1
|
Zhang Y, Lu Y, Wang N, Hao F, Chen Y, Fei X, Wang J. Ascending E2F7a/b ratio facilitates KLF13 transcription in hepatocellular carcinoma and correlates with the abundance of binuclear hepatocytes (ABH) modulation for short-term recurrence. FASEB J 2025; 39:e70485. [PMID: 40116212 PMCID: PMC11926945 DOI: 10.1096/fj.202402520r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Short-term recurrence after surgery severely threatens patients' lives and leads to dismal outcomes in hepatocellular carcinoma (HCC). Our previous research proposed the abundance of binuclear hepatocytes (ABH) as an independent indicator related to the cytokinesis regulator Anillin and significantly associated with HCC recurrence. The exact mechanism of ABH modulation has not been clearly illustrated. In this study, we intensively investigated the probable regulation mechanism and noticed a contradiction between E2F7 upregulation and ABH attenuation. As we discovered, E2F7 has two isoforms, E2F7a and E2F7b, and we innovatively define a value of the E2F7a/b ratio using a cutoff value of 6.5. E2F7 upregulation in the paracancerous tissues was predominantly presented by the E2F7a isoform, leading to an increase in the E2F7a/b ratio, instead of E2F7b as a main component in non-cancerous tissues, and is associated with short-term recurrence. We further found that KLF13 transcriptionally promotes Anillin expression in HCC and was suppressively impacted by E2F7b, but not by the highly expressed E2F7a. Hence, the ascending E2F7a/b ratio induced significant upregulation of KLF13 and participated in the attenuation of ABH in the paracancerous liver tissues. In conclusion, E2F7 presents a particular expression status in HCC by predominantly upregulating E2F7a rather than E2F7b. The ascending E2F7a/b ratio weakens the suppressive effect on KLF13 transcription and sequentially participates in ABH attenuation, associated with short-term HCC recurrence post-operation.
Collapse
Affiliation(s)
- Yian Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yiquan Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Nan Wang
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Zhang Y, Lu Y, Wang N, Hao F, Chen Y, Fei X, Wang J. Paracancerous binuclear hepatocytes assessed by computer program is a novel biomarker for short term recurrence of hepatocellular carcinoma after surgery. Sci Rep 2025; 15:9583. [PMID: 40113908 PMCID: PMC11926264 DOI: 10.1038/s41598-025-90004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is notorious for its high likelihood of recurrence even after radical surgery, which calls for effective adjuvant therapy based on more precise patient selection. The decline of the abundance of binuclear hepatocytes (ABH) in paracancerous liver tissues has been reported to indicate pathological changes in liver cells, leading to short-term recurrence within 2 years. In this research, we analyzed 34 HCC patients and 22 patients underwent liver surgery for non-HCC diseases. An ImageJ script was used to assess binuclear hepatocytes in the HE-staining specimens of paracancerous liver tissues. ABH significantly decreased in HCC patients and indicated poorer outcomes. Immunohistochemistry (IHC) assays suggested ploidy-related regulation of arginase 1 (ARG1) expression. Our findings suggested computer-assisted assessment of ABH as a possible biomarker for short-term HCC recurrence.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yiquan Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Nan Wang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
- Department of Internal Medicine III, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
3
|
Russell NJ, Belato PB, Oliver LS, Chakraborty A, Roeder AHK, Fox DT, Formosa-Jordan P. Spatial ploidy inference using quantitative imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642217. [PMID: 40166315 PMCID: PMC11957035 DOI: 10.1101/2025.03.11.642217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Polyploidy (whole-genome multiplication) is a common yet under-surveyed property of tissues across multicellular organisms. Polyploidy plays a critical role during tissue development, following acute stress, and during disease progression. Common methods to reveal polyploidy involve either destroying tissue architecture by cell isolation or by tedious identification of individual nuclei in intact tissue. Therefore, there is a critical need for rapid and high-throughput ploidy quantification using images of nuclei in intact tissues. Here, we present iSPy (Inferring Spatial Ploidy), a new unsupervised learning pipeline that is designed to create a spatial map of nuclear ploidy across a tissue of interest. We demonstrate the use of iSPy in Arabidopsis, Drosophila, and human tissue. iSPy can be adapted for a variety of tissue preparations, including whole mount and sectioned. This high-throughput pipeline will facilitate rapid and sensitive identification of nuclear ploidy in diverse biological contexts and organisms.
Collapse
Affiliation(s)
- Nicholas J. Russell
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Polyploidy Integration and Innovation Institute
| | - Paulo B. Belato
- Department of Pharmacology and Cancer Biology, Duke University, Durham, USA
- Polyploidy Integration and Innovation Institute
| | - Lilijana Sarabia Oliver
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
- Polyploidy Integration and Innovation Institute
| | - Archan Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University, Durham, USA
- Polyploidy Integration and Innovation Institute
| | - Adrienne H. K. Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
- Polyploidy Integration and Innovation Institute
| | - Donald T. Fox
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Polyploidy Integration and Innovation Institute
| | - Pau Formosa-Jordan
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Polyploidy Integration and Innovation Institute
| |
Collapse
|
4
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
5
|
Basbous S, Dif L, Dantzer C, Di-Tommaso S, Dupuy JW, Bioulac-Sage P, Raymond AA, Desdouets C, Saltel F, Moreau V. Loss of RND3/RHOE controls entosis through LAMP1 expression in hepatocellular carcinoma. Cell Death Dis 2024; 15:46. [PMID: 38218945 PMCID: PMC10787830 DOI: 10.1038/s41419-024-06420-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Entosis is a process that leads to the formation of cell-in-cell structures commonly found in cancers. Here, we identified entosis in hepatocellular carcinoma and the loss of Rnd3 (also known as RhoE) as an efficient inducer of this mechanism. We characterized the different stages and the molecular regulators of entosis induced after Rnd3 silencing. We demonstrated that this process depends on the RhoA/ROCK pathway, but not on E-cadherin. The proteomic profiling of entotic cells allowed us to identify LAMP1 as a protein upregulated by Rnd3 silencing and implicated not only in the degradation final stage of entosis, but also in the full mechanism. Moreover, we found a positive correlation between the presence of entotic cells and the metastatic potential of tumors in human patient samples. Altogether, these data suggest the involvement of entosis in liver tumor progression and highlight a new perspective for entosis analysis in medicine research as a novel therapeutic target.
Collapse
Affiliation(s)
- Sara Basbous
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Lydia Dif
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Camille Dantzer
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sylvaine Di-Tommaso
- CHU de Bordeaux, 33076, Bordeaux, France
- Oncoprot Platform, UMS005, TBMCore, University of Bordeaux, 33076, Bordeaux, France
| | - Jean-William Dupuy
- Oncoprot Platform, UMS005, TBMCore, University of Bordeaux, 33076, Bordeaux, France
- Proteomic plateform, University of Bordeaux, 33076, Bordeaux, France
| | - Paulette Bioulac-Sage
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
- CHU de Bordeaux, 33076, Bordeaux, France
| | - Anne-Aurélie Raymond
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
- Oncoprot Platform, UMS005, TBMCore, University of Bordeaux, 33076, Bordeaux, France
| | - Chantal Desdouets
- Sorbonne University, INSERM, Centre de Recherche des Cordeliers (CRC), Paris, France
| | - Frédéric Saltel
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
- Oncoprot Platform, UMS005, TBMCore, University of Bordeaux, 33076, Bordeaux, France
| | - Violaine Moreau
- University of Bordeaux, INSERM, BRIC, U1312, Bordeaux, France.
| |
Collapse
|
6
|
Qiao K, Han J, Zhang H, Li Y, Hou X, Jia Y, Sun Y, Wang H, Xu Z, Liu H, Zhang H, Liu H, Zhang W, Sun T. Intratumor Mycoplasma promotes the initiation and progression of hepatocellular carcinoma. Cell Rep 2023; 42:113563. [PMID: 38088929 DOI: 10.1016/j.celrep.2023.113563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/21/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
The carcinogenesis and progression of hepatocellular carcinoma (HCC) are closely related to viral infection and intestinal bacteria. However, little is known about bacteria within the HCC tumor microenvironment. Here, we showed that intratumoral Mycoplasma hyorhinis (M. hyorhinis) promoted the initiation and progression of HCC by enhancing nuclear ploidy. We quantified M. hyorhinis in clinical tissue specimens of HCC and observed that patients with high M. hyorhinis load had poor prognosis. We found that gastrointestinal M. hyorhinis can retrogradely infect the liver through the oral-duodenal-hepatopancreatic ampulla route. We further found that the increases in mononuclear polyploidy and cancer stemness resulted from mitochondrial fission caused by intracellular M. hyorhinis. Mechanistically, M. hyorhinis infection promoted the decay of mitochondrial fusion protein (MFN) 1 mRNA in an m6A-dependent manner. Our findings indicated that M. hyorhinis infection promoted pathological polyploidization and suggested that Mycoplasma clearance with antibiotics or regulating mitochondrial dynamics might have the potential for HCC therapy.
Collapse
Affiliation(s)
- Kailiang Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Haohao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Xiaohui Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yan Jia
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Yujie Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Huan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Zheng Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Haoyang Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China.
| | - Wei Zhang
- Department of Hepatobiliary Cancer, Research Center for Prevention and Treatment of Liver Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300040, China.
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China.
| |
Collapse
|
7
|
Esposito C, Janneh M, Spaziani S, Calcagno V, Bernardi ML, Iammarino M, Verdone C, Tagliamonte M, Buonaguro L, Pisco M, Aversano L, Cusano A. Assessment of Primary Human Liver Cancer Cells by Artificial Intelligence-Assisted Raman Spectroscopy. Cells 2023; 12:2645. [PMID: 37998378 PMCID: PMC10670489 DOI: 10.3390/cells12222645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
We investigated the possibility of using Raman spectroscopy assisted by artificial intelligence methods to identify liver cancer cells and distinguish them from their Non-Tumor counterpart. To this aim, primary liver cells (40 Tumor and 40 Non-Tumor cells) obtained from resected hepatocellular carcinoma (HCC) tumor tissue and the adjacent non-tumor area (negative control) were analyzed by Raman micro-spectroscopy. Preliminarily, the cells were analyzed morphologically and spectrally. Then, three machine learning approaches, including multivariate models and neural networks, were simultaneously investigated and successfully used to analyze the cells' Raman data. The results clearly demonstrate the effectiveness of artificial intelligence (AI)-assisted Raman spectroscopy for Tumor cell classification and prediction with an accuracy of nearly 90% of correct predictions on a single spectrum.
Collapse
Affiliation(s)
- Concetta Esposito
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| | - Mohammed Janneh
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| | - Sara Spaziani
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| | - Vincenzo Calcagno
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| | - Mario Luca Bernardi
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- Informatics Group, Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Martina Iammarino
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- Informatics Group, Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Chiara Verdone
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- Informatics Group, Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Maria Tagliamonte
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- National Cancer Institute-IRCCS “Pascale”, Via Mariano Semmola, 52, 80131 Napoli, Italy
| | - Luigi Buonaguro
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- National Cancer Institute-IRCCS “Pascale”, Via Mariano Semmola, 52, 80131 Napoli, Italy
| | - Marco Pisco
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| | - Lerina Aversano
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
- Informatics Group, Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Andrea Cusano
- Optoelectronic Division-Engineering Department, University of Sannio, 82100 Benevento, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), 82100 Benevento, Italy; (M.L.B.); (L.B.)
| |
Collapse
|
8
|
Wilson SR, Duncan AW. The Ploidy State as a Determinant of Hepatocyte Proliferation. Semin Liver Dis 2023; 43:460-471. [PMID: 37967885 PMCID: PMC10862383 DOI: 10.1055/a-2211-2144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The liver's unique chromosomal variations, including polyploidy and aneuploidy, influence hepatocyte identity and function. Among the most well-studied mammalian polyploid cells, hepatocytes exhibit a dynamic interplay between diploid and polyploid states. The ploidy state is dynamic as hepatocytes move through the "ploidy conveyor," undergoing ploidy reversal and re-polyploidization during proliferation. Both diploid and polyploid hepatocytes actively contribute to proliferation, with diploids demonstrating an enhanced proliferative capacity. This enhanced potential positions diploid hepatocytes as primary drivers of liver proliferation in multiple contexts, including homeostasis, regeneration and repopulation, compensatory proliferation following injury, and oncogenic proliferation. This review discusses the influence of ploidy variations on cellular activity. It presents a model for ploidy-associated hepatocyte proliferation, offering a deeper understanding of liver health and disease with the potential to uncover novel treatment approaches.
Collapse
Affiliation(s)
- Sierra R. Wilson
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W. Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Zhang Y, Wang N, Hao F, Chen Y, Fei X, Wang J. Attenuation of binuclear hepatocytes in the paracancerous liver tissue is associated with short-term recurrence of hepatocellular carcinoma post-radical surgery. FASEB J 2023; 37:e23271. [PMID: 37882195 DOI: 10.1096/fj.202301219r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/03/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Short-term recurrence of hepatocellular carcinoma (HCC) after radical resection leads to dismal outcomes. To screen high-recurrence risk patients to provide adjuvant treatment is necessary. Herein, based on our previous research, we further focused on the changes in the abundance of binuclear hepatocytes (ABH) in the paracancerous liver tissue to discuss the relationship between the attenuation of binuclear hepatocytes and postoperative short-term recurrence, by combining with the assessment of the value of a reported independent early recurrence risk factor in HCC, protein induced by vitamin K absence or antagonist-II (PIVKA-II). A cohort of 142 paracancerous liver tissues from HCC patients who received radical resection was collected. Binuclear hepatocytes were reduced in the paracancerous liver tissues, compared with the liver tissues from normal donors. ABH was negatively correlated with clinical features such as tumor size, TNM stages, tumor microsatellite formation, venous invasion, and Alpha-fetoprotein (AFP) level, as well as the expression of E2F7 and Anillin, which are two critical regulators concerning the hepatocyte polyploidization. According to the short-term recurrence information, ABH value was laminated, and univariate and multivariate logistic regression was performed to analyze the relationship between paracancerous ABH and short-term tumor relapse. Simultaneously, the predictive effectiveness of the ABH value was compared with the preoperative PIVKA-II value. As observed, the paracancerous ABH value below 1.5% was found to be an independent risk factor for recurrence. In conclusion, the paracancerous ABH is a credible indicator of short-term recurrence of HCC patients after radical resection, and regular assessment of ABH might help to prevent short-term HCC recurrence.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
10
|
Clerbaux LA, Cordier P, Desboeufs N, Unger K, Leary P, Semere G, Boege Y, Chan LK, Desdouets C, Lopes M, Weber A. Mcl-1 deficiency in murine livers leads to nuclear polyploidisation and mitotic errors: Implications for hepatocellular carcinoma. JHEP Rep 2023; 5:100838. [PMID: 37663116 PMCID: PMC10472239 DOI: 10.1016/j.jhepr.2023.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background & Aims Mcl-1, an antiapoptotic protein overexpressed in many tumours, including hepatocellular carcinoma (HCC), represents a promising target for cancer treatment. Although Mcl-1 non-apoptotic roles might critically influence the therapeutic potential of Mcl-1 inhibitors, these functions remain poorly understood. We aimed to investigate the effects of hepatic Mcl-1 deficiency (Mcl-1Δhep) on hepatocyte ploidy and cell cycle in murine liver in vivo and the possible implications on HCC. Methods Livers of young Mcl-1Δhep and wild-type (WT) mice were analysed for ploidy profile, mitotic figures, in situ chromosome segregation, gene set enrichment analysis and were subjected to two-thirds partial hepatectomy to assess Mcl-1 deficiency effect on cell cycle progression in vivo. Mcl-1Δhep tumours in older mice were analysed for ploidy profile, chromosomal instability, and mutational signatures via whole exome sequencing. Results In young mice, Mcl-1 deficiency leads to nuclear polyploidy and to high rates of mitotic errors with abnormal spindle figures and chromosome mis-segregation along with a prolonged spindle assembly checkpoint activation signature. Chromosomal instability and altered ploidy profile are observed in Mcl-1Δhep tumours of old mice as well as a characteristic mutational signature of currently unknown aetiology. Conclusions Our study suggests novel non-apoptotic effects of Mcl-1 deficiency on nuclear ploidy, mitotic regulation, and chromosomal segregation in hepatocytes in vivo. In addition, the Mcl-1 deficiency characteristic mutational signature might reflect mitotic issues. These results are of importance to consider when developing anti-Mcl-1 therapies to treat cancer. Impact and implications Although Mcl-1 inhibitors represent promising hepatocellular carcinoma treatment, the still poorly understood non-apoptotic roles of Mcl-1 might compromise their successful clinical application. Our study shows that Mcl-1 deficiency leads to nuclear polyploidy, mitotic errors, and aberrant chromosomal segregation in hepatocytes in vivo, whereas hepatocellular tumours spontaneously induced by Mcl-1 deficiency exhibit chromosomal instability and a mutational signature potentially reflecting mitotic issues. These results have potential implications for the development of anti-Mcl-1 therapies to treat hepatocellular carcinoma, especially as hyperproliferative liver is a clinically relevant situation.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Pierre Cordier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée LIGUE 2023, Paris, France
| | - Nina Desboeufs
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Munich, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Peter Leary
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
- Functional Genomics Center Zurich, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Gabriel Semere
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Yannick Boege
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Lap Kwan Chan
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée LIGUE 2023, Paris, France
| | - Massimo Lopes
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| |
Collapse
|
11
|
Matsuura T, Ueda Y, Harada Y, Hayashi K, Horisaka K, Yano Y, So S, Kido M, Fukumoto T, Kodama Y, Hara E, Matsumoto T. Histological diagnosis of polyploidy discriminates an aggressive subset of hepatocellular carcinomas with poor prognosis. Br J Cancer 2023; 129:1251-1260. [PMID: 37715023 PMCID: PMC10576083 DOI: 10.1038/s41416-023-02408-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Although genome duplication, or polyploidization, is believed to drive cancer evolution and affect tumor features, its significance in hepatocellular carcinoma (HCC) is unclear. We aimed to determine the characteristics of polyploid HCCs by evaluating chromosome duplication and to discover surrogate markers to discriminate polyploid HCCs. METHODS The ploidy in human HCC was assessed by fluorescence in situ hybridization for multiple chromosomes. Clinicopathological and expression features were compared between polyploid and near-diploid HCCs. Markers indicating polyploid HCC were explored by transcriptome analysis of cultured HCC cells. RESULTS Polyploidy was detected in 36% (20/56) of HCCs and discriminated an aggressive subset of HCC that typically showed high serum alpha-fetoprotein, poor differentiation, and poor prognosis compared to near-diploid HCCs. Molecular subtyping revealed that polyploid HCCs highly expressed alpha-fetoprotein but did not necessarily show progenitor features. Histological examination revealed abundant polyploid giant cancer cells (PGCCs) with a distinct appearance and frequent macrotrabecular-massive architecture in polyploid HCCs. Notably, the abundance of PGCCs and overexpression of ubiquitin-conjugating enzymes 2C indicated polyploidy in HCC and efficiently predicted poor prognosis in combination. CONCLUSIONS Histological diagnosis of polyploidy using surrogate markers discriminates an aggressive subset of HCC, apart from known HCC subgroups, and predict poor prognosis in HCC.
Collapse
Affiliation(s)
- Takanori Matsuura
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihide Ueda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiyuki Harada
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuki Hayashi
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Kisara Horisaka
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshihiko Yano
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichi So
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Kido
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Fukumoto
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eiji Hara
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| |
Collapse
|
12
|
Wen Z, Lin YH, Wang S, Fujiwara N, Rong R, Jin KW, Yang DM, Yao B, Yang S, Wang T, Xie Y, Hoshida Y, Zhu H, Xiao G. Deep-Learning-Based Hepatic Ploidy Quantification Using H&E Histopathology Images. Genes (Basel) 2023; 14:921. [PMID: 37107679 PMCID: PMC10137944 DOI: 10.3390/genes14040921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Polyploidy, the duplication of the entire genome within a single cell, is a significant characteristic of cells in many tissues, including the liver. The quantification of hepatic ploidy typically relies on flow cytometry and immunofluorescence (IF) imaging, which are not widely available in clinical settings due to high financial and time costs. To improve accessibility for clinical samples, we developed a computational algorithm to quantify hepatic ploidy using hematoxylin-eosin (H&E) histopathology images, which are commonly obtained during routine clinical practice. Our algorithm uses a deep learning model to first segment and classify different types of cell nuclei in H&E images. It then determines cellular ploidy based on the relative distance between identified hepatocyte nuclei and determines nuclear ploidy using a fitted Gaussian mixture model. The algorithm can establish the total number of hepatocytes and their detailed ploidy information in a region of interest (ROI) on H&E images. This is the first successful attempt to automate ploidy analysis on H&E images. Our algorithm is expected to serve as an important tool for studying the role of polyploidy in human liver disease.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruichen Rong
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kevin W. Jin
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Donghan M. Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Yao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shengjie Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yujin Hoshida
- Division of Digestive and Liver Diseases, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Children’s Research Institute Mouse Genome Engineering Core, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Zhang X, Wu LN, Li XQ, Luo X, Liu SW, Zhang L, Nawaz S, Ma LN, Ding XC. Whether the Golgi protein 73 could be a diagnostic serological marker in hepatocellular carcinoma: a meta analysis. BMC Gastroenterol 2023; 23:85. [PMID: 36964524 PMCID: PMC10039610 DOI: 10.1186/s12876-023-02685-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/20/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND The Value of Golgi protein 73 (GP73) in the diagnosis of Hepatocellular carcinoma (HCC) remains controversial, especially in its differentiation between HCC and cirrhosis. Besides, some papers showed that GP73 levels are correlated with liver fibrosis. This study conducts a meta-analysis to evaluate the value of GP73 in diagnosing HCC and differential diagnosing HCC from liver cirrhosis. METHODS 36 studies with a sample size of 8314 cases concerning the accuracy of GP73 in the diagnosis of HCC were selected through a systematic review. Seven of these studies included a total of 438 HCC samples and 426 cirrhosis samples and calculated the sensitivity and specificity of GP73 for differential diagnosing HCC from cirrhosis. QUADAS (quality assessment of diagnostic accuracy studies) was used to evaluate the quality of literature. Statistical analyses were performed using StataSE16 software. RESULTS The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio and the area under the curve were 0.79(95%CI 0.74-0.83),0.85(95%CI 0.80-0.89),5.4(95%CI 3.8-7.5), 0.25(95%CI 0.20-0.31), 22(95%CI 13-35), and 0.88 for GP73 diagnosing HCC;0.74(95%CI 0.64-0.81),0.70(95%CI 0.49-0.85),2.40(95%CI 1.3-4.7),0.38(95%CI 0.23-0.61),6(95%CI 2-19), and 0.78 for GP73 differential diagnosing HCC from liver cirrhosis. CONCLUSION The results suggest that GP73 has a high diagnostic value for HCC and a moderate value for differential diagnosis of HCC from liver cirrhosis.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li-Na Wu
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiao-Qing Li
- Department of Infectious Disease, The 2nd Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, Sichuan, China
| | - Xia Luo
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shui-Wei Liu
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Le Zhang
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shah Nawaz
- Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li-Na Ma
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Xiang-Chun Ding
- Department of Infectious Disease, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
14
|
El Harane S, Zidi B, El Harane N, Krause KH, Matthes T, Preynat-Seauve O. Cancer Spheroids and Organoids as Novel Tools for Research and Therapy: State of the Art and Challenges to Guide Precision Medicine. Cells 2023; 12:cells12071001. [PMID: 37048073 PMCID: PMC10093533 DOI: 10.3390/cells12071001] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Spheroids and organoids are important novel players in medical and life science research. They are gradually replacing two-dimensional (2D) cell cultures. Indeed, three-dimensional (3D) cultures are closer to the in vivo reality and open promising perspectives for academic research, drug screening, and personalized medicine. A large variety of cells and tissues, including tumor cells, can be the starting material for the generation of 3D cultures, including primary tissues, stem cells, or cell lines. A panoply of methods has been developed to generate 3D structures, including spontaneous or forced cell aggregation, air-liquid interface conditions, low cell attachment supports, magnetic levitation, and scaffold-based technologies. The choice of the most appropriate method depends on (i) the origin of the tissue, (ii) the presence or absence of a disease, and (iii) the intended application. This review summarizes methods and approaches for the generation of cancer spheroids and organoids, including their advantages and limitations. We also highlight some of the challenges and unresolved issues in the field of cancer spheroids and organoids, and discuss possible therapeutic applications.
Collapse
Affiliation(s)
- Sanae El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Bochra Zidi
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Nadia El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Thomas Matthes
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Laboratory of Experimental Cell Therapy, Department of Diagnostics, Geneva University Hospitals, 1206 Geneva, Switzerland
| |
Collapse
|
15
|
Sycheva LP, Rozhdestvenskii LM, Lisina NI, Shliakova TG, Zorin VV, Romanova KY. Hepatoprotective effect of the radiation countermeasure flagellin in the long term after irradiation of mice. Int J Radiat Biol 2023; 99:238-244. [PMID: 35605099 DOI: 10.1080/09553002.2022.2078005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Purpose is to study the hepatoprotective effect of a new promising radiation countermeasure flagellin, in the long term after irradiation. The results of the study can be useful for mitigating the consequences of man-made radiation accidents, protecting professional contingents, reducing the toxic effect of radiation therapy, and expanding the range of drug use. MATERIALS AND METHODS Effect of flagellin was investigated 10 months after its administration of irradiated male of mice F1 (CBAхC57Bl/6). Flagellin (0.2 mg/kg) was administrated once intraperitoneally before exposure of mice to low-intensive (10 mGy/min) γ-radiation at a dose of 12.65 Gy. The effect was evaluated in three groups: control, irradiated mice without of flagellin and with the administration flagellin 30 minutes before irradiation. Cytogenetic and cytotoxic effect in bone marrow was studied with micronucleus assay (OECD 474), in liver - with the original technique for cytome analysis of hepatocytes after fixation of liver pieces with 10% formalin, dissociation of cells with 50% KOH, staining with aceto-orcein and light green. The proportion of cells 2n, 2n + 2n, 4n, 4n + 4n, ≥8n and ≥8n + 8n was determined. Cytogenetic disorders were counted as cells with micronuclei, nuclear buds, and internuclear bridges. The ploidy index and nuclearity index were defined. RESULTS In all studied groups of mice, the frequency of polychromatic bone marrow erythrocytes with micronuclei and hepatocytes with cytogenetic disorders did not exceed the background level. A decrease in the ploidy index of hepatocytes by 4.3 times was established 10 months after exposure to low-power ionizing radiation. In mice treated with flagellin before irradiation, the ploidy index was normalized to control. CONCLUSIONS A decrease in the ploidy of hepatocytes was revealed 10 months after exposure to a high dose of low-power ionizing radiation, which may indicate the initiation of carcinogenesis. For the first time, a new aspect of the anti-radiation effect of promising radiation countermeasure flagellin was established and its hepatoprotective properties were determined in the long term after exposure to ionizing radiation.
Collapse
Affiliation(s)
- Lyudmila P Sycheva
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Lev M Rozhdestvenskii
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Nina I Lisina
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Tatyana G Shliakova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Valery V Zorin
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Kseniya Yu Romanova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
16
|
Rigual MDM, Sánchez Sánchez P, Djouder N. Is liver regeneration key in hepatocellular carcinoma development? Trends Cancer 2023; 9:140-157. [PMID: 36347768 DOI: 10.1016/j.trecan.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
The liver is the largest organ of the mammalian body and has the remarkable ability to fully regenerate in order to maintain tissue homeostasis. The adult liver consists of hexagonal lobules, each with a central vein surrounded by six portal triads localized in the lobule border containing distinct parenchymal and nonparenchymal cells. Because the liver is continuously exposed to diverse stress signals, several sophisticated regenerative processes exist to restore its functional status following impairment. However, these stress signals can affect the liver's capacity to regenerate and may lead to the development of hepatocellular carcinoma (HCC), one of the most aggressive liver cancers. Here, we review the mechanisms of hepatic regeneration and their potential to influence HCC development.
Collapse
Affiliation(s)
- María Del Mar Rigual
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Paula Sánchez Sánchez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain.
| |
Collapse
|
17
|
Molano-Fernández M, Hickson ID, Herranz H. Cyclin E overexpression in the Drosophila accessory gland induces tissue dysplasia. Front Cell Dev Biol 2023; 10:992253. [PMID: 36704199 PMCID: PMC9871066 DOI: 10.3389/fcell.2022.992253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
The regulation of the cell division cycle is governed by a complex network of factors that together ensure that growing or proliferating cells maintain a stable genome. Defects in this system can lead to genomic instability that can affect tissue homeostasis and thus compromise human health. Variations in ploidy and cell heterogeneity are observed frequently in human cancers. Here, we examine the consequences of upregulating the cell cycle regulator Cyclin E in the Drosophila melanogaster male accessory gland. The accessory gland is the functional analog of the human prostate. This organ is composed of a postmitotic epithelium that is emerging as a powerful in vivo system for modelling different aspects of tumor initiation and progression. We show that Cyclin E upregulation in this model is sufficient to drive tissue dysplasia. Cyclin E overexpression drives endoreplication and affects DNA integrity, which results in heterogeneous nuclear and cellular composition and variable degrees of DNA damage. We present evidence showing that, despite the presence of genotoxic stress, those cells are resistant to apoptosis and thus defective cells are not eliminated from the tissue. We also show that Cyclin E-expressing cells in the accessory gland display mitochondrial DNA aggregates that colocalize with Cyclin E protein. Together, the findings presented here show that Cyclin E upregulation in postmitotic cells of the accessory gland organ causes cellular defects such as genomic instability and mitochondrial defects, eventually leading to tissue dysplasia. This study highlights novel mechanisms by which Cyclin E might contribute to disease initiation and progression.
Collapse
Affiliation(s)
- Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ian D. Hickson
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark,Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Héctor Herranz,
| |
Collapse
|
18
|
Friemel J, Torres I, Brauneis E, Thörner T, Schäffer AA, Gertz EM, Grob T, Seidl K, Weber A, Ried T, Heselmeyer-Haddad K. Single-cell resolved ploidy and chromosomal aberrations in nonalcoholic steatohepatitis-(NASH) induced hepatocellular carcinoma and its precursor lesions. Sci Rep 2022; 12:22622. [PMID: 36587184 PMCID: PMC9805444 DOI: 10.1038/s41598-022-27173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH)-induced hepatocellular carcinoma (HCC) and its precursor, nonalcoholic fatty liver disease (NAFLD) are an unmet health issue due to widespread obesity. We assessed copy number changes of genes associated with hepatocarcinogenesis and oxidative pathways at a single-cell level. Eleven patients with NASH-HCC and 11 patients with NAFLD were included. Eight probes were analyzed using multiplex interphase fluorescence in situ hybridization (miFISH), single-cell imaging and phylogenetic tree modelling: Telomerase reverse transcriptase (TERT), C-Myc (MYC), hepatocyte growth factor receptor tyrosine kinase (MET), tumor protein 53 (TP53), cyclin D1 (CCND1), human epidermal growth factor receptor 2 (HER2), the fragile histidine triad gene (FHIT) and FRA16D oxidoreductase (WWOX). Each NASH-HCC tumor had up to 14 distinct clonal signal patterns indicating multiclonality, which correlated with high tumor grade. Changes frequently observed were TP53 losses, 45%; MYC gains, 36%; WWOX losses, 36%; and HER2 gains, 18%. Whole-genome duplications were frequent (82%) with aberrant tetraploid cells evolving from diploid ancestors. Non-tumorous NAFLD/NASH biopsies did not harbor clonal copy number changes. Fine mapping of NASH-HCC using single-cell multiplex FISH shows that branched tumor evolution involves genome duplication and that multiclonality increases with tumor grade. The loss of oxidoreductase WWOX and HER2 gains could be potentially associated with NASH-induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Juliane Friemel
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA ,grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland ,grid.5734.50000 0001 0726 5157Department of Pathology, University of Bern, Bern, Switzerland
| | - Irianna Torres
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA
| | - Elizabeth Brauneis
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA
| | - Tim Thörner
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA
| | - Alejandro A. Schäffer
- grid.417768.b0000 0004 0483 9129Cancer Data Science Laboratory, CCR, National Cancer Institute, NIH, Bethesda, MD USA ,grid.280285.50000 0004 0507 7840Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD USA
| | - E. Michael Gertz
- grid.417768.b0000 0004 0483 9129Cancer Data Science Laboratory, CCR, National Cancer Institute, NIH, Bethesda, MD USA ,grid.280285.50000 0004 0507 7840Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD USA
| | - Tobias Grob
- grid.5734.50000 0001 0726 5157Department of Pathology, University of Bern, Bern, Switzerland
| | - Kati Seidl
- grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Achim Weber
- grid.412004.30000 0004 0478 9977Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Thomas Ried
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA
| | - Kerstin Heselmeyer-Haddad
- grid.417768.b0000 0004 0483 9129Genetics Branch, CCR, National Cancer Institute, NIH, Bethesda, MD USA
| |
Collapse
|
19
|
Gilgenkrantz H. [The liver remains a young organ even in old age !]. Med Sci (Paris) 2022; 38:864-866. [PMID: 36448888 DOI: 10.1051/medsci/2022137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Hélène Gilgenkrantz
- Centre de recherche sur l'inflammation, Inserm U1149, Faculté de médecine Bichat, Paris, France
| |
Collapse
|
20
|
Lian YE, Bai YN, Lai JL, Huang AM. Aberrant regulation of autophagy disturbs fibrotic liver regeneration after partial hepatectomy. Front Cell Dev Biol 2022; 10:1030338. [PMID: 36393837 PMCID: PMC9644332 DOI: 10.3389/fcell.2022.1030338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/13/2022] [Indexed: 01/04/2025] Open
Abstract
Reports indicate that autophagy is essential for maintaining hepatocyte proliferative capacity during liver regeneration. However, the role of autophagy in fibrotic liver regeneration is incompletely elucidated. We investigated the deregulation of autophagic activities in liver regeneration after partial hepatectomy using a CCl4-induced fibrosis mouse model. The baseline autophagic activity was significantly increased in the fibrotic liver. After 50% partial hepatectomy (PHx), liver regeneration was remarkably decreased, accompanied by increased hepatocyte size and binuclearity ratio. Moreover, the expression of autophagy-related proteins was functionally deregulated and resulted in a reduction in the number of autophagosome and autophagosome-lysosome fusions. We further showed upregulation of autophagy activities through verapamil administration, improved hepatocyte proliferation capacity, and restricted cellular hypertrophy and binuclearity ratio. In conclusion, we demonstrated that the impairment of liver regeneration is associated with aberrant autophagy in fibrotic liver and that enhancing autophagy with verapamil may partially restore the impaired liver regeneration following PHx.
Collapse
Affiliation(s)
- Yuan-E. Lian
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Pathology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Yan-Nan Bai
- Shengli Clinical Medical College of Fujian Medical University, Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-Lin Lai
- Shengli Clinical Medical College of Fujian Medical University, Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Ai-Min Huang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Wang SY, Huang YH, Liang YJ, Wu JC. Gene coexpression network analysis identifies hubs in hepatitis B virus-associated hepatocellular carcinoma. J Chin Med Assoc 2022; 85:972-980. [PMID: 35801949 DOI: 10.1097/jcma.0000000000000772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death worldwide. The molecular pathogenesis of HCC involves multiple signaling pathways. This study utilizes systems and bioinformatic approaches to investigate the pathogenesis of HCC. METHODS Gene expression microarray data were obtained from 50 patients with chronic hepatitis B and HCC. There were 1649 differentially expressed genes inferred from tumorous and nontumorous datasets. Weighted gene coexpression network analysis (WGCNA) was performed to construct clustered coexpressed gene modules. Statistical analysis was used to study the correlation between gene coexpression networks and demographic features of patients. Functional annotation and pathway inference were explored for each coexpression network. Network analysis identified hub genes of the prognostic gene coexpression network. The hub genes were further validated with a public database. RESULT Five distinct gene coexpression networks were identified by WGCNA. A distinct coexpressed gene network was significantly correlated with HCC prognosis. Pathway analysis of this network revealed extensive integration with cell cycle regulation. Ten hub genes of this gene network were inferred from protein-protein interaction network analysis and further validated in an external validation dataset. Survival analysis showed that lower expression of the 10-gene signature had better overall survival and recurrence-free survival. CONCLUSION This study identified a crucial gene coexpression network associated with the prognosis of hepatitis B virus-related HCC. The identified hub genes may provide insights for HCC pathogenesis and may be potential prognostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Shen-Yung Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Gastroenterology and Hepatology, Department of Medicine, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Yen-Hua Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yuh-Jin Liang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jaw-Ching Wu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
22
|
Du M, Zhang S, Liu X, Xu C, Zhang X. Nondiploid cancer cells: Stress, tolerance and therapeutic inspirations. Biochim Biophys Acta Rev Cancer 2022; 1877:188794. [PMID: 36075287 DOI: 10.1016/j.bbcan.2022.188794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
Aberrant ploidy status is a prominent characteristic in malignant neoplasms. Approximately 90% of solid tumors and 75% of haematopoietic malignancies contain aneuploidy cells, and 30%-60% of tumors undergo whole-genome doubling, indicating that nondiploidy might be a prevalent genomic aberration in cancer. Although the role of aneuploid and polyploid cells in cancer remains to be elucidated, recent studies have suggested that nondiploid cells might be a dangerous minority that severely challenges cancer management. Ploidy shifts cause multiple fitness coasts for cancer cells, mainly including genomic, proteotoxic, metabolic and immune stresses. However, nondiploid comprises a well-adopted subpopulation, with many tolerance mechanisms evident in cells along with ploidy shifts. Aneuploid and polyploid cells elegantly maintain an autonomous balance between the stress and tolerance during adaptive evolution in cancer. Breaking the balance might provide some inspiration for ploidy-selective cancer therapy and alleviation of ploidy-related chemoresistance. To understand of the complex role and therapeutic potential of nondiploid cells better, we reviewed the survival stresses and adaptive tolerances within nondiploid cancer cells and summarized therapeutic ploidy-selective alterations for potential use in developing future cancer therapy.
Collapse
Affiliation(s)
- Ming Du
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Shuo Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Xiaoxia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.
| |
Collapse
|
23
|
Matsumoto T. Implications of Polyploidy and Ploidy Alterations in Hepatocytes in Liver Injuries and Cancers. Int J Mol Sci 2022; 23:ijms23169409. [PMID: 36012671 PMCID: PMC9409051 DOI: 10.3390/ijms23169409] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploidy, a condition in which more than two sets of chromosomes are present in a cell, is a characteristic feature of hepatocytes. A significant number of hepatocytes physiologically undergo polyploidization at a young age. Polyploidization of hepatocytes is enhanced with age and in a diseased liver. It is worth noting that polyploid hepatocytes can proliferate, in marked contrast to other types of polyploid cells, such as megakaryocytes and cardiac myocytes. Polyploid hepatocytes divide to maintain normal liver homeostasis and play a role in the regeneration of the damaged liver. Furthermore, polyploid hepatocytes have been shown to dynamically reduce ploidy during liver regeneration. Although it is still unclear why hepatocytes undergo polyploidization, accumulating evidence has revealed that alterations in the ploidy in hepatocytes are involved in the pathophysiology of liver cirrhosis and carcinogenesis. This review discusses the significance of hepatocyte ploidy in physiological liver function, liver injury, and liver cancer.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
24
|
Kim JY, Choi H, Kim HJ, Jee Y, Noh M, Lee MO. Polyploidization of Hepatocytes: Insights into the Pathogenesis of Liver Diseases. Biomol Ther (Seoul) 2022; 30:391-398. [PMID: 35790893 PMCID: PMC9424332 DOI: 10.4062/biomolther.2022.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/26/2022] Open
Abstract
Polyploidization is a process by which cells are induced to possess more than two sets of chromosomes. Although polyploidization is not frequent in mammals, it is closely associated with development and differentiation of specific tissues and organs. The liver is one of the mammalian organs that displays ploidy dynamics in physiological homeostasis during its development. The ratio of polyploid hepatocytes increases significantly in response to hepatic injury from aging, viral infection, iron overload, surgical resection, or metabolic overload, such as that from non-alcoholic fatty liver diseases (NAFLDs). One of the unique features of NAFLD is the marked heterogeneity of hepatocyte nuclear size, which is strongly associated with an adverse liver-related outcome, such as hepatocellular carcinoma, liver transplantation, and liver-related death. Thus, hepatic polyploidization has been suggested as a potential driver in the progression of NAFLDs that are involved in the control of the multiple pathogenicity of the diseases. However, the importance of polyploidy in diverse pathophysiological contexts remains elusive. Recently, several studies reported successful improvement of symptoms of NAFLDs by reducing pathological polyploidy or by controlling cell cycle progression in animal models, suggesting that better understanding the mechanisms of pathological hepatic polyploidy may provide insights into the treatment of hepatic disorders.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
| | - Haena Choi
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 00826, Republic of Korea
| | - Yelin Jee
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 00826, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul 00826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 00826, Republic of Korea
- Bio-MAX institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
25
|
Liu C, Gao J, Yang D, Yu Q, Zhang S. Title: Multi-Omics and Immune Landscape of Proliferative LncRNA Signatures: Implications for Risk Stratification and Immunotherapy in Hepatocellular Carcinoma. Front Pharmacol 2022; 13:907433. [PMID: 35662721 PMCID: PMC9158467 DOI: 10.3389/fphar.2022.907433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) are significantly implicated in tumor proliferation. Nevertheless, proliferation-derived lncRNAs and their latent clinical significance remain largely unrevealed in hepatocellular carcinoma (HCC). Methods: This research enrolled 658 HCC patients from five independent cohorts. We retrieved 50 Hallmark gene sets from the MSigDB portal. Consensus clustering was applied to identify heterogeneous proliferative subtypes, and the nearest template prediction (NTP) was utilized to validate the subtypes. We introduced an integrative framework (termed “ProLnc”) to identify proliferation-derived lncRNAs. Moreover, a proliferation-related signature was developed and verified in four independent cohorts. Results: In 50 Hallmarks, seven proliferation pathways were significantly upregulated and correlated with a worse prognosis. Subsequently, we deciphered two heterogeneous proliferative subtypes in TCGA-LIHC. Subtype 2 displayed enhanced proliferative activities and a worse prognosis, whereas subtype 1 was associated with hyperproliferative HCC and a favorable prognosis. The NTP further verified the robustness and reproducibility of two subtypes in four cohorts derived from different platforms. Combining the differentially expressed lncRNAs from two subtypes with proliferative lncRNA modulators from our ProLnc pipeline, we determined 230 proliferation-associated lncRNAs. Based on the bootstrapping channel and the verification of multiple cohorts, we further identified ten lncRNAs that stably correlated with prognosis. Subsequently, we developed and validated a proliferative lncRNA signature (ProLncS) that could independently and accurately assess the overall survival (OS) and relapse-free survival (RFS) of HCC patients in the four cohorts. Patients with high ProLncS score displayed significantly genomic alterations (e.g., TP53 mutation, 8p23-8p24 copy number variation) and higher abundances of immune cells and immune checkpoint molecules, which suggested immunotherapy was more suitable for patients with high ProLncS score. Conclusion: Our work provided new insights into the heterogeneity of tumor proliferation, and ProLncS could be a prospective tool for tailoring the clinical decision and management of HCC.
Collapse
Affiliation(s)
- Chi Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Dongjing Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Qiwen Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.,Henan Research & Development International Joint Laboratory for Organ Transplantation Immunomodulation, Zhengzhou, China.,Zhengzhou Engineering Laboratory for Organ Transplantation Technique and Application, Zhengzhou, China.,Zhengzhou Key Laboratory for Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| |
Collapse
|
26
|
Heinke P, Rost F, Rode J, Trus P, Simonova I, Lázár E, Feddema J, Welsch T, Alkass K, Salehpour M, Zimmermann A, Seehofer D, Possnert G, Damm G, Druid H, Brusch L, Bergmann O. Diploid hepatocytes drive physiological liver renewal in adult humans. Cell Syst 2022; 13:499-507.e12. [PMID: 35649419 DOI: 10.1016/j.cels.2022.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Physiological liver cell replacement is central to maintaining the organ's high metabolic activity, although its characteristics are difficult to study in humans. Using retrospective radiocarbon (14C) birth dating of cells, we report that human hepatocytes show continuous and lifelong turnover, allowing the liver to remain a young organ (average age <3 years). Hepatocyte renewal is highly dependent on the ploidy level. Diploid hepatocytes show more than 7-fold higher annual birth rates than polyploid hepatocytes. These observations support the view that physiological liver cell renewal in humans is mainly dependent on diploid hepatocytes, whereas polyploid cells are compromised in their ability to divide. Moreover, cellular transitions between diploid and polyploid hepatocytes are limited under homeostatic conditions. With these findings, we present an integrated model of homeostatic liver cell generation in humans that provides fundamental insights into liver cell turnover dynamics.
Collapse
Affiliation(s)
- Paula Heinke
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Fabian Rost
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Julian Rode
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Palina Trus
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Irina Simonova
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Enikő Lázár
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Joshua Feddema
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Thilo Welsch
- Visceral-, Thoracic- and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kanar Alkass
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mehran Salehpour
- Department of Physics and Astronomy, Applied Nuclear Physics, Ion Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Andrea Zimmermann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Göran Possnert
- Department of Physics and Astronomy, Applied Nuclear Physics, Ion Physics, Uppsala University, 75120 Uppsala, Sweden
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany; Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lutz Brusch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, 01187 Dresden, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
27
|
From polyploidy to polyploidy reversal: its role in normal and disease states. Trends Genet 2022; 38:991-995. [DOI: 10.1016/j.tig.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
|
28
|
Molecular features of primary hepatic undifferentiated carcinoma. Mod Pathol 2022; 35:680-687. [PMID: 34949765 DOI: 10.1038/s41379-021-00970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022]
Abstract
The clinicopathological and molecular characteristics of primary hepatic undifferentiated carcinoma are poorly defined. It is speculated that primary hepatic undifferentiated carcinoma develops in the setting of preceding primary hepatic carcinoma. We investigated 14 primary hepatic undifferentiated carcinomas through targeted next-generation sequencing and immunohistochemistry. A panel of genes commonly mutated in primary liver carcinomas were examined. We found a similar clinical context as primary hepatic carcinoma, including a high prevalence of chronic viral hepatitis (86%), cirrhosis (57%), and elevated alpha-fetoprotein (29%). Tumors had sheet-like and poorly cohesive growth patterns. Rhabdoid cytomorphology was observed in four samples. Notably, the most common genetic mutations in primary hepatic undifferentiated carcinoma were in the promoter of TERT (n = 8, 57%) and TP53 (n = 8, 57%), which are common in hepatocellular carcinoma. The mutation rate of TP53 was elevated compared with hepatocellular carcinoma. No other typical genetic features of intrahepatic cholangiocarcinoma were identified, such as an IDH1/IDH2 mutation, FGFR2 fusions, or aberrant BAP1 expression. Furthermore, novel switch/sucrose nonfermenting complex inactivation was found, including SMARCA4/SMARCA2 (n = 1) and PBRM1 deficiency (n = 2). The three tumors demonstrated poorly cohesive histology, including rhabdoid features. High PD-L1 expression (57%) was observed in a majority of the tumors. Primary hepatic undifferentiated carcinoma shares clinical and genetic features with hepatocellular carcinoma but harbors progressive molecular characteristics that may initiate tumor dedifferentation. High PD-L1 expression in primary hepatic undifferentiated carcinoma may be a useful biomarker for potential immunotherapeutic strategies.
Collapse
|
29
|
HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions. Cells 2022; 11:cells11071194. [PMID: 35406758 PMCID: PMC8997820 DOI: 10.3390/cells11071194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Functional human hepatocytes have been a pivotal tool in pharmacological studies such as those investigating drug metabolism and hepatotoxicity. However, primary human hepatocytes are difficult to obtain in large quantities and may cause ethical problems, necessitating the development of a new cell source to replace human primary hepatocytes. We previously developed genetically modified murine hepatoma cell lines with inducible enhanced liver functions, in which eight liver-enriched transcription factor (LETF) genes were introduced into hepatoma cells as inducible transgene expression cassettes. Here, we establish a human hepatoma cell line with heat-inducible liver functions using HepG2 cells. The genetically modified hepatoma cells, designated HepG2/8F_HS, actively proliferated under normal culture conditions and, therefore, can be easily prepared in large quantities. When the expression of LETFs was induced by heat treatment at 43 °C for 30 min, cells ceased proliferation and demonstrated enhanced liver functions. Furthermore, three-dimensional spheroid cultures of HepG2/8F_HS cells showed a further increase in liver functions upon heat treatment. Comprehensive transcriptome analysis using DNA microarrays revealed that HepG2/8F_HS cells had enhanced overall expression of many liver function-related genes following heat treatment. HepG2/8F_HS cells could be useful as a new cell source for pharmacological studies and for constructing bioartificial liver systems.
Collapse
|
30
|
Holczbauer Á, Wangensteen KJ, Shin S. Cellular origins of regenerating liver and hepatocellular carcinoma. JHEP Rep 2022; 4:100416. [PMID: 35243280 PMCID: PMC8873941 DOI: 10.1016/j.jhepr.2021.100416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant primary cancer arising from the liver and is one of the major causes of cancer-related mortality worldwide. The cellular origin of HCC has been a topic of great interest due to conflicting findings regarding whether it originates in hepatocytes, biliary cells, or facultative stem cells. These cell types all undergo changes during liver injury, and there is controversy about their contribution to regenerative responses in the liver. Most HCCs emerge in the setting of chronic liver injury from viral hepatitis, fatty liver disease, alcohol, and environmental exposures. The injuries are marked by liver parenchymal changes such as hepatocyte regenerative nodules, biliary duct cellular changes, expansion of myofibroblasts that cause fibrosis and cirrhosis, and inflammatory cell infiltration, all of which may contribute to carcinogenesis. Addressing the cellular origin of HCC is the key to identifying the earliest events that trigger it. Herein, we review data on the cells of origin in regenerating liver and HCC and the implications of these findings for prevention and treatment. We also review the origins of childhood liver cancer and other rare cancers of the liver.
Collapse
|
31
|
Kim JY, Yang IS, Kim HJ, Yoon JY, Han YH, Seong JK, Lee MO. RORα contributes to the maintenance of genome ploidy in the liver of mice with diet-induced nonalcoholic steatohepatitis. Am J Physiol Endocrinol Metab 2022; 322:E118-E131. [PMID: 34894722 DOI: 10.1152/ajpendo.00309.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepatic polyploidization is closely linked to the progression of nonalcoholic fatty liver disease (NAFLD); however, the underlying molecular mechanism is not clearly understood. In this study, we demonstrated the role of retinoic acid-related orphan receptor α (RORα) in the maintenance of genomic integrity, particularly in the pathogenesis of NAFLD, using the high-fat diet (HFD)-fed liver-specific RORα knockout (RORα-LKO) mouse model. First, we observed that the loss of hepatic retinoic acid receptor-related orphan receptor α (RORα) accelerated hepatocyte nuclear polyploidization after HFD feeding. In 70% partial hepatectomy experiments, enrichment of hepatocyte polyploidy was more obvious in the RORα-LKO animals, which was accompanied by early progression to the S phase and blockade of the G2/M transition, suggesting a potential role of RORα in suppressing hepatocyte polyploidization in the regenerating liver. An analysis of a publicly available RNA sequencing (RNA-seq) and chromatin immunoprecipitation-seq dataset, together with the Search Tool of the Retrieval of Interacting Genes/Proteins database resource, revealed that DNA endoreplication was the top-enriched biological process Gene Ontology term. Furthermore, we found that E2f7 and E2f8, which encode key transcription factors for DNA endoreplication, were the downstream targets of RORα-induced transcriptional repression. Finally, we showed that the administration of JC1-40, an RORα activator (5 mg/kg body wt), significantly reduced hepatic nuclear polyploidization in the HFD-fed mice. Together, our observations suggest that the RORα-induced suppression of hepatic polyploidization may provide new insights into the pathological polyploidy of NAFLD and may contribute to the development of therapeutic strategies for the treatment of NAFLD.NEW & NOTEWORTHY It has been reported that hepatic polyploidization is closely linked to the progression of NAFLD. Here, we showed that the genetic depletion of hepatic RORα in mice accelerated hepatocyte polyploidization after high-fat diet feeding. The mechanism could be the RORα-mediated repression of E2f7 and E2f8, key transcription factors for DNA endoreplication. Thus, preservation of genome integrity by RORα could provide a new insight for developing therapeutics against the disease.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - In Sook Yang
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jae-Yeun Yoon
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yong-Hyun Han
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
- Research Institute of Veterinary Science, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Bio-MAX Institute, Seoul National University, Seoul, South Korea
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Guo L, Yi X, Chen L, Zhang T, Guo H, Chen Z, Cheng J, Cao Q, Liu H, Hou C, Qi L, Zhu Z, Liu Y, Kong R, Zhang C, Zhou X, Zhang Z, Song T, Xue R, Zhang N. Single-Cell DNA Sequencing Reveals Punctuated and Gradual Clonal Evolution in Hepatocellular Carcinoma. Gastroenterology 2022; 162:238-252. [PMID: 34481846 DOI: 10.1053/j.gastro.2021.08.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Copy number alterations (CNAs), elicited by genome instability, are a major source of intratumor heterogeneity. How CNAs evolve in hepatocellular carcinoma (HCC) remains unknown. METHODS We performed single-cell DNA sequencing (scDNA-seq) on 1275 cells isolated from 10 patients with HCC, ploidy-resolved scDNA-seq on 356 cells from 1 additional patient, and single-cell RNA sequencing on 27,344 cells from 3 additional patients. Three statistical fitting models were compared to investigate the CNA accumulation pattern. RESULTS Cells in the tumor were categorized into the following 3 subpopulations: euploid, pseudoeuploid, and aneuploid. Our scDNA-seq analysis revealed that CNA accumulation followed a dual-phase copy number evolution model, that is, a punctuated phase followed by a gradual phase. Patients who exhibited prolonged gradual phase showed higher intratumor heterogeneity and worse disease-free survival. Integrating bulk RNA sequencing of 17 patients with HCC, published datasets of 1196 liver tumors, and immunohistochemical staining of 202 HCC tumors, we found that high expression of CAD, a gene involved in pyrimidine synthesis, was correlated with rapid tumorigenesis and reduced survival. The dual-phase copy number evolution model was validated by our single-cell RNA sequencing data and published scDNA-seq datasets of other cancer types. Furthermore, ploidy-resolved scDNA-seq revealed the common clonal origin of diploid- and polyploid-aneuploid cells, suggesting that polyploid tumor cells were generated by whole genome doubling of diploid tumor cells. CONCLUSIONS Our work revealed a novel dual-phase copy number evolution model, showed HCC with longer gradual phase was more severe, identified CAD as a promising biomarker for early recurrence of HCC, and supported the diploid origin of polyploid HCC.
Collapse
Affiliation(s)
- Lin Guo
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- School of Biomedical Engineering and Technology, Department of Bioinformatics, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lu Chen
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ti Zhang
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hua Guo
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ziye Chen
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinghui Cheng
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Qi Cao
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Hengkang Liu
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Chunyu Hou
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiyan Zhu
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yucun Liu
- Division of General Surgery, Peking University First Hospital, Beijing, China
| | - Ruirui Kong
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Chong Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Xiaohua Zhou
- BIOPIC, Beijing Advanced Innovation Center for Genomics, and School of Life Sciences, Peking University, Beijing, China
| | - Zemin Zhang
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Tianqiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ruidong Xue
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China.
| | - Ning Zhang
- Laboratory of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Translational Cancer Research Center, Peking University First Hospital, Beijing, China.
| |
Collapse
|
33
|
Zhang L, Yang Z, Zhang S, Zhou K, Zhang W, Ling S, Sun R, Tang H, Wen X, Feng X, Song P, Xu X, Xie H, Zheng S. Polyploidy Spectrum Correlates with Immunophenotype and Shapes Hepatocellular Carcinoma Recurrence Following Liver Transplantation. J Inflamm Res 2022; 15:217-233. [PMID: 35046696 PMCID: PMC8760994 DOI: 10.2147/jir.s345681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Liang Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Shiyu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Ke Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Wu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, 310004, People’s Republic of China
| | - Sunbin Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Xue Wen
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Xiaowen Feng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
- Correspondence: Haiyang Xie; Shusen Zheng School of Medicine, Zhejiang University, 79# Qingchun Road, Hangzhou, Zhejiang, 310000, People’s Republic of ChinaTel/Fax +86 571 87236570; +86 571 87236466 Email ;
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang, 310003, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, 310004, People’s Republic of China
| |
Collapse
|
34
|
Wang N, Hao F, Shi Y, Wang J. The Controversial Role of Polyploidy in Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:5335-5344. [PMID: 34866913 PMCID: PMC8636953 DOI: 10.2147/ott.s340435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Polyploidy, a physiological phenomenon in which cells contain more than two sets of homologous chromosomes, commonly exists in plants, fish, and amphibians but is rare in mammals. In humans, polyploid cells are detected commonly in specific organs or tissues including the heart, marrow, and liver. As the largest solid organ in the body, the liver is responsible for a myriad of functions, most of which are closely related to polyploid hepatocytes. It has been confirmed that polyploid hepatocytes are related to liver regeneration, homeostasis, terminal differentiation, and aging. Polyploid hepatocytes accumulate during the aging process as well as in chronically injured livers. The relationship between polyploid hepatocytes and hepatocellular carcinoma, the endpoint of most chronic liver diseases, is not yet fully understood. Recently, accumulated evidence has revealed that polyploid involves in the process of tumorigenesis and development. The study of the correlation and relationship between polyploidy hepatocytes and the development of hepatocellular carcinoma can potentially promote the prevention, early diagnosis, and treatment of hepatocellular carcinoma. In this review, we conclude the potential mechanisms of polyploid hepatocytes formation, focusing on the specific biological significance of polyploid hepatocytes. In addition, we examine recent discoveries that have begun to clarify the relevance between polyploid hepatocytes and hepatocellular carcinoma and discuss recent excellent findings that reveal the role of polyploid hepatocytes as resisters of hepatocellular carcinoma or as promoters of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Ramakrishna G, Babu PE, Singh R, Trehanpati N. Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids. Hepatol Int 2021; 15:1309-1317. [PMID: 34596864 DOI: 10.1007/s12072-021-10237-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
Two breakthrough techniques that have totally revolutionized biology in last 1 decade are the discovery of genome editing tools and growing the stem cells/primary tissue explants in defined 3D culture. In this regard the discovery of CRISPR-Cas9 as a specific gene editing tool and organoid culture from adult stem cell has provided easy handy tools to uncover the process of organ development and also modeling cancer. Genetically modified organoids have been developed by sequential knockout and knockin of driver mutations by genome editing followed by niche-based selection. The modified organoids when xenotransplanted in animal models faithfully recapitulate the neoplastic events of human tumors. The present review focuses on the merging of these two powerful technologies in understanding the complexities of colon and liver cancer.
Collapse
Affiliation(s)
- Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, Delhi, 110070, India.
| | - Preedia E Babu
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, Delhi, 110070, India
| | - Ravinder Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, Delhi, 110070, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, D1 Block, Vasant Kunj, Delhi, 110070, India
| |
Collapse
|
36
|
Donne R, Sangouard F, Celton-Morizur S, Desdouets C. Hepatocyte Polyploidy: Driver or Gatekeeper of Chronic Liver Diseases. Cancers (Basel) 2021; 13:cancers13205151. [PMID: 34680300 PMCID: PMC8534039 DOI: 10.3390/cancers13205151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Polyploidy, also known as whole-genome amplification, is a condition in which the organism has more than two basic sets of chromosomes. Polyploidy frequently arises during tissue development and repair, and in age-associated diseases, such as cancer. Its consequences are diverse and clearly different between systems. The liver is a particularly fascinating organ in that it can adapt its ploidy to the physiological and pathological context. Polyploid hepatocytes are characterized in terms of the number of nuclei per cell (cellular ploidy; mononucleate/binucleate hepatocytes) and the number of chromosome sets in each nucleus (nuclear ploidy; diploid, tetraploid, octoploid). The advantages and disadvantages of polyploidy in mammals are not fully understood. About 30% of the hepatocytes in the human liver are polyploid. In this review, we explore the mechanisms underlying the development of polyploid cells, our current understanding of the regulation of polyploidization during development and pathophysiology and its consequences for liver function. We will also provide data shedding light on the ways in which polyploid hepatocytes cope with centrosome amplification. Finally, we discuss recent discoveries highlighting the possible roles of liver polyploidy in protecting against tumor formation, or, conversely, contributing to liver tumorigenesis.
Collapse
Affiliation(s)
- Romain Donne
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY 10029, USA
- Icahn School of Medicine at Mount Sinai, The Precision Immunology Institute, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Flora Sangouard
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
| | - Séverine Celton-Morizur
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- Correspondence: (S.C.-M.); (C.D.)
| | - Chantal Desdouets
- Laboratory of Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, F-75006 Paris, France;
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France
- Correspondence: (S.C.-M.); (C.D.)
| |
Collapse
|
37
|
Almeida Machado Costa C, Wang XF, Ellsworth C, Deng WM. Polyploidy in development and tumor models in Drosophila. Semin Cancer Biol 2021; 81:106-118. [PMID: 34562587 DOI: 10.1016/j.semcancer.2021.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Polyploidy, a cell status defined as more than two sets of genomic DNA, is a conserved strategy across species that can increase cell size and biosynthetic production, but the functional aspects of polyploidy are nuanced and vary across cell types. Throughout Drosophila developmental stages (embryo, larva, pupa and adult), polyploid cells are present in numerous organs and help orchestrate development while contributing to normal growth, well-being and homeostasis of the organism. Conversely, increasing evidence has shown that polyploid cells are prevalent in Drosophila tumors and play important roles in tumor growth and invasiveness. Here, we summarize the genes and pathways involved in polyploidy during normal and tumorigenic development, the mechanisms underlying polyploidization, and the functional aspects of polyploidy in development, homeostasis and tumorigenesis in the Drosophila model.
Collapse
Affiliation(s)
- Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States.
| |
Collapse
|
38
|
Sahu B, Pihlajamaa P, Zhang K, Palin K, Ahonen S, Cervera A, Ristimäki A, Aaltonen LA, Hautaniemi S, Taipale J. Human cell transformation by combined lineage conversion and oncogene expression. Oncogene 2021; 40:5533-5547. [PMID: 34302118 PMCID: PMC8429043 DOI: 10.1038/s41388-021-01940-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the most complex genetic disease known, with mutations implicated in more than 250 genes. However, it is still elusive which specific mutations found in human patients lead to tumorigenesis. Here we show that a combination of oncogenes that is characteristic of liver cancer (CTNNB1, TERT, MYC) induces senescence in human fibroblasts and primary hepatocytes. However, reprogramming fibroblasts to a liver progenitor fate, induced hepatocytes (iHeps), makes them sensitive to transformation by the same oncogenes. The transformed iHeps are highly proliferative, tumorigenic in nude mice, and bear gene expression signatures of liver cancer. These results show that tumorigenesis is triggered by a combination of three elements: the set of driver mutations, the cellular lineage, and the state of differentiation of the cells along the lineage. Our results provide direct support for the role of cell identity as a key determinant in transformation and establish a paradigm for studying the dynamic role of oncogenic drivers in human tumorigenesis.
Collapse
Affiliation(s)
- Biswajyoti Sahu
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Päivi Pihlajamaa
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kaiyang Zhang
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Saija Ahonen
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alejandra Cervera
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, HUSLAB and HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi Taipale
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
39
|
Richter ML, Deligiannis IK, Yin K, Danese A, Lleshi E, Coupland P, Vallejos CA, Matchett KP, Henderson NC, Colome-Tatche M, Martinez-Jimenez CP. Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy. Nat Commun 2021; 12:4264. [PMID: 34253736 PMCID: PMC8275628 DOI: 10.1038/s41467-021-24543-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
Single-cell RNA-seq reveals the role of pathogenic cell populations in development and progression of chronic diseases. In order to expand our knowledge on cellular heterogeneity, we have developed a single-nucleus RNA-seq2 method tailored for the comprehensive analysis of the nuclear transcriptome from frozen tissues, allowing the dissection of all cell types present in the liver, regardless of cell size or cellular fragility. We use this approach to characterize the transcriptional profile of individual hepatocytes with different levels of ploidy, and have discovered that ploidy states are associated with different metabolic potential, and gene expression in tetraploid mononucleated hepatocytes is conditioned by their position within the hepatic lobule. Our work reveals a remarkable crosstalk between gene dosage and spatial distribution of hepatocytes.
Collapse
Affiliation(s)
- M L Richter
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
| | - I K Deligiannis
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
| | - K Yin
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, United Kingdom
| | - A Danese
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - E Lleshi
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, United Kingdom
| | - P Coupland
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, United Kingdom
| | - C A Vallejos
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - K P Matchett
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh, United Kingdom
| | - N C Henderson
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh, United Kingdom
| | - M Colome-Tatche
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - C P Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
40
|
Wang XF, Yang SA, Gong S, Chang CH, Portilla JM, Chatterjee D, Irianto J, Bao H, Huang YC, Deng WM. Polyploid mitosis and depolyploidization promote chromosomal instability and tumor progression in a Notch-induced tumor model. Dev Cell 2021; 56:1976-1988.e4. [PMID: 34146466 DOI: 10.1016/j.devcel.2021.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/18/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Ploidy variation is a cancer hallmark and is frequently associated with poor prognosis in high-grade cancers. Using a Drosophila solid-tumor model where oncogenic Notch drives tumorigenesis in a transition-zone microenvironment in the salivary gland imaginal ring, we find that the tumor-initiating cells normally undergo endoreplication to become polyploid. Upregulation of Notch signaling, however, induces these polyploid transition-zone cells to re-enter mitosis and undergo tumorigenesis. Growth and progression of the transition-zone tumor are fueled by a combination of polyploid mitosis, endoreplication, and depolyploidization. Both polyploid mitosis and depolyploidization are error prone, resulting in chromosomal copy-number variation and polyaneuploidy. Comparative RNA-seq and epistasis analysis reveal that the DNA-damage response genes, also active during meiosis, are upregulated in these tumors and are required for the ploidy-reduction division. Together, these findings suggest that polyploidy and associated cell-cycle variants are critical for increased tumor-cell heterogeneity and genome instability during cancer progression.
Collapse
Affiliation(s)
- Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Sheng-An Yang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shangyu Gong
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Chih-Hsuan Chang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Juan Martin Portilla
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Hongcun Bao
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
41
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [PMID: 35590232 DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
42
|
Qiao Y, Pei Y, Luo M, Rajasekaran M, Hui KM, Chen J. Cytokinesis regulators as potential diagnostic and therapeutic biomarkers for human hepatocellular carcinoma. Exp Biol Med (Maywood) 2021; 246:1343-1354. [PMID: 33899543 DOI: 10.1177/15353702211008380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytokinesis, the final step of mitosis, is critical for maintaining the ploidy level of cells. Cytokinesis is a complex, highly regulated process and its failure can lead to genetic instability and apoptosis, contributing to the development of cancer. Human hepatocellular carcinoma is often accompanied by a high frequency of aneuploidy and the DNA ploidy pattern observed in human hepatocellular carcinoma results mostly from impairments in cytokinesis. Many key regulators of cytokinesis are abnormally expressed in human hepatocellular carcinoma, and their expression levels are often correlated with patient prognosis. Moreover, preclinical studies have demonstrated that the inhibition of key cytokinesis regulators can suppress the growth of human hepatocellular carcinoma. Here, we provide an overview of the current understanding of the signaling networks regulating cytokinesis, the key cytokinesis regulators involved in the initiation and development of human hepatocellular carcinoma, and their applications as potential diagnostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Yunxin Pei
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Miao Luo
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Muthukumar Rajasekaran
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| | - Kam M Hui
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jianxiang Chen
- Pharmacy Institute and Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province and Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610, Singapore
| |
Collapse
|
43
|
Post J, Langohr IM, Webster CRL, Mottram P, Liu CC, Johnston A. Hepatocyte ploidy in cats with and without hepatocellular carcinoma. BMC Vet Res 2021; 17:104. [PMID: 33663494 PMCID: PMC7934229 DOI: 10.1186/s12917-021-02812-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Domestic cats rarely develop hepatocellular carcinoma. The reason for the low prevalence is unknown. Reductions in hepatocellular ploidy have been associated with hepatic carcinogenesis. Recent work in mice has shown that livers with more polyploid hepatocytes are protected against the development of hepatocellular carcinoma. Hepatocyte ploidy in the domestic cat has not been evaluated. We hypothesized that ploidy would be reduced in peri-tumoral and neoplastic hepatocytes compared to normal feline hepatocytes. Using integrated fluorescence microscopy, we quantified the spectra of ploidy in hepatocellular carcinoma and healthy control tissue from paraffin embedded tissue sections. RESULTS Feline hepatocytes are predominantly mononuclear and the number of nuclei per hepatocyte did not differ significantly between groups. Normal cats have a greater number of tetraploid hepatocytes than cats with hepatocellular carcinoma. CONCLUSIONS Total hepatocellular polyploidy in normal cat liver is consistent with values reported in humans, yet cellular ploidy (nuclei per cell) is greater in humans than in cats. Tetraploid cat hepatocytes are predominantly mononuclear.
Collapse
Affiliation(s)
- Jacqueline Post
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, LA, Baton Rouge, USA
| | - Ingeborg M Langohr
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, LA, Baton Rouge, USA
| | - Cynthia R L Webster
- Veterinary Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, MA, North Grafton, USA
| | - Peter Mottram
- Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, LA, Baton Rouge, USA
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, LA, Baton Rouge, USA
| | - Andrea Johnston
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, LA, Baton Rouge, USA.
| |
Collapse
|
44
|
Development of a genetically modified hepatoma cell line with heat-inducible high liver function. Cytotechnology 2021; 73:353-362. [PMID: 34149171 DOI: 10.1007/s10616-021-00457-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/05/2021] [Indexed: 01/15/2023] Open
Abstract
Hepatoma cells are a promising cell source for the construction of bioartificial liver (BAL) systems owing to their high proliferative capability. However, their low liver function compared with primary hepatocytes is a major problem. In a previous study, we established a genetically modified hepatoma cell line, Hepa/8F5, in which eight liver-enriched transcription factor (LETF) genes were transduced into mouse hepatoma Hepa1-6 cells using a drug-inducible transactivator system. These cells proliferate actively under normal culture conditions, meaning that large quantities can be prepared easily. When the overexpression of the LETFs is induced by the addition of an inducer drug, cell growth stops and cell morphology changes with concomitant high expression of liver functions. However, the liver functions largely depend on the presence of the inducer drug, which must be continuously added to maintain these enhanced functions. In the present study, we attempted to modify the method of induction of LETF overexpression in Hepa/8F5 cells to remove the requirement for continual drug addition. To this end, we constructed a system in which the artificial transactivator was transcribed and amplified under the control of a heat-shock protein promoter, and introduced the system into the genome of Hepa/8F5 cells. In our modified cell line, heat-triggered LETF expression was confirmed to induce high liver function. After drug-screening of transfected cells, we established a hepatoma cell line (Hepa/HS), which exhibited high, heat-inducible liver functions. The Hepa/HS cells may represent a new cell source for hepatic studies such as the construction of BAL systems. Supplementary Information The online version of this article (10.1007/s10616-021-00457-4) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Lin H, Huang YS, Fustin JM, Doi M, Chen H, Lai HH, Lin SH, Lee YL, King PC, Hou HS, Chen HW, Young PY, Chao HW. Hyperpolyploidization of hepatocyte initiates preneoplastic lesion formation in the liver. Nat Commun 2021; 12:645. [PMID: 33510150 PMCID: PMC7844417 DOI: 10.1038/s41467-020-20572-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most predominant primary malignancy in the liver. Genotoxic and genetic models have revealed that HCC cells are derived from hepatocytes, but where the critical region for tumor foci emergence is and how this transformation occurs are still unclear. Here, hyperpolyploidization of hepatocytes around the centrilobular (CL) region is demonstrated to be closely linked with the development of HCC cells after diethylnitrosamine treatment. We identify the CL region as a dominant lobule for accumulation of hyperpolyploid hepatocytes and preneoplastic tumor foci formation. We also demonstrate that upregulation of Aurkb plays a critical role in promoting hyperpolyploidization. Increase of AURKB phosphorylation is detected on the midbody during cytokinesis, causing abscission failure and hyperpolyploidization. Pharmacological inhibition of AURKB dramatically reduces nucleus size and tumor foci number surrounding the CL region in diethylnitrosamine-treated liver. Our work reveals an intimate molecular link between pathological hyperpolyploidy of CL hepatocytes and transformation into HCC cells.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- Diethylnitrosamine/toxicity
- Female
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Microscopy, Confocal
- Polyploidy
- Precancerous Conditions/chemically induced
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Mice
Collapse
Affiliation(s)
- Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yen-Sung Huang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jean-Michel Fustin
- Laboratory of Molecular Metabology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
- The University of Manchester, Faculty of Biology, Medicine and Health, Oxford Road, Manchester, M13 9PL, UK
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyō-ku, Kyoto, 606-8501, Japan
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui-Huang Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Hui Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yen-Lurk Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Pei-Chih King
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsien-San Hou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hao-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pei-Yun Young
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
46
|
Caruso S, O'Brien DR, Cleary SP, Roberts LR, Zucman-Rossi J. Genetics of Hepatocellular Carcinoma: Approaches to Explore Molecular Diversity. Hepatology 2021; 73 Suppl 1:14-26. [PMID: 32463918 DOI: 10.1002/hep.31394] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Caruso
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, Paris, France
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Sean P Cleary
- Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, Paris, France.,European Hospital Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
47
|
Wilkinson PD, Duncan AW. Differential Roles for Diploid and Polyploid Hepatocytes in Acute and Chronic Liver Injury. Semin Liver Dis 2021; 41:42-49. [PMID: 33764484 PMCID: PMC8056861 DOI: 10.1055/s-0040-1719175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocytes are the primary functional cells of the liver that perform essential roles in homeostasis, regeneration, and injury. Most mammalian somatic cells are diploid and contain pairs of each chromosome, but there are also polyploid cells containing additional sets of chromosomes. Hepatocytes are among the best described polyploid cells, with polyploids comprising more than 25 and 90% of the hepatocyte population in humans and mice, respectively. Cellular and molecular mechanisms that regulate hepatic polyploidy have been uncovered, and in recent years, diploid and polyploid hepatocytes have been shown to perform specialized functions. Diploid hepatocytes accelerate liver regeneration induced by resection and may accelerate compensatory regeneration after acute injury. Polyploid hepatocytes protect the liver from tumor initiation in hepatocellular carcinoma and promote adaptation to tyrosinemia-induced chronic injury. This review describes how ploidy variations influence cellular activity and presents a model for context-specific functions for diploid and polyploid hepatocytes.
Collapse
Affiliation(s)
- Patrick D Wilkinson
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew W Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Sladky VC, Knapp K, Szabo TG, Braun VZ, Bongiovanni L, van den Bos H, Spierings DCJ, Westendorp B, Curinha A, Stojakovic T, Scharnagl H, Timelthaler G, Tsuchia K, Pinter M, Semmler G, Foijer F, de Bruin A, Reiberger T, Rohr‐Udilova N, Villunger A. PIDDosome-induced p53-dependent ploidy restriction facilitates hepatocarcinogenesis. EMBO Rep 2020; 21:e50893. [PMID: 33225610 PMCID: PMC7726793 DOI: 10.15252/embr.202050893] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi-protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability. PIDDosome deficiency in the liver results in drastically increased polyploidy. To investigate PIDDosome-induced p53-activation in the pathogenesis of liver cancer, we chemically induced hepatocellular carcinoma (HCC) in mice. Strikingly, PIDDosome deficiency reduced tumor number and burden, despite the inability to activate p53 in polyploid cells. Liver tumors arise primarily from cells with low ploidy, indicating an intrinsic pro-tumorigenic effect of PIDDosome-mediated ploidy restriction. These data suggest that hyperpolyploidization caused by PIDDosome deficiency protects from HCC. Moreover, high tumor cell density, as a surrogate marker of low ploidy, predicts poor survival of HCC patients receiving liver transplantation. Together, we show that the PIDDosome is a potential therapeutic target to manipulate hepatocyte polyploidization for HCC prevention and that tumor cell density may serve as a novel prognostic marker for recurrence-free survival in HCC patients.
Collapse
Affiliation(s)
- Valentina C Sladky
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Katja Knapp
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Tamas G Szabo
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Vincent Z Braun
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Laura Bongiovanni
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Diana CJ Spierings
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Ana Curinha
- Institute of PathophysiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsUniversity Hospital GrazGrazAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Gerald Timelthaler
- Institute for Cancer ResearchInternal Medicine IMedical University of ViennaViennaAustria
| | - Kaoru Tsuchia
- Department of Gastroenterology & HepatologyMusashino Red Cross HospitalTokyoJapan
| | - Matthias Pinter
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Floris Foijer
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Alain de Bruin
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Department PediatricsUniversity Medical Center GroningenUniversity GroningenGroningenThe Netherlands
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Nataliya Rohr‐Udilova
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Andreas Villunger
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
49
|
Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv Cancer Res 2020; 149:1-61. [PMID: 33579421 PMCID: PMC8796122 DOI: 10.1016/bs.acr.2020.10.001] [Citation(s) in RCA: 505] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the primary malignancy of hepatocytes, is a diagnosis with bleak outcome. According to National Cancer Institute's SEER database, the average five-year survival rate of HCC patients in the US is 19.6% but can be as low as 2.5% for advanced, metastatic disease. When diagnosed at early stages, it is treatable with locoregional treatments including surgical resection, Radio-Frequency Ablation, Trans-Arterial Chemoembolization or liver transplantation. However, HCC is usually diagnosed at advanced stages when the tumor is unresectable, making these treatments ineffective. In such instances, systemic therapy with tyrosine kinase inhibitors (TKIs) becomes the only viable option, even though it benefits only 30% of patients, provides only a modest (~3months) increase in overall survival and causes drug resistance within 6months. HCC, like many other cancers, is highly heterogeneous making a one-size fits all option problematic. The selection of liver transplantation, locoregional treatment, TKIs or immune checkpoint inhibitors as a treatment strategy depends on the disease stage and underlying condition(s). Additionally, patients with similar disease phenotype can have different molecular etiology making treatment responses different. Stratification of patients at the molecular level would facilitate development of the most effective treatment option. With the increase in efficiency and affordability of "omics"-level analysis, considerable effort has been expended in classifying HCC at the molecular, metabolic and immunologic levels. This review examines the results of these efforts and the ways they can be leveraged to develop targeted treatment options for HCC.
Collapse
Affiliation(s)
- Saranya Chidambaranathan-Reghupaty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
50
|
Duncan AW. Hepatocyte ploidy modulation in liver cancer. EMBO Rep 2020; 21:e51922. [PMID: 33237586 DOI: 10.15252/embr.202051922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 11/09/2022] Open
Abstract
Polyploidy, a balanced amplification of the genome, is common in the liver. The function of hepatic polyploidy is not entirely clear, but growing evidence shows that polyploidy can protect the liver from tumor formation. In this issue of EMBO Reports, Sladky and colleagues identify the PIDDosome as a polyploidy sensor that regulates liver cancer (Sladky et al, 2020b).
Collapse
Affiliation(s)
- Andrew W Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|