1
|
Yao J, Ning B, Ding J. The gut microbiota: an emerging modulator of drug resistance in hepatocellular carcinoma. Gut Microbes 2025; 17:2473504. [PMID: 40042184 PMCID: PMC11901387 DOI: 10.1080/19490976.2025.2473504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/08/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Liver cancer is usually diagnosed at an advanced stage and is the third most common cause of cancer-related death worldwide. In addition to the lack of effective treatment options, resistance to therapeutic drugs is a major clinical challenge. The gut microbiota has recently been recognized as one of the key factors regulating host health. The microbiota and its metabolites can directly or indirectly regulate gene expression in the liver, leading to gut-liver axis dysregulation, which is closely related to liver cancer occurrence and the treatment response. Gut microbiota disturbance may participate in tumor progression and drug resistance through metabolite production, gene transfer, immune regulation, and other mechanisms. However, systematic reviews on the role of the gut microbiota in drug resistance in liver cancer are lacking. Herein, we review the relationships between the gut microbiota and the occurrence and drug resistance of hepatocellular carcinoma, summarize the emerging mechanisms underlying gut microbiota-mediated drug resistance, and propose new personalized treatment options to overcome this resistance.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Beifang Ning
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2025; 17:1688-1710. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Nobels A, van Marcke C, Jordan BF, Van Hul M, Cani PD. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 2025:10.1038/s42255-025-01287-w. [PMID: 40329009 DOI: 10.1038/s42255-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome's involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota-immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Amandine Nobels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Cédric van Marcke
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte F Jordan
- UCLouvain, Université catholique de Louvain, Biomedical Magnetic Resonance group (REMA), Louvain Drug Research Institute (LDRI), Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium.
| |
Collapse
|
4
|
Zhu Y, Geng SY, Chen Y, Ru QJ, Zheng Y, Jiang N, Zhu FY, Zhang YS. Machine learning algorithms reveal gut microbiota signatures associated with chronic hepatitis B-related hepatic fibrosis. World J Gastroenterol 2025; 31:105985. [PMID: 40308807 PMCID: PMC12038523 DOI: 10.3748/wjg.v31.i16.105985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Hepatic fibrosis (HF) represents a pivotal stage in the progression and potential reversal of cirrhosis, underscoring the importance of early identification and therapeutic intervention to modulate disease trajectory. AIM To explore the complex relationship between chronic hepatitis B (CHB)-related HF and gut microbiota to identify microbiota signatures significantly associated with HF progression in CHB patients using advanced machine learning algorithms. METHODS This study included patients diagnosed with CHB and classified them into HF and non-HF groups based on liver stiffness measurements. The HF group was further subdivided into four subgroups: F1, F2, F3, and F4. Data on clinical indicators were collected. Stool samples were collected for 16S rRNA sequencing to assess the gut microbiome. Microbiota diversity, relative abundance, and linear discriminant analysis effect size (LEfSe) were analyzed in different groups. Correlation analysis between clinical indicators and the relative abundance of gut microbiota was performed. The random forest and eXtreme gradient boosting algorithms were used to identify key differential gut microbiota. The Shapley additive explanations were used to evaluate microbiota importance. RESULTS Integrating the results from univariate analysis, LEfSe, and machine learning, we identified that the presence of Dorea in gut microbiota may be a key feature associated with CHB-related HF. Dorea possibly serves as a core differential feature of the gut microbiota that distinguishes HF from non-HF patients, and the presence of Dorea shows significant variations across different stages of HF (P < 0.05). The relative abundance of Dorea significantly decreases with increasing HF severity (P = 0.041). Moreover, the gut microbiota composition in patients with different stages of HF was found to correlate with several liver function indicators, such as γ-glutamyl transferase, alkaline phosphatase, total bilirubin, and the aspartate aminotransferase/alanine transaminase ratio (P < 0.05). The associated pathways were predominantly enriched in biosynthesis, degradation/utilization/assimilation, generation of precursors, metabolites, and energy, among other categories. CONCLUSION HF affects the composition of the gut microbiota, indicating that the gut microbiota plays a crucial role in its pathophysiological processes. The abundance of Dorea varies significantly across various stages of HF, making it a potential microbial marker for identifying HF onset and progression.
Collapse
Affiliation(s)
- Ying Zhu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shi-Yu Geng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Yao Chen
- National Key Laboratory of Immunity and Inflammation Suzhou Institute of Systems Medicine Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou 215123, Jiangsu Province, China
| | - Qing-Jing Ru
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| | - Yi Zheng
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| | - Na Jiang
- Department of Infectious Disease, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| | - Fei-Ye Zhu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Yong-Sheng Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| |
Collapse
|
5
|
Fatima N, Fatima H, Ahmad S, Hashmi MATS, Sheikh N. Understanding the role of Hedgehog signaling pathway and gut dysbiosis in fueling liver cancer. Mol Biol Rep 2025; 52:411. [PMID: 40261446 DOI: 10.1007/s11033-025-10504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Liver cancer is one of the most prevalent types of cancer worldwide with less than 20% of patients surviving in the past half a decade. Several molecular pathways have been uncovered that may lead to the development of liver cancer but more recently the Hedgehog pathway (HH) and its interactions with the gut microbiota has emerged as an underlying cause of the development of liver cancer. Gut-liver axis is vital to maintaining homeostasis. The HH pathway controls cellular differentiation, proliferation, and apoptosis evasions, its abnormal activation can lead to uncontrolled proliferation of liver cancer stem cells. Additionally, the intricate interplay between HH signaling and the gut microbiota introduces a novel dimension. Recent investigations suggest that potential modulation of HH activity by gut microbiota influence HCC progression. This review explores a crosstalk between HH signaling and the gut microbiota, uncovering intricate mechanisms by which it fuels liver cancer development. This interplay provides insights into gut dysbiosis, HCC etiology and potential therapeutic avenues, highlighting the cooperative role of HH signaling and gut microbiota in shaping the overall HCC landscape.
Collapse
Affiliation(s)
- Naz Fatima
- Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan.
- Department of Internal Medicine & Gastroenterology, University of Michigan, Ann Arbor, 48109, USA.
| | - Hooriya Fatima
- Institute of Zoology, University of Punjab (Quaid-i-Azam Campus), Lahore, 54590, Pakistan
| | - Sadia Ahmad
- Institute of Zoology, University of Punjab (Quaid-i-Azam Campus), Lahore, 54590, Pakistan
| | | | - Nadeem Sheikh
- Institute of Zoology, University of Punjab (Quaid-i-Azam Campus), Lahore, 54590, Pakistan
| |
Collapse
|
6
|
Su X, Tian Z, Fang Y, Zhou S, Ma S. Effects of high-dose glucocorticoids on gut microbiota in the treatment of Graves' ophthalmopathy. Microbiol Spectr 2025:e0246724. [PMID: 40261021 DOI: 10.1128/spectrum.02467-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
Many studies indicate the gut microbiome is associated with diseases caused by administering high-dose glucocorticoids (GCs), such as hypertension, hyperglycemia, and osteoporosis. However, the association between intestinal flora and the use of high-dose GCs remains elusive. We aimed to characterize gut microbiome in Graves' ophthalmopathy (GO) patients after administering high-dose GCs. In this study, 20 primary GO patients were recruited. The differences in gut microbiota of GO patients before and after administering high-dose GCs were analyzed by 16S rDNA sequencing technology. Untargeted metabolomic analysis was used to examine the differences in gut metabolites between two groups. There were significant differences in α and β diversities of gut microbiota in GO patients before and after administering high-dose GCs. The random forest analysis indicated that three intestinal bacteria (Faecalibacterium, Streptococcus, and Prevotella) could distinguish the two groups with the highest accuracy, which was proven by receiver operator characteristic curve and linear discriminant analysis effect size analysis. The short-chain fatty acid-producing ability in GO patients' gut after high-dose GC administration was significantly decreased. The 5-hydroxytryptamine levels significantly increased in the gut of GO patients after administering high-dose GCs. Our study suggests that high-dose GC administration causes the changes in gut microbiome and metabolites. Moreover, the altered flora and metabolites are related to hypertension, hyperglycemia, and osteoporosis. These findings can help understand the development of side effects caused by high-dose GCs and can be further used to develop potential probiotics to facilitate the prevention for those side effects.IMPORTANCEFor the first time, we revealed that gut microbiome and metabolome in Graves' ophthalmopathy patients after high-dose glucocorticoid (GC) administration significantly changed, and the altered flora and metabolites are related to hypertension, hyperglycemia, and osteoporosis. These findings can help understand the development of side effects caused by high-dose GCs and can be further used to develop potential probiotics to facilitate the prevention for those side effects.
Collapse
Affiliation(s)
- Xinhuan Su
- Department of Endocrinology, Department of Geriatrics, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhenyu Tian
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yalun Fang
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Shengnan Zhou
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shizhan Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
7
|
Wang Y, Li Y, Lin Y, Cao C, Chen D, Huang X, Li C, Xu H, Lai H, Chen H, Zhou Y. Roles of the gut microbiota in hepatocellular carcinoma: from the gut dysbiosis to the intratumoral microbiota. Cell Death Discov 2025; 11:140. [PMID: 40185720 PMCID: PMC11971373 DOI: 10.1038/s41420-025-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is closely linked to alterations in the gut microbiota. This dysbiosis is characterized by significant changes in the microbial population, which correlate with the progression of HCC. Gut dysbiosis ultimately promotes HCC development in several ways: it damages the integrity of the gut-vascular barrier (GVB), alters the tumor microenvironment (TME), and even affects the intratumoral microbiota. Subsequently, intratumoral microbiota present a characteristic profile and play an essential role in HCC progression mainly by causing DNA damage, mediating tumor-related signaling pathways, altering the TME, promoting HCC metastasis, or through other mechanisms. Both gut microbiota and intratumoral microbiota have dual effects on HCC progression; a comprehensive understanding of their complex biological roles will provide a theoretical foundation for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuangyu Cao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongcheng Chen
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Xianguang Huang
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Canhua Li
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huasheng Lai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
8
|
Li C, Cai C, Wang C, Chen X, Zhang B, Huang Z. Gut microbiota-mediated gut-liver axis: a breakthrough point for understanding and treating liver cancer. Clin Mol Hepatol 2025; 31:350-381. [PMID: 39659059 PMCID: PMC12016628 DOI: 10.3350/cmh.2024.0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
The trillions of commensal microorganisms living in the gut lumen profoundly influence the physiology and pathophysiology of the liver through a unique gut-liver axis. Disruptions in the gut microbial communities, arising from environmental and genetic factors, can lead to altered microbial metabolism, impaired intestinal barrier and translocation of microbial components to the liver. These alterations collaboratively contribute to the pathogenesis of liver disease, and their continuous impact throughout the disease course plays a critical role in hepatocarcinogenesis. Persistent inflammatory responses, metabolic rearrangements and suppressed immunosurveillance induced by microbial products underlie the pro-carcinogenic mechanisms of gut microbiota. Meanwhile, intrahepatic microbiota derived from the gut also emerges as a novel player in the development and progression of liver cancer. In this review, we first discuss the causes of gut dysbiosis in liver disease, and then specify the pivotal role of gut microbiota in the malignant progression from chronic liver diseases to hepatobiliary cancers. We also delve into the cellular and molecular interactions between microbes and liver cancer microenvironment, aiming to decipher the underlying mechanism for the malignant transition processes. At last, we summarize the current progress in the clinical implications of gut microbiota for liver cancer, shedding light on microbiota-based strategies for liver cancer prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- Chenyang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chujun Cai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chendong Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences; NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Shu JZ, Huang YH, He XH, Liu FY, Liang QQ, Yong XT, Xie YF. Gut microbiota differences, metabolite changes, and disease intervention during metabolic - dysfunction - related fatty liver progression. World J Hepatol 2025; 17:103854. [PMID: 40177201 PMCID: PMC11959672 DOI: 10.4254/wjh.v17.i3.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
In the current era, metabolic dysfunction-associated steatotic liver disease (MASLD) has gradually developed into a major type of chronic liver disease that is widespread globally. Numerous studies have shown that the gut microbiota plays a crucial and indispensable role in the progression of MASLD. Currently, the gut microbiota has become one of the important entry points for the research of this disease. Therefore, the aim of this review is to elaborate on the further associations between the gut microbiota and MASLD, including the changes and differences in the microbiota between the healthy liver and the diseased liver. Meanwhile, considering that metabolic dysfunction-associated fatty liver and metabolic dysfunction-associated steatohepatitis are abnormal pathological states in the development of the disease and that the liver exhibits different degrees of fibrosis (such as mild fibrosis and severe fibrosis) during the disease progression, we also conduct a comparison of the microbiota in these states and use them as markers of disease progression. It reveals the changes in the production and action mechanisms of short-chain fatty acids and bile acids brought about by changes in the gut microbiota, and the impact of lipopolysaccharide from Gram-negative bacteria on the disease. In addition, the regulation of the gut microbiota in disease and the production and inhibition of related disease factors by the use of probiotics (including new-generation probiotics) will be explored, which will help to monitor the disease progression of patients with different gut microbiota compositions in the future and carry out personalized targeted therapies for the gut microbiota. This will achieve important progress in preventing and combating this disease.
Collapse
Affiliation(s)
- Jian-Zhong Shu
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400015, China
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- College of Integrated Traditional Chinese and Western Medicine, Chongqing University of Traditional Chinese Medicine, Chongqing 402760, China
| | - Yu-Han Huang
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiao-Hong He
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Feng-Ying Liu
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qian-Qian Liang
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xue-Tong Yong
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yong-Fang Xie
- School of Life Health Information Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Institute of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
| |
Collapse
|
10
|
Romeo M, Dallio M, Di Nardo F, Napolitano C, Vaia P, Martinelli G, Federico P, Olivieri S, Iodice P, Federico A. The Role of the Gut-Biliary-Liver Axis in Primary Hepatobiliary Liver Cancers: From Molecular Insights to Clinical Applications. J Pers Med 2025; 15:124. [PMID: 40278303 PMCID: PMC12028696 DOI: 10.3390/jpm15040124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Hepatobiliary liver cancers (HBLCs) represent the sixth most common neoplasm in the world. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) constitute the main HBLC types, with alarming epidemiological projections. Methods: In recent decades, alterations in gut microbiota, with mutual implications on the gut-liver axis and gut-biliary axis permeability status, have been massively investigated and proposed as HBLC pathogenetic deus ex machina. Results: In the HCC setting, elevated intestinal levels of Escherichia coli and other Gram-negative bacteria have been demonstrated, resulting in a close association with increased lipopolysaccharide (LPS) serum levels and, consequently, chronic systemic inflammation. In contrast, the intestinal microbiota of HCC individuals feature reduced levels of Lactobacillus spp., Bifidobacterium spp., and Enterococcus spp. In the CC setting, evidence has revealed an increased expression of Lactobacillus spp., with enhanced levels of Actynomices spp. and Alloscardovia spp. Besides impaired strains/species representation, gut-derived metabolites, including bile acids (BAs), short-chain fatty acids (SCFAs), and oxidative-stress-derived products, configure a network severely impacting the progression of HBLC. Conclusions: In the era of Precision Medicine, the clarification of microbiota composition and functioning in HCC and CC settings can contribute to the identification of individual signatures, potentially providing novel diagnostic markers, therapeutic approaches, and prognostic/predictive tools.
Collapse
Affiliation(s)
- Mario Romeo
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Marcello Dallio
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Fiammetta Di Nardo
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Carmine Napolitano
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Paolo Vaia
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Giuseppina Martinelli
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | - Pierluigi Federico
- Pharmaceutical Department, ASL NA3 Sud, Torre del Greco, 80059 Naples, Italy;
| | - Simone Olivieri
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| | | | - Alessandro Federico
- Department of Precision Medicine, Hepatogastroenterology Division, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (M.R.); (F.D.N.); (C.N.); (P.V.); (G.M.); (S.O.); (A.F.)
| |
Collapse
|
11
|
Zhra M, Elahi MA, Tariq A, Abu-Zaid A, Yaqinuddin A. Sirtuins and Gut Microbiota: Dynamics in Health and a Journey from Metabolic Dysfunction to Hepatocellular Carcinoma. Cells 2025; 14:466. [PMID: 40136715 PMCID: PMC11941559 DOI: 10.3390/cells14060466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction leading to non-alcoholic fatty liver disease (NAFLD) exhibits distinct molecular and immune signatures that are influenced by factors like gut microbiota. The gut microbiome interacts with the liver via a bidirectional relationship with the gut-liver axis. Microbial metabolites, sirtuins, and immune responses are pivotal in different metabolic diseases. This extensive review explores the complex and multifaceted interrelationship between sirtuins and gut microbiota, highlighting their importance in health and disease, particularly metabolic dysfunction and hepatocellular carcinoma (HCC). Sirtuins (SIRTs), classified as a group of NAD+-dependent deacetylases, serve as crucial modulators of a wide spectrum of cellular functions, including metabolic pathways, the inflammatory response, and the process of senescence. Their subcellular localization and diverse functions link them to various health conditions, including NAFLD and cancer. Concurrently, the gut microbiota, comprising diverse microorganisms, significantly influences host metabolism and immune responses. Recent findings indicate that sirtuins modulate gut microbiota composition and function, while the microbiota can affect sirtuin activity. This bidirectional relationship is particularly relevant in metabolic disorders, where dysbiosis contributes to disease progression. The review highlights recent findings on the roles of specific sirtuins in maintaining gut health and their implications in metabolic dysfunction and HCC development. Understanding these interactions offers potential therapeutic avenues for managing diseases linked to metabolic dysregulation and liver pathology.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan
| | - Ahmed Abu-Zaid
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.A.E.); (A.A.-Z.)
| | - Ahmed Yaqinuddin
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
12
|
Sasaki H, Masutomi H, Nakamura S, Tanigawa C, Cui Y, Ishihara K, Yanagisawa M, Kokubo T. Granola consumption with multiple prebiotics in Japanese participants increases Bifidobacterium abundance and improves stress and subjective sleepiness. Front Nutr 2025; 12:1551313. [PMID: 40181940 PMCID: PMC11965129 DOI: 10.3389/fnut.2025.1551313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background Sleep is essential for physical and mental health. However, stress-related sleep disorders are common in Japan, and the gut-brain axis may play a role in sleep and stress management. This study investigated whether the consumption of granola containing multiple prebiotic ingredients could alleviate stress and improve insomnia in adults with stress-related sleep problems, regardless of individual differences in the gut microbiota. Additionally, we aimed to investigate the relationship between changes in gut microbiota and the observed improvements. Method A single-arm uncontrolled trial was conducted with 27 adults with high stress levels and sleep disturbance. The participants consumed 50 g of prebiotics-containing granola daily for 8 weeks. Subjective sleep quality was assessed using the Athens Insomnia Scale, Epworth Sleep Scale, and Oguri-Shirakawa-Azumi Sleep Inventory-Middle-aged and Aged version (OSA-MA). Stress levels were assessed by administering the Brief Job Stress Questionnaire and Profile of Mood States 2nd edition (POMS2). Gut microbiota composition was analyzed using 16S rDNA sequencing. Results After 8 weeks, subjective insomnia scores and sleep onset and maintenance improved significantly, whereas the stress and mood disturbance scores decreased significantly. Gut microbiota analysis showed that the relative abundance of Bifidobacterium increased, whereas that of Bacteroides decreased. Correlation analysis suggested a significant association between increased Bifidobacterium level and reduced stress (r = -0.39, p = 0.0035) and insomnia levels (r = -0.3, p = 0.026). Conclusion Prebiotics-containing granola improved subjective sleep quality and reduced stress in adults with stress-related sleep disturbances, which may be attributed to alterations in gut microbiota, particularly the increase in Bifidobacterium abundance.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Research & Development Division, Calbee, Inc., Utsunomiya, Japan
| | | | - Shuji Nakamura
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | - Chiemi Tanigawa
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | - Yufei Cui
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
| | | | - Masashi Yanagisawa
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- The Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Toshio Kokubo
- Sleep is the Ultimate Intelligent Mechanism In Nature (S’UIMIN) Inc., Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Chen Y, Peng L, Li Y, Peng Y, Dai S, Han K, Xin J. Amplicon-based analysis reveals link between adolescent acne and altered facial skin microbiome induced by negative emotional states. Front Cell Infect Microbiol 2025; 15:1543616. [PMID: 40176988 PMCID: PMC11961944 DOI: 10.3389/fcimb.2025.1543616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction The skin microbiome is integral to maintaining skin homeostasis and is involved in the pathogenesis of acne. Emerging evidence supporting the 'brain-skin axis' suggests that psychological stress may exacerbate acne. Both negative emotional states and acne are highly prevalent among adolescents. Although research has begun to explore this relationship, the role of the skin microbiome in adolescents experiencing emotional disturbances and acne remains poorly understood. Methods 166 adolescents aged 15-18 were divided into four distinct groups based on their emotional health and acne severity: no acne or negative emotions (NC), acne without negative emotions (NS), negative emotions without acne (YC), and acne with negative emotions (YS). Skin samples were collected from each participant's forehead and analyzed using high-throughput sequencing techniques, followed by comprehensive bioinformatics analyses to evaluate the microbial composition and diversity across the different groups. Results Adolescents with both acne and negative emotions exhibited significantly higher acne severity (IGA 2.675 ± 0.090) compared to the group with acne but without negative emotions (IGA 1.952 ± 0.136). Distinct microbial community patterns emerged among the groups, with acne-affected individuals displaying increased α-diversity. Additionally, negative emotions were associated with heightened β-diversity differences between acne-affected individuals. The predominant bacterial phyla identified were Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria, with Acinetobacter being more abundant, and Roseomonas and Cutibacterium being less prevalent in adolescents experiencing negative emotions. Conclusion This study revealed that the bacterial biomarkers of the disease change when acne is accompanied by negative emotions. Cutibacterium, Acinetobacter, and Roseomonas may be key contributors to acne exacerbation. These findings underscore the importance of considering both emotional and microbiological factors in the management of adolescent acne, particularly within the context of the brain-skin connection.
Collapse
Affiliation(s)
- Yu Chen
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
| | - Lixia Peng
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
- Department of Dermatology, Nanfang Hospital Taihe Branch, Guangzhou, China
| | - Yueying Li
- Department of Dermatology, Nanfang Hospital Taihe Branch, Guangzhou, China
| | - Yusheng Peng
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
| | - Siqi Dai
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
| | - Kai Han
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinge Xin
- Department of Dermatology, The People’s Hospital of Baiyun District, Guangzhou, China
| |
Collapse
|
14
|
Yao W, He Y, Xie Z, Wang Q, Chen Y, Yu J, Liu X, Xue DX, Liyi W, Hao C. Clostridium scindens promotes gallstone formation by inducing intrahepatic neutrophil extracellular traps through CXCL1 produced by colonic epithelial cells. MICROBIAL CELL (GRAZ, AUSTRIA) 2025; 12:37-52. [PMID: 40309357 PMCID: PMC12041793 DOI: 10.15698/mic2025.03.844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 05/02/2025]
Abstract
Cholelithiasis is one of the most common diseases of the biliary system. Neutrophil extracellular traps (NETs) in the liver play an important role in accelerating the formation of gallstones. The upstream mechanism of NETs formation remains unclear. In this study, 16S rRNA sequencing was used to screen the differential gut microbiota in mice with gallstones. Transcriptome sequencing was used to screen the differentially expressed core genes and signalling pathways of Clostridium scindens that acted on human colonic epithelial cells. Western blotting was used to verify the protein expression of TLR2 and the NF-κB pathway. RT-PCR was used to verify the mRNA expression of TLR2, CXCL1 and the NF-κB pathway. ELISA was used to verify CXCL1 expression in the supernatant or portal vein blood of mice. Immunofluorescence was used to detect NETs formation in cocultured neutrophils in vitro or in mouse livers. Clostridium scindens was the key differential strain in the formation of gallstones in mice. After treatment with Clostridium scindens, both in vitro and in vivo, the expression of TLR2 was upregulated, the secretion of CXCL1 was increased by regulating the NF-κB pathway. Finally, the formation of NETs and stones was significantly increased. This study reveals a new mechanism of the gut-liver immune axis in the formation of gallstones. Clostridium scindens acts on colonic epithelial cells through TLR2 to regulate the NF-κB pathway and increase the secretion of CXCL1. CXCL1 enters the liver via the portal vein and increases the formation of NETs in the liver, thereby accelerating gallstone formation.
Collapse
Affiliation(s)
- Wenchao Yao
- Department of Surgical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Equal contribution as a first author
| | - Yuanhang He
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Equal contribution as a first author
| | - Zhihong Xie
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Chen
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Gastrointestinal Surgery Ward I, Yantai Yuhuangding Hospital, the Affiliated Hospital of Qingdao University, Yantai 264000, China
| | - Jingjing Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuxu Liu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue Xue
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wang Liyi
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenjun Hao
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Mechlińska A, Frąckiewicz K, Gładyś-Cieszyńska K, Buczek D, Dziadziuszko R. Small intestinal bacterial overgrowth and intestinal methanogen overgrowth in gastrointestinal malignancies. Contemp Oncol (Pozn) 2025; 29:11-21. [PMID: 40330452 PMCID: PMC12051882 DOI: 10.5114/wo.2025.148643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/06/2025] [Indexed: 05/08/2025] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is defined by an abnormal proliferation of colon-specific bacteria in the small intestine, whereas intestinal methanogen overgrowth (IMO) manifests with an increase of methane-producing archaea, specifically Methanobrevibacter smithii. Both conditions can disrupt gastrointestinal motility and manifest with various clinical symptoms. Small intestinal bacterial overgrowth appears to increase the risk of malnutrition and negatively affect malabsorption of essential nutrients such as vitamin B12 and fat-soluble vitamins. This concern is particularly relevant for cancer patients as malnutrition can adversely affect treatment outcomes and mortality rates. Small intestinal bacterial overgrowth prevalence is 2.5-22% in the general population, with significantly higher rates observed in cancer patients, depending on a study, 65% of gastric and colorectal cancer patients, 63.3% of pancreatic cancer patients compared to 13.3% in healthy controls. Gastrointestinal complications, particularly in cases of gastrointestinal cancers, can arise from both the disease itself and its treatment. Managing symptoms becomes more challenging when SIBO occurs as its symptoms are often ambiguous and overlap with those of other conditions. This review summarizes the current state of knowledge on SIBO and IMO in gastrointestinal cancers. Current knowledge on SIBO and IMO, particularly in gastrointestinal cancer, is limited by the lack of validated diagnostic standards, evidence-based nutritional guidelines, and a focus on symptom control rather than underlying mechanisms. There is a need for research on recurrence despite treatment, as well as studies specifically targeting SIBO and IMO in cancer rather than as comorbidities. Future efforts should prioritize developing reliable diagnostics, understanding recurrence mechanisms, and exploring personalized therapies and nutritional interventions.
Collapse
Affiliation(s)
- Aleksandra Mechlińska
- Department of Oncology and Radiotherapy, Medical University of Gdańsk and University Clinical Center, Gdańsk, Poland
| | | | | | - Dagmara Buczek
- Department of Oncology and Radiotherapy, Medical University of Gdańsk and University Clinical Center, Gdańsk, Poland
| | - Rafał Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdańsk and University Clinical Center, Gdańsk, Poland
| |
Collapse
|
16
|
Akkız H, Şimşek H, Balcı D, Ülger Y, Onan E, Akçaer N, Delik A. Inflammation and cancer: molecular mechanisms and clinical consequences. Front Oncol 2025; 15:1564572. [PMID: 40165901 PMCID: PMC11955699 DOI: 10.3389/fonc.2025.1564572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Inflammation, a hallmark of cancer, has been associated with tumor progression, transition into malignant phenotype and efficacy of anticancer treatments in cancer. It affects all stages of cancer, from the initiation of carcinogenesis to metastasis. Chronic inflammation induces immunosup-pression, providing an environment conducive to carcinogenesis, whereas acute inflammation induces an antitumor immune response, leading to tumor suppression. Solid tumors have an inflammatory tumor microenvironment (TME) containing cancer cells, immune cells, stromal cells, and soluble molecules, which plays a key role in tumor progression and therapy response. Both cancer cells and stromal cells in the TME are highly plastic and constantly change their phenotypic and functional properties. Cancer-associated inflammation, the majority of which consists of innate immune cells, plays an important role in cancer cell plasticity, cancer progression and the development of anticancer drug resistance. Today, with the combined used of advanced technologies, such as single-cell RNA sequencing and spatial molecular imaging analysis, the pathways linking chronic inflammation to cancer have been largely elucidated. In this review article, we highlighted the molecular and cellular mechanisms involved in cancer-associated inflammation and its effects on cancer progression and treatment response. We also comprehensively review the mechanisms linking chronic inflammation to cancer in the setting of GI cancers.
Collapse
Affiliation(s)
- Hikmet Akkız
- Department of Gastroenterology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
| | - Halis Şimşek
- Department of Gastroenterology, Medical Faculty, Hacettepe University, Ankara, Türkiye
| | - Deniz Balcı
- Department of Gastroenterology, Medical Faculty, Bahçeşehir University, İstanbul, Türkiye
| | - Yakup Ülger
- Department of Gastroenterology, Medical Faculty, Cukurova University, Adana, Türkiye
| | - Engin Onan
- Department of Nephrology, Medical Faculty, Baskent University, Adana, Türkiye
| | - Nevin Akçaer
- Department of Gastroenterology, Medical Faculty, Health Sciences University, Adana, Türkiye
| | - Anıl Delik
- Department of Gastroenterology, Medical Faculty, Cukurova University, Adana, Türkiye
- Department of Biology, Science and Literature Faculty, Cukurova University, Adana, Türkiye
| |
Collapse
|
17
|
Chen C, Deng C, Li Y, He S, Liu Y, Pan S, Xu W, Fang L, Zhu Y, Wang Y, Jiang X. Machine learning-derived diagnostic model of epithelial ovarian cancer based on gut microbiome signatures. J Transl Med 2025; 23:319. [PMID: 40082895 PMCID: PMC11905570 DOI: 10.1186/s12967-025-06339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Prior studies have elucidated that alterations in gut microbiota are associated with a spectrum of tumors and metabolic disorders. However, the diagnostic value of gut microbiota in epithelial ovarian cancer remains insufficiently investigated. METHODS A total of 34 patients with a diagnosis of epithelial ovarian cancer (EOC), 15 patients with benign ovarian tumors (TB), and 30 healthy volunteers (NOR) were enrolled in this study. Fecal samples were collected, followed by sequencing of the V3-V4 region of the 16S rRNA gene. The clinical data and pathological characteristics were comprehensively recorded for further analysis, PICRUSt2 was utilized to conduct an analysis of microbial functional predictions, WGCNA networks were constructed by integrating microbiome and clinical data. LEfSe analysis was employed to identify microbial diagnostic markers, LASSO and SVM analyses were used to screen microbial diagnostic markers in conjunction with the Cally index, to establish a Microbial-Cally diagnostic model. Bootstrap resampling was utilized for the internal validation of the model, whereas the Hosmer-Lemeshow test and decision curve analysis (DCA) were employed to evaluate the diagnostic performance of the model. Plasma samples were subjected to untargeted metabolomics profiling, followed by differential analysis to identify key metabolites that are significantly altered in epithelial ovarian cancer. At the same time, Spearman correlation analysis was used to study the association between key microbiota and differential metabolites. The supernatants from Escherichia coli and Bifidobacterium cultures were co-cultured with SKOV3 cells. Cell proliferation, migration, and invasion were evaluated using Cell Counting Kit-8 (CCK-8) assay, Transwell migration and invasion assays. Apoptosis was assessed by flow cytometry analysis of fluorescence signals from Annexin V and propidium iodide (PI) staining. RESULTS Compared to Nor and TB populations, individuals diagnosed with EOC demonstrated a significantly diminished gut microbiota diversity when contrasted with both normal controls and those presenting benign conditions. Specifically, the relative abundance of Bilophila, Bifidobacterium, and other probiotics was significantly reduced in patients diagnosed with epithelial ovarian cancer (EOC), while Escherichia and Shigella demonstrated a marked enrichment within this cohort. Differential microorganisms were identified through the application of machine learning techniques to delineate the characteristic microbial profiles associated with the EOC patients. A significant correlation was identified between the Cally index and microorganisms. In conclusion, we utilized microbial biomarkers alongside the Cally to establish a diagnostic model for epithelial ovarian cancer, receiver operating characteristic (ROC) curve Area Under Curve (AUC) of 0.976 (95%CI 0.943-1.00), The AUC obtained from the Bootstrap internal validation was 0.974. The Hosmer-Lemeshow test revealed a robust concordance between the observed probabilities and the predicted probabilities generated by the model. The decision curve analysis revealed that the model provided a significant net clinical benefit. A total of 233 differential metabolites were identified between the EOC group and the NT (NOR and TB) groups. Among these, eight specific metabolites (HMDB0243492, C09265, HMDB0242046, HMDB0240606, C04171, HMDB0060557, HMDB0252797, and C21412) were exclusively derived from the microbiome. Notably, metabolite HMDB0240606 exhibited a significant positive correlation with Escherichia coli and Shigella, while it showed a significant negative correlation with Ruminococcus. In vitro studies demonstrated that Bifidobacterium possessed anti-tumor activity, whereas Escherichia coli exhibited pro-tumor activity. CONCLUSION This study provides the inaugural comprehensive analysis of gut microbiota composition and its differential profiles among patients with epithelial ovarian cancer, those with benign ovarian tumors, and healthy controls in Hunan province, China.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Chengyuan Deng
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Yanwen Li
- Department of Clinical Laboratory Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Shuguang He
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Yunhong Liu
- Department of Clinical Laboratory, People's Hospital of Longhua, Shenzhen, China
| | - Shuwen Pan
- Department of Clinical Laboratory, People's Hospital of Longhua, Shenzhen, China
| | - Wenqian Xu
- Changsha Center for Disease Prevention and Control, Changsha, China
| | - Lu Fang
- Xuzhou First People's Hospital, Xuzhou, China
| | - Yixi Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Yingying Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Xiaoxin Jiang
- Department of Clinical Laboratory, People's Hospital of Longhua, Shenzhen, China.
| |
Collapse
|
18
|
Xu J, Chen N, Li Z, Liu Y. Gut microbiome and liver diseases. FUNDAMENTAL RESEARCH 2025; 5:890-901. [PMID: 40242515 PMCID: PMC11997574 DOI: 10.1016/j.fmre.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 04/18/2025] Open
Abstract
Symbiotic microbiota plays a crucial role in the education, development, and maintenance of the host immune system, significantly contributing to overall health. Through the gut-liver axis, the gut microbiota and liver have a bidirectional relationship that is becoming increasingly evident as more research highlights the translocation of the gut microbiota and its metabolites. The focus of this narrative review is to examine and discuss the importance of the gut-liver axis and the enterohepatic barrier in maintaining overall health. Additionally, we emphasize the crucial role of the gut microbiome in liver diseases and explore potential therapeutic strategies for liver diseases by manipulating the microbiota.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
19
|
Sun J, Sun Y, Zou Y, Wang H, Rao B, Zhang X, Liu L, Zhang G, Cui G, Liu Q, Xing J, Xu N, Zheng C, Yu Z, Ren Z. Diagnostic Efficiency of Tongue-Coating Microbiome in Patients With SARS-CoV-2 Omicron Variant Infection and Recovery. INFECTIOUS MICROBES AND DISEASES 2025; 7:54-64. [DOI: 10.1097/im9.0000000000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Abstract
SARS-CoV-2 variants still pose threats to human public health. However, there has been little research regarding alterations in the tongue-coating microbiome in patients infected with the Omicron variant (PIOVs). Herein, we collected 963 tongue-coating samples prospectively, including 349 samples from PIOVs, 242 samples from recovered PIOVs, 300 samples from healthy controls (HCs) and 72 samples from patients infected with the original strain (PIOSs). We randomly selected tongue-coating samples from PIOVs and HCs as the discovery cohort and validation cohort. Tongue-coating microbiota was analyzed using Miseq sequencing. Our results showed that the tongue-coating microbial diversity of PIOVs was increased. We found that in PIOVs, the abundance was increased in 20 genera, including Prevonella and Atopobium, while the abundance was decreased in 23 genera, including Neisseria and Haemophilus. The classifier based on six optimal microbial markers had high diagnostic efficiency in the discovery cohort (area under the curve of 97.73%) and the validation cohort (area under the curve of 93.06%) between the PIOV and HC groups. Importantly, compared with PIOSs, PIOVs showed an increase in Fusobacterium. Recovery of patients was associated with the restoration of the tongue-coating microbiota. In conclusion, this study is the first to characterize the tongue-coating microbiota in PIOVs and to construct noninvasive diagnostic models, providing new strategies for the prevention and control of coronavirus variants.
Collapse
Affiliation(s)
- Junyi Sun
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Zhang
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guizhen Zhang
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Liu
- Emergency Intensive Care Ward, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiyuan Xing
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Xu
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunfu Zheng
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Vučinić D, Redžović A, Hauser G, Mikolašević I. Microbiota and Radiotherapy: Unlocking the Potential for Improved Gastrointestinal Cancer Treatment. Biomedicines 2025; 13:526. [PMID: 40002939 PMCID: PMC11852588 DOI: 10.3390/biomedicines13020526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Radiotherapy (RT) is one of the major cornerstones in managing gastrointestinal (GI) cancers. However, several side effects, such as intestinal inflammation, mucosal injury, and dysbiosis, often compromise this. The gut microbiota increasingly attracts much interest as an essential modulator of RT effects influencing immune responses and tissue repair. Through short-chain fatty acids such as butyrate, representatives of certain bacterial species play a crucial role under normal conditions, keeping the mucosal integrity intact and reducing oxidative stress-mediated damage. Dysbiosis, a state where diminished microbial diversity and increased pathogenic species in the microbiota are seen, amplifies RT-induced toxicity in patients. Clinical investigations highlight that microbiota-targeted interventions, including probiotics, prebiotics, and fecal microbiota transplantation, hold the means to augment RT efficacy and lessen toxicity. Increased microflora diversity and specific microbial profiles have yielded serious patient improvements. Advanced RT methods use stereotactic body radiotherapy combined with microbiota modulation as a promising technique to shield healthy tissue and maximize immune-mediated antitumor effects. Additionally, there is an implication in tumor behavior regulated by the intratumoral microbiota regarding the response to radiotherapy. Notably, the modulation of gut and tumor microbiota provides an avenue to optimize RT benefits in GI cancers, underscoring the importance of personalized therapy.
Collapse
Affiliation(s)
- Damir Vučinić
- Tumor Clinic, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (A.R.); (I.M.)
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Arnela Redžović
- Tumor Clinic, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (A.R.); (I.M.)
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Goran Hauser
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Gastroenterology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Ivana Mikolašević
- Tumor Clinic, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (A.R.); (I.M.)
- School of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Gastroenterology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| |
Collapse
|
21
|
Chmielarczyk A, Golińska E, Tomusiak-Plebanek A, Żeber-Lubecka N, Kulecka M, Szczepanik A, Jedlińska K, Mech K, Szaciłowski K, Kuziak A, Pietrzyk A, Strus M. Microbial dynamics of acute pancreatitis: integrating culture, sequencing, and bile impact on bacterial populations and gaseous metabolites. Front Microbiol 2025; 16:1544124. [PMID: 40012789 PMCID: PMC11860950 DOI: 10.3389/fmicb.2025.1544124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025] Open
Abstract
Background Our study examined the composition of the intestinal microflora in a hospitalized patient with AP symptoms treated several months earlier for diverticulitis. The therapeutic intervention necessitated Hartmann's procedure, culminating in colostomy creation. Aims Employing a thorough microbiological analysis we attempted to demonstrate whether the microflora isolated from the peripancreatic fluid exhibited a stronger correlation with the contents of the stoma or with the rectal swab. Additionally, we sought to determine the association between later onset of AP and diverticulitis. Methods Following clinical materials from the patient in the initial phase of AP were collected: rectal swab, colostomy bag contents (in the publication referred to as stoma content/stool) and peripancreatic fluid. Microbiological analysis was performed, including classic culture methodology, NGS techniques, and genotyping methodologies. Furthermore, the effect of bile on the shift in the population of selected bacterial species was examined. Results The NGS technique confirmed greater consistency in bacteria percentage (phyla/family) between stoma content and peripancreatic fluid. In both samples, a clear dominance of the Proteobacteria phyla (over 75%) and the Enterobacteriaceae family was demonstrated. Moreover, NGS verified the presence of the Fusobacteriota phylum and Fusobacteriaceae family only in rectal swabs, which may indicate a link between this type of bacteria and the etiology of diverticulitis. We observed that Escherichia coli 33 isolated from stool exhibited active gaseous metabolite production (mainly hydrogen). Conclusions The abundant production of hydrogen may substantially impact enzymatic processes, inducing specific alterations in disulfide bonds and trypsin inactivation. Our investigation alludes to the conceivable active involvement of bile in effecting qualitative and quantitative modifications in the peripancreatic microbiota composition, establishing a correlation between released bile and bacterial generation of gaseous metabolites.
Collapse
Affiliation(s)
- Agnieszka Chmielarczyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Edyta Golińska
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Tomusiak-Plebanek
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Antoni Szczepanik
- Clinical Department of General Surgery and Oncology, Narutowicz City Speciality Hospital at Krakow, Krakow, Poland
| | - Katarzyna Jedlińska
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology of Krakow, Krakow, Poland
| | - Krzysztof Mech
- Academic Center for Materials and Nanotechnology, AGH University of Krakow, Krakow, Poland
| | - Konrad Szaciłowski
- Academic Center for Materials and Nanotechnology, AGH University of Krakow, Krakow, Poland
| | - Agata Kuziak
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Pietrzyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
22
|
Kim J, Seki E. Inflammation and Immunity in Liver Neoplasms: Implications for Future Therapeutic Strategies. Mol Cancer Ther 2025; 24:188-199. [PMID: 39365846 PMCID: PMC11794036 DOI: 10.1158/1535-7163.mct-23-0726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 10/06/2024]
Abstract
Over the past two decades, the "hallmarks of cancer" have revolutionized cancer research and highlighted the crucial roles of inflammation and immunity. Protumorigenic inflammation promotes cancer development along with inhibition of antitumor immunity, shaping the tumor microenvironment (TME) toward a tumor-permissive state and further enhancing the malignant potential of cancer cells. This immunosuppressive TME allows tumors to evade immunosurveillance. Thus, understanding the complex interplay between tumors and the immune system within the TME has become pivotal, especially with the advent of immunotherapy. Although immunotherapy has achieved notable success in many malignancies, primary liver cancer, particularly hepatocellular carcinoma, presents unique challenges. The hepatic immunosuppressive environment poses obstacles to the effectiveness of immunotherapy, along with high mortality rates and limited treatment options for patients with liver cancer. In this review, we discuss current understanding of the complex immune-mediated mechanisms underlying liver neoplasms, focusing on hepatocellular carcinoma and liver metastases. We describe the molecular and cellular heterogeneity within the TME, highlighting how this presents unique challenges and opportunities for immunotherapy in liver cancers. By unraveling the immune landscape of liver neoplasms, this review aims to contribute to the development of more effective therapeutic interventions, ultimately improving clinical outcomes for patients with liver cancer.
Collapse
Affiliation(s)
- Jieun Kim
- Karsh Division of Gastroenterology Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
23
|
Han EJ, Ahn JS, Choi YJ, Kim DH, Choi JS, Chung HJ. Exploring the gut microbiome: A potential biomarker for cancer diagnosis, prognosis, and therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189251. [PMID: 39719176 DOI: 10.1016/j.bbcan.2024.189251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
The gut microbiome, a complex community of trillions of microorganisms in the intestines, is crucial in maintaining human health. Recent advancements in microbiome research have unveiled a compelling link between the gut microbiome and cancer development and progression. Alterations in the composition and function of the gut microbiome, known as dysbiosis, have been implicated in various types of cancer, including, esophageal, liver, colon, pancreatic, and gastrointestinal. However, the specific gut microbial strains associated with the development or progression of cancers in various tissues remain largely unclear. Here, we summarize current research findings on the gut microbiome of multiple cancers. This review aims to identify key gut microbial targets that closely influence cancer development based on current research findings. To accurately evaluate the effectiveness of the gut microbiome as a clinical tool for cancer, further research is needed to explore its potential as a biomarker and therapeutic strategy.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Da-Hye Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea; College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea.
| |
Collapse
|
24
|
Mukherjee S, Chopra A, Karmakar S, Bhat SG. Periodontitis increases the risk of gastrointestinal dysfunction: an update on the plausible pathogenic molecular mechanisms. Crit Rev Microbiol 2025; 51:187-217. [PMID: 38602474 DOI: 10.1080/1040841x.2024.2339260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascular disease, rheumatoid arthritis, and cancers. The oral-systemic link between periodontal disease and systemic diseases is attributed to the spread of inflammation, microbial products and microbes to distant organ systems. Oral bacteria reach the gut via swallowed saliva, whereby they induce gut dysbiosis and gastrointestinal dysfunctions. Some periodontal pathogens like Porphyromonas. gingivalis, Klebsiella, Helicobacter. Pylori, Streptococcus, Veillonella, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus, Haemophilus, Aggregatibacter actinomycetomcommitans and Streptococcus mutans can withstand the unfavorable acidic, survive in the gut and result in gut dysbiosis. Gut dysbiosis increases gut inflammation, and induce dysplastic changes that lead to gut dysfunction. Various studies have linked oral bacteria, and oral-gut axis to various GIT disorders like inflammatory bowel disease, liver diseases, hepatocellular and pancreatic ductal carcinoma, ulcerative colitis, and Crohn's disease. Although the correlation between periodontitis and GIT disorders is well established, the intricate molecular mechanisms by which oral microflora induce these changes have not been discussed extensively. This review comprehensively discusses the intricate and unique molecular and immunological mechanisms by which periodontal pathogens can induce gut dysbiosis and dysfunction.
Collapse
Affiliation(s)
- Sayantan Mukherjee
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Sciences, Division of Periodontology, College of Dental Surgery, Iman Abdulrahman Bin Faizal University, Dammam, Saudi Arabia
| |
Collapse
|
25
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
26
|
Vinogradova E, Jarmukhanov Z, Nurgaziyev M, Kossumov A, Nurgozhina A, Mukhanbetzhanov N, Sergazy S, Chulenabyeva L, Issilbayeva A, Askarova S, Kaiyrlykyzy A, Rakhimova S, Kozhamkulov U, Kairov U, Khassenbekova Z, Tarzhanova D, Akilzhanova A, Lee JH, Terwilliger J, Sailybayeva A, Bekbossynova M, Zhumadilov Z, Kozhakhmetov S, Kushugulova A. Enterococcus dysbiosis as a mediator of vitamin D deficiency-associated memory impairments. Heliyon 2025; 11:e41969. [PMID: 39906849 PMCID: PMC11791146 DOI: 10.1016/j.heliyon.2025.e41969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Low vitamin D status is linked to disturbance in cognitive performance. This study explored possible ways how composition and functional capacity of the gut microbiome affects vitamin D metabolism, directing serum vitamin D (VitD) levels and memory impairmets. It was found that gut microbiome composition, characterized by an increase in the relative abundance of Enterococcus and correlated with vitamin D deficiency and, as consequence, with memory impairments. A key mechanism identified in the study was the differential utilization of short-chain fatty acids (SCFAs) produced by gut bacteria as substrates for synthesizing vitamin D3 precursor in the skin. This finding confirms a complex interplay between the gut microbiome, host metabolism, and cognitive health, highlighting the potential significance of targeting Enterococcus dysbiosis in future preventive and therapeutic strategies to address VitD deficiency-related memory impairments. These results underscore the importance of understanding and modulating gut microbiome composition to optimize VitD status and cognitive function.
Collapse
Affiliation(s)
- Elizaveta Vinogradova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Zharkyn Jarmukhanov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Madiyar Nurgaziyev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Alibek Kossumov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ayaulym Nurgozhina
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Shynggys Sergazy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Laura Chulenabyeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Argul Issilbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Aiym Kaiyrlykyzy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Saule Rakhimova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulan Kozhamkulov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Ulykbek Kairov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | | | - Dinar Tarzhanova
- Department of General Pharmacology, Astana Medical University, Astana, Kazakhstan
| | - Ainur Akilzhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Joseph H. Lee
- Sergievsky Center, Taub Institute, Department of Neurology and Epidemiology, Columbia University, New York, NY, USA
| | - Joseph Terwilliger
- Department of Psychiatry and Genetics & Development, Sergievsky Center, Columbia University, New York, NY, USA
- Division of Public Health Genomics, National Institute for Ealth and Welfare, Helsinki, Finland
| | | | | | | | - Samat Kozhakhmetov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Almagul Kushugulova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- National Research Cardiac Surgery Center, Astana, Kazakhstan
| |
Collapse
|
27
|
Wang X, Zhang B, Jiang R. Microbiome interplays in the gut-liver axis: implications for liver cancer pathogenesis and therapeutic insights. Front Cell Infect Microbiol 2025; 15:1467197. [PMID: 39936163 PMCID: PMC11810975 DOI: 10.3389/fcimb.2025.1467197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Globally, primary liver cancer (PLC) ranks the most fatal malignancy. Most of the patients are in advanced stage of PLC at the very time they are diagnosed with it, accounting much for its poor prognosis. With the advancement of modern medical research and care system, the main etiology of PLC more and more switches from hepatitis viruses such as HAV, HBV, HCV, HEV to other causes like metabolism-associated steatohepatitis (MASH) and metabolic-associated fatty liver disease (MAFLD). As a result, it is of great necessity to find out new ways for treatment and early diagnosis to cope with this problem. Nowadays, as the mechanism of the Gut-Liver Axis in the formation of MAFLD, MASH and PLC has been gradually elucidated. The association between gut microbiome and the formation of PLC is of great significance to take an insight into. In this review, we present the concept of Gut-Liver Axis and its function in the mutual influence between gut microbiota and PLC from several aspects in which we will focus on the structure of gut barrier and the functional influences the gut microbiota have on the immune response and metabolic changes on human liver. Furthermore, we conclude the potential association of gut microbiota constitution with the PLC. Eventually, we hope this review can offer novel instructions for early diagnosis and treatment for liver cancer.
Collapse
Affiliation(s)
- Xuran Wang
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bin Zhang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Runqiu Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Liu F, Lu X, Tang M, Chen Y, Zheng X. Gut Microbiome and Metabolite Characteristics Associated With Different Clinical Stages in Non-Small Cell Lung Cancer Patients. Cancer Manag Res 2025; 17:45-56. [PMID: 39816490 PMCID: PMC11734503 DOI: 10.2147/cmar.s499003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025] Open
Abstract
Objective Our research has pinpointed the gut microbiome's role in the progression of various pathological types of non-small cell lung cancer (NSCLC). Nonetheless, the characteristics of the gut microbiome and its metabolites across different clinical stages of NSCLC are yet to be fully understood. The current study seeks to explore the distinctive gut flora and metabolite profiles of NSCLC patients across varying TNM stages. Methods The research team gathered stool samples from 52 patients diagnosed with non-small cell lung cancer (NSCLC) and 29 healthy individuals. Subsequently, they performed 16S rRNA gene amplification sequencing and untargeted gas/liquid chromatography-mass spectrometry metabolomics analysis. Results The study revealed that the alpha-diversity of the gut microbiome in NSCLC patients at different stages did not exhibit statistically significant differences. Notably, Lachnospira and Blautia were more abundant in healthy controls. The distribution of gut microbial species in patients with varying stages of NSCLC was uneven, with Bacteroides and Bacteroidaceae being most prevalent in stage T2, and Prevotella dominating in stage T4. Levels of Ruminococcus gnavus were notably elevated in stages N3 and M. The genus levels of Klebsiella, Parabacteroides, and Tannerellaceae were higher in stage II patients. Rodentibacter was the bacterium with increased levels in stage III NSCLC patients. Further metabolomics studies revealed significantly elevated levels of quinic acid and 3-hydroxybenzoic acid in the healthy control group. In contrast, Stage I+II non-small cell lung cancer (NSCLC) patients exhibited reduced levels of L-cystathionine. Notably, quinic acid, phthalic acid, and L-lactic acid were observed to be increased in Stage III+IV NSCLC patients. Conclusion Compared to the analysis of a single microbial dataset, this study provides deeper functional insights by incorporating comprehensive metabolomic profiling. This approach demonstrates that both the gut microbiome and associated metabolites are altered in NSCLC patients across different clinical stages. Our findings may offer novel perspectives on the pathogenesis of NSCLC at various TNM stages. Further research is warranted to validate and clinically apply these potential biomarkers.
Collapse
Affiliation(s)
- Fan Liu
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xingbing Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Mengli Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yuzuo Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xi Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
29
|
Lin H, Ma Z, Li J, Zhu H, Huang X, Chen H, Tu L, Lian Y, Su Y. Community characteristics and relationship between gut microbiota and intratumoral microbiota in hepatocellular carcinoma. Front Immunol 2025; 15:1500863. [PMID: 39867901 PMCID: PMC11757874 DOI: 10.3389/fimmu.2024.1500863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Background The combination of local therapy with lenvatinib and programmed cell death protein-1 (PD-1) inhibitors represents an emerging treatment paradigm for unresectable hepatocellular carcinoma (uHCC). Our study sought to investigate the interrelationship between gut microbiota and intratumoral microbiota in the context of triple therapy, with a view to identifying potential biological markers. Methods The gut microbial community profiles of patients with primary untreated hepatocellular carcinoma (HCC) and those treated with local therapy combined with lenvatinib and PD-1 inhibitors were analyzed by 16S rRNA gene amplicon sequencing. Additionally, microbial community profiles of tumor tissues of patients with HCC and normal liver tissues were analyzed. Results In our investigation, we observed that patients with HCC who received triple therapy exhibited a notable enhancement in the abundance of Actinobacteriota and a considerable decrease in Escherichia Shigella. Patients who received hepatic artery infusion chemotherapy (HAIC) in combination with levatinib and PD-1 inhibitors exhibited significantly elevated levels of Faecalibacterium prausnitzii and Bacteroides stercoris in comparison to those who received transarterial chemoembolization (TACE) in combination with levatinib and PD-1 inhibitors. Furthermore, a notable decline in microbial diversity was observed within HCC tumors in comparison to normal liver tissues. The gut and intratumoral microbiota in HCC patients exhibited a high degree of similarity to the microbes present at the phylum level. Conclusions Gut microbiota is connected to triple therapy with local therapy combined with lenvatinib and PD-1 inhibitors for HCC. These discoveries underscore the potential of utilizing gut microbiota and intratumoral microbiota as biomarkers, as well as the possibility of triple therapy in the management of HCC.
Collapse
Affiliation(s)
- Huangpeng Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zexian Ma
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Jin Li
- Department of Health Management Center, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Heping Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Xiamen Traditional Chinese Medicine Hospital, Xiamen, China
| | - Xuefeng Huang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huimin Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Liang Tu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yifan Lian
- Department of Gastroenterology, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yongjie Su
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
30
|
Monti E, Vianello C, Leoni I, Galvani G, Lippolis A, D’Amico F, Roggiani S, Stefanelli C, Turroni S, Fornari F. Gut Microbiome Modulation in Hepatocellular Carcinoma: Preventive Role in NAFLD/NASH Progression and Potential Applications in Immunotherapy-Based Strategies. Cells 2025; 14:84. [PMID: 39851512 PMCID: PMC11764391 DOI: 10.3390/cells14020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous tumor associated with several risk factors, with non-alcoholic fatty liver disease (NAFLD) emerging as an important cause of liver tumorigenesis. Due to the obesity epidemics, the occurrence of NAFLD has significantly increased with nearly 30% prevalence worldwide. HCC often arises in the background of chronic liver disease (CLD), such as nonalcoholic steatohepatitis (NASH) and cirrhosis. Gut microbiome (GM) alterations have been linked to NAFLD progression and HCC development, with several investigations reporting a crucial role for the gut-liver axis and microbial metabolites in promoting CLD. Moreover, the GM affects liver homeostasis, energy status, and the immune microenvironment, influencing the response to immunotherapy with interesting therapeutic implications. In this review, we summarize the main changes in the GM and derived metabolites (e.g., short-chain fatty acids and bile acids) occurring in HCC patients and influencing NAFLD progression, emphasizing their potential as early diagnostic biomarkers and prognostic tools. We discuss the weight loss effects of diet-based interventions and healthy lifestyles for the treatment of NAFLD patients, highlighting their impact on the restoration of the intestinal barrier and GM structure. We also describe encouraging preclinical findings on the modulation of GM to improve liver functions in CLD, boost the antitumor immune response (e.g., probiotic supplementations or anti-hypercholesterolemic drug treatment), and ultimately delay NAFLD progression to HCC. The development of safe and effective strategies that target the gut-liver axis holds promise for liver cancer prevention and treatment, especially if personalized options will be considered.
Collapse
Affiliation(s)
- Elisa Monti
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Clara Vianello
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Ilaria Leoni
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Giuseppe Galvani
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Annalisa Lippolis
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
| | - Federica D’Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.D.); (S.R.); (S.T.)
| | - Sara Roggiani
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.D.); (S.R.); (S.T.)
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.D.); (S.R.); (S.T.)
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesca Fornari
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (E.M.); (C.V.); (I.L.); (G.G.); (A.L.); (C.S.)
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
31
|
Xirouchakis E, Pelekanos A, Xirouchakis S, Kranidioti H, Manolakopoulos S. A Systematic Review of Microbiota in Cirrhosis: A Change Towards a More Pathogenic Predisposition. Int J Mol Sci 2025; 26:527. [PMID: 39859243 PMCID: PMC11765289 DOI: 10.3390/ijms26020527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The microbiome of the human intestine is a regulator of health that modulates immune response and plays an important role in metabolism. The diversity, and abundance of microbiota communities in the gut have been shown to change in cirrhosis and its complications. We aimed to review the current knowledge regarding microbiota alterations in cirrhosis, its potential differences according to etiology, and its role in the development of cirrhosis complications. A systematic search of the online bibliographic database up to July 2024 was performed. Randomized controlled trials and observational and cohort studies that included a total or at least a cohort of cirrhotic adult patients were enlisted for data extraction and analysis. A total of 73 publications were included for data extraction. Alpha diversity was found to decrease in cirrhotic patients in 30/38 (78%) of the studies, while beta diversity in 20/22 (90%) presented significant differences between healthy and cirrhotic groups. Proteobacteria significantly increased in 20/27 (74%) studies, followed by Actinobacteria and Fusobacteria, while 22/25 (88%) studies found either a reduction in cirrhotic patients or increased abundance in healthy controls for Firmicutes and Bacteroidetes. The most abundant genera in hepatic encephalopathy groups were pathobionts such as Enterococcus and Streptococcus, followed by Vellionella and Escherichia. Heterogeneity was found among studies regarding Alpha diversity in hepatocellular carcinoma (HCC) as it was decreased in three studies, indifferent in five, and increased in three studies in comparison to cirrhotic non-HCC patients. The dysbiosis of the gut microbiota is associated with cirrhosis and the development of complications such as hepatic encephalopathy and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Elias Xirouchakis
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
- Department of Gastroenterology and Hepatology, Athens Medical, P. Faliron Hospital, 175 62 Athens, Greece;
| | - Alexandros Pelekanos
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
| | - Spyridon Xirouchakis
- Department of Gastroenterology and Hepatology, Athens Medical, P. Faliron Hospital, 175 62 Athens, Greece;
- Medical School, European University of Cyprus, 2404 Nicosia, Cyprus
| | - Hariklia Kranidioti
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
| | - Spilios Manolakopoulos
- Gastroenterology-Liver-Endoscopy Unit, 2nd Department of Internal Medicine, General Hospital of Athens “Hippocration”, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (A.P.); (H.K.); (S.M.)
| |
Collapse
|
32
|
Lederer AK, Görrissen N, Nguyen TT, Kreutz C, Rasel H, Bartsch F, Lang H, Endres K. Exploring the effects of gut microbiota on cholangiocarcinoma progression by patient-derived organoids. J Transl Med 2025; 23:34. [PMID: 39789543 PMCID: PMC11716211 DOI: 10.1186/s12967-024-06012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Recent research indicates a role of gut microbiota in development and progression of life-threatening diseases such as cancer. Carcinomas of the biliary ducts, the so-called cholangiocarcinomas, are known for their aggressive tumor biology, implying poor prognosis of affected patients. An impact of the gut microbiota on cholangiocarcinoma development and progression is plausible due to the enterohepatic circulation and is therefore the subject of scientific debate, however evidence is still lacking. This review aimed to discuss the suitability of complex cell culture models to investigate the role of gut microbiota in cholangiocarcinoma progression. MAIN BODY Clinical research in this area is challenging due to poor comparability of patients and feasibility reasons, which is why translational models are needed to understand the basis of tumor progression in cholangiocarcinoma. A promising approach to investigate the influence of gut microbiota could be an organoid model. Organoids are 3D cell models cultivated in a modifiable and controlled condition, which can be grown from tumor tissue. 3D cell models are able to imitate physiological and pathological processes in the human body and thus contribute to a better understanding of health and disease. CONCLUSION The use of complex cell cultures such as organoids and organoid co-cultures might be powerful and valuable tools to study not only the growth behavior and growth of cholangiocarcinoma cells, but also the interaction with the tumor microenvironment and with components of the gut microbiota.
Collapse
Affiliation(s)
- Ann-Kathrin Lederer
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany.
- Center for Complementary Medicine, Department of Medicine II, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
| | - Nele Görrissen
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Tinh Thi Nguyen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, 79106, Freiburg, Germany
| | - Hannah Rasel
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Fabian Bartsch
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Hauke Lang
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, 55131, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, 55131, Mainz, Germany
- Faculty of Computer Sciences and Microsystems Technology, University of Applied Sciences Kaiserslautern, 66482, Zweibrücken, Germany
| |
Collapse
|
33
|
Anwer EKE, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, Abdelnaser A. Gut Microbiota Secondary Metabolites: Key Roles in GI Tract Cancers and Infectious Diseases. Biomedicines 2025; 13:100. [PMID: 39857684 PMCID: PMC11762448 DOI: 10.3390/biomedicines13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The gut microbiota, a dynamic ecosystem of trillions of microorganisms, produces secondary metabolites that profoundly influence host health. Recent research has highlighted the significant role of these metabolites, particularly short-chain fatty acids, indoles, and bile acids, in modulating immune responses, impacting epigenetic mechanisms, and contributing to disease processes. In gastrointestinal (GI) cancers such as colorectal, liver, and gastric cancer, microbial metabolites can drive tumorigenesis by promoting inflammation, DNA damage, and immune evasion. Conversely, these same metabolites hold therapeutic promise, potentially enhancing responses to chemotherapy and immunotherapy and even directly suppressing tumor growth. In addition, gut microbial metabolites play crucial roles in infectious disease susceptibility and resilience, mediating immune pathways that impact pathogen resistance. By consolidating recent insights into the gut microbiota's role in shaping disease and health, this review underscores the therapeutic potential of targeting microbiome-derived metabolites for treating GI cancers and infectious diseases and calls for further research into microbiome-based interventions.
Collapse
Affiliation(s)
- Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Muhammad Ajagbe
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Moustafa Sherif
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (E.K.E.A.); (M.A.); (M.S.)
| | - Abobaker S. Musaibah
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Shuaib Mahmoud
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| | - Ali ElBanbi
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (A.S.M.); (S.M.)
| |
Collapse
|
34
|
Amaro-da-Cruz A, Rubio-Tomás T, Álvarez-Mercado AI. Specific microbiome patterns and their association with breast cancer: the intestinal microbiota as a potential biomarker and therapeutic strategy. Clin Transl Oncol 2025; 27:15-41. [PMID: 38890244 PMCID: PMC11735593 DOI: 10.1007/s12094-024-03554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer (BC) is one of the most diagnosed cancers in women. Based on histological characteristics, they are classified as non-invasive, or in situ (tumors located within the milk ducts or milk lobules) and invasive. BC may develop from in situ carcinomas over time. Determining prognosis and predicting response to treatment are essential tools to manage this disease and reduce its incidence and mortality, as well as to promote personalized therapy for patients. However, over half of the cases are not associated with known risk factors. In addition, some patients develop resistance to treatment and relapse. Therefore, it is necessary to identify new biomarkers and treatment strategies that improve existing therapies. In this regard, the role of the microbiome is being researched as it could play a role in carcinogenesis and the efficacy of BC therapies. This review aims to describe specific microbiome patterns associated with BC. For this, a literature search was carried out in PubMed database using the MeSH terms "Breast Neoplasms" and "Gastrointestinal Microbiome", including 29 publications. Most of the studies have focused on characterizing the gut or breast tissue microbiome of the patients. Likewise, studies in animal models and in vitro that investigated the impact of gut microbiota (GM) on BC treatments and the effects of the microbiome on tumor cells were included. Based on the results of the included articles, BC could be associated with an imbalance in the GM. This imbalance varied depending on molecular type, stage and grade of cancer, menopause, menarche, body mass index, and physical activity. However, a specific microbial profile could not be identified as a biomarker. On the other hand, some studies suggest that the GM may influence the efficacy of BC therapies. In addition, some microorganisms and bacterial metabolites could improve the effects of therapies or influence tumor development.
Collapse
Affiliation(s)
- Alba Amaro-da-Cruz
- Department of Chemical Engineering, Faculty of Science, University of Granada, 18071, Granada, Spain
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Ana I Álvarez-Mercado
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014, Granada, Spain.
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016, Armilla, Spain.
- Department of Pharmacology School of Pharmacy, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
35
|
Wang J, Wang X, Zhuo E, Chen B, Chan S. Gut‑liver axis in liver disease: From basic science to clinical treatment (Review). Mol Med Rep 2025; 31:10. [PMID: 39450549 PMCID: PMC11541166 DOI: 10.3892/mmr.2024.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 10/26/2024] Open
Abstract
Incidence of a number of liver diseases has increased. Gut microbiota serves a role in the pathogenesis of hepatitis, cirrhosis and liver cancer. Gut microbiota is considered 'a new virtual metabolic organ'. The interaction between the gut microbiota and liver is termed the gut‑liver axis. The gut‑liver axis provides a novel research direction for mechanism of liver disease development. The present review discusses the role of the gut‑liver axis and how this can be targeted by novel treatments for common liver diseases.
Collapse
Affiliation(s)
- Jianpeng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Clinical Medicine, The First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
36
|
Wang X, Fang Y, Liang W, Cai Y, Wong CC, Wang J, Wang N, Lau HCH, Jiao Y, Zhou X, Ye L, Mo M, Yang T, Fan M, Song L, Zhou H, Zhao Q, Chu ESH, Liang M, Liu W, Liu X, Zhang S, Shang H, Wei H, Li X, Xu L, Liao B, Sung JJY, Kuang M, Yu J. Gut-liver translocation of pathogen Klebsiella pneumoniae promotes hepatocellular carcinoma in mice. Nat Microbiol 2025; 10:169-184. [PMID: 39747695 PMCID: PMC11726454 DOI: 10.1038/s41564-024-01890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is accompanied by an altered gut microbiota but whether the latter contributes to carcinogenesis is unclear. Here we show that faecal microbiota transplantation (FMT) using stool samples from patients with HCC spontaneously initiate liver inflammation, fibrosis and dysplasia in wild-type mice, and accelerate disease progression in a mouse model of HCC. We find that HCC-FMT results in gut barrier injury and translocation of live bacteria to the liver. Metagenomic analyses and bacterial culture of liver tissues reveal enrichment of the gut pathogen Klebsiella pneumoniae in patients with HCC and mice transplanted with the HCC microbiota. Moreover, K. pneumoniae monocolonization recapitulates the effect of HCC-FMT in promoting liver inflammation and hepatocarcinogenesis. Mechanistically, K. pneumoniae surface protein PBP1B interacts with and activates TLR4 on HCC cells, leading to increased cell proliferation and activation of oncogenic signalling. Targeting gut colonization using K. oxytoca or TLR4 inhibition represses K. pneumoniae-induced HCC progression. These findings indicate a role for an altered gut microbiota in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Fang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhong Cai
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi Chun Wong
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Junlin Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying Jiao
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xingyu Zhou
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Liufang Ye
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Mengmiao Mo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Yang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Miao Fan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Song
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Heming Zhou
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Eagle Siu-Hong Chu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Meinong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixin Liu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Liu
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuaiyin Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haitao Shang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Wei
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ming Kuang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
37
|
Todorovic N, Martinelli S, Nannini G, Weiskirchen R, Amedei A. Etiology-Dependent Microbiome Differences in Hepatocellular Carcinoma Development. Int J Mol Sci 2024; 25:13510. [PMID: 39769276 PMCID: PMC11677376 DOI: 10.3390/ijms252413510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic liver disease is characterised by persistent inflammation, tissue damage, and regeneration, which leads to steatosis, fibrosis, and, lastly, cirrhosis and hepatocellular carcinoma (HCC). HCC, the most prevalent form of primary liver cancer, is one of the leading causes of cancer-related mortality worldwide. The gut microbiota plays a fundamental role in human physiology, and disturbances in its critical balance are widely recognised as contributors to various pathological conditions, including chronic liver diseases, both infectious and non-infectious in nature. Growing interest in microbiota research has recently shifted the focus towards the study of intratumoural microbiota, referred to as the "oncobiome", which can significantly impact the development and progression of HCC. In this review, we discuss existing research and provide an overview of the microbiota influence on viral hepatitis, particularly in shaping the progression of liver disease caused by the hepatitis B and hepatitis C viruses. We also explore microbial dysbiosis and its contribution to the silent and dangerous progression of non-alcoholic fatty liver disease. Additionally, we address the impact of alcohol on the liver and its interaction with the microbiota, tracing the pathway from inflammation to cirrhosis and cancer. The review emphasises the most common etiologies of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Nevena Todorovic
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
- Clinic for Infectious and Tropical Diseases, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Serena Martinelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (N.T.); (S.M.); (G.N.)
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
38
|
Zhou P, Qiu C, Zhuang Z, Shi K, Yang Z, Ding Y, Qu H, Xia J. A two-sample Mendelian randomization study reveals the causal effects of statin medication on gut microbiota abundance in the European population. Front Genet 2024; 15:1380830. [PMID: 39734574 PMCID: PMC11674602 DOI: 10.3389/fgene.2024.1380830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/14/2024] [Indexed: 12/31/2024] Open
Abstract
Background Observational studies have reported changes in gut microbiota abundance caused by long-term statin medication therapy. However, the causal relation between statin medication and gut microbiota subsets based on genetic variants remains unclear. Methods We used genome-wide association study (GWAS) data on statin medication from the FinnGen database and gut microbiota abundance GWAS data from the IEU OpenGWAS project. A Mendelian randomization (MR) analysis was conducted to evaluate the causal effect of statin medication on gut microbiota abundance using the inverse variance weighting (IVW) method, MR-Egger regression, and weighted median approach. Meanwhile, heterogeneity and pleiotropy analyses were also undertaken in this study. Results Statin medication was negatively correlated with five species of gut microbiota abundance: Parabacteroides (BetaIVW = -0.2745, 95% CI = (-0.4422, -0.1068), and P IVW = 0.0013), Ruminococcaceae UCG-009 (BetaIVW = -0.1904, 95% CI = (-0.3255, -0.0553), and P IVW = 0.0057), Coprococcus 1 (BetaIVW = -0.1212, 95% CI = (-0.2194, -0.0231), and P IVW = 0.0154), Ruminococcaceae UCG-010 (BetaIVW = -0.1149, 95% CI = (-0.2238, -0.0060), and P IVW = 0.0385), and Veillonellaceae (BetaIVW = -0.0970, 95% CI = (-0.2238, 0.0060), and P IVW = 0.0400) and positively correlated with one species of gut microbiota: Desulfovibrio (BetaIVW = 0.2452, 95% CI = (0.0299, 0.4606), and P IVW = 0.0255). In addition, no significant heterogeneity or pleiotropy was detected in the abovementioned gut microbiota. Conclusion This Mendelian randomization analysis indicates a causal relationship between statin medication and six gut microbiota species. These findings may provide new strategies for health monitoring in populations taking long-term statin medications.
Collapse
Affiliation(s)
- Peng Zhou
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, School of Medicine, Jiangnan University, Wuxi, China
| | - Chen Qiu
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zequn Zhuang
- Department of Hepatobiliary Surgery, Jinjiang Municipal Hospital (Shanghai Sixth People’s Hospital Fujian), Quanzhou, Fujian, China
| | - Kaihang Shi
- Department of Hepatobiliary Surgery, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Zhihui Yang
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, School of Medicine, Jiangnan University, Wuxi, China
| | - Yuyan Ding
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, School of Medicine, Jiangnan University, Wuxi, China
| | - Huiheng Qu
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, School of Medicine, Jiangnan University, Wuxi, China
| | - Jiazeng Xia
- Department of General Surgery, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
- Department of General Surgery, Institute of General Surgical Research, Jiangnan University Medical Center, School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
39
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
40
|
Jinato T, Anuntakarun S, Satthawiwat N, Chuaypen N, Tangkijvanich P. Distinct alterations of gut microbiota between viral- and non-viral-related hepatocellular carcinoma. Appl Microbiol Biotechnol 2024; 108:34. [PMID: 38183473 PMCID: PMC10771587 DOI: 10.1007/s00253-023-12845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 01/08/2024]
Abstract
Altered gut microbiota has been connected to hepatocellular carcinoma (HCC) occurrence and advancement. This study was conducted to identify a gut microbiota signature in differentiating between viral-related HCC (Viral-HCC) and non-hepatitis B-, non-hepatitis C-related HCC (NBNC-HCC). Fecal specimens were obtained from 16 healthy controls, 33 patients with viral-HCC (17 and 16 cases with hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, respectively), and 18 patients with NBNC-HCC. Compositions of fecal microbiota were assessed by 16S rRNA sequencing. Bioinformatic analysis was performed by the DADA2 pipeline in the R program. Significantly different genera from the top 50 relative abundance were used to classify between subgroups of HCC by the Random Forest algorithm. Our data demonstrated that the HCC group had a significantly decreased alpha-diversity and changed microbial composition in comparison with healthy controls. Within the top 50 relative abundance, there were 11 genera including Faecalibacterium, Agathobacter, and Coprococcus that were significantly enhanced in Viral-HCC, while 5 genera such as Bacteroides, Streptococcus, Ruminococcus gnavus group, Parabacteroides, and Erysipelatoclostridium were enhanced in NBNC-HCC. Compared to Viral-HCC, the NBNC-HCC subgroup significantly reduced various short-chain fatty acid-producing bacteria, as well as declined fecal butyrate but elevated plasma surrogate markers of microbial translocation. Based on the machine learning algorithm, a high diagnostic accuracy to classify HCC subgroups was achieved with an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.94. Collectively, these data revealed that gut dysbiosis was distinct according to etiological factors of HCC, which might play an essential role in hepatocarcinogenesis. These findings underscore the possible use of a gut microbiota signature for the diagnosis and therapeutic approaches regarding different subgroups of HCC. KEY POINTS: • Gut dysbiosis is connected to hepatocarcinogenesis and can be used as a novel biomarker. • Gut microbiota composition is significantly altered in different etiological factors of HCC. • Microbiota-based signature can accurately distinguish between Viral-HCC and NBNC-HCC.
Collapse
Affiliation(s)
- Thananya Jinato
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Doctor of Philosophy Program in Medical Sciences, Graduate Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Songtham Anuntakarun
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nantawat Satthawiwat
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
41
|
Hu B, Yang Y, Yao J, Lin G, He Q, Bo Z, Zhang Z, Li A, Wang Y, Chen G, Shan Y. Gut Microbiota as Mediator and Moderator Between Hepatitis B Virus and Hepatocellular Carcinoma: A Prospective Study. Cancer Med 2024; 13:e70454. [PMID: 39702929 DOI: 10.1002/cam4.70454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/06/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The impact of gut microbiome on hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is unclear. We aimed to evaluate the potential correlation between gut microbiome and HBV-related HCC and introduced novel machine learning (ML) signatures based on gut microbe to predict the risk of HCC. MATERIALS AND METHODS A total of 640 patients with chronic liver diseases or HCC were prospectively recruited between 2019 and 2022. Fecal samples were collected and subjected to 16S rRNA gene sequencing. Univariate and multivariate logistic regression was applied to identify risk characteristics. Several ML methods were employed to construct gut microbe-based models and the predictive performance was evaluated. RESULTS A total of 571 patients were involved in the study, including 374 patients with HCC and 197 patients with chronic liver diseases. After the propensity score matching method, 147 pairs of participants were enrolled in the analysis. Bacteroidia and Bacteroidales were demonstrated to exert mediating effects between HBV and HCC, and the moderating effects varied across Bacilli, Lactobacillales, Erysipelotrichaceae, Actinomyces, and Roseburia. HBV, alpha-fetoprotein, alanine transaminase, triglyceride, and Child-Pugh were identified as independent risk factors for HCC occurrence. Seven ML-based HBV-gut microbe models were established to predict HCC, with AUCs ranging from 0.821 to 0.898 in the training set and 0.813-0.885 in the validation set. Furthermore, the merged clinical-HBV-gut microbe models exhibited a comparable performance to HBV-gut microbe models. CONCLUSIONS Gut microbes are important factors between HBV and HCC through its potential mediating and moderating effects, which can be used as valuable biomarkers for the pathogenesis of HBV-related HCC.
Collapse
Affiliation(s)
- Bingren Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Jiangqiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ganglian Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qikuan He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Bo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhewei Zhang
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Anlvna Li
- The First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunfeng Shan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Wu J, Zhang J, Huang G, Zhong Y, Yang Y, Deng P. Evidence from mendelian randomization identifies several causal relationships between primary membranous nephropathy and gut microbiota. Ren Fail 2024; 46:2349136. [PMID: 38770992 PMCID: PMC11110878 DOI: 10.1080/0886022x.2024.2349136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Research has showcased a correlation between disruptions in gut microbiota and primary membranous nephropathy (pMN), giving rise to the concept of the 'gut-kidney axis'. However, the precise relationship between gut microbiota and pMN remains elusive. Hence, this study endeavors to investigate whether a causal relationship exists between gut microbiota and pMN utilizing Mendelian randomization (MR) analysis. METHODS The primary method employed for MR analysis is the inverse variance weighting method, supplemented by MR-Egger and the weighted median method, to infer causality. This approach was validated within the pMN cohort across two distinct populations. RESULTS At the species level, the abundance of Bifidobacterium bifidum and Alistipes indistinctus was negatively correlated with the risk of pMN. Conversely, pMN was positively associated with Bacilli abundance at the class level, Lachnospiraceae abundance at the family level, and Dialister abundance at the genus level. Specifically, at the species level, pMN was positively correlated with the abundance of Ruminococcus lactaris, Dialister invisus, and Coprococcus_sp_ART55_1. CONCLUSION These findings lay the groundwork for future research exploring the interplay between pMN and the gut microbiota, with substantial implications for the prevention and treatment of pMN and its associated complications.
Collapse
Affiliation(s)
- Jianwei Wu
- Department of Medical Technology, Gannan Healthcare Vocational College, Ganzhou, China
| | - Jing Zhang
- Department of Medical Technology, Gannan Healthcare Vocational College, Ganzhou, China
| | - Gang Huang
- Department of Laboratory, GanZhou Cancer Hospital, Ganzhou, China
| | - Yinglian Zhong
- Department of Blood Transfusion, Ganzhou Fifth People’s Hospital, Ganzhou, China
| | - Yi Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Deng
- Department of Endocrinology, Department of Nephrology, Ganzhou Fifth People’s Hospital, Ganzhou, China
| |
Collapse
|
43
|
Yang Y, Bo Z, Wang J, Chen B, Su Q, Lian Y, Guo Y, Yang J, Zheng C, Wang J, Zeng H, Zhou J, Chen Y, Chen G, Wang Y. Machine learning based on alcohol drinking-gut microbiota-liver axis in predicting the occurrence of early-stage hepatocellular carcinoma. BMC Cancer 2024; 24:1468. [PMID: 39609660 PMCID: PMC11606210 DOI: 10.1186/s12885-024-13161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Alcohol drinking and gut microbiota are related to hepatocellular carcinoma (HCC), but the specific relationship between them remains unclear. AIMS We aimed to establish the alcohol drinking-gut microbiota-liver axis and develop machine learning (ML) models in predicting the occurrence of early-stage HCC. METHODS Two hundred sixty-nine patients with early-stage HCC and 278 controls were recruited. Alcohol drinking-gut microbiota-liver axis was established through the mediation/moderation effect analyses. Eight ML algorithms including Classification and Regression Tree (CART), Gradient Boosting Machine (GBM), K-Nearest Neighbor (KNN), Logistic Regression (LR), Neural Network (NN), Random Forest (RF), Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost) were applied. RESULTS A total of 160 pairs of individuals were included for analyses. The mediation effects of Genus_Catenibacterium (P = 0.024), Genus_Tyzzerella_4 (P < 0.001), and Species_Tyzzerella_4 (P = 0.020) were discovered. The moderation effects of Family_Enterococcaceae (OR = 0.741, 95%CI:0.160-0.760, P = 0.017), Family_Leuconostocaceae (OR = 0.793, 95%CI:0.486-3.593, P = 0.010), Genus_Enterococcus (OR = 0.744, 95%CI:0.161-0.753, P = 0.017), Genus_Erysipelatoclostridium (OR = 0.693, 95%CI:0.062-0.672, P = 0.032), Genus_Lactobacillus (OR = 0.655, 95%CI:0.098-0.749, P = 0.011), Species_Enterococcus_faecium (OR = 0.692, 95%CI:0.061-0.673, P = 0.013), and Species_Lactobacillus (OR = 0.653, 95%CI:0.086-0.765, P = 0.014) were uncovered. The predictive power of eight ML models was satisfactory (AUCs:0.855-0.932). The XGBoost model had the best predictive ability (AUC = 0.932). CONCLUSIONS ML models based on the alcohol drinking-gut microbiota-liver axis are valuable in predicting the occurrence of early-stage HCC.
Collapse
Affiliation(s)
- Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Clinical Laboratory, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyuan Bo
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingxian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yiran Lian
- The Second Clinical School of Wenzhou Medical University, Wenzhou, China
| | - Yimo Guo
- Clinical Medicine, Renji College, Wenzhou Medical University, Wenzhou, China
| | - Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chongming Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Juejin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junxi Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yaqing Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Hepatobiliary Pancreatic Tumor Bioengineering Cross International Joint Laboratory of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, China.
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
44
|
Qasem HH, El-Sayed WM. The bacterial microbiome and cancer: development, diagnosis, treatment, and future directions. Clin Exp Med 2024; 25:12. [PMID: 39607612 PMCID: PMC11604675 DOI: 10.1007/s10238-024-01523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The term "microbiome" refers to the collection of bacterial species that reside in the human body's tissues. Sometimes, it is used to refer to all microbial entities (bacteria, viruses, fungi, and others) which colonize the human body. It is now generally acknowledged that the microbiome plays a critical role in the host's physiological processes and general well-being. Changes in the structure and/or function of the microbiome (dysbiosis) are linked to the development of many diseases including cancer. The claim that because of their negatively charged membrane, cancer cells are more vulnerable to some bacteria than normal cells and that is how the link between these bacteria and cancer evolved has been refuted. Furthermore, the relationship between the microbiome and cancer is more evident in the emerging field of cancer immunotherapy. In this narrative review, we detailed the correlation between the presence/absence of specific bacterial species and the development, diagnosis, prognosis, and treatment of some types of cancer including colorectal, lung, breast, and prostate cancer. In addition, we discussed the mechanisms of microbiome-cancer interactions including genotoxin production, the role of free radicals, modification of signaling pathways in host cells, immune modulation, and modulation of drug metabolism by microbiome. Future directions and clinical application of microbiome in the early detection, prognosis, and treatment of cancer emphasizing on the role of fecal transplantation, probiotics, prebiotics, and microbiome biomarkers were also considered.
Collapse
Affiliation(s)
- Hasnaa H Qasem
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Wael M El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
45
|
Li J, Zhai X, Chen C, Zhang R, Huang X, Liu Y. The intrahepatic bacterial metataxonomic signature of patients with hepatocellular carcinoma. Sci Rep 2024; 14:29077. [PMID: 39580523 PMCID: PMC11585554 DOI: 10.1038/s41598-024-80246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Dysbiosis of the gut-liver axis increases the risk of bacterial and metabolite influx into the liver, which may contribute to the development of hepatocellular carcinoma (HCC). In this study, we compared the microbiomes in HCC tumors and adjacent tissues. We examined the HCC tumors and adjacent tissues from 19 patients diagnosed with HCC. We find that the liver tissues from HCC patients with capsule invasion presented higher alpha diversity at the genus level than those without. The bacterial compositions in liver tissues of HCC patients at stage II differed from those at stage I and Advanced, respectively. Metagenomic profiling revealed that order Actinomycetales was enriched in the HCC patients at advanced stages. Order Lactobacillales, family Veillonellaceae, genera Rhodobacter and Megasphaera are enriched in tumors of HCC patients, whereas genus Pseudochrobactrum is enriched in the adjacent tissues from HCC patients. An increased abundance of class Actinobacteria and order Actinomycetales is observed in the HCC patients with cirrhosis. In contrast, phylum Firmicutes, classes Clostridia and Betaproteobacteria, and order Clostridiales are enriched in those without cirrhosis. The presence of various types of bacterial 16S rRNAs in HCC tumors and adjacent tissues indicates the presence of various bacterial communities therein. Our study provides information about differentially abundant intrahepatic bacteria in patients with HCC. The differences found may support possible diagnostic and personalized therapeutic implications for HCC.
Collapse
Affiliation(s)
- Jie Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuanpei Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Changzhou Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
| | - Rong Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Xiaowu Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
46
|
Chen P, Yang C, Ren K, Xu M, Pan C, Ye X, Li L. Modulation of gut microbiota by probiotics to improve the efficacy of immunotherapy in hepatocellular carcinoma. Front Immunol 2024; 15:1504948. [PMID: 39650662 PMCID: PMC11621041 DOI: 10.3389/fimmu.2024.1504948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Hepatocellular carcinoma, a common malignancy of the digestive system, typically progresses through a sequence of hepatitis, liver fibrosis, cirrhosis and ultimately, tumor. The interaction between gut microbiota, the portal venous system and the biliary tract, referred to as the gut-liver axis, is crucial in understanding the mechanisms that contribute to the progression of hepatocellular carcinoma. Mechanisms implicated include gut dysbiosis, alterations in microbial metabolites and increased intestinal barrier permeability. Imbalances in gut microbiota, or dysbiosis, contributes to hepatocellular carcinoma by producing carcinogenic substances, disrupting the balance of the immune system, altering metabolic processes, and increasing intestinal barrier permeability. Concurrently, accumulating evidence suggests that gut microbiota has the ability to modulate antitumor immune responses and affect the efficacy of cancer immunotherapies. As a new and effective strategy, immunotherapy offers significant potential for managing advanced stages of hepatocellular carcinoma, with immune checkpoint inhibitors achieving significant advancements in improving patients' survival. Probiotics play a vital role in promoting health and preventing diseases by modulating metabolic processes, inflammation and immune responses. Research indicates that they are instrumental in boosting antitumor immune responses through the modulation of gut microbiota. This review is to explore the relationship between gut microbiota and the emergence of hepatocellular carcinoma, assess the contributions of probiotics to immunotherapy and outline the latest research findings, providing a safer and more cost-effective potential strategy for the prevention and management of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chengchen Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Ren
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Mingzhi Xu
- Department of General Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Chenwei Pan
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuewei Ye
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Jeyaraman N, Jeyaraman M, Mariappan T, Muthu S, Ramasubramanian S, Sharma S, Santos GS, da Fonseca LF, Lana JF. Insights of gut-liver axis in hepatic diseases: Mechanisms, clinical implications, and therapeutic potentials. World J Gastrointest Pharmacol Ther 2024; 15:98146. [PMID: 39534519 PMCID: PMC11551618 DOI: 10.4292/wjgpt.v15.i6.98146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
With the rising prevalence of chronic liver diseases worldwide, there exists a need to diversify our artillery to incorporate a plethora of diagnostic and therapeutic methods to combat this disease. Currently, the most common causes of liver disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. Some of these chronic diseases have the potential to transform into hepatocellular carcinoma with advancing fibrosis. In this review, we analyse the relationship between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are required to understand the association between the gut microbiome and hepatic disease progression through which we can identify effective ways to deal with this issue.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
48
|
Yu J, Chen X, Yang X, Zhang B. Understanding gut dysbiosis for hepatocellular carcinoma diagnosis and treatment. Trends Endocrinol Metab 2024; 35:1006-1020. [PMID: 38969601 DOI: 10.1016/j.tem.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
The gut microbiome can play a crucial role in hepatocellular carcinoma (HCC) progression through the enterohepatic circulation, primarily acting via metabolic reprogramming and alterations in the hepatic immune microenvironment triggered by microbe-associated molecular patterns (MAMPs), metabolites, and fungi. In addition, the gut microbiome shows potential as a biomarker for early HCC diagnosis and for assessing the efficacy of immunotherapy in unresectable HCC. This review examines how gut microbiota dysbiosis, with varied functional profiles, contributes to HCCs of different etiologies. We discuss therapeutic strategies to modulate the gut microbiome including diets, antibiotics, probiotics, fecal microbiota transplantation, and nano-delivery systems, and underscore their potential as an adjunctive treatment modality for HCC.
Collapse
Affiliation(s)
- Jingjing Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
49
|
Daniel N, Genua F, Jenab M, Mayén AL, Chrysovalantou Chatziioannou A, Keski-Rahkonen P, Hughes DJ. The role of the gut microbiome in the development of hepatobiliary cancers. Hepatology 2024; 80:1252-1269. [PMID: 37055022 PMCID: PMC11487028 DOI: 10.1097/hep.0000000000000406] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.
Collapse
Affiliation(s)
- Neil Daniel
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | | | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
50
|
Gulliver EL, Di Simone SK, Chonwerawong M, Forster SC. Unlocking the potential for microbiome-based therapeutics to address the sustainable development goal of good health and wellbeing. Microb Biotechnol 2024; 17:e70041. [PMID: 39487814 PMCID: PMC11531172 DOI: 10.1111/1751-7915.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Recent years have witnessed major advances and an ever-growing list of healthcare applications for microbiome-based therapeutics. However, these advances have disproportionately targeted diseases common in high-income countries (HICs). Within low- to middle-income countries (LMIC), opportunities for microbiome-based therapeutics include sexual health epidemics, maternal health, early life mortality, malnutrition, vaccine response and infectious diseases. In this review we detail the advances that have been achieved in microbiome-based therapeutics for these areas of healthcare and identify where further work is required. Current efforts to characterise microbiomes from LMICs will aid in targeting and optimisation of therapeutics and preventative strategies specifically suited to the unmet needs within these populations. Once achieved, opportunities from disease treatment and improved treatment efficacy through to disease prevention and vector control can be effectively addressed using probiotics and live biotherapeutics. Together these strategies have the potential to increase individual health, overcome logistical challenges and reduce overall medical, individual, societal and economic costs.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Sara K. Di Simone
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Ritchie Centre, HudsonInstitute of Medical ResearchMelbourneVictoriaAustralia
- Department of PaediatricsMonash UniversityMelbourneVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Molecular and Translational ScienceMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|