1
|
Hagbi-Levi S, Abraham M, Gamaev L, Mishaelian I, Hay O, Zorde-Khevalevsky E, Wald O, Wald H, Olam D, Weiss L, Peled A. Identification of Dinaciclib and Ganetespib as anti-inflammatory drugs using a novel HTP screening assay that targets IFNγ-dependent PD-L1. Front Immunol 2025; 16:1502094. [PMID: 40264756 PMCID: PMC12011776 DOI: 10.3389/fimmu.2025.1502094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction IFNγ plays both positive and negative roles in the regulation of innate and adaptive immune responses against tumors and virally infected tissues by upregulating CXCL10 and PD-L1 expression. Methods To identify novel pathways and drugs that regulate the IFNγ-dependent PD-L1, we expressed GFP under the control of mouse PD-L1 promoter in mouse cancer cells that up regulate PD-L1 and CXCL10 in response to IFNγ stimulation. Using these cells, we screened an FDA approved library of 1496 small molecules known for their ability to inhibit IFNγ-dependent increase in PD-L1. Results We identified 46 drugs that up regulated and 4 that down regulated IFNγ-dependent PD-L1 expression. We discovered that in addition to the known JAK inhibitors Ruxolitinib and Baricitinib, Dinaciclib, a CDK1/2/5/9 inhibitor, and Ganetespib, a Hsp90 inhibitor, significantly inhibit both PD-L1 and CXCL10 expression in the model cells. Furthermore, both drugs suppressed IFNγ-dependent CXCL10 and PD-L1 expression in-vitro in primary human lung cells and human cancer cells. These drugs also significantly inhibited delayed-type hypersensitivity (DTH) in-vivo in an inflammation mouse model. Discussion Our novel screening platform can therefore be used in the future to identify novel immunomodulators and pathways in cancer and inflammation, expanding therapeutic horizons.
Collapse
Affiliation(s)
- Shira Hagbi-Levi
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Lika Gamaev
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Inbal Mishaelian
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ophir Hay
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elina Zorde-Khevalevsky
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ori Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hanna Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Devorah Olam
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
2
|
Oner M, Cheng YC, Soong SW, Cheng PT, Wang YH, Yang SF, Tsai SCS, Lin H. Dinaciclib Interrupts Cell Cycle and Induces Apoptosis in Oral Squamous Cell Carcinoma: Mechanistic Insights and Therapeutic Potential. Int J Mol Sci 2025; 26:2197. [PMID: 40076816 PMCID: PMC11900514 DOI: 10.3390/ijms26052197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Dinaciclib, a potent cyclin-dependent kinase (CDK) inhibitor, has demonstrated considerable antitumor effects in various malignancies. However, its impact on oral squamous cell carcinoma (OSCC), a predominant and highly aggressive form of head and neck squamous cell carcinoma (HNSC) with limited treatment options, remains underexplored. We conducted gene set enrichment analyses in HNSC patients that reinforced the relevance of these cell cycle-related genes to OSCC pathogenesis. Given the known dysregulation of cell cycle-related genes in HNSC patients, we hypothesized that Dinaciclib may inhibit OSCC growth by targeting overexpressed cyclins and CDKs, thereby disrupting cell cycle progression and inducing apoptosis. This study investigated Dinaciclib's effects on cell proliferation, cell cycle progression, and apoptosis in the OSCC cell lines Ca9-22, OECM-1, and HSC-3. Our results demonstrated that Dinaciclib significantly reduces OSCC cell proliferation in a dose-dependent manner. Flow cytometry and Western blot analyses showed that Dinaciclib induces cell cycle arrest at the G1/S and G2/M transitions by downregulating Cyclins A, B, D, and E, along with CDKs 1 and 2-key regulators of these checkpoints. Furthermore, Dinaciclib treatment upregulated apoptotic markers, such as cleaved-caspase-3 and cleaved-PARP, confirming its pro-apoptotic effects. In conclusion, these findings highlight Dinaciclib's therapeutic promise in OSCC by simultaneously disrupting cell cycle progression and inducing apoptosis. These results support further exploration of Dinaciclib as a viable monotherapy or combination treatment in OSCC and other HNSC subtypes to improve patient outcomes.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (M.O.); (Y.-C.C.); (S.-W.S.); (P.-T.C.)
| | - Yu-Chiao Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (M.O.); (Y.-C.C.); (S.-W.S.); (P.-T.C.)
| | - Shiuan-Woei Soong
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (M.O.); (Y.-C.C.); (S.-W.S.); (P.-T.C.)
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (M.O.); (Y.-C.C.); (S.-W.S.); (P.-T.C.)
| | - Yan-Hsiung Wang
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Stella Chin-Shaw Tsai
- Superintendent Office, Tungs’ Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
- College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (M.O.); (Y.-C.C.); (S.-W.S.); (P.-T.C.)
| |
Collapse
|
3
|
Mardaneh P, Pirhadi S, Mohabbati M, Khoshneviszadeh M, Rezaei Z, Saso L, Edraki N, Firuzi O. Design, synthesis and pharmacological evaluation of 1,4-naphthoquinone- 1,2,3-triazole hybrids as new anticancer agents with multi-kinase inhibitory activity. Sci Rep 2025; 15:6639. [PMID: 39994286 PMCID: PMC11850817 DOI: 10.1038/s41598-025-87483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Targeting important oncogenic kinases that contribute to hallmarks of cancer has revolutionized cancer therapy. Ten 1,4-naphthoquinone derivatives linked to 1,2,3-triazole (4a-4j) were designed and synthesized as kinase inhibitors especially aimed at blocking CDK2, a validated and important cancer target. Assessment of the antiproliferative activity of the synthesized compounds against lung (EBC-1), pancreatic ductal adenocarcinoma (PDAC, AsPC-1 and Mia-Paca-2), colorectal (HT-29), and breast cancer (MCF-7) cells revealed that most of the derivatives possess considerable antiproliferative potential, with IC50 values as low as 0.3 µM. In contrast, the compounds relatively spared NIH3T3 non-cancer cell line. The kinase inhibitory effect of the best compounds was examined against a panel of 30 important oncogenic kinases. Derivatives 4a (bearing a benzyl ring) and 4i (bearing a p-methyl benzyl ring) inhibited CDK2, FLT4 (VEGFR3) and PDGFRA kinases with IC50 values in the range of 0.55-1.67 and 0.22-11.32 µM, respectively. These compounds also caused S phase arrest and induced characteristic features of apoptosis in PDAC cells. Molecular modeling simulation validated the binding interactions between the synthesized derivatives and the active sites of the 3 target kinases. Finally, the compounds also possessed drug-like features as examined by in silico studies. The results of this study indicate that 1,4-naphthoquinone derivatives could have promising anticancer potential as multi-kinase inhibitors.
Collapse
Affiliation(s)
- Pegah Mardaneh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mohabbati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, P. le Aldo Moro 5, Rome, 00185, Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Li C, Liu Y, Liu C, Chen F, Xie Y, Zeh HJ, Yu C, Liu J, Tang D, Kang R. AGER-dependent macropinocytosis drives resistance to KRAS-G12D-targeted therapy in advanced pancreatic cancer. Sci Transl Med 2025; 17:eadp4986. [PMID: 39879317 DOI: 10.1126/scitranslmed.adp4986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) driven by the KRAS-G12D mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells. The up-regulation of AGER within cancer cells instigates macropinocytosis, facilitating the internalization of serum albumin and subsequent amino acid generation. These amino acids are then used to synthesize the antioxidant glutathione, leading to resistance to MRTX1133 treatment due to the inhibition of apoptosis. The underlying molecular mechanism involves AGER's interaction with diaphanous-related formin 1 (DIAPH1), a formin protein responsible for driving Rac family small GTPase 1 (RAC1)-dependent macropinosome formation. The effectiveness and safety of combining MRTX1133 with pharmacological inhibitors of the AGER-DIAPH1 complex (using RAGE299) or macropinocytosis (using EIPA) were confirmed in patient-derived xenografts, orthotopic models, and genetically engineered mouse PDAC models. This combination therapy also induces high-mobility group box 1 (HMGB1) release, resulting in a subsequent antitumor CD8+ T cell response in immunocompetent mice. Collectively, the study findings underscore the potential to enhance the efficacy of KRAS-G12D blockade therapy by targeting AGER-dependent macropinocytosis.
Collapse
Affiliation(s)
- Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Fangquan Chen
- DAMP Laboratory, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Yangchun Xie
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Chen S, Wei P, Wang G, Wu F, Zou J. Construction of a prognostic signature based on T-helper 17 cells differentiation-related genes for predicting survival and tumor microenvironment in head and neck squamous cell carcinoma. Medicine (Baltimore) 2025; 104:e41273. [PMID: 39854737 PMCID: PMC11771614 DOI: 10.1097/md.0000000000041273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package. Machine learning techniques were utilized for feature selection and model construction, with validation performed using the GSE41613 cohort. The interplay between the predictive marker, immune landscape, immunotherapy response, drug sensitivity, and clinical outcomes was assessed, and a nomogram was constructed. Functional evaluations of TCDRGs were conducted through colony formation, transwell invasion, and wound healing assays. Two distinct HNSCC subtypes with significant differences in prognosis were identified based on 87 TCDRGs, indicating different levels of Th17 cell differentiation. Thirteen differentially expressed TCDRGs were selected and used to create a risk signature, T17I, using the random survival forest algorithm. This signature was associated with grade, chemotherapy, radiotherapy, T stage, and somatic mutations. It was revealed that there were differences in the immune response-related pathways between the high- and low-risk groups. Inflammatory pathways were significantly activated in the low-risk group. The T17I signature was associated with immune infiltration. Specifically, there was a higher infiltration of immune activation cells in the low-risk group, whereas the high-risk group had a higher infiltration of M2 macrophages. In addition, the T17I signature was significantly associated with drug sensitivity. A nomogram combining age, radiotherapy, and the T17I signature accurately predicted the prognosis of patients with HNSCC. Finally, in vitro experiments confirmed that knockdown of LAT gene expression promotes proliferation, metastasis, and invasion of HNSCC cells. In conclusion, this study successfully identified molecular subtypes and constructed a prognostic signature and nomogram based on TCDRGs in HNSCC, which may aid in personalized treatment strategies.
Collapse
Affiliation(s)
- Shiqin Chen
- Department of Otorhinolaryngology and Head and Neck Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, China
| | - Pingcun Wei
- Department of Otorhinolaryngology and Head and Neck Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, China
| | - Gang Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, China
| | - Fan Wu
- Department of Otorhinolaryngology and Head and Neck Surgery, Anhui No.2 Provincial People’s Hospital, Hefei, Anhui, China
| | - Jianjun Zou
- Department of Otolaryngology, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Shen J, Gong X, Ren H, Tang X, Yu H, Tang Y, Chen S, Ji M. Identification and validation of CDK1 as a promising therapeutic target for Eriocitrin in colorectal cancer: a combined bioinformatics and experimental approach. BMC Cancer 2025; 25:76. [PMID: 39806333 PMCID: PMC11731355 DOI: 10.1186/s12885-025-13448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy worldwide, associated with significant morbidity and mortality. Cyclin-dependent kinase 1 (CDK1) plays a crucial role in cell cycle regulation and has been implicated in various cancers. This study aimed to evaluate the prognostic value of CDK1 in CRC and to identify traditional Chinese medicines (TCM) that can target CDK1 as potential treatments for CRC. METHODS The expression and prognostic value of CDK1 were analyzed through TCGA, GEO, GEPIA, UALCAN and HPA databases. An ESTIMATE analysis was applied to estimate the proportions of stromal and immune cells in tumor samples. GO and KEGG enrichment analyses were performed to clarify the functional roles of CDK1-related genes. CCK-8, colony formation, cell migration, cell invasion, and wound healing assays were employed to explore tumor-promoting role of CDK1. Molecular docking, cellular thermal shift, and isothermal dose-response assays were employed to identify potential inhibitors of CDK1. RESULTS CDK1 was highly expressed in CRC and associated with a poorer prognosis. The expression of CDK1 was also correlated with the levels of immune cells infiltration. CDK1-related genes were primarily involved in the cell cycle and the P53 signaling pathway. Knockdown of CDK1 inhibited the proliferation, migration, and invasion of CRC cells in vitro. Furthermore, Eriocitrin emerged as a potential inhibitor, exerting its anti-tumor effects by targeting and inhibiting CDK1 activity. CONCLUSION CDK1 plays a critical role in CRC prognosis. Eriocitrin, a potential CDK1 inhibitor derived from TCM, highlights a promising new therapeutic strategy for CRC treatment.
Collapse
Affiliation(s)
- Jiemiao Shen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Xing Gong
- Department of Environment Health, Nanjing Medical University Affiliated Nanjing Municipal Center for Disease Control and Prevention, 2 Zizhulin, Nanjing, 210003, P. R. China
| | - Haili Ren
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Xia Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Hairong Yu
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Yilu Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China
| | - Shen Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| | - Minghui Ji
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, P. R. China.
| |
Collapse
|
7
|
Bu H, Pei C, Ouyang M, Chen Y, Yu L, Huang X, Tan Y. The antitumor peptide M1-20 induced the degradation of CDK1 through CUL4-DDB1-DCAF1-involved ubiquitination. Cancer Gene Ther 2025; 32:61-70. [PMID: 39562696 DOI: 10.1038/s41417-024-00855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
CDK1 is an oncogenic serine/threonine kinase known to play an important role in the regulation of the cell cycle. FOXM1, as one of the CDK1 substrates, requires binding of CDK1/CCNB1 complex for phosphorylation-dependent recruitment of p300/CBP coactivators to mediate transcriptional activity. Previous studies from our laboratory found that a novel peptide (M1-20) derived from the C-terminus of FOXM1 exhibited potent inhibitory effects for cancer cells. Based on these proofs and to explore the inhibitory mechanism of M1-20, we designed experiments and found that CDK1 served as an important target of M1-20. M1-20 enhanced the ubiquitination and degradation of CDK1 by CUL4-DDB1-DCAF1 complexes through the proteasome pathway. M1-20 could also affect the formation of CDK1/CCNB1 complexes. In addition, compared to RO3306, a CDK1 inhibitor, M1-20 exhibited excellent inhibitory effects in FVB/N MMTV-PyVT murine model of spontaneous breast cancer. These results suggested that M1-20 was a potential CDK1 inhibitor for the treatment of cancer.
Collapse
Affiliation(s)
- Huitong Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chaozhu Pei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Min Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Yan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Xiaoqin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
9
|
Shah A, Ganguly K, Rauth S, Sheree SS, Khan I, Ganti AK, Ponnusamy MP, Kumar S, Jain M, Batra SK. Unveiling the resistance to therapies in pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 77:101146. [PMID: 39243602 PMCID: PMC11770815 DOI: 10.1016/j.drup.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024]
Abstract
Despite the ongoing advances in interventional strategies (surgery, chemotherapy, radiotherapy, and immunotherapy) for managing pancreatic ductal adenocarcinoma (PDAC), the development of therapy refractory phenotypes remains a significant challenge. Resistance to various therapeutic modalities in PDAC emanates from a combination of inherent and acquired factors and is attributable to cancer cell-intrinsic and -extrinsic mechanisms. The critical determinants of therapy resistance include oncogenic signaling and epigenetic modifications that drive cancer cell stemness and metabolic adaptations, CAF-mediated stromagenesis that results in ECM deposition altered mechanotransduction, and secretome and immune evasion. We reviewed the current understanding of these multifaceted mechanisms operating in the PDAC microenvironment, influencing the response to chemotherapy, radiotherapy, and immunotherapy regimens. We then describe how the lessons learned from these studies can guide us to discover novel therapeutic regimens to prevent, delay, or revert resistance and achieve durable clinical responses.
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Shamema S Sheree
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Apar K Ganti
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Division of Oncology-hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha 68198-5870, USA.
| |
Collapse
|
10
|
Han L, Meng L, Liu J, Xie Y, Kang R, Klionsky DJ, Tang D, Jia Y, Dai E. Macroautophagy/autophagy promotes resistance to KRAS G12D-targeted therapy through glutathione synthesis. Cancer Lett 2024; 604:217258. [PMID: 39276914 PMCID: PMC11890192 DOI: 10.1016/j.canlet.2024.217258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
KRASG12D mutation-driven pancreatic ductal adenocarcinoma (PDAC) represents a major challenge in medicine due to late diagnosis and treatment resistance. Here, we report that macroautophagy (hereafter autophagy), a cellular degradation and recycling process, contributes to acquired resistance against novel KRASG12D-targeted therapy. The KRASG12D protein inhibitor MRTX1133 induces autophagy in KRASG12D-mutated PDAC cells by blocking MTOR activity, and increased autophagic flux prevents apoptosis. Mechanistically, autophagy facilitates the generation of glutamic acid, cysteine, and glycine for glutathione synthesis. Increased glutathione levels reduce reactive oxygen species production, which impedes CYCS translocation from mitochondria to the cytosol, ultimately preventing the formation of the APAF1 apoptosome. Consequently, genetic interventions (utilizing ATG5 or BECN1 knockout) or pharmacological inhibition of autophagy (with chloroquine, bafilomycin A1, or spautin-1) enhance the anticancer activity of MRTX1133 in vitro and in various animal models (subcutaneous, patient-derived xenograft, and orthotopic). Moreover, the release of histones by apoptotic cells triggers an adaptive immune response when combining an autophagy inhibitor with MRTX1133 in immunocompetent mice. These findings establish a new strategy to overcome KRASG12D-targeted therapy resistance by inhibiting autophagy-dependent glutathione synthesis.
Collapse
Affiliation(s)
- Leng Han
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Lingjun Meng
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yuanyuan Jia
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Enyong Dai
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
11
|
Yang J, Xu T, Wang H, Wang L, Cheng Y. Mechanisms of Berberine in anti-pancreatic ductal adenocarcinoma revealed by integrated multi-omics profiling. Sci Rep 2024; 14:22929. [PMID: 39358545 PMCID: PMC11446930 DOI: 10.1038/s41598-024-74943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/30/2024] [Indexed: 10/04/2024] Open
Abstract
This study integrates pharmacology databases with bulk RNA-seq and scRNA-seq to reveal the latent anti-PDAC capacities of BBR. Target genes of BBR were sifted through TargetNet, CTD, SwissTargetPrediction, and Binding Database. Based on the GSE183795 dataset, DEG analysis, GSEA, and WGCNA were sequentially run to build a disease network. Through sub-network filtration acquired PDAC-related hub genes. A PPI network was established using the shared genes. Degree algorithm from cytoHubba screened the key cluster in the network. Analysis of differential mRNA expression and ROC curves gauged the diagnostic performance of clustered genes. CYBERSORT uncovered the potential role of the key cluster on PDAC immunomodulation. ScRNA-seq analysis evaluated the distribution and expression profile of the key cluster at the single-cell level, assessing enrichment within annotated cell subpopulations to delineate the target distribution of BBR in PDAC. We identified 425 drug target genes and 771 disease target genes, using 57 intersecting genes to construct the PPI network. CytoHubba anchored the top 10 highest contributing genes to be the key cluster. mRNA expression levels and ROC curves confirmed that these genes showed good robustness for PDAC. CYBERSORT revealed that the key cluster influenced immune pathways predominantly associated with Macrophages M0, CD8 T cells, and naïve B cells. ScRNA-seq analysis clarified that BBR mainly acted on epithelial cells and macrophages in PDAC tissues. BBR potentially targets CDK1, CCNB1, CTNNB1, CDK2, TOP2A, MCM2, RUNX2, MYC, PLK1, and AURKA to exert therapeutic effects on PDAC. The mechanisms of action appear to significantly involve macrophage polarization-related immunological responses.
Collapse
Affiliation(s)
- Jia Yang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Xu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongwei Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Shanghai Putuo District People's Hospital, Shanghai, China
| | - Yanmei Cheng
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Chen K, You Y, Tang W, Tian X, Zhu C, Yin Z, Zeng M, He X. HAND2-AS1 plays a tumor-suppressive role in hepatoblastoma through the negative regulation of CDK1. Heliyon 2024; 10:e35930. [PMID: 39286228 PMCID: PMC11402935 DOI: 10.1016/j.heliyon.2024.e35930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Objective Hepatoblastoma (HB) is the most commonly seen pediatric liver malignancy. The preliminary experiment of our research group found that cyclin dependent kinase 1 (CDK1) was upregulated in HB. By in silico analysis, long noncoding RNA (lncRNA) HAND2 antisense RNA 1 (HAND2-AS1) was determined as the research object. Herein, HAND2-AS1 expression in HB and its effect and mechanism on HB were extensively investigated. Methods CDK1-related lncRNAs were searched using the microarray data from the Gene Expression Omnibus (GEO) database and Gene Expression Profiling Interactive Analysis (GEPIA) online database. qRT-PCR, Western blot, and immunohistochemistry were performed to determine the mRNA expression and protein levels of target genes. MTT, flow cytometry and DAPI staining assays were conducted to measure proliferation activity, cell cycle progression, and apoptosis of HB cells. The interaction between lncRNA and protein was determined by RNA pull-down and FISH assays. Luciferase assay was applied to identify whether HAND2-AS1 stimulates the transcription of CDK1. CDK1 mRNA stability was detected through actinomycin D assay. Aycloheximide assay was used to detect the CDK1 protein stability. Results HAND2-AS1 was downregulated in HB tissues and cells. HAND2-AS1 overexpression impeded HB cells proliferation activity and cycle progression while inducing cell apoptosis of HB cells, while knockdown of HAND2-AS1 emerged the opposite effect. HAND2-AS1 negatively correlated with CDK1. HAND2-AS1 downregulated CDK1 expression by affecting the transcriptional activity, mRNA and protein stability of CDK1. Furthermore, HAND2-AS1 impeded HB cell proliferation and cycle progression while inducing cell apoptosis by downregulating CDK1. Conclusion Our research highlights that HAND2-AS1 can exert a tumor-suppressive effect on HB through the negative regulation of CDK1, and the HAND2-AS1/CDK1 is expected to be a diagnostic molecular marker and therapeutic target for HB in clinical practice.
Collapse
Affiliation(s)
- Keke Chen
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Yalan You
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Wenfang Tang
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Xin Tian
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Chengguang Zhu
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Zexi Yin
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Minhui Zeng
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Xiangling He
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| |
Collapse
|
13
|
Tang H, Chen F, Gao W, Cai X, Lin Z, Kang R, Tang D, Liu J. Cetylpyridinium chloride triggers paraptosis to suppress pancreatic tumor growth via the ERN1-MAP3K5-p38 pathway. iScience 2024; 27:110598. [PMID: 39211547 PMCID: PMC11357866 DOI: 10.1016/j.isci.2024.110598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid malignancy with low 5-year survival and limited treatment options. We conducted an unbiased screening using FDA-approved drug and demonstrated that cetylpyridinium chloride (CPC), a component commonly found in mouthwash and known for its robust bactericidal and antifungal attributes, exhibits anticancer activity against human PDAC cells. CPC inhibited PDAC cell growth and proliferation by inducing paraptosis, rather than apoptosis. Mechanistically, CPC induced paraptosis through the initiation of endoplasmic reticulum stress, leading to the accumulation of misfolded proteins. Subsequently, the endoplasmic reticulum stress to nucleus signaling 1 (ERN1)-mitogen-activated protein kinase kinase kinase 5 (MAP3K5)-p38 mitogen-activated protein kinase (MAPK) signaling pathway was activated, ultimately culminating in the induction of paraptosis. In vivo experiments, including those involving patient-derived xenografts, orthotopic models, and genetically engineered mouse models of PDAC, provided further evidence of CPC's effectiveness in suppressing the growth of pancreatic tumors.
Collapse
Affiliation(s)
- Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Wanli Gao
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| |
Collapse
|
14
|
Fang C, Sun H, Wen J, Wu X, Wu Q, Zhai D. Investigation of the relationship between COVID-19 and pancreatic cancer using bioinformatics and systems biology approaches. Medicine (Baltimore) 2024; 103:e39057. [PMID: 39093763 PMCID: PMC11296473 DOI: 10.1097/md.0000000000039057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, poses a huge threat to human health. Pancreatic cancer (PC) is a malignant tumor with high mortality. Research suggests that infection with SARS-CoV-2 may increase disease severity and risk of death in patients with pancreatic cancer, while pancreatic cancer may also increase the likelihood of contracting SARS-CoV-2, but the link is unclear. METHODS This study investigated the transcriptional profiles of COVID-19 and PC patients, along with their respective healthy controls, using bioinformatics and systems biology approaches to uncover the molecular mechanisms linking the 2 diseases. Specifically, gene expression data for COVID-19 and PC patients were obtained from the Gene Expression Omnibus datasets, and common differentially expressed genes (DEGs) were identified. Gene ontology and pathway enrichment analyses were performed on the common DEGs to elucidate the regulatory relationships between the diseases. Additionally, hub genes were identified by constructing a protein-protein interaction network from the shared DEGs. Using these hub genes, we conducted regulatory network analyses of microRNA/transcription factors-genes relationships, and predicted potential drugs for treating COVID-19 and PC. RESULTS A total of 1722 and 2979 DEGs were identified from the transcriptome data of PC (GSE119794) and COVID-19 (GSE196822), respectively. Among these, 236 common DEGs were found between COVID-19 and PC based on protein-protein interaction analysis. Functional enrichment analysis indicated that these shared DEGs were involved in pathways related to viral genome replication and tumorigenesis. Additionally, 10 hub genes, including extra spindle pole bodies like 1, holliday junction recognition protein, marker of proliferation Ki-67, kinesin family member 4A, cyclin-dependent kinase 1, topoisomerase II alpha, cyclin B2, ubiquitin-conjugating enzyme E2 C, aurora kinase B, and targeting protein for Xklp2, were identified. Regulatory network analysis revealed 42 transcription factors and 23 microRNAs as transcriptional regulatory signals. Importantly, lucanthone, etoposide, troglitazone, resveratrol, calcitriol, ciclopirox, dasatinib, enterolactone, methotrexate, and irinotecan emerged as potential therapeutic agents against both COVID-19 and PC. CONCLUSION This study unveils potential shared pathogenic mechanisms between PC and COVID-19, offering novel insights for future research and therapeutic strategies for the treatment of PC and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chengxiang Fang
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Haiyan Sun
- Department of Radiology, Maternal and Child Health Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Jing Wen
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Xuehu Wu
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Qian Wu
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| | - Dongsheng Zhai
- Department of Hepatobiliary and Pancreatic Surgery, Minda Hospital of Hubei Minzu University, Enshi, P.R. China
| |
Collapse
|
15
|
Cain JW, Seo H, Bumgardner K, Lefevre C, Burghardt RC, Bazer FW, Johnson GA. Pig conceptuses utilize extracellular vesicles for interferon-gamma-mediated paracrine communication with the endometrium†. Biol Reprod 2024; 111:174-185. [PMID: 38501810 DOI: 10.1093/biolre/ioae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Interferon-gamma (IFNG) is a pro-inflammatory cytokine secreted by the porcine conceptus (embryo and extra-embryonic membranes) during the peri-implantation period of pregnancy. IFNG modifies the endometrial inflammatory immune response and is required for the implantation and survival of the conceptus. It is not known how IFNG from the conceptus trophectoderm is transported across the endometrial luminal epithelium (LE). In the present study, immunofluorescence analyses detected immunoreactive IFNG protein in both the trophectoderm and endometrial LE on Day 15 of pregnancy, while our previous research localized IFNG mRNA only to conceptus trophectoderm. Using minced endometrial explants to disrupt the barrier posed by the intact endometrial LE, treatment with recombinant IFNG induced the expression of genes that were not induced when IFNG was infused into the uterine lumen in vivo by McLendon et al. (Biology of Reproduction. 2020;103(5):1018-1029). We hypothesized that during pregnancy extracellular vesicles (EVs) serve as intercellular signaling vehicles to transport conceptus-derived IFNG across the intact endometrial LE and into the stromal compartment of the uterus. Western blotting detected the presence of IFNG in EVs isolated from the uterine fluid of pregnant gilts, but not nonpregnant gilts. Real-time PCR demonstrated increased expression of IFNG-stimulated genes in EV-treated endometrial explants and EV-mediated IFNG transport was confirmed in whole uterine sections cultured with EVs from Day 15 of pregnancy. These results suggest that EVs are involved in IFNG transport across the endometrial LE to enable paracrine communication between the conceptus and cells within the endometrial stroma.
Collapse
Affiliation(s)
- Joe W Cain
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Animal and Avian Sciences, College of Agriculture & Natural Resources, University of Maryland, College Park, MD, USA
| | - Katie Bumgardner
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Carli Lefevre
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Yin X, Zhang H, Wang J, Bian Y, Jia Q, Yang Z, Shan C. lncRNA FLJ20021 regulates CDK1-mediated PANoptosis in a ZBP1-dependent manner to increase the sensitivity of laryngeal cancer-resistant cells to cisplatin. Discov Oncol 2024; 15:265. [PMID: 38967843 PMCID: PMC11226695 DOI: 10.1007/s12672-024-01134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
In this study, we investigated the role of the newly discovered lncRNA FLJ20021 in laryngeal cancer (LC) and its resistance to cisplatin treatment. We initially observed elevated lncRNA FLJ20021 levels in cisplatin-resistant LC cells (Hep-2/R). To explore its function, we transfected lncRNA FLJ20021 and cyclin-dependent kinase 1 (CDK1) into Hep-2/R cells, assessing their impact on cisplatin sensitivity and PANoptosis. Silencing lncRNA FLJ20021 effectively reduced cisplatin resistance and induced PANoptosis in Hep-2/R cells. Mechanistically, lncRNA FLJ20021 primarily localized in the nucleus and interacted with CDK1 mRNA, thereby enhancing its transcriptional stability. CDK1, in turn, promoted panapoptosis in a ZBP1-dependent manner, which helped overcome cisplatin resistance in Hep-2/R cells. This study suggests that targeting lncRNA FLJ20021 can be a promising approach to combat cisplatin resistance in laryngeal cancer by regulating CDK1 and promoting PANoptosis via the ZBP1 pathway. These findings open up possibilities for lncRNA-based therapies in the context of laryngeal cancer.
Collapse
Affiliation(s)
- Xiaoyan Yin
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Haizhong Zhang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Jingmiao Wang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Yanrui Bian
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Qiaojing Jia
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Zhichao Yang
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Chunguang Shan
- Department of Otolaryngology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
17
|
Chen F, Tang H, Lin J, Kang R, Tang D, Liu J. Ciprofloxacin is a novel anti-ferroptotic antibiotic. Heliyon 2024; 10:e32571. [PMID: 38961954 PMCID: PMC11219506 DOI: 10.1016/j.heliyon.2024.e32571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Cancer patients undergoing chemotherapy are susceptible to various bacterial infections, necessitating prompt and precise antimicrobial treatment with antibiotics. Ciprofloxacin is a clinically utilized broad-spectrum antimicrobial agent known for its robust antiseptic activity. While ferroptosis, an oxidative form of cell death, has garnered attention as a promising avenue in cancer therapy, the potential impact of ciprofloxacin on the anticancer effects of ferroptosis remains unclear. This study seeks to investigate the potential influence of antibiotics on ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Here, we report a previously unrecognized role of ciprofloxacin in inhibiting ferroptosis in human PDAC cells. Mechanistically, ciprofloxacin suppresses erastin-induced endoplasmic reticulum (ER) stress through the activating transcription factor 6 (ATF6) and ER to nucleus signaling 1 (ERN1) pathway. Excessive ER stress activation can trigger glutathione peroxidase 4 (GPX4) degradation through autophagic mechanisms. In contrast, ciprofloxacin enhances the protein stability of GPX4, a crucial regulator that suppresses ferroptosis by inhibiting lipid peroxidation. Thus, our study demonstrates the anti-ferroptotic role of ciprofloxacin, highlighting the importance of careful consideration when contemplating the combination of ciprofloxacin with specific ferroptosis inducers in PDAC patients.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Hu Tang
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Junhao Lin
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| |
Collapse
|
18
|
Silva LGDO, Lemos FFB, Luz MS, Rocha Pinheiro SL, Calmon MDS, Correa Santos GL, Rocha GR, de Melo FF. New avenues for the treatment of immunotherapy-resistant pancreatic cancer. World J Gastrointest Oncol 2024; 16:1134-1153. [PMID: 38660642 PMCID: PMC11037047 DOI: 10.4251/wjgo.v16.i4.1134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer (PC) is characterized by its extremely aggressive nature and ranks 14th in the number of new cancer cases worldwide. However, due to its complexity, it ranks 7th in the list of the most lethal cancers worldwide. The pathogenesis of PC involves several complex processes, including familial genetic factors associated with risk factors such as obesity, diabetes mellitus, chronic pancreatitis, and smoking. Mutations in genes such as KRAS, TP53, and SMAD4 are linked to the appearance of malignant cells that generate pancreatic lesions and, consequently, cancer. In this context, some therapies are used for PC, one of which is immunotherapy, which is extremely promising in various other types of cancer but has shown little response in the treatment of PC due to various resistance mechanisms that contribute to a drop in immunotherapy efficiency. It is therefore clear that the tumor microenvironment (TME) has a huge impact on the resistance process, since cellular and non-cellular elements create an immunosuppressive environment, characterized by a dense desmoplastic stroma with cancer-associated fibroblasts, pancreatic stellate cells, extracellular matrix, and immunosuppressive cells. Linked to this are genetic mutations in TP53 and immunosuppressive factors that act on T cells, resulting in a shortage of CD8+ T cells and limited expression of activation markers such as interferon-gamma. In this way, finding new strategies that make it possible to manipulate resistance mechanisms is necessary. Thus, techniques such as the use of TME modulators that block receptors and stromal molecules that generate resistance, the use of genetic manipulation in specific regions, such as microRNAs, the modulation of extrinsic and intrinsic factors associated with T cells, and, above all, therapeutic models that combine these modulation techniques constitute the promising future of PC therapy. Thus, this study aims to elucidate the main mechanisms of resistance to immunotherapy in PC and new ways of manipulating this process, resulting in a more efficient therapy for cancer patients and, consequently, a reduction in the lethality of this aggressive cancer.
Collapse
Affiliation(s)
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana dos Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Lima Correa Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Reis Rocha
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
19
|
Chen F, Tang H, Cai X, Lin J, Xiang L, Kang R, Liu J, Tang D. Targeting paraptosis in cancer: opportunities and challenges. Cancer Gene Ther 2024; 31:349-363. [PMID: 38177306 DOI: 10.1038/s41417-023-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Cell death can be classified into two primary categories: accidental cell death and regulated cell death (RCD). Within RCD, there are distinct apoptotic and non-apoptotic cell death pathways. Among the various forms of non-apoptotic RCD, paraptosis stands out as a unique mechanism characterized by distinct morphological changes within cells. These alterations encompass cytoplasmic vacuolization, organelle swelling, notably in the endoplasmic reticulum and mitochondria, and the absence of typical apoptotic features, such as cell shrinkage and DNA fragmentation. Biochemically, paraptosis distinguishes itself by its independence from caspases, which are conventionally associated with apoptotic death. This intriguing cell death pathway can be initiated by various cellular stressors, including oxidative stress, protein misfolding, and specific chemical compounds. Dysregulated paraptosis plays a pivotal role in several critical cancer-related processes, such as autophagic degradation, drug resistance, and angiogenesis. This review provides a comprehensive overview of recent advancements in our understanding of the mechanisms and regulation of paraptosis. Additionally, it delves into the potential of paraptosis-related compounds for targeted cancer treatment, with the aim of enhancing treatment efficacy while minimizing harm to healthy cells.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Limin Xiang
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
20
|
Fang Q, Liu C, Nie D, Guo J, Xie W, Zhang Y. Phosphorylation of PBK at Thr9 by CDK5 correlates with invasion of prolactinomas. CNS Neurosci Ther 2024; 30:e14629. [PMID: 38363020 PMCID: PMC10870245 DOI: 10.1111/cns.14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024] Open
Abstract
CONTEXT Prolactinomas are the most prevalent functional pituitary neuroendocrine tumors (PitNETs), and they are invasive to surrounding anatomic structures. The detailed mechanisms of invasion are not yet clear. OBJECTIVE We explored the role of PBK phosphorylation in the proliferation and invasion of prolactinomas and its possible mechanism. RESULTS We report that PBK directly binds to and is phosphorylated at Thr9 by cyclin-dependent kinase 5 (CDK5), which promotes GH3 cell EMT progression and proliferation. Phosphorylation of PBK at Thr9 (pPBK-T9) by CDK5 enhances the stability of PBK. p38 is one of the downstream targets of PBK, and its phosphorylation is reduced as pPBK-T9 increases in vivo and in vitro. Furthermore, we found that pPBK-T9 is highly expressed in invasive PitNETs and was significantly correlated with invasion by univariate and multivariate analyses. CONCLUSIONS Phosphorylation of PBK at Thr9 by CDK5 promotes cell proliferation and EMT progression in prolactinomas.
Collapse
Affiliation(s)
- Qiuyue Fang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Changxiaofeng Liu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Ding Nie
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Jing Guo
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Weiyan Xie
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yazhuo Zhang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Institute for Brain Disorders Brain Tumor Center, China National Clinical Research Center for Neurological DiseasesKey Laboratory of Central Nervous System Injury ResearchBeijingChina
| |
Collapse
|
21
|
Luo W, Wen T, Qu X. Tumor immune microenvironment-based therapies in pancreatic ductal adenocarcinoma: time to update the concept. J Exp Clin Cancer Res 2024; 43:8. [PMID: 38167055 PMCID: PMC10759657 DOI: 10.1186/s13046-023-02935-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid tumors. The tumor immune microenvironment (TIME) formed by interactions among cancer cells, immune cells, cancer-associated fibroblasts (CAF), and extracellular matrix (ECM) components drives PDAC in a more immunosuppressive direction: this is a major cause of therapy resistance and poor prognosis. In recent years, research has advanced our understanding of the signaling mechanism by which TIME components interact with the tumor and the evolution of immunophenotyping. Through revolutionary technologies such as single-cell sequencing, we have gone from simply classifying PDACs as "cold" and "hot" to a more comprehensive approach of immunophenotyping that considers all the cells and matrix components. This is key to improving the clinical efficacy of PDAC treatments. In this review, we elaborate on various TIME components in PDAC, the signaling mechanisms underlying their interactions, and the latest research into PDAC immunophenotyping. A deep understanding of these network interactions will contribute to the effective combination of TIME-based therapeutic approaches, such as immune checkpoint inhibitors (ICI), adoptive cell therapy, therapies targeting myeloid cells, CAF reprogramming, and stromal normalization. By selecting the appropriate integrated therapies based on precise immunophenotyping, significant advances in the future treatment of PDAC are possible.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, Liaoning, China.
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
- Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
22
|
Jacob TV, Doshi GM. A Mini-review on Helicobacter pylori with Gastric Cancer and Available Treatments. Endocr Metab Immune Disord Drug Targets 2024; 24:277-290. [PMID: 37622707 DOI: 10.2174/1871530323666230824161901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Helicobacter pylori (H. pylori) is the most thoroughly researched etiological component for stomach inflammation and malignancies. Even though there are conventional recommendations and treatment regimens for eradicating H. pylori, failure rates continue to climb. Antibiotic resistance contributes significantly to misdiagnoses, false positive results, and clinical failures, all of which raise the chance of infection recurrence. This review aims to explore the molecular mechanisms underlying drug resistance in H. pylori and discuss novel approaches for detecting genotypic resistance. Modulation of drug uptake/ efflux, biofilm, and coccoid development. Newer genome sequencing approaches capable of detecting H. pylori genotypic resistance are presented. Prolonged infection in the stomach causes major problems such as gastric cancer. The review discusses how H. pylori causes stomach cancer, recent biomarkers such as miRNAs, molecular pathways in the development of gastric cancer, and diagnostic methods and clinical trials for the disease. Efforts have been made to summarize the recent advancements made toward early diagnosis and novel therapeutic approaches for H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Teresa V Jacob
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
23
|
Xu Y, Wang Y, Chen Q, Yao T, Qiu J, Ni L, Chen H, Liang T. A protein-based prognostic model for pancreatic ductal adenocarcinoma: Construction and validation. Pancreatology 2023; 23:1003-1013. [PMID: 37923686 DOI: 10.1016/j.pan.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Probing relevant proteomic biomarkers may facilitate effective pancreatic adenocarcinoma (PDAC) diagnosis, treatment and prevention. Here, we developed a protein-based prognostic model for PDAC by using relevant proteomic biomarkers data from The Cancer Genome Atlas (TCGA). METHODS We obtained PDAC's proteomic and clinical data from TCGA and used various analytical tools to identify differentially expressed proteins between normal and cancer tissues. We constructed our protein-based prognostic model and confirmed its accuracy using receiver operating characteristic curve and Kaplan-Meier survival analyses. We elucidated clinical factor-signature protein correlations by clinical correlation assessments and protein coexpression networks. We also used immunohistochemistry (protein expression assessment), Gene Set Enrichment Analysis (protein role identification) and CIBERSORT (infiltrating immune cell distribution assessment). RESULTS CIITA, BRAF_pS445, AR, YTHDF2, IGFBP2 and CDK1_pT14 were identified as PDAC-associated prognostic proteins. All risk scores calculated using our model provided 1-, 3-, 5-year survival probability at 70 % accuracy. The reliability of our model was validated by the GEO as well. In high- and low-risk groups, age, sex, T- and N- stage disparities were significant, and prognostic and coexpressed proteins correlated. PDAC tissues demonstrated significant CDK1_pT14 overexpression but significant BRAF_pS445, YTHDF2, and IGFBP2 underexpression. Downstream proteins of BRAF were validated by IHC. Low-risk tissues demonstrated more naïve B cells, eosinophils, activated NK cells and regulatory T cells, whereas high-risk tissues demonstrated more activated memory T cells, monocytes, neutrophils, dendritic cells and resting NK cells. CONCLUSIONS Our protein-based prognostic model for PDAC, along with six signature proteins, might aid in predicting PDAC prognosis and therapeutic targets.
Collapse
Affiliation(s)
- Yonghao Xu
- Laboratory of Animal Research Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China
| | - Yisu Wang
- Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qi Chen
- Laboratory of Animal Research Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tao Yao
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junyu Qiu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lei Ni
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hui Chen
- Laboratory of Animal Research Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310003, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
24
|
Liu Y, Xiong Y. HADHA promotes ovarian cancer outgrowth via up-regulating CDK1. Cancer Cell Int 2023; 23:283. [PMID: 37986001 PMCID: PMC10658966 DOI: 10.1186/s12935-023-03120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Ovarian cancer, a prevalent cause of cancer-related mortality among gynecological cancers, still lacks a clear understanding of its pathogenesis. In this study, our objective was to investigate the functional roles and pathogenic mechanisms of HADHA in ovarian cancer. METHODS We utilized an ovarian cancer tissue microarray and three ovarian cancer cell lines (HO-8910, A2780, and SK-OV-3) for our analysis. Lentiviral-mediated short hairpin RNA (shRNA) was employed to interfere with HADHA expression in ovarian cancer cells. Various cellular events associated with tumor development were assessed using techniques such as Celigo cell counting assay, wound healing assay, Transwell assay, and flow cytometry analysis. Additionally, xenograft tumor models were developed to visualize the impacts of HADHA/CDK1 on ovarian cancer progression. RESULTS Our data revealed significant HADHA overexpression in both ovarian cancer tissues and cell lines. Patients with elevated HADHA levels tended to experience poor survival outcomes. Moreover, HADHA upregulation correlated with several pathological parameters, including pathological stage, tumor size, tumor infiltrate, metastasis, and recurrence. Loss-of-function experiments targeting HADHA demonstrated that its suppression in ovarian cancer cells hindered cell growth and migration, while promoting apoptosis. To elucidate the underlying mechanism by which HADHA regulates ovarian cancer, we identified CDK1 as a target of HADHA. HADHA upregulated CDK1 expression by inhibiting its ubiquitination-dependent proteasomal degradation. Significantly, the overexpression of CDK1 reversed the impaired cell development caused by HADHA depletion, both in vitro and in vivo. CONCLUSION Our study highlights the involvement of HADHA in ovarian cancer tumorigenesis and suggests its potential as a promising prognostic marker in ovarian cancer. Through its regulation of CDK1, HADHA influences critical cellular processes in ovarian cancer, providing insights into its pathogenic mechanism.
Collapse
Affiliation(s)
- Yinglan Liu
- Department of Obsdetrics and Gynecology, First Affiliated Hospital of Harbin Medical University, No.23, Youzheng Road, Harbin city, 150001, Heilongjiang Province, China
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, No.651, Dongfengdong Road, Guangzhou, 5100160, Guangdong Province, China.
| |
Collapse
|
25
|
Shoaib TH, Almogaddam MA, Andijani YS, Saib SA, Almaghrabi NM, Elyas AF, Azzouni RY, Awad EA, Mohamed SGA, Mohamed GA, Ibrahim SRM, Hussein HGA, Osman W, Ashour A, Sherif AE, Alzain AA. Marine-Derived Compounds for CDK5 Inhibition in Cancer: Integrating Multi-Stage Virtual Screening, MM/GBSA Analysis and Molecular Dynamics Investigations. Metabolites 2023; 13:1090. [PMID: 37887415 PMCID: PMC10608970 DOI: 10.3390/metabo13101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) plays a crucial role in various biological processes, including immune response, insulin secretion regulation, apoptosis, DNA (deoxyribonucleic acid) damage response, epithelial-mesenchymal transition (EMT), cell migration and invasion, angiogenesis, and myogenesis. Overactivation of CDK5 is associated with the initiation and progression of cancer. Inhibiting CDK5 has shown potential in suppressing cancer development. Despite advancements in CDK5-targeted inhibitor research, the range of compounds available for clinical and preclinical trials remains limited. The marine environment has emerged as a prolific source of diverse natural products with noteworthy biological activities, including anti-cancer properties. In this study, we screened a library of 47,450 marine natural compounds from the comprehensive marine natural product database (CMNPD) to assess their binding affinity with CDK5. Marine compounds demonstrating superior binding affinity compared to a reference compound were identified through high-throughput virtual screening, standard precision and extra-precision Glide docking modes. Refinement of the selected molecules involved evaluating molecular mechanics-generalized born surface area (MM/GBSA) free binding energy. The three most promising compounds, (excoecariphenol B, excoecariphenol A, and zyzzyanone B), along with the reference, exhibiting favorable binding characteristics were chosen for molecular dynamics (MD) simulations for 200 nanoseconds. These compounds demonstrated interaction stability with the target during MD simulations. The marine compounds identified in this study hold potential as effective CDK5 inhibitors and warrant subsequent experimental validation.
Collapse
Affiliation(s)
- Tagyedeen H. Shoaib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (M.A.A.)
| | - Mohammed A. Almogaddam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (M.A.A.)
| | - Yusra Saleh Andijani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah 30078, Saudi Arabia;
| | | | | | - Abdulaziz Fahad Elyas
- Emergency Medical Services Department, Madinah National Hospital, Madinah 11461, Saudi Arabia;
| | - Rahmah Yasin Azzouni
- King Faisal Specialist Hospital & Research Center, Al-Madinah Al-Munawwarah 42523, Saudi Arabia;
| | - Ehda Ahmad Awad
- Prince Mohammed Bin Abdulaziz Hospital-Al Madinah Al Munawarah-NGHA, Ministry of National Guard Health Affairs, Kingdom of Saudi Arabia, Riyadh 41511, Saudi Arabia;
| | - Shaimaa G. A. Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hazem G. A. Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
| | - Wadah Osman
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (W.O.); (A.A.); (A.E.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Al-Qasr Ave., Khartoum 11111, Sudan
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (W.O.); (A.A.); (A.E.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Asmaa E. Sherif
- Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (W.O.); (A.A.); (A.E.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (M.A.A.)
| |
Collapse
|
26
|
Sun K, Zhang X, Lao M, He L, Wang S, Yang H, Xu J, Tang J, Hong Z, Song J, Guo C, Li M, Liu X, Chen Y, Zhang H, Zhou J, Lin J, Zhang S, Hong Y, Huang J, Liang T, Bai X. Targeting leucine-rich repeat serine/threonine-protein kinase 2 sensitizes pancreatic ductal adenocarcinoma to anti-PD-L1 immunotherapy. Mol Ther 2023; 31:2929-2947. [PMID: 37515321 PMCID: PMC10556191 DOI: 10.1016/j.ymthe.2023.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to immune checkpoint blockade therapy, and negative feedback of tumor immune evasion might be partly responsible. We isolated CD8+ T cells and cultured them in vitro. Proteomics analysis was performed to compare changes in Panc02 cell lines cultured with conditioned medium, and leucine-rich repeat kinase 2 (LRRK2) was identified as a differential gene. LRRK2 expression was related to CD8+ T cell spatial distribution in PDAC clinical samples and upregulated by CD8+ T cells via interferon gamma (IFN-γ) simulation in vitro. Knockdown or pharmacological inhibition of LRRK2 activated an anti-pancreatic cancer immune response in mice, which meant that LRRK2 acted as an immunosuppressive gene. Mechanistically, LRRK2 phosphorylated PD-L1 at T210 to inhibit its ubiquitination-mediated proteasomal degradation. LRRK2 inhibition attenuated PD-1/PD-L1 blockade-mediated, T cell-induced upregulation of LRRK2/PD-L1, thus sensitizing the mice to anti-PD-L1 therapy. In addition, adenosylcobalamin, the activated form of vitamin B12, which was found to be a broad-spectrum inhibitor of LRRK2, could inhibit LRRK2 in vivo and sensitize PDAC to immunotherapy as well, which potentially endows LRRK2 inhibition with clinical translational value. Therefore, PD-L1 blockade combined with LRRK2 inhibition could be a novel therapy strategy for PDAC.
Collapse
Affiliation(s)
- Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Mengyi Lao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Sicheng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Chengxiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Hanjia Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jingxing Zhou
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jieru Lin
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Sirui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Yifan Hong
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Jinyan Huang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
27
|
Xu X, Wang Y, Chen Z, Zhu Y, Wang J, Guo J. Favorable Immunotherapy Plus Tyrosine Kinase Inhibition Outcome of Renal Cell Carcinoma Patients with Low CDK5 Expression. Cancer Res Treat 2023; 55:1321-1336. [PMID: 37024096 PMCID: PMC10582544 DOI: 10.4143/crt.2022.1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE Immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) has become the first-line treatment for advanced renal cell carcinoma, despite the lack of prognostic biomarkers. Cyclin-dependent kinase 5 (CDK5) affects the tumor microenvironment, which may influence the efficacy of TKI+IO. MATERIALS AND METHODS Two cohorts from our center (Zhongshan Metastatic Renal Cell Carcinoma [ZS-MRCC] cohort, Zhongshan High-risk Localized Renal Cell Carcinoma [ZS-HRRCC] cohort) and one cohort from a clinical trial (JAVELIN-101) were enrolled. The expression of CDK5 of each sample was determined by RNA sequencing. Immune infiltration and T cell function were evaluated by flow cytometry and immunohistochemistry. Response and progression-free survival (PFS) were set as primary endpoints. RESULTS Patients of low CDK5 expression showed higher objective response rate (60.0% vs. 23.3%) and longer PFS in both cohorts (ZS-MRCC cohort, p=0.014; JAVELIN-101 cohort, p=0.040). CDK5 expression was enhanced in non-responders (p < 0.05). In the ZS-HRRCC cohort, CDK5 was associated with decreased tumor-infiltrating CD8+ T cells, which was proved by immunohistochemistry (p < 0.05) and flow cytometry (Spearman's ρ=-0.49, p < 0.001). In the high CDK5 subgroup, CD8+ T cells revealed a dysfunction phenotype with decreased granzyme B, and more regulatory T cells were identified. A predictive score was further constructed by random forest, involving CDK5 and T cell exhaustion features. The RFscore was also validated in both cohorts. By utilizing the model, more patients might be distinguished from the overall cohort. Additionally, only in the low RFscore did TKI+IO outperform TKI monotherapy. CONCLUSION High-CDK5 expression was associated with immunosuppression and TKI+IO resistance. RFscore based on CDK5 may be utilized as a biomarker to determine the optimal treatment strategy.
Collapse
Affiliation(s)
- Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Zhaoyi Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei,
China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| |
Collapse
|
28
|
Zeng K, Li W, Wang Y, Zhang Z, Zhang L, Zhang W, Xing Y, Zhou C. Inhibition of CDK1 Overcomes Oxaliplatin Resistance by Regulating ACSL4-mediated Ferroptosis in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301088. [PMID: 37428466 PMCID: PMC10477855 DOI: 10.1002/advs.202301088] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/31/2023] [Indexed: 07/11/2023]
Abstract
Oxaliplatin is a widely used chemotherapy drug for patients with advanced colorectal cancer (CRC); however, frequent drug resistance limits its therapeutic efficacy in patients. Here, this work identifies cyclin-dependent kinase 1 (CDK1) as a critical contributor to oxaliplatin resistance via in vitro and in vivo CRISPR/Cas9 screening. CDK1 is highly expressed in oxaliplatin-resistant cells and tissues due to the loss of N6-methyladenosine modification. Genetic and pharmacological blockade of CDK1 restore the susceptibility of CRC cells to oxaliplatin in vitro and in cell/patient-derived xenograft models. Mechanistically, CDK1 directly binds to and phosphorylates Acyl-CoA synthetase long-chain family 4 (ACSL4) at S447, followed by recruitment of E3 ubiquitin ligase UBR5 and polyubiquitination of ACSL4 at K388, K498, and K690, which leads to ACSL4 protein degradation. Reduced ACSL4 subsequently blocks the biosynthesis of polyunsaturated fatty acid containing lipids, thereby inhibiting lipid peroxidation and ferroptosis, a unique iron-dependent form of oxidative cell death. Moreover, treatment with a ferroptosis inhibitor nullifies the enhancement of CRC cell sensitivity to oxaliplatin by CDK1 blockade in vitro and in vivo. Collectively, the findings indicate that CDK1 confers oxaliplatin resistance to cells by suppressing ferroptosis. Therefore, administration of a CDK1 inhibitor may be an attractive strategy to treat patients with oxaliplatin-resistant CRC.
Collapse
Affiliation(s)
- Kaixuan Zeng
- Precision Medical Research Institutethe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710000China
| | - Weihao Li
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yue Wang
- Department of Gastroenterologythe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Zifei Zhang
- IIT Project Management Officethe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Linjie Zhang
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Weili Zhang
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Breast Tumor CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Chi Zhou
- Department of Colorectal SurgerySun Yat‐sen University Cancer CenterGuangzhou510060China
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
29
|
Zhu S, Zhao Y, Xing C, Guo W, Huang Z, Zhang H, Yin L, Ruan X, Li H, Cheng Z, Wang Z, Peng H. Immune infiltration and drug specificity analysis of different subtypes based on functional status in angioimmunoblastic T-cell lymphoma. Heliyon 2023; 9:e18836. [PMID: 37576233 PMCID: PMC10412840 DOI: 10.1016/j.heliyon.2023.e18836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T-cell lymphoma (PTCL) strongly correlated with worse clinical outcomes. However, the role of characteristic pathway-related genes in patients with AITL (e.g., subtype typing and pathogenesis) remains unknown. In this study, we intended to understand the potential role and prognostic value of characteristic pathways in AITL and identified a model for subtype identification based on pathway-related functional status. Transcriptomic (RNA-seq) data were obtained from the Gene Expression Omnibus database for three sets of tumor tissues from AITL patients. AITL was divided into three clusters based on the pathway profile of patients and the best clustering k = 3, and differentially expressed genes (DEGs) in the three clusters were analyzed. The top 45 important variables associated with characteristic pathways, such as Huntington's disease, VEGF signaling pathway, nucleotide excision repair, ubiquitin-mediated proteolysis, purine metabolism, olfactory transduction, etc., were used to construct a subtype identification model. The model was experimentally validated and proved to possess good predictive efficacy. In addition, pathway-related subtype typing was significantly associated with different immune cell infiltration in AITL. Further analysis revealed that the drug IC50 values predicted also differed markedly among the different subtypes, thus further identifying some subtype-specific drugs. Our study indicates a potential role of characteristic pathways in AITL staging for the first time, provides novel insights for future research targeting AITL, and points to potential therapeutic options for patients with different subtypes of AITL.
Collapse
Affiliation(s)
- Shicong Zhu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Wancheng Guo
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zineng Huang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Huifang Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Heng Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Institute of Molecular Hematology, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan 410011, China
| |
Collapse
|
30
|
Cui X, Zhao H, Wei S, Du Q, Dong K, Yan Y, Geller DA. Hepatocellular carcinoma-derived FOXO1 inhibits tumor progression by suppressing IL-6 secretion from macrophages. Neoplasia 2023; 40:100900. [PMID: 37058885 PMCID: PMC10123375 DOI: 10.1016/j.neo.2023.100900] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Tumor heterogeneity dominates tumor biological behavior and shapes the tumor microenvironment. However, the mechanisms of tumor genetic features modulate immunity response were not clearly clarified. Tumor associated macrophages (TAMs) exert distinct immune functions in the progression of hepatocellular carcinoma (HCC) based on the inducible phenotype. FOXO family members sense changes in the extracellular or intracellular environment by activating a series of signaling pathways. FOXO1, a transcription factor that a common suppressor in hepatocellular carcinoma, correlated with a better tumor biological behavior in HCC through shaping macrophages anti-tumour response. Here, we found that human HCC tissue microarray (TMA) slides were employed to showed tumor derived FOXO1 negatively related with distribution of protumour macrophages. This phenomenon was confirmed in mouse xenograft model and in vitro. HCC-derived FOXO1 inhibits tumorigenesis not only by targeting tumor cells but also by synchronizing with re-educated macrophages. These effects may be partially dependent on FOXO1 transcriptionally modulates IRF-1/nitrio oxide (NO) axis in exerting effects in macrophages and decreasing IL-6 releasing from macrophages in tumor microenvironment indirectly. This feedback suppressed the progression of HCC by inactivation of IL-6/STAT3 in HCC. It implicates the potential role of FOXO1 in the therapeutic effects for modulating immune response by targeting macrophages.
Collapse
Affiliation(s)
- Xiao Cui
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China; Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| | - Huiyong Zhao
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Sheng Wei
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Qiang Du
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| | - Kun Dong
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China.
| | - David A Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
31
|
Cui Y, Cheng Y, Huang W, Liu J, Zhang X, Bu M, Li X. A novel T-cell proliferation-associated gene predicts prognosis and reveals immune infiltration in patients with oral squamous cell carcinoma. Arch Oral Biol 2023; 152:105719. [PMID: 37178584 DOI: 10.1016/j.archoralbio.2023.105719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a highly malignant tumour, and the prediction of its prognosis remains challenging. The prognostic value of T-lymphocyte proliferation regulators in OSCC remains to be explored. DESIGN We integrated mRNA expression profiles and relevant clinical information of OSCC patients from The Cancer Genome Atlas database. The expression and function of T-lymphocyte proliferation regulators and their relationship with overall survival (OS) were analysed. The T-lymphocyte proliferation regulator signature was screened using univariate Cox regression and least absolute shrinkage and selection operator coefficients and used to construct models for prognosis and staging prediction as well as for immune infiltration analysis. Final validation was performed using single-cell sequencing database and immunohistochemical staining. RESULTS Most T-lymphocyte proliferation regulators in the TCGA cohort exhibited different expression levels between OSCC and paracancerous tissues. A prognostic model constructed using the T-lymphocyte proliferation regulator signature (RAN, CDK1, and CDK2) was used to categorise patients into high- and low-risk groups. The OS was significantly lower in the high-risk group than the low-risk group (p < 0.01). The predictive ability of the T-lymphocyte proliferation regulator signature was validated by receiver operating characteristic curve analysis. Immune infiltration analysis revealed different immune statuses in both groups. CONCLUSIONS We established a new T-lymphocyte proliferation regulator signature that can predict the prognosis of OSCC. The results of this study will contribute to studies of T-cell proliferation and the immune microenvironment in OSCC to improve prognosis and immunotherapeutic response.
Collapse
Affiliation(s)
- Yunyi Cui
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Yiming Cheng
- Department of Periodontics, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Wei Huang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Jianping Liu
- Department of Oral and Maxillofacial Surgery, Shinshu University School of Medicine, Matsumoto 3900821, Japan
| | - Xiaoyan Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Mingyang Bu
- Department of Oral Prophylaxis, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China
| | - Xiangjun Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University & Hebei Key Laboratory of Stomatology & Hebei Clinical Research Center for Oral Diseases, Shijiazhuang 050017, China.
| |
Collapse
|
32
|
Duan Y, Zhang X, Ying H, Xu J, Yang H, Sun K, He L, Li M, Ji Y, Liang T, Bai X. Targeting MFAP5 in cancer-associated fibroblasts sensitizes pancreatic cancer to PD-L1-based immunochemotherapy via remodeling the matrix. Oncogene 2023:10.1038/s41388-023-02711-9. [PMID: 37156839 DOI: 10.1038/s41388-023-02711-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Highly desmoplastic and immunosuppressive tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) contributes to tumor progression and resistance to current therapies. Clues targeting the notorious stromal environment have offered hope for improving therapeutic response whereas the underlying mechanism remains unclear. Here, we find that prognostic microfibril associated protein 5 (MFAP5) is involved in activation of cancer-associated fibroblasts (CAFs). Inhibition of MFAP5highCAFs shows synergistic effect with gemcitabine-based chemotherapy and PD-L1-based immunotherapy. Mechanistically, MFAP5 deficiency in CAFs downregulates HAS2 and CXCL10 via MFAP5/RCN2/ERK/STAT1 axis, leading to angiogenesis, hyaluronic acid (HA) and collagens deposition reduction, cytotoxic T cells infiltration, and tumor cells apoptosis. Additionally, in vivo blockade of CXCL10 with AMG487 could partially reverse the pro-tumor effect from MFAP5 overexpression in CAFs and synergize with anti-PD-L1 antibody to enhance the immunotherapeutic effect. Therefore, targeting MFAP5highCAFs might be a potential adjuvant therapy to enhance the immunochemotherapy effect in PDAC via remodeling the desmoplastic and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Yi Duan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Honggang Ying
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Jian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Kang Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Lihong He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Muchun Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Yongtao Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China
- Cancer Center, Zhejiang University, Hangzhou, 310000, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China.
- Cancer Center, Zhejiang University, Hangzhou, 310000, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Innovation Center for The Study of Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for The Study of Hepatobiliary & Pancreatic Diseases, Zhejiang University, Hangzhou, 310000, China.
- Cancer Center, Zhejiang University, Hangzhou, 310000, China.
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
33
|
Chen Y, Shen X, Tang Y, Weng Y, Yang W, Liu M, Xu D, Shi J, Yang X, Yu F, Xu J, Zhang Z, Lu P, Sun Y, Xue J, Niu N. The diverse pancreatic tumor cell-intrinsic response to IFNγ is determined by epigenetic heterogeneity. Cancer Lett 2023; 562:216153. [PMID: 37023939 DOI: 10.1016/j.canlet.2023.216153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
IFNγ signaling is mainly mediated through the activation of the canonical JAK-STAT signaling pathway, transcription factors, and epigenetic modifications. The activation of IFNγ signaling pathway may provide a novel option for tumor immunotherapy, but the outcomes remain controversial. In fact, recent studies suggest that the resistance to IFNγ-dependent immunotherapies is commonly derived from the tumor cell-intrinsic heterogeneity, the molecular mechanism of which remains elusive. Therefore, elucidating the tumor cell-intrinsic heterogeneity in response to IFNγ would be beneficial to improve the efficacy of immunotherapy. Here, we first delineated the epigenetic redistribution and transcriptome alteration in response to IFNγ stimulation, and demonstrated that ectopic gain of H3K4me3 and H3K27Ac at the promoter region mainly contributed to the enhancement of IFNγ-mediated transcriptional activity of interferon-stimulated genes (ISGs). Furthermore, we found that the cellular heterogeneity of PD-L1 expression in response to IFNγ was mainly attributed to cell-intrinsic H3K27me3 levels. Enhancement of H3K27me3 by GSK-J4 limited PD-L1hi tumor growth by salvaging the intratumoral cytotoxicity of CD8+ T cells, which may provide therapeutic strategies to overcome immune escape and resistance to IFNγ-based immunotherapies in pancreatic cancer.
Collapse
|
34
|
Yao W, Chen X, Fan B, Zeng L, Zhou Z, Mao Z, Shen Q. Multidisciplinary team diagnosis and treatment of pancreatic cancer: Current landscape and future prospects. Front Oncol 2023; 13:1077605. [PMID: 37007078 PMCID: PMC10050556 DOI: 10.3389/fonc.2023.1077605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The pathogenesis of pancreatic cancer has not been completely clear, there is no highly sensitive and specific detection method, so early diagnosis is very difficult. Despite the rapid development of tumor diagnosis and treatment, it is difficult to break through in the short term and the overall 5-year survival rate of pancreatic cancer is less than 8%. In the face of the increasing incidence of pancreatic cancer, in addition to strengthening basic research, exploring its etiology and pathogenesis, it is urgent to optimize the existing diagnosis and treatment methods through standard multidisciplinary team (MDT), and formulate personalized treatment plan to achieve the purpose of improving the curative effect. However, there are some problems in MDT, such as insufficient understanding and enthusiasm of some doctors, failure to operate MDT according to the system, lack of good communication between domestic and foreign peers, and lack of attention in personnel training and talent echelon construction. It is expected to protect the rights and interests of doctors in the future and ensure the continuous operation of MDT. To strengthen the research on the diagnosis and treatment of pancreatic cancer, MDT can try the Internet +MDT mode to improve the efficiency of MDT.
Collapse
Affiliation(s)
- Weirong Yao
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xiaoliang Chen
- Department of Hepatobiliary Surgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Bin Fan
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lin Zeng
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zhifang Mao
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Qinglin Shen
- Department of Oncology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Institute of Clinical Medicine, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Qinglin Shen,
| |
Collapse
|
35
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 136.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
36
|
He F, Wang X, Wu Q, Liu S, Cao Y, Guo X, Yin S, Yin N, Li B, Fang M. Identification of potential ATP-competitive cyclin-dependent kinase 1 inhibitors: De novo drug generation, molecular docking, and molecular dynamics simulation. Comput Biol Med 2023; 155:106645. [PMID: 36774892 DOI: 10.1016/j.compbiomed.2023.106645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Cyclin-dependent kinases 1 (CDK1) has been identified as a potential target for the search for new antitumor drugs. However, no clinically effective CDK1 inhibitors are now available for cancer treatment. Therefore, this study aimed to offer potential CDK1 inhibitors using de novo drug generation, molecular docking, and molecular dynamics (MD) simulation studies. We first utilized the BREED algorithm (a de novo drug generation approach) to produce a novel library of small molecules targeting CDK1. To initially obtain novel potential CDK1 inhibitors with favorable physicochemical properties and excellent druggability, we performed a virtual rule-based rational drug screening on our generated library and found ten initial hits. Then, the molecular interactions and dynamic stability of these ten initial hits and CDK1 complexes during their all-atom MD simulations (total 18 μs) and binding pose metadynamics simulations were investigated, resulting in five final hits. Furthermore, another MD simulation (total 2.1 μs) with different force fields demonstrated the binding ability of the five hits to CDK1. It was found that these five hits, CBMA001 (ΔG = -29.88 kcal/mol), CBMA002 (ΔG = -34.89 kcal/mol), CBMA004 (ΔG = -32.47 kcal/mol), CBMA007 (ΔG = -31.16 kcal/mol), and CBMA008 (ΔG = -34.78 kcal/mol) possessed much greater binding affinity to CDK1 than positive compound Flavopiridol (FLP, ΔG = -25.38 kcal/mol). Finally, CBMA002 and CBMA004 were identified as excellent selective CDK1 inhibitors in silico. Together, this study provides a workflow for rational drug design and two promising selective CDK1 inhibitors that deserve further investigation.
Collapse
Affiliation(s)
- Fengming He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaoqiong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Shunzhi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaodan Guo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Sihang Yin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Na Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, 510006, China
| | - Baicun Li
- National Center for Respiratory Medicine Laboratories, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China; National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
37
|
Zhu S, Al-Mathkour M, Cao L, Khalafi S, Chen Z, Poveda J, Peng D, Lu H, Soutto M, Hu T, McDonald OG, Zaika A, El-Rifai W. CDK1 bridges NF-κB and β-catenin signaling in response to H. pylori infection in gastric tumorigenesis. Cell Rep 2023; 42:112005. [PMID: 36681899 PMCID: PMC9973518 DOI: 10.1016/j.celrep.2023.112005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Infection with Helicobacter pylori (H. pylori) is the main risk factor for gastric cancer, a leading cause of cancer-related death worldwide. The oncogenic functions of cyclin-dependent kinase 1 (CDK1) are not fully understood in gastric tumorigenesis. Using public datasets, quantitative real-time PCR, western blot, and immunohistochemical (IHC) analyses, we detect high levels of CDK1 in human and mouse gastric tumors. H. pylori infection induces activation of nuclear factor κB (NF-κB) with a significant increase in CDK1 in in vitro and in vivo models (p < 0.01). We confirm active NF-κB binding sites on the CDK1 promoter sequence. CDK1 phosphorylates and inhibits GSK-3β activity through direct binding with subsequent accumulation and activation of β-catenin. CDK1 silencing or pharmacologic inhibition reverses these effects and impairs tumor organoids and spheroid formation. IHC analysis demonstrates a positive correlation between CDK1 and β-catenin. The results demonstrate a mechanistic link between infection, inflammation, and gastric tumorigenesis where CDK1 plays a critical role.
Collapse
Affiliation(s)
- Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marwah Al-Mathkour
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Longlong Cao
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shayan Khalafi
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Julio Poveda
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Mohammed Soutto
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Tianling Hu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Oliver G McDonald
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
| |
Collapse
|
38
|
Liu C, Zhang M, Yan X, Ni Y, Gong Y, Wang C, Zhang X, Wan L, Yang H, Ge C, Li Y, Zou W, Huang R, Li X, Sun B, Liu B, Yue J, Yu J. Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression. SCIENCE ADVANCES 2023; 9:eadd8977. [PMID: 36706185 PMCID: PMC9882988 DOI: 10.1126/sciadv.add8977] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Cervical squamous cell carcinoma (CESC) is a prototypical human cancer with well-characterized pathological stages of initiation and progression. However, high-resolution knowledge of the transcriptional programs underlying each stage of CESC is lacking, and important questions remain. We performed single-cell RNA sequencing of 76,911 individual cells from 13 samples of human cervical tissues at various stages of malignancy, illuminating the transcriptional tumorigenic trajectory of cervical epithelial cells and revealing key factors involved in CESC initiation and progression. In addition, we found significant correlations between the abundance of specific myeloid, lymphoid, and endothelial cell populations and the progression of CESC, which were also associated with patients' prognosis. Last, we demonstrated the tumor-promoting function of matrix cancer-associated fibroblasts via the NRG1-ERBB3 pathway in CESC. This study provides a valuable resource and deeper insights into CESC initiation and progression, which is helpful in refining CESC diagnosis and for the design of optimal treatment strategies.
Collapse
Affiliation(s)
- Chao Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan 250117, China
| | - Min Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaoling Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lingfei Wan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Hui Yang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chen Ge
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yunqiao Li
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Wenxue Zou
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Rui Huang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaohui Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Bing Sun
- Department of Radiation Oncology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Jinbo Yue
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
39
|
Salewski I, Henne J, Engster L, Krone P, Schneider B, Redwanz C, Lemcke H, Henze L, Junghanss C, Maletzki C. CDK4/6 blockade provides an alternative approach for treatment of mismatch-repair deficient tumors. Oncoimmunology 2022; 11:2094583. [PMID: 35845723 PMCID: PMC9278458 DOI: 10.1080/2162402x.2022.2094583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mismatch repair-deficient (dMMR) tumors show a good response toward immune checkpoint inhibitors (ICI), but developing resistance impairs patients’ outcomes. Here, we compared the therapeutic potential of an α-PD-L1 antibody with the CDK4/6 inhibitor abemaciclib in two preclinical mouse models of dMMR cancer, focusing on immune-modulatory effects of either treatment. Abemaciclib monotherapy significantly prolonged overall survival of Mlh1−/− and Msh2loxP/loxP;TgTg(Vil1-cre) mice (Mlh1−/−: 14.5 wks vs. 9.0 wks (α-PD-L1), and 3.5 wks (control); Msh2loxP/loxP;TgTg(Vil1-cre): 11.7 wks vs. 9.6 wks (α-PD-L1), and 2.0 wks (control)). The combination was not superior to either monotherapy. PET/CT imaging revealed individual response profiles, with best clinical responses seen with abemaciclib mono- and combination therapy. Therapeutic effects were accompanied by increasing numbers of tumor-infiltrating CD4+/CD8+ T-cells and lower numbers of M2-macrophages. Levels of T cell exhaustion markers and regulatory T cell counts declined. Expression analysis identified higher numbers of dendritic cells and neutrophils within tumors together with high expression of DNA damage repair genes as part of the global stress response. In Mlh1−/− tumors, abemaciclib suppressed the PI3K/Akt pathway and led to induction of Mxd4/Myc. The immune-modulatory potential of abemaciclib renders this compound ideal for dMMR patients not eligible for ICI treatment.
Collapse
Affiliation(s)
- Inken Salewski
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Julia Henne
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Leonie Engster
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Paula Krone
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Bjoern Schneider
- Institute of Pathology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Caterina Redwanz
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, University of Rostock, Rostock, Germany
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, Department of Cardiology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Larissa Henze
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Christian Junghanss
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| | - Claudia Maletzki
- –Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of RostockDepartment of Medicine, Clinic III , Rostock, Germany
| |
Collapse
|
40
|
Zhang X, Li MJ, Xia L, Zhang H. The biological function of m6A methyltransferase KIAA1429 and its role in human disease. PeerJ 2022; 10:e14334. [PMID: 36389416 PMCID: PMC9657180 DOI: 10.7717/peerj.14334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
KIAA1429 is a major m6A methyltransferase, which plays important biological and pharmacological roles in both human cancer or non-cancer diseases. KIAA1429 produce a tumorigenic role in various cancers through regulating DAPK3, ID2, GATA3, SMC1A, CDK1, SIRT1 and other targets, promoting cell proliferation, migration, invasion, metastasis and tumor growth . At the same time, KIAA1429 is also effective in non-tumor diseases, such as reproductive system and cardiovascular system diseases. The potential regulatory mechanism of KIAA1429 dependent on m6A modification is related to mRNA, lncRNA, circRNA and miRNAs. In this review, we summarized the current evidence on KIAA1429 in various human cancers or non-cancer diseases and its potential as a prognostic target.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng jiao Li
- Liaocheng Vocational and Technical College, Liaocheng, China
| | - Lei Xia
- Shandong University of Traditional Chinese Medicine, Department of Pathology, Jinan, China
| | - Hairong Zhang
- Shandong Provincial Third Hospital, Department of Obstetrics and Gynecology, Jinan, China
| |
Collapse
|
41
|
Li X, Gulati M, Larson AC, Solheim JC, Jain M, Kumar S, Batra SK. Immune checkpoint blockade in pancreatic cancer: Trudging through the immune desert. Semin Cancer Biol 2022; 86:14-27. [PMID: 36041672 PMCID: PMC9713834 DOI: 10.1016/j.semcancer.2022.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer (PC) has exceptionally high mortality due to ineffective treatment strategies. Immunotherapy, which mobilizes the immune system to fight against cancer, has been proven successful in multiple cancers; however, its application in PC has met with limited success. In this review, we articulated that the pancreatic tumor microenvironment is immuno-suppressive with extensive infiltration by M2-macrophages and myeloid-derived suppressive cells but low numbers of cytotoxic T-cells. In addition, low mutational load and poor antigen processing, presentation, and recognition contribute to the limited response to immunotherapy in PC. Immune checkpoints, the critical targets for immunotherapy, have high expression in PC and stromal cells, regulated by tumor microenvironmental milieu (cytokine and metabolites) and cell-intrinsic mechanisms (epigenetic regulation, oncogenic signaling, and post-translational modifications). Combining immunotherapy with modulators of the tumor microenvironment may facilitate the development of novel therapeutic regimens to manage PC.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mansi Gulati
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alaina C Larson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joyce C Solheim
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
42
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22:325. [PMID: 36266723 PMCID: PMC9583502 DOI: 10.1186/s12935-022-02747-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Biomarkers in Liquid Biopsies for Prediction of Early Liver Metastases in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14194605. [PMID: 36230528 PMCID: PMC9562670 DOI: 10.3390/cancers14194605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies with poor survival rates. Only 20% of the patients are eligible for R0-surgical resection, presenting with early relapses, mainly in the liver. PDAC patients with hepatic metastases have a worse outcome compared to patients with metastases at other sites. Early detection of hepatic spread bears the potential to improve patient outcomes. Thus, this study sought for serum-based perioperative biomarkers allowing discrimination of early (EHMS ≤ 12 months) and late hepatic metastatic spread (LHMS > 12 months). Serum samples from 83 resectable PDAC patients were divided into EHMS and LHMS and analyzed for levels of inflammatory mediators by LEGENDplexTM, which was validated and extended by Olink® analysis. CA19-9 serum levels served as control. Results were correlated with clinicopathological data. While serum CA19-9 levels were comparable, Olink® analysis confirmed distinct differences between both groups. It revealed significantly elevated levels of factors involved in chemotaxis and migration of immune cells, immune activity, and cell growth in serum of LHMS-patients. Overall, Olink® analysis identified a comprehensive biomarker panel in serum of PDAC patients that could provide the basis for predicting LHMS. However, further studies with larger cohorts are required for its clinical translation.
Collapse
|
44
|
Qiao Y, Yuan F, Wang X, Hu J, Mao Y, Zhao Z. Identification and validation of real hub genes in hepatocellular carcinoma based on weighted gene co-expression network analysis. Cancer Biomark 2022; 35:227-243. [PMID: 36120772 DOI: 10.3233/cbm-220151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is one of the most common liver malignancies in the world. With highly invasive biological characteristics and a lack of obvious clinical manifestations, hepatocellular Carcinoma usually has a poor prognosis and ranks fourth in cancer mortality. The etiology and exact molecular mechanism of primary hepatocellular carcinoma are still unclear. OBJECTIVE This work aims to help identify biomarkers of early HCC diagnosis or prognosis based on weighted gene co-expression network analysis (WGCNA). METHODS Expression data and clinical information of HTSEQ-Counts were downloaded from The Cancer Genome Atlas (TCGA) database, and Gene Expression map GSE121248 was downloaded from Gene Expression Omnibus (GEO). By differentially expressed genes (DEGs) and Weighted Gene co-expression Network Analysis (WGCNA) searched for modules in the two databases that had the same effect on the biological characteristics of HCC, and extracted the module genes with the highest positive correlation with HCC from two databases, and finally obtained overlapping genes. Then, we performed functional enrichment analysis on the overlapping genes to understand their potential biological functions. The top ten hub genes were screened according to MCC through the String database and Cytoscape software and then subjected to survival analysis. RESULTS High expression of CDK1, CCNA2, CDC20, KIF11, DLGAP5, KIF20A, ASPM, CEP55, and TPX2 was associated with poorer overall survival (OS) of HCC patients. The DFS curve was plotted using the online website GEPIA2. Finally, based on the enrichment of these genes in the KEGG pathway, real hub genes were screened out, which were CDK1, CCNA2, and CDC20 respectively. CONCLUSIONS High expression of these three genes was negatively correlated with survival time in HCC, and the expression of CDK1, CCNA2, and CDC20 were significantly higher in tumor tissues of HCC patients than in normal liver tissues as verified again by the HPA database. All in all, this provides a new feasible target for early and accurate diagnosis of HCC, clinical diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yu Qiao
- School of Medicine, Jianghan University, Wuhan Hubei, China
| | - Fahu Yuan
- School of Medicine, Jianghan University, Wuhan Hubei, China
| | - Xin Wang
- Department of Spine Surgery, Wuhan Fourth Hospital, Wuhan Hubei, China
| | - Jun Hu
- Department of Spine Surgery, Wuhan Fourth Hospital, Wuhan Hubei, China
| | - Yurong Mao
- School of Medicine, Jianghan University, Wuhan Hubei, China
| | - Zhigang Zhao
- Department of Spine Surgery, Wuhan Fourth Hospital, Wuhan Hubei, China
| |
Collapse
|
45
|
Mao F, Li Z, Li Y, Huang H, Shi Z, Li X, Wu D, Liu H, Chen J. Necroptosis-related lncRNA in lung adenocarcinoma: A comprehensive analysis based on a prognosis model and a competing endogenous RNA network. Front Genet 2022; 13:940167. [PMID: 36159965 PMCID: PMC9493131 DOI: 10.3389/fgene.2022.940167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Necroptosis, an innovative type of programmed cell death, involves the formation of necrosomes and eventually mediates necrosis. Multiple lines of evidence suggest that necroptosis plays a major role in the development of human cancer. However, the role of necroptosis in lung adenocarcinoma (LUAD) remains unclear. In this study, we aimed to construct an NRL-related prognostic model and comprehensively analyze the role of NRL in LUAD.Methods: A necroptosis-related lncRNA (NRL) signature was constructed in the training cohort and verified in the validation and all cohorts based on The Cancer Genome Atlas database. In addition, a nomogram was developed. The tumor microenvironment (TME), checkpoint, human leukocyte antigen, and m6A methylation levels were compared between low-risk and high-risk groups. Then, we identified five truly prognostic lncRNAs (AC107021.2, AC027117.1, FAM30A, FAM83A-AS1, and MED4-AS1) and constructed a ceRNA network, and four hub genes of downstream genes were identified and analyzed using immune, pan-cancer, and survival analyses.Results: The NRL signature could accurately predict the prognosis of patients with LUAD, and patients with low risk scores were identified with an obvious “hot” immune infiltration level, which was strongly associated with better prognosis. Based on the ceRNA network, we postulated that NRLs regulated the TME of patients with LUAD via cyclin-dependent kinase (CDK) family proteins.Conclusion: We constructed an NRL signature and a ceRNA network in LUAD and found that NRLs may modulate the immune microenvironment of LUAD via CDK family proteins.
Collapse
Affiliation(s)
- Fuling Mao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihao Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zijian Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Di Wu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Jun Chen, ; Hongyu Liu,
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- *Correspondence: Jun Chen, ; Hongyu Liu,
| |
Collapse
|
46
|
Liu J, Chen C, Geng R, Shao F, Yang S, Zhong Z, Ni S, Bai J. Pyroptosis-related gene expression patterns and corresponding tumor microenvironment infiltration characterization in ovarian cancer. Comput Struct Biotechnol J 2022; 20:5440-5452. [PMID: 36249562 PMCID: PMC9535418 DOI: 10.1016/j.csbj.2022.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Pyroptosis, a form of inflammatory programmed cell death, is accompanied by inflammation and participate in the body's immune response. The expression of pyroptosis-related genes (PRGs) is associated with tumor prognosis in ovarian cancer (OC), but it is still unknown whether pyroptosis can affect tumor immune microenvironment (TME) of OC. Based on 30 PRGs, we comprehensively assessed the pyroptosis patterns by using PRGscore and correlated them with TME features in 474 OC patients. Finally, we identified three pyroptosis modification patterns and TME immune characteristics of these patterns were in response to three immune phenotypes (immune-desert, immune-inflamed, and immune-excluded phenotypes). PRGscore can predict patient survival, staging, grading, and immunotherapy efficacy. Low PRGscore was associated with better survival advantage and increased mutation burden. Low PRGscore patients showed significantly better therapeutic effects and clinical results in chemotherapy and immunotherapy. Besides, the capability of PRGscore in predicting prognosis and immunotherapy sensitivity was further verified in other three tumor cohorts. In conclusion, the comprehensive assessment of OC pyroptosis modifications can help enhancing our understanding of TME immune infiltration and provide better personalized treatment tactics for OC patients.
Collapse
|
47
|
Systematic Pan-Cancer Analysis Identifies CDK1 as an Immunological and Prognostic Biomarker. JOURNAL OF ONCOLOGY 2022; 2022:8115474. [PMID: 36090896 PMCID: PMC9452984 DOI: 10.1155/2022/8115474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022]
Abstract
Cyclin-dependent kinase 1 (CDK1) plays an important role in cancer development, progression, and the overall process of tumorigenesis. However, no pan-cancer analysis has been reported for CDK1, and the predictive role of CDK1 in immune checkpoint inhibitors (ICIs) therapy response remains unexplored. Thus, in this study, we first investigated the potential oncogenic role of CDK1 in 33 tumors by multidimensional bioinformatics analysis based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Bioinformatic analysis and immunohistochemical experiments confirmed that CDK1 is significantly upregulated in most common cancers and is strongly associated with prognosis. Further analysis indicated that CDK1 may influence tumor immunity mainly by mediating the degree of tumor infiltration of immune-associated cells, and the effect of CDK1 on immunity is diverse across tumor types in tumor microenvironment. CDK1 was also positively correlated with tumor mutational burden (TMB) and microsatellite instability (MSI) in certain cancer types, linking its expression to the assessment of possible treatment response. The results of the pan-cancer analysis study showed that the CDK1 gene was positively associated with the expression of three classes of RNA methylation regulatory proteins, and affects RNA function through multiple mechanisms of action and plays an important role in the posttranscriptional regulation of the tumor microenvironment. These findings shed light on the role of the CDK1 gene in cancer progression and provide information to further study the CDK1 gene as a potential target for pan-cancer.
Collapse
|
48
|
ZNF655 accelerates progression of pancreatic cancer by promoting the binding of E2F1 and CDK1. Oncogenesis 2022; 11:44. [PMID: 35927248 PMCID: PMC9352668 DOI: 10.1038/s41389-022-00418-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Pancreatic cancer has an extremely terrible prognosis and is a common cause of cancer death. In this study, the clinic value, biological function and underlying mechanisms of Zinc finger protein 655 (ZNF655) in human pancreatic cancer were evaluated. The expression level of ZNF655 in pancreatic cancer was determined by immunohistochemistry (IHC) staining. The biological effects of ZNF655 in pancreatic cancer cells was investigated by loss/gain-of-function assays in vitro and in vivo. The downstream molecular mechanism of ZNF655 was explored using co-immunoprecipitation (Co-IP), dual-luciferase reporter and chromatin immunoprecipitation (Ch-IP). ZNF655 expression was significantly elevated in human pancreatic cancer and possessed clinical value in predicting poor prognosis. Functionally, ZNF655 knockdown inhibited the biological progression of pancreatic cancer cells, which was characterized by weaken proliferation, enhanced apoptosis, arrested cell cycle in G2, impeded migration, and suppressed tumor growth. Mechanistically, ZNF655 played an important role in promoting the binding of E2F transcription factor 1 (E2F1) to the cyclin-dependent kinase 1 (CDK1) promoter. Furthermore, knockdown of CDK1 alleviated the promoting effects of ZNF655 overexpression in pancreatic cancer cells. The promotive role of ZNF655 in pancreatic cancer via CDK1 was determined, which drew further interest regarding its clinical application as a promising therapeutic target.
Collapse
|
49
|
Wu S, Pan R, Lu J, Wu X, Xie J, Tang H, Li X. Development and Verification of a Prognostic Ferroptosis-Related Gene Model in Triple-Negative Breast Cancer. Front Oncol 2022; 12:896927. [PMID: 35719954 PMCID: PMC9202593 DOI: 10.3389/fonc.2022.896927] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 11/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the subtype with the worst prognosis of breast cancer. Ferroptosis, a novel iron-dependent programmed cell death, has an increasingly important role in tumorigenesis and development. However, there is still a lack of research on the relationship between ferroptosis-related genes and the prognosis of TNBC. In this study, we obtained the gene expression profile of TNBC patients and matched clinical data from The Cancer Genome Atlas (TCGA) database. Univariate Cox analysis was used to screen out ferroptosis-related genes associated with TNBC prognosis. Then, the least absolute shrinkage and selection operator (LASSO) regression analysis was employed to establish a prognostic prediction model. A 15-ferroptosis-related gene prognostic prediction model was developed, which classified patients into low-risk (LR) or high-risk (HR) groups. Kaplan-Meier analysis results showed that the prognosis of the LR group was better. The receiver operating characteristic (ROC) curve also confirmed the satisfactory predictive ability of this model. Evaluation of the immune microenvironment of TNBC patients in the HR and LR group suggested these 15 ferroptosis-related genes might affect the prognosis of TNBC by regulating the tumor microenvironment. Our prognostic model can provide a theoretical basis for accurate prognosis prediction of TNBC in clinical practice.
Collapse
Affiliation(s)
- Song Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruilin Pan
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Jibu Lu
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Xiaoling Wu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jingdong Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
50
|
Liu X, Wu H, Liu Z. An Integrative Human Pan-Cancer Analysis of Cyclin-Dependent Kinase 1 (CDK1). Cancers (Basel) 2022; 14:cancers14112658. [PMID: 35681641 PMCID: PMC9179585 DOI: 10.3390/cancers14112658] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cyclin-dependent kinase 1 (CDK1), one of the key regulators of the G2/M checkpoint, is expressed in many cells and plays an important role in cell cycle control. However, CDK1 expression is substantially increased in many tumors of diverse origins and is associated with tumorigenesis. Targeting CDK1 shows promising results for several tumors. However, a systematic and integrative analysis of CDK1 in cancer has not been conducted. The present study aims to use pan-cancer analysis to investigate the relationship, similarities, and differences in genetic and cellular changes associated with CDK1 in various tumors and tumor microenvironments. Our findings elucidate that CDK1 expression increases in more than 20 human tumors and is highly correlated with oncogenic signature gene sets, biological pathways, immune cell infiltration, tumor mutational burden, microsatellite instability, and lower survival rate across multiple tumors. Targeting CDK1 may provide a novel and effective strategy for cancer immunotherapy. Abstract Cyclin-dependent kinase 1 (CDK1) is essential for cell division by regulating the G2/M phase and mitosis. CDK1 overexpression can also promote the development and progression of a variety of cancers. However, the significance of CDK1 in the formation, progression, and prognosis of human pan-cancer remains unclear. In the present study, we used The Cancer Genome Atlas database, Clinical Proteomic Tumor Analysis Consortium, Human Protein Atlas, Genotype-Tissue Expression, and other well-established databases to comprehensively examine CDK1 genetic alterations and gene/protein expression in various cancers and their relationships with the prognosis, immune reactivities, and clinical outcomes for 33 tumor types. Gene set enrichment analysis was also conducted to examine the potential mechanisms of CDK1 in tumorigenesis. The data showed that CDK1 mutation was frequently present in multiple tumors. CDK1 expression was significantly increased in various types of tumors as compared with normal tissues and was associated with poor overall and disease-free survival. In addition, CDK1 expression was significantly correlated with oncogenic genes, proteins, cellular components, myeloid-derived suppressor cell infiltration, ESTMATEScore, and signaling pathways associated with tumor development and progression and tumor microenvironments. These data indicate that CDK1 could serve as a promising biomarker for predicting tumor prognosis and a potential target for cancer treatment.
Collapse
Affiliation(s)
- Xuanyou Liu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Hao Wu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Correspondence: ; Tel.: +573-884-3278
| |
Collapse
|