enhance overall well-being.
Collapse
Affiliation(s)
- Shuwei Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Jiaqi Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | | | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot 010018, China.
| |
Collapse
|
42
|
Batinić P, Jovanović A, Stojković D, Čutović N, Cvijetić I, Gašić U, Carević T, Zengin G, Marinković A, Marković T. A novel source of biologically active compounds - The leaves of Serbian herbaceous peonies. Saudi Pharm J 2024; 32:102090. [PMID: 38766273 PMCID: PMC11101739 DOI: 10.1016/j.jsps.2024.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
In order to gain further insight into how various extraction techniques (maceration, microwave-, and ultrasound-assisted extractions) affect the chemical profile and biological activities of leaf extracts from Paeonia tenuifolia L., Paeonia peregrina Mill., and Paeonia officinalis L., this research was performed. The targeted chemical characterization of the extracts was achieved using the Ultra-High-Performance-Liquid-Chromatography-Linear-Trap-Mass-Spectrometry OrbiTrap instrumental technique, while Fourier Transform Infrared Spectroscopy was conducted to investigate the structural properties of the examined leaf extracts. According to the results, the species P. officinalis, Božurna locality as the origin of the plant material, and microwave-assisted extraction produced the maximum polyphenol yield, (491.9 ± 2.7 mg gallic acid equivalent (GAE)/mL). The ethanolic extracts exhibited moderate antioxidant activity as evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and phosphomolybdenum tests. With MIC values of 0.125 mg/mL, the leaf extracts produced by ultrasound-assisted extraction and maceration (Deliblato sands and Bogovo gumno) had the best antibacterial activity against Pseudomonas aeruginosa and Salmonella Typhimurium. Ultrasound-assisted extraction has proven to produce the most effective antimicrobial agents. Inhibitory potential towards glucosidase, amylase, cholinesterases, and tyrosinase was evaluated in enzyme inhibition assays and molecular docking simulations. Results show that leaves of P. tenuifolia L. obtained by ultrasound-assisted extraction had the highest acetylcholinesterase and butyrylcholinesterase inhibitory activity. Namely, the complexity of the polyphenol structures, the extraction method, the used locality, and the different mechanisms of the reactions between bioactives from leaf extracts and other components (free radicals, microorganisms, and enzymes) are the main factors that influence the results of the antioxidant tests, as well as the antibacterial and enzyme-inhibitory activities of the extracts. Hydroxymethyl-phenyl pentosyl-hexoside and acetyl-hydroxyphenyl-hexoside were the first time identified in the leaf extract of the Paeonia species. Due to their proven biological activities and the confirmed existence of bioactive compounds, leaf extracts may find use in foodstuffs, functional foods, and pharmaceutical products.
Collapse
Affiliation(s)
- Petar Batinić
- Institute for Medicinal Plant Research, ''Dr. Josif Pančić'', Tadeuša Košćuška 1 11000, Belgrade, Serbia
| | - Aleksandra Jovanović
- University of Belgrade, Institute for the Application of Nuclear Energy INEP, Banatska 31b 11080, Belgrade – Zemun, Serbia
| | - Dejan Stojković
- University of Belgrade, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142 11060, Belgrade, Serbia
| | - Natalija Čutović
- Institute for Medicinal Plant Research, ''Dr. Josif Pančić'', Tadeuša Košćuška 1 11000, Belgrade, Serbia
| | - Ilija Cvijetić
- University of Belgrade, Faculty of Chemistry, Students Square 10-13 11000, Belgrade, Serbia
| | - Uroš Gašić
- University of Belgrade, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142 11060, Belgrade, Serbia
| | - Tamara Carević
- University of Belgrade, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, Bulevar Despota Stefana 142 11060, Belgrade, Serbia
| | - Gökhan Zengin
- Selcuk University, Science Faculty, Department of Biology, 42130, Konya, Turkey
| | - Aleksandar Marinković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4 11060, Belgrade, Serbia
| | - Tatjana Marković
- Institute for Medicinal Plant Research, ''Dr. Josif Pančić'', Tadeuša Košćuška 1 11000, Belgrade, Serbia
| |
Collapse
|
43
|
Han D, Yang H, Li J, Zhang C, Ye L, Dong J, Zhang C, Guo R, Xin J. Macleaya cordata extract improves growth performance, immune responses and anti-inflammatory capacity in neonatal piglets. Vet Microbiol 2024; 293:110090. [PMID: 38636177 DOI: 10.1016/j.vetmic.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Macleaya cordata was a kind of traditional herbal medicine, which may a potential substitute for antibiotics. However, the effects of Macleaya cordata on neonatal piglets have rarely been reported. In this study, three groups were designed, including normal saline (Control group, CON), 8 mg/mL Macleaya cordata extract (MCE group, MCE) and 5 mg/mL Chlortetracycline Hydrochloride (CCH group, CCH), to investigate the effects of MCE on growth performance, blood parameters, inflammatory cytokines, regenerating islet-derived 3 gamma (REG3γ) expression and the transcriptomes of neonatal piglets. The results showed that, compared with the control group, MCE significantly increased the average daily gain (p < 0.01); spleen index (p < 0.05) contents of IL-10, TGF-β, IgG in serum and sIgA in the ileum mucus of neonatal piglets at 7 d and 21 d (p < 0.01). The diarrhoea incidence and serum TNF-α and IFN-γ contents of neonatal piglets at 7 d and 21 d were significantly decreased (p < 0.01). In addition, MCE significantly increased the mRNA expression of TGF-β, IL-10, and REG3γ (p < 0.01) and significantly decreased the mRNA expression of IL-33, TNF-α and IFN-γ in the ileal mucosa of neonatal piglets at 21 d (p < 0.01). The differentially expressed genes and the signal pathways, related to cytokine generation and regulation, immunoregulation and inflammation were identified. In conclusion, MCE can significantly improve growth performance, reduce diarrhoea incidence, relieve inflammation, improve immune function, and improve disease resistance in neonatal piglets. MCE can be used as a potential substitute for antibiotics in neonatal piglets.
Collapse
Affiliation(s)
- Diangang Han
- Yunnan Agricultural University, Kunming 650201, China; Technology Center of Kunming Customs, Kunming 650200, China
| | - Hongqing Yang
- Yunnan Agricultural University, Kunming 650201, China
| | - Jing Li
- Technology Center of Kunming Customs, Kunming 650200, China
| | - Chong Zhang
- Technology Center of Kunming Customs, Kunming 650200, China
| | - Lingling Ye
- Technology Center of Kunming Customs, Kunming 650200, China
| | - Jun Dong
- Technology Center of Kunming Customs, Kunming 650200, China
| | | | - Rongfu Guo
- Yunnan Agricultural University, Kunming 650201, China
| | - Jige Xin
- Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
44
|
Andersen S, Hestetun SV, Bernklev T, Perminow G, Størdal K. Fetal and Early-Life Antibiotics and Risk of Pediatric Inflammatory Bowel Disease: A Population-Based Nationwide Register Study. JOURNAL OF PEDIATRICS. CLINICAL PRACTICE 2024; 12:200096. [PMID: 39949419 PMCID: PMC11824603 DOI: 10.1016/j.jpedcp.2024.200096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2025]
Abstract
Objective To assess whether antibiotic exposure prenatally and before 2 years of age is associated with subsequent pediatric inflammatory bowel disease (PIBD), as earlier studies diverge substantially in risk estimations or do not include prenatal exposure. Methods We performed a register-based cohort study including all children in Norway born 2004-2012 until study's end on December 31, 2020. Exposures were defined as dispensed antibiotics to mothers during pregnancy and to children before 2 years of age. Main outcome was International Classification of Diseases, Tenth Revision, code registrations consistent with PIBD. Results Among 536 819 children, 797 PIBD cases were identified. The aOR for developing PIBD if exposed to antibiotics before 2 years of age compared with no exposure was 1.33 (95% CI 1.15-1.53), adjusted for sex and prenatal antibiotic exposure. An adjustment for maternal smoking during pregnancy increased the aOR to 1.42 (1.22-1.66), but with minimal changes after further adjustments for potential confounders related to pregnancy, birth, or socioeconomic status. A dose-response association was observed in those receiving more than 2 antibiotic courses (aOR 1.47, 1.25-1.73), and with greater effect estimates for broad-spectrum antibiotics (aOR 2.57, 1.82-3.63). Antibiotic exposure during pregnancy was numerically but not significantly associated with offspring PIBD (aOR 1.15, 0.99-1.34). Conclusions Children exposed to antibiotics before 2 years of age were more likely to develop pediatric IBD than controls. Exposure prenatally to maternal antibiotics was numerically but not statistically significant associated to subsequent PIBD.
Collapse
Affiliation(s)
- Svend Andersen
- Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sigrid Valen Hestetun
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Tomm Bernklev
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research and Innovation Department, Vestfold Hospital Trust, Tønsberg, Norway
| | - Gøri Perminow
- Pediatric Department, Oslo University Hospital, Oslo, Norway
| | - Ketil Størdal
- Pediatric Department, Oslo University Hospital, Oslo, Norway
- Pediatric Research Institute, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Panzer JJ, Maples C, Meyer MP, Tillotson G, Theis KR, Chopra T. Gut microbiome alpha diversity decreases in relation to body weight, antibiotic exposure, and infection with multidrug-resistant organisms. Am J Infect Control 2024; 52:707-711. [PMID: 38176539 DOI: 10.1016/j.ajic.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND The human gastrointestinal tract is home to a dense and diverse microbiome, predominated by bacteria. Despite the conservation of critical functionality across most individuals, the composition of the gut microbiome is highly individualized, leading to differential responses to perturbations such as oral antibiotics or multidrug-resistant organism (MDRO) infection. Herein, subject responses to these perturbations based on their body weight were evaluated. METHODS Fecal samples were collected from 45 subjects at the Detroit Medical Center to evaluate the effects of perturbations on subjects' gut microbiome composition. Bacterial profiling was completed using 16S rRNA gene sequencing. RESULTS Subjects with multiple MDROs, subjects weighing greater than 80 kg infected with MDRO E coli, and subjects weighing less than 80 kg with exposure to vancomycin and carbapenem antibiotics during hospitalization had significantly decreased gut microbiome richness. CONCLUSIONS Both administration of oral antibiotics and MDRO infections decreased gut microbiome alpha diversity, but the magnitude of these gut microbiome perturbations was body weight dependent.
Collapse
Affiliation(s)
- Jonathan J Panzer
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI
| | - Catherine Maples
- Department of Infectious Diseases, Wayne State University, Detroit, MI
| | | | | | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI.
| | - Teena Chopra
- Department of Infectious Diseases, Wayne State University, Detroit, MI.
| |
Collapse
|
46
|
Matera M. Bifidobacteria, Lactobacilli... when, how and why to use them. GLOBAL PEDIATRICS 2024; 8:100139. [DOI: 10.1016/j.gpeds.2024.100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
Stange EF. Dysbiosis in inflammatory bowel diseases: egg, not chicken. Front Med (Lausanne) 2024; 11:1395861. [PMID: 38846142 PMCID: PMC11153678 DOI: 10.3389/fmed.2024.1395861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
There is agreement that inflammatory bowel diseases are, both in terms of species composition and function, associated with an altered intestinal microbiome. This is usually described by the term "dysbiosis," but this is a vague definition lacking quantitative precision. In this brief narrative review, the evidence concerning the primary or secondary role of this dysbiotic state is critically evaluated. Among others, the following facts argue against a primary etiological impact: 1) There is no specific dysbiotic microbiome in IBD, 2) the presence or absence of mucosal inflammation has a profound impact on the composition of the microbiome, 3) dysbiosis is not specific for IBD but linked to many unrelated diseases, 4) antibiotics, probiotics, and microbiome transfer have a very limited therapeutic effect, 5) the microbiome in concordant twins is similar to disease-discordant twins, and 6) the microbiome in relatives of IBD patients later developing IBD is altered, but these individuals already display subclinical inflammation.
Collapse
Affiliation(s)
- Eduard F. Stange
- Klinik für Innere Medizin I, Universitätsklinik Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Huang C, Li X, Li H, Chen R, Li Z, Li D, Xu X, Zhang G, Qin L, Li B, Chu XM. Role of gut microbiota in doxorubicin-induced cardiotoxicity: from pathogenesis to related interventions. J Transl Med 2024; 22:433. [PMID: 38720361 PMCID: PMC11077873 DOI: 10.1186/s12967-024-05232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Doxorubicin (DOX) is a broad-spectrum and highly efficient anticancer agent, but its clinical implication is limited by lethal cardiotoxicity. Growing evidences have shown that alterations in intestinal microbial composition and function, namely dysbiosis, are closely linked to the progression of DOX-induced cardiotoxicity (DIC) through regulating the gut-microbiota-heart (GMH) axis. The role of gut microbiota and its metabolites in DIC, however, is largely unelucidated. Our review will focus on the potential mechanism between gut microbiota dysbiosis and DIC, so as to provide novel insights into the pathophysiology of DIC. Furthermore, we summarize the underlying interventions of microbial-targeted therapeutics in DIC, encompassing dietary interventions, fecal microbiota transplantation (FMT), probiotics, antibiotics, and natural phytochemicals. Given the emergence of microbial investigation in DIC, finally we aim to point out a novel direction for future research and clinical intervention of DIC, which may be helpful for the DIC patients.
Collapse
Affiliation(s)
- Chao Huang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China
| | - Hanqing Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Zhaoqing Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Xiaojian Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Luning Qin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266000, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266033, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, Shandong, 266100, China.
- The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao, 266071, China.
| |
Collapse
|
49
|
Li Y, Li XM, Duan HY, Yang KD, Ye JF. Advances and optimization strategies in bacteriophage therapy for treating inflammatory bowel disease. Front Immunol 2024; 15:1398652. [PMID: 38779682 PMCID: PMC11109441 DOI: 10.3389/fimmu.2024.1398652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In the advancement of Inflammatory Bowel Disease (IBD) treatment, existing therapeutic methods exhibit limitations; they do not offer a complete cure for IBD and can trigger adverse side effects. Consequently, the exploration of novel therapies and multifaceted treatment strategies provides patients with a broader range of options. Within the framework of IBD, gut microbiota plays a pivotal role in disease onset through diverse mechanisms. Bacteriophages, as natural microbial regulators, demonstrate remarkable specificity by accurately identifying and eliminating specific pathogens, thus holding therapeutic promise. Although clinical trials have affirmed the safety of phage therapy, its efficacy is prone to external influences during storage and transport, which may affect its infectivity and regulatory roles within the microbiota. Improving the stability and precise dosage control of bacteriophages-ensuring robustness in storage and transport, consistent dosing, and targeted delivery to infection sites-is crucial. This review thoroughly explores the latest developments in IBD treatment and its inherent challenges, focusing on the interaction between the microbiota and bacteriophages. It highlights bacteriophages' potential as microbiome modulators in IBD treatment, offering detailed insights into research on bacteriophage encapsulation and targeted delivery mechanisms. Particular attention is paid to the functionality of various carrier systems, especially regarding their protective properties and ability for colon-specific delivery. This review aims to provide a theoretical foundation for using bacteriophages as microbiome modulators in IBD treatment, paving the way for enhanced regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
50
|
Zhang J, Shi X, Wang Y. Exploring causality in the association between gut microbiota and irritable bowel syndrome risk: a large Mendelian randomization study. Aging (Albany NY) 2024; 16:7448-7459. [PMID: 38669090 PMCID: PMC11087118 DOI: 10.18632/aging.205771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND In the past, some observational studies have highlighted the correlation between gut microbiota and irritable bowel syndrome (IBS). However, it is still unknown if the composition of gut microbiota shows a causal effect on the risk of IBS. AIM To conduct Mendelian randomization (MR) analysis of the samples to study the probable causal relationship between the gut microbiota, their taxonomic groups, and the risk of IBS. MATERIALS AND METHODS In this study, the summarized data regarding 211 gut microbiota and their IBS genome-wide association studies (GWAS) were collected from public databases. The causal estimates were determined using five MR techniques, where Inverse Variance Weighted (IVW) regression was employed as the major MR technique. Herein, MR-PRESSO and MR-Egger intercept tests were conducted to prevent horizontal pleiotropy. Cochran's Q test was used to evaluate heterogeneity using the IVW and MR-Egger techniques. RESULTS IVW results showed that gut microbes, belonging to Class Gammaproteobacteria (P = 0.04; OR = 1.45), Family XIII (P = 0.03; OR = 1.34), Family Prevotellaceae (P = 0.003; OR =1.24), and Lachnospiraceae UCG004 (P = 0.049; OR = 1.19) increased the risk of IBS, while Alcaligenaceae (P = 0.03; OR = 0.83, 95% CI: 0.69-0.98) and Coprobacter (P = 0.02; OR = 0.86, 95% CI: 0.76-0.98) decreased the risk of IBS. CONCLUSIONS This study presented novel insights that highlighted the causal relationship between gut microbiota and IBS, and offered new treatment strategies for preventing or treating IBS.
Collapse
Affiliation(s)
- Jishi Zhang
- Department of General Surgery, Huangdao District People’s Hospital, Qingdao, Shandong, China
| | - Xinlin Shi
- Department of General Surgery, Huangdao District People’s Hospital, Qingdao, Shandong, China
| | - Yun Wang
- Department of Hepatology/Infectious Diseases, Huangdao District People’s Hospital, Qingdao, Shandong, China
| |
Collapse
|