1
|
Barcellos-Hoff MH, Yom SS. Revisiting the TGFβ paradox: insights from HPV-driven cancer and the DNA damage response. Nat Rev Cancer 2025:10.1038/s41568-025-00819-6. [PMID: 40389543 DOI: 10.1038/s41568-025-00819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 05/21/2025]
Abstract
The transforming growth factor-β (TGFβ) paradox refers to the well-established role of TGFβ in suppressing cancer in healthy tissues yet promoting malignancy in established cancers. Although this positioned TGFβ inhibitors as a potential therapeutic strategy for malignancy, therapuetic blockade has failed in multiple clinical trials. The general lack of selection principles for defining which patients would most benefit from the addition of a TGFβ inhibitor has probably hindered its deployment. Here, we highlight the therapeutic potential in TGFβ regulation of DNA repair using human papillomavirus (HPV)-driven head and neck squamous cell carcinoma (HNSCC) as an illustrative example. HPV inhibits TGFβ signalling, which in turn reduces DNA damage repair, ultimately conferring sensitivity to cancer treatments and thus contributing to the favourable prognosis of HPV-positive HNSCC. Here, we review the DNA repair deficit caused by a loss of TGFβ signalling and how this could be targeted to induce synthetic lethality. Moreover, we explore its role in predicting response to immune checkpoint inhibitors and the potential of biomarkers to select which patients with cancer could ultimately benefit from TGFβ inhibition.
Collapse
Affiliation(s)
| | - Sue S Yom
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Tulsian K, Thakker D, Vyas VK. Overcoming chimeric antigen receptor-T (CAR-T) resistance with checkpoint inhibitors: Existing methods, challenges, clinical success, and future prospects : A comprehensive review. Int J Biol Macromol 2025; 306:141364. [PMID: 39988153 DOI: 10.1016/j.ijbiomac.2025.141364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Immune checkpoint blockade is, as of today, the most successful form of cancer immunotherapy, with more than 43 % of cancer patients in the US eligible to receive it; however, only up to 12.5 % of patients respond to it. Similarly, adoptive cell therapy using bioengineered chimeric antigen receptorT (CAR-T) cells and T-cell receptor (TCR) cells has provided excellent responses against liquid tumours, but both forms of immunotherapy have encountered challenges within a tumour microenvironment that is both lacking in tumour-specific T-cells and is strongly immunosuppressive toward externally administered CAR-T and TCR cells. This review focuses on understanding approved checkpoint blockade and adoptive cell therapy at both biological and clinical levels before delving into how and why their combination holds significant promise in overcoming their individual shortcomings. The advent of next-generation checkpoint inhibitors has further strengthened the immune checkpoint field, and a special section explores how these inhibitors can address existing hurdles in combining checkpoint blockade with adoptive cell therapy and homing in on our cancer target for long-term immunity.
Collapse
Affiliation(s)
- Kartik Tulsian
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Dhinal Thakker
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
3
|
Wang Z, Wang M, Wang M, Zhou R, Deng X, Ouyang X, Chu M, Wei X, Yang L, Liu J, Xu Y. From molecular design to clinical translation: dual-targeted CAR-T strategies in cancer immunotherapy. Int J Biol Sci 2025; 21:2676-2691. [PMID: 40303292 PMCID: PMC12035882 DOI: 10.7150/ijbs.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Abstract
The pathogenesis of tumors involves various abnormalities at both the cellular and genetic levels. Chimeric antigen receptor (CAR)-T cell immunotherapy has emerged as a transformative treatment strategy that effectively addresses these challenges. While CAR-T therapy has shown remarkable success in treating hematological malignancies, limitations have been identified, particularly in single antigen-targeting CAR-T therapies. These limitations include antigenic mutation or loss, reduced efficacy against leukemia, and poor results in solid tumors due to factors like low CAR-T cell persistence, limited tumor infiltration, rapid cell exhaustion, the suppressive tumor microenvironment, and heterogeneous tumor antigen expression. In recent years, multi-antigen targeted CAR-T therapies have garnered significant attention for their potential to prevent tumor relapse and progression. This review outlines the fundamental design of dual CAR structures and summarizes the major advancements in both preclinical studies and clinical trials of dual-targeted CAR-T cell therapy, categorized by cancer type. Additionally, it discusses the challenges associated with dual-targeted CAR-T therapy and the strategies to enhance its efficacy and applicability in treating both hematologic and solid tumors. In conclusion, the progress in dual-targeted CAR-T cell therapy presents a promising therapeutic avenue for multiple malignancies, offering insights into future modifications of immunotherapy to advance the field.
Collapse
Affiliation(s)
- Zhenrong Wang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Mengyi Wang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Mengting Wang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Ruijie Zhou
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Xiaotong Deng
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Xin Ouyang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Minghui Chu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Xinyu Wei
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Lei Yang
- People's Hospital of Jingyang County, Xianyang, Shaanxi, 713700, China
| | - Jinbiao Liu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, Hubei, 430068, China
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| |
Collapse
|
4
|
Nedeljković M, Vuletić A, Mirjačić Martinović K. Divide and Conquer-Targeted Therapy for Triple-Negative Breast Cancer. Int J Mol Sci 2025; 26:1396. [PMID: 40003864 PMCID: PMC11855393 DOI: 10.3390/ijms26041396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and malignant type of breast cancer with limited treatment options and poor prognosis. One of the most significant impediments in TNBC treatment is the high heterogeneity of this disease, as highlighted by the detection of several molecular subtypes of TNBC. Each subtype is driven by distinct mutations and pathway aberrations, giving rise to specific molecular characteristics closely connected to clinical behavior, outcomes, and drug sensitivity. This review summarizes the knowledge regarding TNBC molecular subtypes and how it can be harnessed to devise tailored treatment strategies instead of blindly using targeted drugs. We provide an overview of novel targeted agents and key insights about new treatment modalities with an emphasis on the androgen receptor signaling pathway, cancer stem cell-associated pathways, phosphatidylinositol 3-kinase (PI3K)/AKT pathway, growth factor signaling, and immunotherapy.
Collapse
Affiliation(s)
- Milica Nedeljković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (A.V.); (K.M.M.)
| | | | | |
Collapse
|
5
|
Li Y, Cheng Z, Li S, Zhang J. Immunotherapy in colorectal cancer: Statuses and strategies. Heliyon 2025; 11:e41354. [PMID: 39811287 PMCID: PMC11731577 DOI: 10.1016/j.heliyon.2024.e41354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Colorectal cancer (CRC) is widely recognized as the third most prevalent malignancy globally and the second leading cause of cancer-related mortality. Traditional treatment modalities for CRC, including surgery, chemotherapy, and radiotherapy, can be utilized either individually or in combination. However, these treatments frequently result in significant side effects due to their non-specificity and cytotoxicity affecting all cells. Moreover, a considerable number of patients face relapses following these treatments. Consequently, it is imperative to explore more efficacious treatment interventions for CRC patients. Immunotherapy, an emerging frontier in oncology, represents a novel therapeutic approach that leverages the body's immune system to target cancer cells. The principal advantage of immunotherapy is its capacity to selectively target cancer cells while minimizing damage to healthy cells. Its recent adoption as a neoadjuvant therapy presents significant potential to transform the treatment landscape for both primary resectable and metastatic CRC. This review endeavors to offer a comprehensive overview of current strategies in CRC immunotherapy, critically analyze existing literature, underscore anticipated outcomes from ongoing clinical trials, and deliberate on the challenges and impediments encountered within the field of immunotherapy.
Collapse
Affiliation(s)
- Yuan Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zewei Cheng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shengli Li
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
6
|
Tauriello DVF, Sancho E, Byrom D, Sanchez-Zarzalejo C, Salvany M, Henriques A, Palomo-Ponce S, Sevillano M, Hernando-Momblona X, Matarin JA, Ramos I, Ruano I, Prats N, Batlle E, Riera A. New Potent Inhibitor of Transforming Growth Factor-Beta (TGFβ) Signaling that is Efficacious against Microsatellite Stable Colorectal Cancer Metastasis in Combination with Immune Checkpoint Therapy in Mice. ACS Pharmacol Transl Sci 2025; 8:97-112. [PMID: 39816803 PMCID: PMC11729428 DOI: 10.1021/acsptsci.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 01/18/2025]
Abstract
Blockade of the TGFβ signaling pathway has emerged from preclinical studies as a potential treatment to enhance the efficacy of immune checkpoint inhibition in advanced colorectal cancer (CRC) and several other types of cancer. However, clinical translation of first-generation inhibitors has shown little success. Here, we report the synthesis and characterization of HYL001, a potent inhibitor of TGFβ receptor 1 (ALK5), that is approximately 9 times more efficacious than the structurally related compound galunisertib, while maintaining a favorable safety profile. HYL001 in combination with immune checkpoint blockade (anti-PD1) eradicates liver metastases generated in mice by microsatellite stable, aggressive colorectal cancer tumors at doses where galunisertib is ineffective.
Collapse
Affiliation(s)
- Daniele V. F. Tauriello
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Elena Sancho
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Daniel Byrom
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Carolina Sanchez-Zarzalejo
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Maria Salvany
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
- Universitat
de Barcelona, Barcelona 08028, Spain
| | - Ana Henriques
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Sergio Palomo-Ponce
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Marta Sevillano
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Xavier Hernando-Momblona
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Joan A. Matarin
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Israel Ramos
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Irene Ruano
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Neus Prats
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Eduard Batlle
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Department
Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
7
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
9
|
Lind HT, Hall SC, Strait AA, Goon JB, Aleman JD, Chen SMY, Karam SD, Young CD, Wang JH, Wang XJ. MHC class I upregulation contributes to the therapeutic response to radiotherapy in combination with anti-PD-L1/anti-TGF-β in squamous cell carcinomas with enhanced CD8 T cell memory-driven response. Cancer Lett 2025; 608:217347. [PMID: 39580046 PMCID: PMC11875078 DOI: 10.1016/j.canlet.2024.217347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Radiation therapy (RT), a mainstay treatment for head and neck squamous cell carcinoma (HNSCC), kills cancer cells and modulates the tumor immune microenvironment. We sought to assess the effect of RT in combination with PD-L1/TGF-β dual blockade in squamous cell carcinomas (SCC) and analyze the underlying mechanisms. We transplanted mouse SCC cells derived from keratin-15 (K15) stem cells harboring KrasG12D/Smad4-/- mutations into syngeneic recipients and irradiated tumors followed by PD-L1/TGF-β dual blockade. We identified a responder line and a non-responder line to this combination therapy. Responder hosts eradicated SCCs by the combined therapy and rejected re-transplanted SCC cells 6 months post tumor eradication, which correlated with clonotype expansions of splenic CD8 T cells and effector memory gene expression identified by single cell sequencing of TCR and transcriptomes, respectively. Mechanistically, RT upregulated MHC-I (major histocompatibility complex I) and its transcriptional regulators including NLRC5, in SCCs of the responders but not non-responders. These data are consistent with the TCGA HNSCC database in which NLRC5 correlated to MHC-I genes and CD8 T cell gene expression. Functional contribution of MHC-I to PD-L1/TGF-β blockade response was confirmed by knocking out beta-2-microglobulin in responder cells that attenuated the response to the same therapy. Thus, the therapeutic effectiveness appeared to largely depend on cancer-cell MHC-I expression, triggering CD8 T cell effector memory-driven responses against tumor cell antigens. Identifying the differential RT response to MHC-I induction may serve as a predictive marker for stratifying patients that are most likely to benefit from this combination therapy.
Collapse
Affiliation(s)
- Hanne T Lind
- Department of Pathology, University of California, Davis, CA, USA
| | - Spencer C Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander A Strait
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jack B Goon
- Department of Pathology, University of California, Davis, CA, USA
| | - John D Aleman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha M Y Chen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, MO, USA
| | - Christian D Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jing H Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, Department of Immunology, University of Pittsburg, Pittsburgh, PA, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of California, Davis, CA, USA; Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; VA Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
10
|
Yi L, Pan H, Ning Z, Xu L, Zhang H, Peng L, Liu Y, Yang Y, Si W, Wang Y, Zhu X, Huang S, Meng Z, Xie J. Clinical and biomarker analyses of SHR-1701 combined with famitinib in patients with previously treated advanced biliary tract cancer or pancreatic ductal adenocarcinoma: a phase II trial. Signal Transduct Target Ther 2024; 9:347. [PMID: 39668159 PMCID: PMC11638339 DOI: 10.1038/s41392-024-02052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Advanced biliary tract cancer (BTC) and pancreatic ductal adenocarcinoma (PDAC) have poor prognoses and limited treatment options. Here, we conducted this first-in-class phase II study to evaluate the efficacy and safety of SHR-1701, a bifunctional fusion protein targeting programmed death-ligand 1 (PD-L1) and transforming growth factor-beta (TGF-β), combined with famitinib, a multi-targeted receptor tyrosine kinase inhibitor, in patients with advanced BTC or PDAC who failed previous standard treatment (trial registration: ChiCTR2000037927). Among 51 enrolled patients, the BTC cohort showed an objective response rate (ORR) of 28% (including 2 complete responses) and a disease control rate (DCR) of 80%, with a median progression-free survival (mPFS) of 5.1 months and a median overall survival (mOS) of 16.0 months. In the PDAC cohort, the ORR was 15% (2 complete responses), with a DCR of 60%, and the mPFS and mOS were 2.1 months and 5.3 months, respectively. Grade 3 or 4 treatment-related adverse events (TRAEs) occurred in 29.4% of patients, with no grade 5 TRAEs reported. Exploratory analyses revealed that primary tumor resection history, peripheral blood immunophenotype changes, and distinct immune-metabolic profiles were associated with treatment benefits. An immune/metabolism score integrating the features of six genes was developed as a predictive biomarker for immunotherapy response in multiple cohorts, allowing for the selection of patients most likely to experience positive outcomes from this therapy regimen. In conclusion, our study provides proof-of-concept data supporting the potential of SHR-1701 plus famitinib as an effective and safe subsequent-line therapy for refractory BTC and PDAC, highlighting the promise of targeting PD-L1, TGF-β, and angiogenesis pathways simultaneously.
Collapse
Affiliation(s)
- Lixia Yi
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoqi Pan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Litao Xu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Longfei Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yaowu Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifan Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Waimei Si
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ying Wang
- Clinical Research & Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Xiaoyan Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Rados M, Landegger A, Schmutzler L, Rabidou K, Taschner-Mandl S, Fetahu IS. Natural killer cells in neuroblastoma: immunological insights and therapeutic perspectives. Cancer Metastasis Rev 2024; 43:1401-1417. [PMID: 39294470 PMCID: PMC11554946 DOI: 10.1007/s10555-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Natural killer (NK) cells have multifaceted roles within the complex tumor milieu. They are pivotal components of innate immunity and shape the dynamic landscape of tumor-immune cell interactions, and thus can be leveraged for use in therapeutic interventions. NK-based immunotherapies have had remarkable success in hematological malignancies, but these therapies are met with many challenges in solid tumors, including neuroblastoma (NB), a childhood tumor arising from the sympathetic nervous system. With a focus on NB, this review outlines the mechanisms employed by NK cells to recognize and eliminate malignant cells, delving into the dynamic relationship between ligand-receptor interactions, cytokines, and other molecules that facilitate the cross talk between NK and NB cells. We discuss the immunomodulatory functions of NK cells and the mechanisms that contribute to loss of this immunosurveillance in NB, with a focus on how this dynamic has been utilized in recent immunotherapy advancements for NB.
Collapse
Affiliation(s)
- Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Lukas Schmutzler
- Department of Otorhinolaryngology - Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Kimberlie Rabidou
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, USA
| | | | - Irfete S Fetahu
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Mortaheb S, Pezeshki PS, Rezaei N. Bispecific therapeutics: a state-of-the-art review on the combination of immune checkpoint inhibition with costimulatory and non-checkpoint targeted therapy. Expert Opin Biol Ther 2024; 24:1335-1351. [PMID: 39503381 DOI: 10.1080/14712598.2024.2426636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer immunotherapy and have enhanced the survival of patients with malignant tumors. However, the overall efficacy of ICIs remains unsatisfactory and is faced with two major concerns of resistance development and occurrence of immune-related adverse events (irAEs). Bispecific antibodies (bsAbs) have emerged as promising strategies with unique mechanisms of action to achieve a better efficacy and safety than monoclonal antibodies (mAbs) or even their combination. BsAbs along with other bispecific platforms such as bispecific fusion proteins, nanobodies, and CAR-T cells may help to avoid development of resistance and reduce irAEs caused by on-target/off-tumor binding effects of mAbs. AREAS COVERED A literature search was performed using PubMed for English-language articles to provide a comprehensive overview of preclinical and clinical studies on bsAbs specified for both immune checkpoints and non-checkpoint molecules as a well-enhanced class of therapeutics. EXPERT OPINION Identifying suitable targets and selecting effective engineering platforms enhance the potential of bsAbs to address the challenges associated with conventional therapies such as ICIs, positioning them as a promising class of therapeutics in the landscape of cancer immunotherapy.
Collapse
Affiliation(s)
- Samin Mortaheb
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Gayen S, Mukherjee S, Dasgupta S, Roy S. Emerging druggable targets for immune checkpoint modulation in cancer immunotherapy: the iceberg lies beneath the surface. Apoptosis 2024; 29:1879-1913. [PMID: 39354213 DOI: 10.1007/s10495-024-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
The immune system serves as a fundamental defender against the initiation and progression of cancer. Failure of the immune system augments immunosuppressive action that leading to cancer manifestation. This immunosuppressive effect causes from significant alterations in immune checkpoint expression associated with tumoral progression. The tumor microenvironment promotes immune escape mechanisms that further amplifying immunosuppressive actions. Notably, substantial targeting of immune checkpoints has been pragmatic in the advancement of cancer research. This study highlights a comprehensive review of emerging druggable targets aimed at modulating immune checkpoint co-inhibitory as well as co-stimulatory molecules in response to immune system activation. This modulation has prompted to the development of newer therapeutic insights, eventually inducing immunogenic cell death through immunomodulatory actions. The study emphasizes the role of immune checkpoints in immunogenic regulation of cancer pathogenesis and explores potential therapeutic avenues in cancer immunotherapy.Modulation of Immunosuppressive and Immunostimulatory pathways of immune checkpoints in cancer immunotherapy.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
14
|
Yu EJ, Bell DW. The endometrial cancer A230V-ALK5 (TGFBR1) mutant attenuates TGF-β signaling and exhibits reduced in vitro sensitivity to ALK5 inhibitors. PLoS One 2024; 19:e0312806. [PMID: 39576826 PMCID: PMC11584080 DOI: 10.1371/journal.pone.0312806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
The ALK5 (TGFBR1) receptor serine/threonine kinase transduces TGF-β (Transforming Growth Factor beta) signaling to activate SMAD2/3-dependent and -independent pathways. Here, we aimed to determine the functional consequences of ALK5 mutations in human endometrial cancer (EC). Somatic mutation data were retrieved from publicly available databases. Using seven in silico algorithms, 78.5% (11 of 14) of ALK5 kinase domain mutations in EC, including A230V-ALK5, were predicted to impact protein function. For in vitro studies, we focused on A230V-ALK5 because it was the only mutated residue located within the ATP-binding pocket, which is an important region for both ATP-binding and binding of ATP-competitive inhibitors. Constructs expressing wildtype-, constitutively-active-, kinase-dead-, or mutant A230V-ALK5, were transfected into NIH/3T3 cells. Following TGF-β1 stimulation, transient exogenous expression of A230V-ALK5 resulted in attenuated SMAD2/3 signal transduction and reduced AKT activation. We further showed that the A230V-ALK5 mutant had reduced stability resulting from increased ubiquitin-dependent protein degradation. Our structural modeling predicted that SB-431542, a small molecule ATP-competitive inhibitor of ALK5, binds to the A230V-ALK5 mutant with reduced affinity compared to wildtype-ALK5. We therefore examined the inhibitory effect of SB-431542 and galunisertib on wildtype- and mutant-ALK5 activity using a Smad-binding element (SBE) luciferase reporter assay combined with TGF-β1 stimulation, in NIH/3T3 cells and HEC-265 EC cells. SBE luciferase activity in A230V-ALK5 transfected cells was inhibited less by SB-431542 and galunisertib than in wildtype-ALK5 transfected cells indicating that A230V-ALK5 is less sensitive to inhibition by these agents than wildtype-ALK5, potentially due to changes in SB-431542/A230V-ALK5 binding affinity. Our findings are novel and show that A230V-ALK5 is a partial loss-of-function mutant that attenuates TGF-β1 signal transduction and has reduced sensitivity to ALK5 small molecule inhibitors.
Collapse
Affiliation(s)
- Eun-Jeong Yu
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daphne W Bell
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
15
|
Shang Y, Chen G, Liu L, Pan R, Li X, Shen H, Tan Y, Ma L, Tong X, Wang W, Chen X, Xia Z, Liu X, Zhou F. Clinical and immunological characteristics of high-risk double-hit multiple myeloma. BMC Cancer 2024; 24:1373. [PMID: 39523318 PMCID: PMC11552351 DOI: 10.1186/s12885-024-13124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
At present, the characteristics of double-hit multiple myeloma (DHMM) are unknown. We retrospectively analyzed the clinical data from 433 new diagnosed MM patients and found that DHMM have a higher β2-MG level and percentage of bone marrow plasma cell. Cox regression analysis showed that the prognosis of DHMM was not limited by clinical indicators. The abnormal proliferation of bone marrow in DHMM is obvious, and the proportion of poorly differentiated plasma cell is high. By collecting specimens from our center and performing flow cytometry to analyze the immunophenotypic and functional characteristics of lymphocyte subpopulations, we found that DHMM had a higher ratio of Tregs cells, and the proportion of iTregs cells was also significantly higher than non-DHMM (P < 0.05). Moreover, DHMM had higher levels of TGF-β1 and IL-10, and TGF-β1 and IL-10 were positively correlated with iTregs (P < 0.05). In addition, DHMM was highly expressed PD-1 on CD8 + T cells and had a higher proportion of CD38highTregs cells. In vitro we have shown that the addition of TGF-β1 antibody or CD38 antibody can effectively inhibit the proportion of CD38high Tregs. This study describes the characteristics of DHMM based on bicentric data, which is helpful to better provide theoretical support for the treatment of DHMM.
Collapse
Grants
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
- ZNLH201902 the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Cultivation Fund
Collapse
Affiliation(s)
- Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, P.R. China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Ruiyang Pan
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Yuxin Tan
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Xiqin Tong
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China
| | - Weida Wang
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P.R. China
| | - Xiaoqin Chen
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P.R. China
| | - Zhongjun Xia
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P.R. China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei, 430071, P.R. China.
| |
Collapse
|
16
|
Yi M, Li T, Niu M, Wu Y, Zhao B, Shen Z, Hu S, Zhang C, Zhang X, Zhang J, Yan Y, Zhou P, Chu Q, Dai Z, Wu K. Blockade of CCR5 + T Cell Accumulation in the Tumor Microenvironment Optimizes Anti-TGF-β/PD-L1 Bispecific Antibody. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408598. [PMID: 39303165 PMCID: PMC11578335 DOI: 10.1002/advs.202408598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Indexed: 09/22/2024]
Abstract
In the previous studies, anti-TGF-β/PD-L1 bispecific antibody YM101 is demonstrated, with superior efficacy to anti-PD-L1 monotherapy in multiple tumor models. However, YM101 therapy can not achieve complete regression in most tumor-bearing mice, suggesting the presence of other immunosuppressive elements in the tumor microenvironment (TME) beyond TGF-β and PD-L1. Thoroughly exploring the TME is imperative to pave the way for the successful translation of anti-TGF-β/PD-L1 BsAb into clinical practice. In this work, scRNA-seq is employed to comprehensively profile the TME changes induced by YM101. The scRNA-seq analysis reveals an increase in immune cell populations associated with antitumor immunity and enhances cell-killing pathways. However, the analysis also uncovers the presence of immunosuppressive CCR5+ T cells in the TME after YM101 treatment. To overcome this hurdle, YM101 is combined with Maraviroc, a widely used CCR5 antagonist for treating HIV infection, suppressing CCR5+ T cell accumulation, and optimizing the immune response. Mechanistically, YM101-induced neutrophil activation recruits immunosuppressive CCR5+ T cells via CCR5 ligand secretion, creating a feedback loop that diminishes the antitumor response. Maraviroc then cleared these infiltrating cells and offset YM101-mediated immunosuppressive effects, further unleashing the antitumor immunity. These findings suggest selectively targeting CCR5 signaling with Maraviroc represents a promising and strategic approach to enhance YM101 efficacy.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical ScienceTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032P. R. China
| | - Tianye Li
- Department of GynecologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou310009P. R. China
| | - Mengke Niu
- Department of Medical OncologyThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Bin Zhao
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Zhuoyang Shen
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Shengtao Hu
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Chaomei Zhang
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Xiaojun Zhang
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical ScienceTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032P. R. China
| | - Jing Zhang
- Wuhan YZY Biopharma Co., LtdBiolake, C2‐1, No.666 Gaoxin RoadWuhan430075P. R. China
| | - Yongxiang Yan
- Wuhan YZY Biopharma Co., LtdBiolake, C2‐1, No.666 Gaoxin RoadWuhan430075P. R. China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., LtdBiolake, C2‐1, No.666 Gaoxin RoadWuhan430075P. R. China
| | - Qian Chu
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Zhijun Dai
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310000P. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical ScienceTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032P. R. China
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
17
|
Eapen RS, Williams SG, Macdonald S, Keam SP, Lawrentschuk N, Au L, Hofman MS, Murphy DG, Neeson PJ. Neoadjuvant lutetium PSMA, the TIME and immune response in high-risk localized prostate cancer. Nat Rev Urol 2024; 21:676-686. [PMID: 39112733 DOI: 10.1038/s41585-024-00913-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 11/02/2024]
Abstract
High-risk localized prostate cancer remains a lethal disease with high rates of recurrence, metastases and death, despite attempts at curative local treatment including surgery. Disease recurrence is thought to be a result of failure of local control and occult micrometastases. Neoadjuvant strategies before surgery have been effective in many cancers, but, to date, none has worked in this setting for prostate cancer. Prostate-specific membrane antigen (PSMA)-based theranostics is an exciting and rapidly evolving field in prostate cancer. The novel intravenous radionuclide therapy, [177Lu]Lu-PSMA-617 (lutetium PSMA) has been shown to be effective in treating men with metastatic castration-resistant prostate cancer, targeting cells expressing PSMA throughout the body. When given in a neoadjuvant setting, lutetium PSMA might also improve long-term oncological outcomes in men with high-risk localized disease. A component of radiotherapy is potentially an immunogenic form of cancer cell death. Lutetium PSMA could cause cancer cell death, resulting in release of tumour antigens and induction of a tumour-specific systemic immune response. This targeted radioligand treatment has the potential to treat local and systemic tumour sites by directly targeting cells that express PSMA, but might also act indirectly via this systemic immune response. In selected patients, lutetium PSMA could potentially be combined with systemic immunotherapies to augment the antitumour T cell response, and this might produce long-lasting immunity in prostate cancer.
Collapse
Affiliation(s)
- Renu S Eapen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia.
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Scott G Williams
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sean Macdonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Simon P Keam
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Nathan Lawrentschuk
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lewis Au
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael S Hofman
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Declan G Murphy
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
18
|
Daveri E, Vergani B, Lalli L, Ferrero G, Casiraghi E, Cova A, Zorza M, Huber V, Gariboldi M, Pasanisi P, Guarrera S, Morelli D, Arienti F, Vitellaro M, Corsetto PA, Rizzo AM, Stroscia M, Frati P, Lagano V, Cattaneo L, Sabella G, Leone BE, Milione M, Sorrentino L, Rivoltini L. Cancer-associated foam cells hamper protective T cell immunity and favor tumor progression in human colon carcinogenesis. J Immunother Cancer 2024; 12:e009720. [PMID: 39395839 PMCID: PMC11474856 DOI: 10.1136/jitc-2024-009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains a significant healthcare burden worldwide, characterized by a complex interplay between obesity and chronic inflammation. While the relationship between CRC, obesity and altered lipid metabolism is not fully understood, there are evidences suggesting a link between them. In this study, we hypothesized that dysregulated lipid metabolism contributes to local accumulation of foam cells (FC) in CRC, which in turn disrupts antitumor immunosurveillance. METHODS Tumor infiltrating FC and CD8+ were quantified by digital pathology in patients affected by T2-T4 CRC with any N stage undergoing radical upfront surgery (n=65) and correlated with patients' clinical outcomes. Multiparametric high-resolution flow cytometry analysis and bulk RNAseq of CRC tissue were conducted to evaluate the phenotype and transcriptomic program of immune cell infiltrate in relation to FC accumulation. The immunosuppressive effects of FC and mechanistic studies on FC-associated transforming growth factor-beta (TGF-β) and anti-PD-L1 inhibition were explored using an in-vitro human model of lipid-engulfed macrophages. RESULTS FC (large CD68+ Bodipy+ macrophages) accumulated at the tumor margin in CRC samples. FChigh tumors exhibited reduced CD8+ T cells and increased regulatory T cells (Tregs). Functional transcriptional profiling depicted an immunosuppressed milieu characterized by reduced interferon gamma, memory CD8+ T cells, and activated macrophages mirrored by increased T-cell exhaustion and Treg enrichment. Furthermore, FChigh tumor phenotype was independent of standard clinical factors but correlated with high body mass index (BMI) and plasma saturated fatty acid levels. In CD8low tumors, the FChigh phenotype was associated with a 3-year disease-free survival rate of 8.6% compared with 28.7% of FClow (p=0.001). In-vitro studies demonstrated that FC significantly impact on CD8 proliferation in TFG-β dependent manner, while inhibition of TGF-β FC-related factors restored antitumor immunity. CONCLUSIONS FC exert immunosuppressive activity through a TGF-β-related pathway, resulting in a CD8-excluded microenvironment and identifying immunosuppressed tumors with worse prognosis in patients with primary CRC. FC association with patient BMI and dyslipidemia might explain the link of CRC with obesity, and offers novel therapeutic and preventive perspectives in this specific clinical setting.
Collapse
Affiliation(s)
- Elena Daveri
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Vergani
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Luca Lalli
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elena Casiraghi
- Anacleto Lab, Computer Science Department, University of Milan, Milan, Italy
| | - Agata Cova
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marta Zorza
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Veronica Huber
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Manuela Gariboldi
- Molecular Epigenomics, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pasanisi
- Research in Nutrition and Metabolomics, Department of Reaserch, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Simonetta Guarrera
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Turin, Italy
| | - Daniele Morelli
- Laboratory Medicine Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Flavio Arienti
- Immunohematology and Trasfusion Medicine Service (SIMT), Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola A Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Angela M Rizzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Martina Stroscia
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paola Frati
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Vincenzo Lagano
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Cattaneo
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sabella
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Biagio E Leone
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Massimo Milione
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Sorrentino
- Unit of Colorectal Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Translational Immunology, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
19
|
Nishimura K, Takahara K, Komura K, Ishida M, Hirosuna K, Maenosono R, Ajiro M, Sakamoto M, Iwatsuki K, Nakajima Y, Tsujino T, Taniguchi K, Tanaka T, Inamoto T, Hirose Y, Ono F, Kondo Y, Yoshimi A, Azuma H. Mechanistic insights into lethal hyper progressive disease induced by PD-L1 inhibitor in metastatic urothelial carcinoma. NPJ Precis Oncol 2024; 8:206. [PMID: 39289546 PMCID: PMC11408499 DOI: 10.1038/s41698-024-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Hyper progressive disease (HPD) is a paradoxical phenomenon characterized by accelerated tumor growth following treatment with immune checkpoint inhibitors. However, the pathogenic causality and its predictor remain unknown. We herein report a fatal case of HPD in a 50-year-old man with metastatic bladder cancer. He had achieved a complete response (CR) through chemoradiation therapy followed by twelve cycles of chemotherapy, maintaining CR for 24 months. Three weeks after initiating maintenance use of a PD-L1 inhibitor, avelumab, a massive amount of metastases developed, leading to the patient's demise. Omics analysis, utilizing metastatic tissues obtained from an immediate autopsy, implied the contribution of M2 macrophages, TGF-β signaling, and interleukin-8 to HPD pathogenesis.
Collapse
Affiliation(s)
- Kazuki Nishimura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Kiyoshi Takahara
- Department of Urology, Fujita-Health University School of Medicine, Toyoake City, Aichi, Japan
| | - Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
| | - Mitsuaki Ishida
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Kensuke Hirosuna
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Ryoichi Maenosono
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Masahiko Ajiro
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Moritoshi Sakamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Kengo Iwatsuki
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yuki Nakajima
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Takuya Tsujino
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Kohei Taniguchi
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Tomohito Tanaka
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Fumihito Ono
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan.
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| |
Collapse
|
20
|
Johansen AM, Forsythe SD, McGrath CT, Barker G, Jimenez H, Paluri RK, Pasche BC. TGFβ in Pancreas and Colorectal Cancer: Opportunities to Overcome Therapeutic Resistance. Clin Cancer Res 2024; 30:3676-3687. [PMID: 38916900 PMCID: PMC11371528 DOI: 10.1158/1078-0432.ccr-24-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
TGFβ is a pleiotropic signaling pathway that plays a pivotal role in regulating a multitude of cellular functions. TGFβ has a dual role in cell regulation where it induces growth inhibition and cell death; however, it can switch to a growth-promoting state under cancerous conditions. TGFβ is upregulated in colorectal cancer and pancreatic cancer, altering the tumor microenvironment and immune system and promoting a mesenchymal state. The upregulation of TGFβ in certain cancers leads to resistance to immunotherapy, and attempts to inhibit TGFβ expression have led to reduced therapeutic resistance when combined with chemotherapy and immunotherapy. Here, we review the current TGFβ inhibitor drugs in clinical trials for pancreatic and colorectal cancer, with the goal of uncovering advances in improving clinical efficacy for TGFβ combinational treatments in patients. Furthermore, we discuss the relevance of alterations in TGFβ signaling and germline variants in the context of personalizing treatment for patients who show lack of response to current therapeutics.
Collapse
Affiliation(s)
- Allan M. Johansen
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Steven D. Forsythe
- Neuroendocrine Therapy Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Callum T. McGrath
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Grayson Barker
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Hugo Jimenez
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | - Ravi K. Paluri
- Section of Hematology/Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082. USA
| | - Boris C. Pasche
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
21
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
22
|
Shen L, Schaefer AM, Tiruthani K, Wolf W, Lai SK. Siglec15/TGF-β bispecific antibody mediates synergistic anti-tumor response against 4T1 triple negative breast cancer in mice. Bioeng Transl Med 2024; 9:e10651. [PMID: 39553435 PMCID: PMC11561775 DOI: 10.1002/btm2.10651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 11/19/2024] Open
Abstract
An ideal tumor-specific immunomodulatory therapy should both preferentially target the tumor, while simultaneously reduce the immunosuppressive environment within the tumor. This guiding principle led us to explore engineering Siglec-15 (S15) targeted bispecific antibody (bsAb) to enhance therapy against triple negative breast cancer (TNBC). S15 appears to be exclusively expressed on macrophages and diverse tumor cells, including human and mouse 4T1 TNBC. TGF-β is a growth hormone frequently associated with increased tumor invasiveness, including in TNBC. Here, to overcome the immune-suppressive environment within TNBC tumors to enable more effective cancer therapy, we engineered a bispecific antibody (bsAb) targeting both Siglec15 and TGF-β. In mice engrafted with orthotopic 4T1 tumors, S15/TGF-β bsAb treatment was highly effective in suppressing tumor growth, not only compared to control monoclonal antibody (mAb) but also markedly more effective than mAbs against S15 alone, against TGF-β alone, as well as a cocktail of both anti-S15 and anti-TGF-β mAbs. We did not detect liver and lung metastasis in mice treated with S15/TGF-β bsAb, unlike all other treatment groups at the end of the study. The enhanced anti-tumor response observed with S15/TGF-β bsAb correlated with a less immunosuppressive environment in the tumor. These results underscore S15-targeted bsAb as a promising therapeutic strategy for TNBC, and possibly other S15 positive solid tumors.
Collapse
Affiliation(s)
- Limei Shen
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Alison M. Schaefer
- Department of Biomedical EngineeringUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Whitney Wolf
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular PharmaceuticsEshelman School of Pharmacy, University of North CarolinaChapel HillNorth CarolinaUSA
- Department of Biomedical EngineeringUniversity of North CarolinaChapel HillNorth CarolinaUSA
- Department of Immunology and MicrobiologyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
23
|
Fay M, Sievers C, Robbins Y, Yang X, Huynh A, Redman JM, Hodge JW, Schlom J, Gulley JL, Allen CT, Craveiro M. TGF-β neutralization attenuates tumor residency of activated T cells to enhance systemic immunity in mice. iScience 2024; 27:110520. [PMID: 39139402 PMCID: PMC11321305 DOI: 10.1016/j.isci.2024.110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
A tissue resident-like phenotype in tumor infiltrating T cells can limit systemic anti-tumor immunity. Enhanced systemic anti-tumor immunity is observed in head and neck cancer patients after neoadjuvant PD-L1 immune checkpoint blockade (ICB) and transforming growth factor β (TGF-β) neutralization. Using T cell receptor (TCR) sequencing and functional immunity assays in a syngeneic model of oral cancer, we dissect the relative contribution of these treatments to enhanced systemic immunity. The addition of TGF-β neutralization to ICB resulted in the egress of expanded and exhausted CD8+ tumor infiltrating lymphocytes (TILs) into circulation and greater systemic anti-tumor immunity. This enhanced egress associated with reduced expression of Itgae (CD103) and its upstream regulator Znf683. Circulating CD8+ T cells expressed higher Cxcr3 after treatment, an observation also made in samples from patients treated with dual TGF-β neutralization and ICB. These findings provide the scientific rationale for the use of PD-L1 ICB and TGF-β neutralization in newly diagnosed patients with carcinomas prior to definitive treatment of locoregional disease.
Collapse
Affiliation(s)
- Magdalena Fay
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cem Sievers
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yvette Robbins
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xinping Yang
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angel Huynh
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason M. Redman
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T. Allen
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco Craveiro
- Head and Neck Section, Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Su X, Li J, Xu X, Ye Y, Wang C, Pang G, Liu W, Liu A, Zhao C, Hao X. Strategies to enhance the therapeutic efficacy of anti-PD-1 antibody, anti-PD-L1 antibody and anti-CTLA-4 antibody in cancer therapy. J Transl Med 2024; 22:751. [PMID: 39123227 PMCID: PMC11316358 DOI: 10.1186/s12967-024-05552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Although immune checkpoint inhibitors (anti-PD-1 antibody, anti-PD-L1 antibody, and anti-CTLA-4 antibody) have displayed considerable success in the treatment of malignant tumors, the therapeutic effect is still unsatisfactory for a portion of patients. Therefore, it is imperative to develop strategies to enhance the effect of these ICIs. Increasing evidence strongly suggests that the key to this issue is to transform the tumor immune microenvironment from a state of no or low immune infiltration to a state of high immune infiltration and enhance the tumor cell-killing effect of T cells. Therefore, some combination strategies have been proposed and this review appraise a summary of 39 strategies aiming at enhancing the effectiveness of ICIs, which comprise combining 10 clinical approaches and 29 foundational research strategies. Moreover, this review improves the comprehensive understanding of combination therapy with ICIs and inspires novel ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Xin Su
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Jian Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiao Xu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Youbao Ye
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Cailiu Wang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guanglong Pang
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Wenxiu Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Ang Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Changchun Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, 730000, China
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Yue S, Zhang Y, Zhang W. Recent Advances in Immunotherapy for Advanced Biliary Tract Cancer. Curr Treat Options Oncol 2024; 25:1089-1111. [PMID: 39066855 PMCID: PMC11329538 DOI: 10.1007/s11864-024-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Biliary tract cancer (BTC) is a heterogeneous group of aggressive malignancies that arise from the epithelium of the biliary tract. Most patients present with locally advanced or metastatic disease at the time of diagnosis. For patients with unresectable BTC, the survival advantage provided by systemic chemotherapy was limited. Over the last decade, immunotherapy has significantly improved the therapeutic landscape of solid tumors. There is an increasing number of studies evaluating the application of immunotherapy in BTC, including immune checkpoint inhibitors (ICIs), cancer vaccines and adoptive cell therapy. The limited response to ICIs monotherapy in unselected patients prompted investigators to explore different combination therapy strategies. Early clinical trials of therapeutic cancer vaccination and adoptive cell therapy have shown encouraging clinical results. However, there still has been a long way to go via validation of therapeutic efficacy and exploration of strategies to increase the efficacy. Identifying biomarkers that predict the response to immunotherapy will allow a more accurate selection of candidates. This review will provide an up-to-date overview of the current clinical data on the role of immunotherapy, summarize the promising biomarkers predictive of the response to ICIs and discuss the perspective for future research direction of immunotherapy in advanced BTC.
Collapse
Affiliation(s)
- Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Yunpu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Hubei Key Laboratory of Hepato‑Pancreatic‑Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, 430030, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, 1095 Jiefang Avenue, 430030, Wuhan, China.
| |
Collapse
|
26
|
Niu B, Tian T, Wang L, Tian Y, Tian T, Guo Y, Zhou H, Zhang Z. CCL9/CCR1 axis-driven chemotactic nanovesicles for attenuating metastasis of SMAD4-deficient colorectal cancer by trapping TGF- β. Acta Pharm Sin B 2024; 14:3711-3729. [PMID: 39220887 PMCID: PMC11365421 DOI: 10.1016/j.apsb.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
SMAD4 deficiency in colorectal cancer (CRC) is highly correlated with liver metastasis and high mortality, yet there are few effective precision therapies available. Here, we show that CCR1+-granulocytic myeloid-derived suppressor cells (G-MDSCs) are highly infiltrated in SMAD4-deficient CRC via CCL15/CCR1 and CCL9/CCR1 axis in clinical specimens and mouse models, respectively. The excessive TGF-β, secreted by tumor-infiltrated CCR1+-G-MDSCs, suppresses the immune response of cytotoxic T lymphocytes (CTLs), thus facilitating metastasis. Hereby, we develop engineered nanovesicles displaying CCR1 and TGFBR2 molecules (C/T-NVs) to chemotactically target the tumor driven by CCL9/CCR1 axis and trap TGF-β through TGF-β-TGFBR2 specific binding. Chemotactic C/T-NVs counteract CCR1+-G-MDSC infiltration through competitive responding CCL9/CCR1 axis. C/T-NVs-induced intratumoral TGF-β exhaustion alleviates the TGF-β-suppressed immune response of CTLs. Collectively, C/T-NVs attenuate liver metastasis of SMAD4-deficient CRC. In further exploration, high expression of programmed cell death ligand-1 (PD-L1) is observed in clinical specimens of SMAD4-deficient CRC. Combining C/T-NVs with anti-PD-L1 antibody (aPD-L1) induces tertiary lymphoid structure formation with sustained activation of CTLs, CXCL13+-CD4+ T, CXCR5+-CD20+ B cells, and enhanced secretion of cytotoxic cytokine interleukin-21 and IFN-γ around tumors, thus eradicating metastatic foci. Our strategy elicits pleiotropic antimetastatic immunity, paving the way for nanovesicle-mediated precision immunotherapy in SMAD4-deficient CRC.
Collapse
Affiliation(s)
- Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen 361102, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
27
|
Goebeler ME, Stuhler G, Bargou R. Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:539-560. [PMID: 38822215 DOI: 10.1038/s41571-024-00905-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Research into bispecific antibodies, which are designed to simultaneously bind two antigens or epitopes, has advanced enormously over the past two decades. Owing to advances in protein engineering technologies and considerable preclinical research efforts, bispecific antibodies are constantly being developed and optimized to improve their efficacy and to mitigate toxicity. To date, >200 of these agents, the majority of which are bispecific immune cell engagers, are in either preclinical or clinical evaluation. In this Review, we discuss the role of bispecific antibodies in patients with cancer, including history and development, as well as innovative targeting strategies, clinical applications, and adverse events. We also discuss novel alternative bispecific antibody constructs, such as those targeting two antigens expressed by tumour cells or cells located in the tumour microenvironment. Finally, we consider future research directions in this rapidly evolving field, including innovative antibody engineering strategies, which might enable more effective delivery, overcome resistance, and thus optimize clinical outcomes.
Collapse
Affiliation(s)
- Maria-Elisabeth Goebeler
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany.
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Gernot Stuhler
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Zhou Z, Jiang X, Yi L, Li C, Wang H, Xiong W, Li Z, Shen J. Mitochondria Energy Metabolism Depression as Novel Adjuvant to Sensitize Radiotherapy and Inhibit Radiation Induced-Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401394. [PMID: 38715382 PMCID: PMC11234447 DOI: 10.1002/advs.202401394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 07/11/2024]
Abstract
Currently, the typical combination therapy of programmed death ligand-1 (PD-L1) antibodies with radiotherapy (RT) still exhibits impaired immunogenic antitumor response in clinical due to lessened DNA damage and acquired immune tolerance via the upregulation of some other immune checkpoint inhibitors. Apart from this, such combination therapy may raise the occurrence rate of radiation-induced lung fibrosis (RIPF) due to enhanced systemic inflammation, leading to the ultimate death of cancer patients (average survival time of about 3 years). Therefore, it is newly revealed that mitochondria energy metabolism regulation can be used as a novel effective PD-L1 and transforming growth factor-β (TGF-β) dual-downregulation method. Following this, IR-TAM is prepared by conjugating mitochondria-targeted heptamethine cyanine dye IR-68 with oxidative phosphorylation (OXPHOS) inhibitor Tamoxifen (TAM), which then self-assembled with albumin (Alb) to form IR-TAM@Alb nanoparticles. By doing this, tumor-targeting IR-TAM@Alb nanoparticle effectively reversed tumor hypoxia and depressed PD-L1 and TGF-β expression to sensitize RT. Meanwhile, due to the capacity of heptamethine cyanine dye in targeting RIPF and the function of TAM in depressing TGF-β, IR-TAM@Alb also ameliorated fibrosis development induced by RT.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhipeng Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
29
|
Chaudhry Z, Boyadzhyan A, Sasaninia K, Rai V. Targeting Neoantigens in Cancer: Possibilities and Opportunities in Breast Cancer. Antibodies (Basel) 2024; 13:46. [PMID: 38920970 PMCID: PMC11200483 DOI: 10.3390/antib13020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
As one of the most prevalent forms of cancer worldwide, breast cancer has garnered significant attention within the clinical research setting. While traditional treatment employs a multidisciplinary approach including a variety of therapies such as chemotherapy, hormone therapy, and even surgery, researchers have since directed their attention to the budding role of neoantigens. Neoantigens are defined as tumor-specific antigens that result from a multitude of genetic alterations, the most prevalent of which is the single nucleotide variant. As a result of their foreign nature, neoantigens elicit immune responses upon presentation by Major Histocompatibility Complexes I and II followed by recognition by T cell receptors. Previously, researchers have been able to utilize these immunogenic properties and manufacture neoantigen-specific T-cells and neoantigen vaccines. Within the context of breast cancer, biomarkers such as tumor protein 53 (TP53), Survivin, Partner and Localizer of BRCA2 (PALB2), and protein tyrosine phosphatase receptor T (PTPRT) display exceeding potential to serve as neoantigens. However, despite their seemingly limitless potential, neoantigens must overcome various obstacles if they are to be fairly distributed to patients. For instance, a prolonged period between the identification of a neoantigen and the dispersal of treatment poses a serious risk within the context of breast cancer. Regardless of these current obstacles, it appears highly promising that future research into neoantigens will make an everlasting impact on the health outcomes within the realm of breast cancer. The purpose of this literature review is to comprehensively discuss the etiology of various forms of breast cancer and current treatment modalities followed by the significance of neoantigens in cancer therapeutics and their application to breast cancer. Further, we have discussed the limitations, future directions, and the role of transcriptomics in neoantigen identification and personalized medicine. The concepts discussed in the original and review articles were included in this review article.
Collapse
Affiliation(s)
| | | | | | - Vikrant Rai
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (Z.C.); (A.B.); (K.S.)
| |
Collapse
|
30
|
Kajdaniuk D, Hudy D, Strzelczyk JK, Młynarek K, Słomian S, Potyka A, Szymonik E, Strzelczyk J, Foltyn W, Kos-Kudła B, Marek B. Transforming growth factors β and their signaling pathway in renal cell carcinoma and peritumoral space-transcriptome analysis. Clin Transl Oncol 2024; 26:1229-1239. [PMID: 38085441 PMCID: PMC11026247 DOI: 10.1007/s12094-023-03350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/03/2023] [Indexed: 04/20/2024]
Abstract
PURPOSE The aim of the study was to verify hypotheses: Are transforming growth factors TGFβ1-3, their receptors TGFβI-III, and intracellular messenger proteins Smad1-7 involved in the pathogenesis of kidney cancer? What is the expression of genes of the TGFβ/Smads pathway in renal cell carcinoma (RCC) tissues, peritumoral tissues (TME; tumor microenvironment), and in normal kidney (NK) tissue?. METHODS Twenty patients with RCC who underwent total nephrectomy were included into the molecular analysis. The mRNA expression of the genes was quantified by RT-qPCR. RESULTS The study showed that the expression of the genes of TGFβ/Smads pathway is dysregulated in both RCC and the TME: TGFβ1, TGFβ3 expression is increased in the TME in comparison to the NK tissues; TGFβ2, TGFβ3, TGFβRI, TGFβRIII, Smad1, Smad2, Smad3, and Smad6 are underexpressed in RCC comparing to the TME tissues; TGFβRI, TGFβRIII, and Smad2 are underexpressed in RCC in comparison to the NK tissues. CONCLUSION On the one hand, the underexpression of the TGFβ signaling pathway genes within the malignant tumor may result in the loss of the antiproliferative and pro-apoptotic activity of this cytokine. On the other hand, the overexpression of the TGFβ/Smads pathway genes in the TME than in tumor or NK tissues most probably results in an immunosuppressive effect in the space surrounding the tumor and may have an antiproliferative and pro-apoptotic effect on non-neoplastic cells present in the TME. The functional and morphological consistency of this area may determine the aggressiveness of the tumor and the time in which the neoplastic process will spread.
Collapse
Affiliation(s)
- Dariusz Kajdaniuk
- Department of Pathophysiology, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, H. Jordana 19, Zabrze, 41-808, Katowice, Poland.
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Krystyna Młynarek
- Department of Urology, Regional Specialist Hospital No. 3, Rybnik, Poland
| | - Szymon Słomian
- Department of Urology, Regional Specialist Hospital No. 3, Rybnik, Poland
| | - Andrzej Potyka
- Department of Urology, Regional Specialist Hospital No. 3, Rybnik, Poland
| | - Ewa Szymonik
- Department of Anesthesiology and Intensive Care, Brothers Hospitallers of Saint John of God Hospital in Katowice, Katowice, Poland
| | - Janusz Strzelczyk
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wanda Foltyn
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumors, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Bogdan Marek
- Department of Pathophysiology, Chair of Pathophysiology and Endocrinology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, H. Jordana 19, Zabrze, 41-808, Katowice, Poland
| |
Collapse
|
31
|
Cheng L, Chen L, Shi Y, Gu W, Ding W, Zheng X, Liu Y, Jiang J, Zheng Z. Efficacy and safety of bispecific antibodies vs. immune checkpoint blockade combination therapy in cancer: a real-world comparison. Mol Cancer 2024; 23:77. [PMID: 38627681 PMCID: PMC11020943 DOI: 10.1186/s12943-024-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 04/19/2024] Open
Abstract
Emerging tumor immunotherapy methods encompass bispecific antibodies (BSABs), immune checkpoint inhibitors (ICIs), and adoptive cell immunotherapy. BSABs belong to the antibody family that can specifically recognize two different antigens or epitopes on the same antigen. These antibodies demonstrate superior clinical efficacy than monoclonal antibodies, indicating their role as a promising tumor immunotherapy option. Immune checkpoints are also important in tumor immunotherapy. Programmed cell death protein-1 (PD-1) is a widely acknowledged immune checkpoint target with effective anti-tumor activity. PD-1 inhibitors have demonstrated notable therapeutic efficacy in treating hematological and solid tumors; however, more than 50% of patients undergoing this treatment exhibit a poor response. However, ICI-based combination therapies (ICI combination therapies) have been demonstrated to synergistically increase anti-tumor effects and immune response rates. In this review, we compare the clinical efficacy and side effects of BSABs and ICI combination therapies in real-world tumor immunotherapy, aiming to provide evidence-based approaches for clinical research and personalized tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Linyan Cheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China
- Institute for Cell Therapy of Soochow University, Changzhou, China
| | - Yuan Shi
- Laboratory of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weidong Ding
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.
- Institute for Cell Therapy of Soochow University, Changzhou, China.
| | - Yan Liu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China.
- Institute for Cell Therapy of Soochow University, Changzhou, China.
| | - Zhuojun Zheng
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
32
|
Tapia-Galisteo A, Sánchez-Rodríguez I, Narbona J, Iglesias-Hernández P, Aragón-García S, Jiménez-Reinoso A, Compte M, Khan S, Tsuda T, Chames P, Lacadena J, Álvarez-Vallina L, Sanz L. Combination of T cell-redirecting strategies with a bispecific antibody blocking TGF-β and PD-L1 enhances antitumor responses. Oncoimmunology 2024; 13:2338558. [PMID: 38623463 PMCID: PMC11018002 DOI: 10.1080/2162402x.2024.2338558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/30/2024] [Indexed: 04/17/2024] Open
Abstract
T cell-based immunotherapies for solid tumors have not achieved the clinical success observed in hematological malignancies, partially due to the immunosuppressive effect promoted by the tumor microenvironment, where PD-L1 and TGF-β play a pivotal role. However, durable responses to immune checkpoint inhibitors remain limited to a minority of patients, while TGF-β inhibitors have not reached the market yet. Here, we describe a bispecific antibody for dual blockade of PD-L1 and TFG-β, termed AxF (scFv)2, under the premise that combination with T cell redirecting strategies would improve clinical benefit. The AxF (scFv)2 antibody was well expressed in mammalian and yeast cells, bound both targets and inhibited dose-dependently the corresponding signaling pathways in luminescence-based cellular reporter systems. Moreover, combined treatment with trispecific T-cell engagers (TriTE) or CAR-T cells significantly boosted T cell activation status and cytotoxic response in breast, lung and colorectal (CRC) cancer models. Importantly, the combination of an EpCAMxCD3×EGFR TriTE with the AxF (scFv)2 delayed CRC tumor growth in vivo and significantly enhanced survival compared to monotherapy with the trispecific antibody. In summary, we demonstrated the feasibility of concomitant blockade of PD-L1 and TGF-β by a single molecule, as well as its therapeutic potential in combination with different T cell redirecting agents to overcome tumor microenvironment-mediated immunosuppression.
Collapse
Affiliation(s)
- Antonio Tapia-Galisteo
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Cancer Immunotherapy Unit (UNICA), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-oncology and Immunotherapy Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Iñigo Sánchez-Rodríguez
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Javier Narbona
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Iglesias-Hernández
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Saray Aragón-García
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Cancer Immunotherapy Unit (UNICA), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-oncology and Immunotherapy Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Shaukat Khan
- Nemours Children’s Health Delaware, Wilmington, Delaware, USA
| | - Takeshi Tsuda
- Nemours Children’s Health Delaware, Wilmington, Delaware, USA
| | - Patrick Chames
- Aix Marseille Univ, CNRS, INSERM, Institute Paoli-Calmettes, CRCM, Marseille, France
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-oncology and Immunotherapy Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
33
|
Marín-Aquino LA, Mora-García MDL, Moreno-Lafont MC, García-Rocha R, Montesinos-Montesinos JJ, López-Santiago R, Sánchez-Torres LE, Torres-Pineda DB, Weiss-Steider B, Hernández-Montes J, Don-López CA, Monroy-García A. Adenosine increases PD-L1 expression in mesenchymal stromal cells derived from cervical cancer through its interaction with A 2AR/A 2BR and the production of TGF-β1. Cell Biochem Funct 2024; 42:e4010. [PMID: 38613217 DOI: 10.1002/cbf.4010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
Mesenchymal stromal cells (MSCs) together with malignant cells present in the tumor microenvironment (TME), participate in the suppression of the antitumor immune response through the production of immunosuppressive factors, such as transforming growth factor beta 1 (TGF-β1). In previous studies, we reported that adenosine (Ado), generated by the adenosinergic activity of cervical cancer (CeCa) cells, induces the production of TGF-β1 by interacting with A2AR/A2BR. In the present study, we provide evidence that Ado induces the production of TGF-β1 in MSCs derived from CeCa tumors (CeCa-MSCs) by interacting with both receptors and that TGF-β1 acts in an autocrine manner to induce the expression of programmed death ligand 1 (PD-L1) in CeCa-MSCs, resulting in an increase in their immunosuppressive capacity on activated CD8+ T lymphocytes. The addition of the antagonists ZM241385 and MRS1754, specific for A2AR and A2BR, respectively, or SB-505124, a selective TGF-β1 receptor inhibitor, in CeCa-MSC cultures significantly inhibited the expression of PD-L1. Compared with CeCa-MSCs, MSCs derived from normal cervical tissue (NCx-MSCs), used as a control and induced with Ado to express PD-L1, showed a lower response to TGF-β1 to increase PD-L1 expression. Those results strongly suggest the presence of a feedback mechanism among the adenosinergic pathway, the production of TGF-β1, and the induction of PD-L1 in CeCa-MSCs to suppress the antitumor response of CD8+ T lymphocytes. The findings of this study suggest that this pathway may have clinical importance as a therapeutic target.
Collapse
Affiliation(s)
- Luis Antonio Marín-Aquino
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Consejo Nacional de Humanidades Ciencias y Tecnologías, CONAHCyT, Ciudad de México, México
| | - María de Lourdes Mora-García
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Martha C Moreno-Lafont
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Rosario García-Rocha
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ruben López-Santiago
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Luvia Enid Sánchez-Torres
- Laboratorio de Inmunología de los microorganismos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Daniela Berenice Torres-Pineda
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Benny Weiss-Steider
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Jorge Hernández-Montes
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Christian Azucena Don-López
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| | - Alberto Monroy-García
- Laboratorio de Inmunología y Cáncer, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
- Laboratorio de Inmunobiología, Unidad de Investigación en Diferenciación Celular y Cáncer -UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, México
| |
Collapse
|
34
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
35
|
Rajan A, Sivapiromrat AK, McAdams MJ. Immunotherapy for Thymomas and Thymic Carcinomas: Current Status and Future Directions. Cancers (Basel) 2024; 16:1369. [PMID: 38611047 PMCID: PMC11010813 DOI: 10.3390/cancers16071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Thymic epithelial tumors are a histologically diverse group of cancers arising from the epithelial compartment of the thymus. These tumors are characterized by a low tumor mutation burden, a lack of actionable genomic changes, and, especially with thymomas, defects in immune tolerance. Surgery is the mainstay of the management of resectable disease, whereas advanced, unresectable tumors are treated with platinum-based chemotherapy. Disease recurrence can occur months to years after frontline treatment. Although several options are available for conventional treatment of recurrent thymic tumors, response rates are generally low, and treatment-related toxicity can affect quality of life. A subset of patients benefit from biologic therapies, but there remains an unmet need for the development of new treatments. Immune checkpoint inhibitors are safe, clinically active, and have contributed to an improvement in survival for patients with a wide variety of cancers. However, the application of these revolutionary treatments for thymic cancers is limited to their use for the management of recurrent thymic carcinoma because of the risk of immune toxicity. In this paper, we review the current uses of immunotherapy for the management of thymic epithelial tumors and highlight potential strategies to improve safety and broaden the application of these treatments for patients with thymic cancers.
Collapse
Affiliation(s)
- Arun Rajan
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
36
|
Li T, Niu M, Zhou J, Wu K, Yi M. The enhanced antitumor activity of bispecific antibody targeting PD-1/PD-L1 signaling. Cell Commun Signal 2024; 22:179. [PMID: 38475778 PMCID: PMC10935874 DOI: 10.1186/s12964-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The programmed cell death 1 (PD-1) signaling pathway, a key player in immune checkpoint regulation, has become a focal point in cancer immunotherapy. In the context of cancer, upregulated PD-L1 on tumor cells can result in T cell exhaustion and immune evasion, fostering tumor progression. The advent of PD-1/PD-L1 inhibitor has demonstrated clinical success by unleashing T cells from exhaustion. Nevertheless, challenges such as resistance and adverse effects have spurred the exploration of innovative strategies, with bispecific antibodies (BsAbs) emerging as a promising frontier. BsAbs offer a multifaceted approach to cancer immunotherapy by simultaneously targeting PD-L1 and other immune regulatory molecules. We focus on recent advancements in PD-1/PD-L1 therapy with a particular emphasis on the development and potential of BsAbs, especially in the context of solid tumors. Various BsAb products targeting PD-1 signaling are discussed, highlighting their unique mechanisms of action and therapeutic potential. Noteworthy examples include anti-TGFβ × PD-L1, anti-CD47 × PD-L1, anti-VEGF × PD-L1, anti-4-1BB × PD-L1, anti-LAG-3 × PD-L1, and anti-PD-1 × CTLA-4 BsAbs. Besides, we summarize ongoing clinical studies evaluating the efficacy and safety of these innovative BsAb agents. By unraveling the intricacies of the tumor microenvironment and harnessing the synergistic effects of anti-PD-1/PD-L1 BsAbs, there exists the potential to elevate the precision and efficacy of cancer immunotherapy, ultimately enabling the development of personalized treatment strategies tailored to individual patient profiles.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
| | - Ming Yi
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
37
|
Kiem D, Ocker M, Greil R, Neureiter D, Melchardt T. Enhancing anti-CD274 (PD-L1) targeting through combinatorial immunotherapy with bispecific antibodies and fusion proteins: from preclinical to phase II clinical trials. Expert Opin Investig Drugs 2024; 33:229-242. [PMID: 38354028 DOI: 10.1080/13543784.2024.2319317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors have achieved great success in the treatment of many different types of cancer. Programmed cell death protein ligand 1 (PD-L1, CD274) is a major immunosuppressive immune checkpoint and a target for several already approved monoclonal antibodies. Despite this, novel strategies are under development, as the overall response remains low. AREAS COVERED In this review, an overview of the current biomarkers for response to PD-L1 inhibitor treatment is given, followed by a discussion of potential novel biomarkers, including tumor mutational burden and circulating tumor DNA. Combinatorial immunotherapy is a potential novel strategy to increase the response to PD-L1 inhibitor treatment and currently, several interesting bispecific antibodies as well as bispecific fusion proteins are undergoing early clinical investigation. We focus on substances targeting PD-L1 and a secondary target, and a secondary immunomodulatory target like CTLA-4, TIGIT, or CD47. EXPERT OPINION Overall, the presented studies show anti-tumor activity of these combinatorial immunotherapeutic approaches. However, still relatively low response rates suggest a need for better biomarkers.
Collapse
Affiliation(s)
- Dominik Kiem
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
| | - Matthias Ocker
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus, Charité Mitte, Charité University Medicine Berlin, Berlin, Germany
- EO Translational Insights Consulting GmbH, Berlin, Germany
- Tacalyx GmbH, Berlin, Germany
| | - Richard Greil
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Cancer Cluster Salzburg, Salzburg, Austria
- Institute of Pathology, Paracelsus Medical University, University Hospital Salzburg (SALK), Salzburg, Austria
| | - Thomas Melchardt
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
38
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Minnar CM, Lui G, Gulley JL, Schlom J, Gameiro SR. Preclinical and clinical studies of a tumor targeting IL-12 immunocytokine. Front Oncol 2024; 13:1321318. [PMID: 38260854 PMCID: PMC10802843 DOI: 10.3389/fonc.2023.1321318] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
The clinical success of immune checkpoint inhibitors (ICIs) has demonstrated the promise and challenges of cancer immunotherapy. There is an unmet need to develop novel cancer therapies that can provide clinical benefit for most patients with solid malignancies, which harbor innate or acquired resistance to ICIs. Interleukin-12 (IL-12) is a promising cytokine for cancer therapy given its direct stimulatory effects on innate and adaptive immunity. However, unfavorable pharmacokinetics and a narrow therapeutic index render recombinant IL-12 (rIL-12) less attractive as a cancer therapy. NHS-IL12 is a fusion protein of IL-12 and NHS76 (human IgG1) antibody engineered to target single and double stranded DNA present in necrotic areas solid tumors. In preclinical tumor models, NHS-IL12 elicited significant Th1 immune activation and tumor suppressive effects, primarily mediated by NK and CD8+ T lymphocytes, with engagement of myeloid immunity. NHS-IL12 is currently being evaluated clinically in combination with various therapeutic modalities, including chemotherapy, radiation therapy, immune checkpoint inhibition, vaccines, and epigenetic modulation. Here we review the preclinical and clinical studies involving NHS-IL12 for the treatment of solid malignancies.
Collapse
|
40
|
Li K, Liu W, Yu H, Chen J, Tang W, Wang J, Qi M, Sun Y, Xu X, Zhang J, Li X, Guo W, Li X, Song S, Tang S. 68Ga-FAPI PET imaging monitors response to combined TGF-βR inhibition and immunotherapy in metastatic colorectal cancer. J Clin Invest 2024; 134:e170490. [PMID: 38175716 PMCID: PMC10866654 DOI: 10.1172/jci170490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUNDImproving and predicting tumor response to immunotherapy remains challenging. Combination therapy with a transforming growth factor-β receptor (TGF-βR) inhibitor that targets cancer-associated fibroblasts (CAFs) is promising for the enhancement of efficacy of immunotherapies. However, the effect of this approach in clinical trials is limited, requiring in vivo methods to better assess tumor responses to combination therapy.METHODSWe measured CAFs in vivo using the 68Ga-labeled fibroblast activation protein inhibitor-04 (68Ga-FAPI-04) for PET/CT imaging to guide the combination of TGF-β inhibition and immunotherapy. One hundred thirty-one patients with metastatic colorectal cancer (CRC) underwent 68Ga-FAPI and 18F-fluorodeoxyglucose (18F-FDG) PET/CT imaging. The relationship between uptake of 68Ga-FAPI and tumor immunity was analyzed in patients. Mouse cohorts of metastatic CRC were treated with the TGF-βR inhibitor combined with KN046, which blocks programmed death ligand 1 (PD-L1) and CTLA-4, followed by 68Ga-FAPI and 18F-FDG micro-PET/CT imaging to assess tumor responses.RESULTSPatients with metastatic CRC demonstrated high uptake rates of 68Ga-FAPI, along with suppressive tumor immunity and poor prognosis. The TGF-βR inhibitor enhanced tumor-infiltrating T cells and significantly sensitized metastatic CRC to KN046. 68Ga-FAPI PET/CT imaging accurately monitored the dynamic changes of CAFs and tumor response to combined the TGF-βR inhibitor with immunotherapy.CONCLUSION68Ga-FAPI PET/CT imaging is powerful in assessing tumor immunity and the response to immunotherapy in metastatic CRC. This study supports future clinical application of 68Ga-FAPI PET/CT to guide precise TGF-β inhibition plus immunotherapy in CRC patients, recommending 68Ga-FAPI and 18F-FDG dual PET/CT for CRC management.TRIAL REGISTRATIONCFFSTS Trial, ChiCTR2100053984, Chinese Clinical Trial Registry.FUNDINGNational Natural Science Foundation of China (82072695, 32270767, 82272035, 81972260).
Collapse
Affiliation(s)
- Ke Li
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Wei Liu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Hang Yu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Jiwei Chen
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenxuan Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Qi
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Yuyun Sun
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Xiaoping Xu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Ji Zhang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Xinxiang Li
- Department of Oncology and
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijian Guo
- Department of Oncology and
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Shaoli Song
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Shuang Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| |
Collapse
|
41
|
Zheng J, Hao H. The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front Oncol 2024; 13:1333839. [PMID: 38273859 PMCID: PMC10810416 DOI: 10.3389/fonc.2023.1333839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play a substantial role in the tumor microenvironment, exhibiting a strong association with the advancement of various types of cancer, including breast, pancreatic, and prostate cancer. CAFs represent the most abundant mesenchymal cell population in breast cancer. Through diverse mechanisms, including the release of cytokines and exosomes, CAFs contribute to the progression of breast cancer by influencing tumor energy metabolism, promoting angiogenesis, impairing immune cell function, and remodeling the extracellular matrix. Moreover, CAFs considerably impact the response to treatment in breast cancer. Consequently, the development of interventions targeting CAFs has emerged as a promising therapeutic approach in the management of breast cancer. This article provides an analysis of the role of CAFs in breast cancer, specifically in relation to diagnosis, treatment, drug resistance, and prognosis. The paper succinctly outlines the diverse mechanisms through which CAFs contribute to the malignant behavior of breast cancer cells, including proliferation, invasion, metastasis, and drug resistance. Furthermore, the article emphasizes the potential of CAFs as valuable tools for early diagnosis, targeted therapy, treatment resistance, and prognosis assessment in breast cancer, thereby offering novel approaches for targeted therapy and overcoming treatment resistance in this disease.
Collapse
Affiliation(s)
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
42
|
Milenković‐Grišić A, Terranova N, Mould DR, Vugmeyster Y, Mrowiec T, Machl A, Girard P, Venkatakrishnan K, Khandelwal A. Tumor growth inhibition modeling in patients with second line biliary tract cancer and first line non-small cell lung cancer based on bintrafusp alfa trials. CPT Pharmacometrics Syst Pharmacol 2024; 13:143-153. [PMID: 38087967 PMCID: PMC10787199 DOI: 10.1002/psp4.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 01/14/2024] Open
Abstract
This analysis aimed to quantify tumor dynamics in patients receiving either bintrafusp alfa (BA) or pembrolizumab, by population pharmacokinetic (PK)-pharmacodynamic modeling, and investigate clinical and molecular covariates describing the variability in tumor dynamics by pharmacometric and machine-learning (ML) approaches. Data originated from two clinical trials in patients with biliary tract cancer (BTC; NCT03833661) receiving BA and non-small cell lung cancer (NSCLC; NCT03631706) receiving BA or pembrolizumab. Individual drug exposure was estimated from previously developed population PK models. Population tumor dynamics models were developed for each drug-indication combination, and covariate evaluations performed using nonlinear mixed-effects modeling (NLME) and ML (elastic net and random forest models) approaches. The three tumor dynamics' model structures all included linear tumor growth components and exponential tumor shrinkage. The final BTC model included the effect of drug exposure (area under the curve) and several covariates (demographics, disease-related, and genetic mutations). Drug exposure was not significant in either of the NSCLC models, which included two, disease-related, covariates in the BA arm, and none in the pembrolizumab arm. The covariates identified by univariable NLME and ML highly overlapped in BTC but showed less agreement in NSCLC analyses. Hyperprogression could be identified by higher tumor growth and lower tumor kill rates and could not be related to BA exposure. Tumor size over time was quantitatively characterized in two tumor types and under two treatments. Factors potentially related to tumor dynamics were assessed using NLME and ML approaches; however, their net impact on tumor size was considered as not clinically relevant.
Collapse
Affiliation(s)
| | - Nadia Terranova
- Quantitative Pharmacology, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany)LausanneSwitzerland
| | | | | | | | | | - Pascal Girard
- Quantitative Pharmacology, Ares Trading S.A. (an affiliate of Merck KGaA, Darmstadt, Germany)LausanneSwitzerland
| | | | | |
Collapse
|
43
|
Imperiale BR, Gamberale A, Yokobori N, García A, Bartoletti B, Aidar O, López B, Cruz V, González Montaner P, Palmero DJ, de la Barrera S. Transforming growth factor-β, Interleukin-23 and interleukin-1β modulate TH22 response during active multidrug-resistant tuberculosis. Immunology 2024; 171:45-59. [PMID: 37715690 DOI: 10.1111/imm.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
We previously reported that patients with multidrug-resistant tuberculosis (MDR-TB) showed low systemic and Mtb-induced Th22 responses associated to high sputum bacillary load and severe lung lesions suggesting that Th22 response could influence the ability of these patients to control bacillary growth and tissue damage. In MDR-TB patients, the percentage of IL-22+ cells inversely correlates with the proportion of senescent PD-1+ T cells. Herein, we aimed to evaluate the pathways involved on the regulation of systemic and Mtb-induced Th22 response in MDR-TB and fully drug-susceptible TB patients (S-TB) and healthy donors. Our results show that while IL-1β and IL-23 promote Mtb-induced IL-22 secretion and expansion of IL-22+ cells, TGF-β inhibits this response. Systemic and in vitro Mtb-induced Th22 response inversely correlates with TGF-β amounts in plasma and in PBMC cultures respectively. The number of circulating PD-1+ T cells directly correlates with plasmatic TGF-β levels and blockade of PD-1/PD-L1 signalling enhances in vitro Mtb-induced expansion of IL-22+ cells. Thus, TGF-β could also inhibit Th22 response through upregulation of PD-1 expression in T cells. Higher percentage of IL-23+ monocytes was observed in TB patients. In contrast, the proportion of IL-1β+ monocytes was lower in TB patients with bilateral lung cavities (BCC) compared to those patients with unilateral cavities (UCC). Interestingly, TB patients with BCC showed higher plasmatic and Mtb-induced TGF-β secretion than patients with UCC. Thus, high TGF-β secretion and subtle differences in IL-23 and IL-1β expression could diminish systemic and in vitro Mtb-induced Th22 response along disease progression in TB patients.
Collapse
Affiliation(s)
- Belén R Imperiale
- Institute of Experimental Medicine (IMEX)-CONICET, National Academy of Medicine, Buenos Aires City, Argentina
| | - Ana Gamberale
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Noemí Yokobori
- National Institute of Infectious Diseases, ANLIS Carlos G. Malbrán, Buenos Aires City, Argentina
| | - Ana García
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Bruno Bartoletti
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Omar Aidar
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Beatriz López
- National Institute of Infectious Diseases, ANLIS Carlos G. Malbrán, Buenos Aires City, Argentina
| | - Victor Cruz
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
| | - Pablo González Montaner
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
- Vaccareza Institute, Buenos Aires City, Argentina
| | - Domingo J Palmero
- Dr. Francisco Javier Muñiz Hospital, Buenos Aires City, Argentina
- Vaccareza Institute, Buenos Aires City, Argentina
| | - Silvia de la Barrera
- Institute of Experimental Medicine (IMEX)-CONICET, National Academy of Medicine, Buenos Aires City, Argentina
| |
Collapse
|
44
|
Yi L, Zhu X, Xie J, Meng Z. Long-lasting complete response to SHR-1701 plus famitinib in refractory advanced gallbladder cancer: A case report. Hum Vaccin Immunother 2023; 19:2294575. [PMID: 38126815 PMCID: PMC10760368 DOI: 10.1080/21645515.2023.2294575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Biliary tract cancer (BTC) is an aggressive malignancy with few options for advanced-stage treatment. The combination of PD-1/PD-L1 inhibitors with famitinib, a receptor tyrosine kinase (RTK) inhibitor, has demonstrated improved clinical outcomes in several clinical trials. We herein reported a case of a gallbladder cancer (GBC) patient with liver metastases, previously resistant to traditional chemotherapy. Remarkably, the patient achieved a complete response (CR) with a long-lasting survival benefit exceeding 3 years. This was achieved using a novel regimen combining SHR-1701, an anti-PD-L1/TGF-βR fusion protein, and famitinib, even though the patient had proficient mismatch repair (pMMR) and tested negative for PD-L1. Adverse events were limited and manageable. This is the first report of such a treatment regimen being applied in a clinical setting, suggesting that the SHR-1701 and famitinib combination may be a promising immunotherapeutic approach for patients with refractory advanced GBC.
Collapse
Affiliation(s)
- Lixia Yi
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyan Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Eghtedari AR, Vaezi MA, Safari E, Salimi V, Safizadeh B, Babaheidarian P, Abiri A, Mahdinia E, Alireza Mirzaei, Mokhles P, Tavakoli-Yaraki M. The expression changes of PD-L1 and immune response mediators are related to the severity of primary bone tumors. Sci Rep 2023; 13:20474. [PMID: 37993664 PMCID: PMC10665336 DOI: 10.1038/s41598-023-47996-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
The expression pattern, diagnostic value, and association of PD-L1, IFN-γ and TGF-β with bone tumor type, severity, and relapse are determined in this study. 300 human samples from patients with osteosarcoma, Ewing sarcoma, and GCT were enrolled. The PD-L1 gene and protein expression were assessed by qRT-PCR and immunohistochemistry, respectively. ELISA and flow cytometry was used to detect cytokines and CD4/CD8 T cell percentages, respectively. A considerable increase in PD-L1 level was detected in bone tumor tissues at both gene and protein levels that was considerable in osteosarcoma and Ewing sarcoma. A positive correlation was detected regarding the PD-L1 and tumor metastasis and recurrence in osteosarcoma and Ewing sarcoma. The increased IFN-γ level was detected in patients with metastatic, and recurrent osteosarcoma tumors that were in accordance with the level of TGF-β in these samples. The simultaneous elevation of IFN-γ and TGF-β was detected in Ewing sarcoma and GCT, also the CD4 + /CD8 + ratio was decreased significantly in patients with osteosarcoma compared to GCT tumors. The elevated levels of PD-L1, TGF- β, and IFN-γ were associated with bone tumor severity that can provide insights into the possible role of this axis in promoting immune system escape, suppression, and tumor invasion.
Collapse
Affiliation(s)
- Amir Reza Eghtedari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Safizadeh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amene Abiri
- Department of Obstetrics and Gynecology, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Mahdinia
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Mokhles
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
46
|
Ding P, Liu P, Meng L, Zhao Q. Mechanisms and biomarkers of immune-related adverse events in gastric cancer. Eur J Med Res 2023; 28:492. [PMID: 37936161 PMCID: PMC10631148 DOI: 10.1186/s40001-023-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs), different from traditional cancer treatment models, have shown unprecedented anti-tumor effects in the past decade, greatly improving the prognosis of many malignant tumors in clinical practice. At present, the most widely used ICIs in clinical immunotherapy for a variety of solid tumors are monoclonal antibodies against cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) and their ligand PD-L1. However, tumor patients may induce immune-related adverse events (irAEs) while performing immunotherapy, and irAE is an obstacle to the prospect of ICI treatment. IrAE is a non-specific disease caused by immune system imbalance, which can occur in many tissues and organs. For example, skin, gastrointestinal tract, endocrine system and lung. Although the exact mechanism is not completely clear, related studies have shown that irAE may develop through many ways. Such as excessive activation of autoreactive T cells, excessive release of inflammatory cytokines, elevated levels of autoantibodies, and common antigens between tumors and normal tissues. Considering that the occurrence of severe IrAE not only causes irreversible damage to the patient's body, but also terminates immunotherapy due to immune intolerance. Therefore, accurate identification and screening of sensitive markers of irAE are the main beneficiaries of ICI treatment. Additionally, irAEs usually require specific management, the most common of which are steroids and immunomodulatory therapies. This review aims to summarize the current biomarkers for predicting irAE in gastric cancer and their possible mechanisms.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Pengpeng Liu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
47
|
Möller M, Schütte W, Turzer S, Seliger B, Riemann D. Blood Immune Cells as Biomarkers in Long-Term Surviving Patients with Advanced Non-Small-Cell Lung Cancer Undergoing a Combined Immune/Chemotherapy. Cancers (Basel) 2023; 15:4873. [PMID: 37835567 PMCID: PMC10572005 DOI: 10.3390/cancers15194873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
An important challenge remains in identifying the baseline characteristics of cancer patients who will mostly benefit from immune checkpoint inhibitor (ICI) therapies. Furthermore, biomarkers could help in the choice of an optimal therapy duration after a primary therapy response. In this pilot study, the time courses of four different immune cell parameters were followed in 12 patients with advanced non-small-cell lung cancer (NSCLC) undergoing ICI therapy combined with chemotherapy and surviving at least 12 months. Blood was collected at the time point of the first and third antibody administration, as well as after 12 months of patients' survival. Using multi-color flow cytometry, two suppressive markers (neutrophil/lymphocyte ratio (NLR) and the frequency of circulating HLA-DRlow monocytes), as well as two markers of an ongoing immune response (6-Sulfo LacNAc (slan)+ non-classical monocytes and dendritic cell (DC) subtypes), were determined. In most of those who survived > 12 months, a low NLR and a low number of HLA-DRlow monocytes combined with clearly detectable numbers of slan+ non-classical monocytes and of DC subtypes were seen. Two of the patients had an increase in the suppressive markers paired with a decrease in slan+ non-classical monocytes and in DC subtypes, which, in at least one patient, was the correlate of an ongoing clinical progression. Our results implicate that the NLR, specific subtypes of monocytes, and the number of blood DCs might be useful predictive biomarkers for cancer patients during long-term treatment with ICI/chemotherapy.
Collapse
Affiliation(s)
- Miriam Möller
- Clinic of Internal Medicine, Hospital Martha-Maria Halle-Dölau, 06120 Halle, Germany
| | - Wolfgang Schütte
- Clinic of Internal Medicine, Hospital Martha-Maria Halle-Dölau, 06120 Halle, Germany
| | - Steffi Turzer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany
- Institute of Translational Immunology, Medical School "Theodor Fontane", 14770 Brandenburg, Germany
| | - Dagmar Riemann
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle, Germany
| |
Collapse
|
48
|
Wu S, Luwor RB, Zhu HJ. Dynamics of transforming growth factor β signaling and therapeutic efficacy. Growth Factors 2023; 41:82-100. [PMID: 37229558 DOI: 10.1080/08977194.2023.2215335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Transforming growth factor β (TGFβ) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFβ signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFβ as a therapeutic target led to emerging development of anti-TGFβ reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings. In this review, possible reasons for this inconsistency are discussed, addressing the knowledge gap between theoretical and actual behaviours of TGFβ signalling. Previous studies on oncogenic cells have demonstrated the spatiotemporal heterogeneity of TGFβ signalling intensity. Under feedback mechanisms and exosomal ligand recycling, cancer cells may achieve cyclic TGFβ signalling to facilitate dissemination and colonisation. This challenges the current presumption of persistently high TGFβ signalling in cancer, pointing to a new direction of research on TGFβ-targeted therapeutics.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Rodney Brian Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
49
|
Yin S, Cui H, Qin S, Yu S. Manipulating TGF-β signaling to optimize immunotherapy for cervical cancer. Biomed Pharmacother 2023; 166:115355. [PMID: 37647692 DOI: 10.1016/j.biopha.2023.115355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Cervical cancer is a serious threat to women's health globally. Therefore, identifying key molecules associated with cervical cancer progression is essential for drug development, disease monitoring, and precision therapy. Recently, TGF-β (transforming growth factor-beta) has been identified as a promising target for cervical cancer treatment. For advanced cervical cancer, TGF-β participates in tumor development by improving metastasis, stemness, drug resistance, and immune evasion. Accumulating evidence demonstrates that TGF-β blockade effectively improves the therapeutic effects, especially immunotherapy. Currently, agents targeting TGF-β and immune checkpoints such as PD-L1 have been developed and tested in clinical studies. These bispecific antibodies might have the potential as therapeutic agents for cervical cancer treatment in the future.
Collapse
Affiliation(s)
- Shuping Yin
- Department of Obstetrics and Gynecology, Changxing People's Hospital of Zhejiang Huzhou, Changxing 313100, China
| | - Han Cui
- Department of Obstetrics and Gynecology, Changxing People's Hospital of Zhejiang Huzhou, Changxing 313100, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| |
Collapse
|
50
|
Xie L, Liang X, Xu J, Sun X, Liu K, Sun K, Li Y, Tang X, Li X, Zhan X, Niu X, Guo W. Exploratory study of an anti-PD-L1/TGF-β antibody, TQB2858, in patients with refractory or recurrent osteosarcoma and alveolar soft part sarcoma: a report from Chinese sarcoma study group (TQB2858-Ib-02). BMC Cancer 2023; 23:868. [PMID: 37715133 PMCID: PMC10503089 DOI: 10.1186/s12885-023-11390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Novel and effective immunotherapies are required for refractory or recurrent sarcomas. Transforming growth factor-beta (TGF-β) is a diverse regulatory and fibrogenic protein expressed in multiple sarcoma tumors that promotes epithelial-mesenchymal transition and excessive deposition of extracellular matrix. This study evaluated the efficacy and safety of the anti-PD-L1/TGF-β antibody TQB2858 in patients with refractory osteosarcoma and alveolar soft part sarcoma (ASPS). METHODS This single-arm phase 1b exploratory study included patients with refractory osteosarcoma or ASPS who had previously undergone at least two lines of systemic therapy. Patients were administered 1200 mg of TQB2858 once every 3 weeks. The primary endpoint was objective response rate (ORR), with null and alternative hypotheses of ORR ≤5% and ≥20%, respectively. Exploratory biomarker analyses using immunohistochemistry (IHC) staining (for PD-L1 and TGF-β) were performed on pre-treatment tumor samples. RESULTS Eleven eligible patients were included in this study. TQB2858 did not demonstrate evidence of efficacy as 0/5 osteosarcomas had any objective response, while 2/6 ASPS showed a partial response. The median progression-free survivals were 1.51 (1.38, Not Evaluable) and 2.86 (1.38, Not Evaluable) months for the osteosarcoma and ASPS groups, respectively. None of the administered cycles met the criteria for unacceptable toxicity. Other Grade 3 toxicities included abnormal liver function and elevation of γ-glutamyl transferase. IHC analysis revealed that functional enrichment in the TGF-β pathway or PD-L1 was not associated with treatment outcomes. CONCLUSIONS The combination of PD-L1 and TQB2858 did not significantly improve the ORR in patients with recurrent osteosarcoma. However, it improved immunogenic responses in ASPS, even after progression upon anti-PD-1/PD-L1 therapy, with an acceptable safety profile. IHC profiling with pathway enrichment analysis may not have any predictive value for survival outcomes. TRIAL REGISTRATION Prospectively registered in the Ethical Review Committee of Peking University People's Hospital. The trial registration number is 2021PHA105-001 and 2021PHA140-001 and the registration date was March 2, 2022. CLINICALTRIALS gov Identifier CTR20213001 and CTR20220390.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Xin Liang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Kunkun Sun
- Pathology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Yuan Li
- Radiology Department and Nuclear Medicine Department, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China.
| | - Xianan Li
- Orthopedic Oncology Department, Hunan Cancer Hospital, Changsha, 410013, China
| | - Xing Zhan
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaohui Niu
- Orthopedic Oncology Department, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|