1
|
Zhang M, Liu C, Tu J, Tang M, Ashrafizadeh M, Nabavi N, Sethi G, Zhao P, Liu S. Advances in cancer immunotherapy: historical perspectives, current developments, and future directions. Mol Cancer 2025; 24:136. [PMID: 40336045 PMCID: PMC12057291 DOI: 10.1186/s12943-025-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/15/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer immunotherapy, encompassing both experimental and standard-of-care therapies, has emerged as a promising approach to harnessing the immune system for tumor suppression. Experimental strategies, including novel immunotherapies and preclinical models, are actively being explored, while established treatments, such as immune checkpoint inhibitors (ICIs), are widely implemented in clinical settings. This comprehensive review examines the historical evolution, underlying mechanisms, and diverse strategies of cancer immunotherapy, highlighting both its clinical applications and ongoing preclinical advancements. The review delves into the essential components of anticancer immunity, including dendritic cell activation, T cell priming, and immune surveillance, while addressing the challenges posed by immune evasion mechanisms. Key immunotherapeutic strategies, such as cancer vaccines, oncolytic viruses, adoptive cell transfer, and ICIs, are discussed in detail. Additionally, the role of nanotechnology, cytokines, chemokines, and adjuvants in enhancing the precision and efficacy of immunotherapies were explored. Combination therapies, particularly those integrating immunotherapy with radiotherapy or chemotherapy, exhibit synergistic potential but necessitate careful management to reduce side effects. Emerging factors influencing immunotherapy outcomes, including tumor heterogeneity, gut microbiota composition, and genomic and epigenetic modifications, are also examined. Furthermore, the molecular mechanisms underlying immune evasion and therapeutic resistance are analyzed, with a focus on the contributions of noncoding RNAs and epigenetic alterations, along with innovative intervention strategies. This review emphasizes recent preclinical and clinical advancements, with particular attention to biomarker-driven approaches aimed at optimizing patient prognosis. Challenges such as immunotherapy-related toxicity, limited efficacy in solid tumors, and production constraints are highlighted as critical areas for future research. Advancements in personalized therapies and novel delivery systems are proposed as avenues to enhance treatment effectiveness and accessibility. By incorporating insights from multiple disciplines, this review aims to deepen the understanding and application of cancer immunotherapy, ultimately fostering more effective and widely accessible therapeutic solutions.
Collapse
Affiliation(s)
- Meiyin Zhang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chaojun Liu
- Department of Breast Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8 V 1P7, Canada
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin, School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Peiqing Zhao
- Translational Medicine Center, Zibo Central Hospital Affiliated to Binzhou Medical University, No. 54 Communist Youth League Road, Zibo, China.
| | - Shijian Liu
- Department of General Medicine, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150081, China.
| |
Collapse
|
2
|
Khan MAAK, Peel L, Sedgwick AJ, Sun Y, Vivian JP, Corbett AJ, Dolcetti R, Mantamadiotis T, Barrow AD. Reduced HLA-I Transcript Levels and Increased Abundance of a CD56 dim NK Cell Signature Are Associated with Improved Survival in Lower-Grade Gliomas. Cancers (Basel) 2025; 17:1570. [PMID: 40361496 PMCID: PMC12071263 DOI: 10.3390/cancers17091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Human leukocyte antigen class I (HLA-I) plays a pivotal role in shaping anti-tumour immunity by influencing the functionality of T cells and natural killer (NK) cells within the tumour microenvironment. METHODS Here, we explored the transcriptional landscape of HLA-I molecules across various solid cancer transcriptomes from The Cancer Genome Atlas (TCGA) database and assessed the impact of HLA-I expression on the clinical significance of tumour-infiltrating CD56dim and CD56bright NK cells. RESULTS Our analysis revealed that high HLA-I expression correlated with reduced patient survival in the TCGA lower-grade glioma (LGG) cohort, with this association varying by histopathological subtype. We then estimated the relative abundance of 23 immune and stromal cell signatures in LGG transcriptomes using a cellular deconvolution approach, which revealed that LGG patients with low HLA-I expression and high CD56dim NK cell abundance had better survival outcomes compared to those with high HLA-I expression and low CD56dim NK cell abundance. Furthermore, HLA-I expression was positively correlated with various inhibitory NK cell receptors and negatively correlated with activating NK cell receptors, particularly those within the killer cell lectin-like receptor (KLR) gene family. High co-expression of HLA-E and NKG2A predicted poor survival outcomes in LGG patients, whereas low HLA-E and high NKG2C/E abundance predicted more favourable outcomes, suggesting a potential modulatory role of HLA-I on the tumour-infiltrating cytotoxic CD56dim NK cell subset. CONCLUSIONS Overall, our study unveils a potential role for deregulated HLA-I expression in modulating the clinical impact of glioma-infiltrating CD56dim NK cells. These findings lay the foundation for future in-depth experimental studies to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Md Abdullah Al Kamran Khan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lorenza Peel
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Alexander J. Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yuhan Sun
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Julian P. Vivian
- St. Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Catholic University, Melbourne, VIC 3065, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Riccardo Dolcetti
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Alexander D. Barrow
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
3
|
Maroney KJ, Ye Y, Sudenga SL, Diffalha SA, Banerjee NS, Shrestha S, Bansal A. Higher Expression of HPV16 Derived E7_LI Transcript Observed in Men With HIV and Recurrent Anal Cancer. J Med Virol 2025; 97:e70371. [PMID: 40317526 PMCID: PMC12048892 DOI: 10.1002/jmv.70371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Squamous cell carcinoma of the anus (SCCA) or anal cancer (AC) is an understudied cancer with a high occurrence rate in people with HIV (PWH), especially men having sex with men (MSM). Furthermore, AC recurs in approximately one-fourth of patients who undergo standard care with chemoradiation therapy (CRT). Using bulk RNA sequencing data of AC obtained from 12 patients with non-recurrent (NR, N = 9) or recurrent (R, N = 3) cancer, we previously showed upregulated expression of key immune genes in the NR compared to the R group. Although the main causative agent of AC is high-risk human papillomavirus (HPV), association of host and viral RNA transcript expression contributing to AC recurrence has not been extensively studied. The objective of the current study was to determine whether enrichment of specific HPV genotypes and/or HPV gene expression patterns differentiate the two groups and if any specific viral (HPV) and host (human) immune mediators correlate with each other. Using bulk RNA sequencing data and VIRTUS 2, we detected viral RNA reads mapping to seven high-risk and six low-risk HPV types, of which the high-risk HPV16 observed in 83% (10/12) AC tumors (7/9 NR and 3/3 R). Rate of all HPV genomes trended toward a decrease in NR AC isolates and correlation between HPV types was more commonly observed in low-risk ones. Analysis of HPV 16 gene expression profile showed a significantly lower positivity rate for a polycistronic transcript encoding for E7^L1 in the NR group (1/9, NR vs. 3/3, R, p < 0.05). An unbiased correlation analysis of HPV-human transcript expression showed a direct correlation between HPV transcripts and human genes involved in cell growth. The data also identified human transcripts showing an inverse correlation with HPV gene expression. These included genes involved in negative regulation of growth, proliferation, and immune response. Taken together, these data indicate that concurrent analyses of viral and host factors in the same tumor can identify potential new therapeutic targets to ameliorate cancer recurrence post-treatment.
Collapse
Affiliation(s)
- Kevin J. Maroney
- Department of Medicine, Division of Infectious Diseases, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yuanfan Ye
- Ob/gyn‐Maternal and Fetal Medicine, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Staci L. Sudenga
- Division of EpidemiologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sameer Al Diffalha
- Anatomic Pathology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Nilam Sanjib Banerjee
- Department of Biochemistry and Molecular GeneticsUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Sadeep Shrestha
- Department of Epidemiology, School of Public HealthUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anju Bansal
- Department of Medicine, Division of Infectious Diseases, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
4
|
Constanzo J, Parach A, David T, Karam J, Bruchertseifer F, Morgenstern A, Jarlier M, Bardiès M, Deshayes E, Gudin-de-Vallerin A, Boissière-Michot F, Lopez-Crapez E, Pouget JP. MHC-I-Driven Antitumor Immunity Counterbalances Low Absorbed Doses of Radiopharmaceutical Therapy. J Nucl Med 2025; 66:785-792. [PMID: 40015918 PMCID: PMC12051770 DOI: 10.2967/jnumed.124.268857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Preclinical and clinical studies increasingly show that the immune response plays a major role in radiotherapy. Here, we investigated the role of major histocompatibility complex class I (MHC-I) molecules recognized by cytotoxic CD8+ T cells in the response to radiopharmaceutical therapy (RPT). Methods: Two murine melanoma cell lines that express low and high MHC-I levels (B16F10 and B16K1, respectively) were grafted in syngeneic or athymic and nude mice, and the response to a single injection of [225Ac]Ac-DOTA-TA99 monoclonal antibodies (9.25 or 18.5 kBq) was assessed and related to dosimetry. For clinical relevance, MHC-I expression was determined in samples from patients with well-differentiated, iodine-avid metastatic thyroid cancer and well-differentiated grade 2 mid-gut neuroendocrine tumors. Results: RPT efficacy was enhanced by T-cell presence and MHC-I expression. In mice harboring B16F10 and B16K1 melanoma tumors, RPT showed a stronger antitumor effect in C57BL/6J (immunocompetent) animals than in athymic and nude (immunodeficient) animals, suggesting a crucial role of T-cell-mediated immune responses. Moreover, the response to irradiation was the same in B16K1 MHC-Ihigh tumors with a low absorbed dose of α-RPT and in B16F10 MHC-Ilow tumors with a 4 times higher absorbed dose. These results indicate that CD8+ T cells can counterbalance low tumor irradiation. Conversely, delivering high absorbed doses leads to side effects and seems to prevent immune system activation, thereby not taking advantage of these mechanisms. Our results also indicate that MHC-I can be used as a predictive biomarker of RPT response in lesions receiving low absorbed doses and that RPT treatment regimens should be reconsidered in the function of the MHC-I expression level. Conclusion: This study shows that MHC-I expression can predict RPT immunostimulatory effects. This is relevant in metastatic disease where lesions in the same patient can receive very low or very high absorbed doses.
Collapse
Affiliation(s)
- Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France;
| | - Aliasghar Parach
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Timothee David
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Joshua Karam
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | | | | | - Marta Jarlier
- Biometrics Unit, Institut Régional du Cancer Montpellier, Montpellier, France; and
| | - Manuel Bardiès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Emmanuel Deshayes
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | | | | | - Evelyne Lopez-Crapez
- Translational Research Unit, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Nuclear Medicine Department, Institut régional du Cancer de Montpellier (ICM), Montpellier, France, and Équipe Labellisée Ligue Contre le Cancer, Paris, France;
| |
Collapse
|
5
|
Gunasegaran B, Krishnamurthy S, Chow SS, Villanueva MD, Guller A, Ahn SB, Heng B. Comparative Analysis of HMC3 and C20 Microglial Cell Lines Reveals Differential Myeloid Characteristics and Responses to Immune Stimuli. Immunology 2025; 175:84-102. [PMID: 39961658 PMCID: PMC11982601 DOI: 10.1111/imm.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 04/11/2025] Open
Abstract
Microglia are the primary resident immune cells of the central nervous system (CNS) that respond to injury and infections. Being critical to CNS homeostasis, microglia also have been shown to contribute to neurodegenerative diseases and brain cancer. Hence, microglia are regarded as a potential therapeutic target in CNS diseases, resulting in an increased demand for reliable in vitro models. Two human microglia cell lines (HMC3 and C20) are being used in multiple in vitro studies, however, the knowledge of their biological and immunological characteristics remains limited. Our aim was to identify and compare the biological changes in these immortalised immune cells under normal physiological and immunologically challenged conditions. Using high-resolution quantitative mass spectrometry, we have examined in-depth proteomic profiles of non-stimulated and LPS or IFN-γ challenged HMC3 and C20 cells. Our findings reveal that HMC3 cells responded to both treatments through upregulation of immune, metabolic, and antiviral pathways, while C20 cells showed a response associated with mitochondrial and immune activities. Additionally, the secretome analysis demonstrated that both cell lines release IL-6 in response to LPS, while IFN-γ treatment resulted in altered kynurenine pathway activity, highlighting distinct immune and metabolic adaptations.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Shivani Krishnamurthy
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Sharron S. Chow
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Millijoy D. Villanueva
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Computational Neurosurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Anna Guller
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Computational Neurosurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
6
|
Jian Z, Pan T, Li R, Zhang W, Cheng T, Zhang H, Song J, Shi N, Zhang Z. Comprehensive analysis of UPK3B as a marker for prognosis and immunity in pancreatic adenocarcinoma. Sci Rep 2025; 15:12716. [PMID: 40223017 PMCID: PMC11994762 DOI: 10.1038/s41598-025-97213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
The low immunogenicity of pancreatic cancer inhibits effective antitumor immune responses, primarily due to the immune evasion mediated by low expression of the major histocompatibility complex (MHC). Through comprehensive analysis, our study identifies UPK3B as a gene closely associated with low MHC expression and low immunogenicity in pancreatic cancer. UPK3B has been reported as a marker of primary mesothelial cells, mature epicardium and promotes extracellular matrix signaling. However, the role of UPK3B in pancreatic cancer remain unclear. We found that UPK3B is highly predictive of overall survival (OS) in patients with pancreatic ductal adenocarcinoma (PDAC) and is significantly related to clinical features, immune cell infiltration, and response to immune checkpoint inhibitor (ICI) therapy. Gene enrichment analysis revealed significant downregulation of immune regulatory and BCR signaling pathways in the UPK3B high-expression group. Additionally, UPK3B is positively correlated with immunosuppressive cells, suggesting that high UPK3B expression may inhibit antitumor immune responses by promoting low MHC expression. UPK3B is also positively correlated with immune checkpoints, indicating that tumors with high UPK3B expression may not benefit from ICI therapy. Therefore, UPK3B may serve as a novel biomarker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ziying Jian
- Department of Hematology, Zhong da Hospital of Southeast University, Nanjing, China
| | - Tao Pan
- Department of Radiology, Center of Interventional Radiology and Vascular Surgery, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| | - Renjie Li
- School of Medicine, Southeast University, Nanjing, China
| | - Weiyu Zhang
- Department of General Surgery, Zhongda Hospital of Southeast University, Nanjing, China
| | - Tao Cheng
- Department of General Surgery, Zhongda Hospital of Southeast University, Nanjing, China
| | - Hanzhe Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Jialin Song
- School of Medicine, Southeast University, Nanjing, China
| | - Naipeng Shi
- Department of Urology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Zhiheng Zhang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
7
|
Huang J, Luo S, Shen J, Lee M, Chen R, Ma S, Sun LQ, Li JJ. Cellular polarity pilots breast cancer progression and immunosuppression. Oncogene 2025; 44:783-793. [PMID: 40057606 PMCID: PMC11913746 DOI: 10.1038/s41388-025-03324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Disrupted cellular polarity (DCP) is a hallmark of solid cancer, the malignant disease of epithelial tissues, which occupies ~90% of all human cancers. DCP has been identified to affect not only the cancer cell's aggressive behavior but also the migration and infiltration of immune cells, although the precise mechanism of DCP-affected tumor-immune cell interaction remains unclear. This review discusses immunosuppressive tumor microenvironments (TME) caused by DCP-driven tumor cell proliferation with DCP-impaired immune cell functions. We will revisit the fundamental roles of cell polarity (CP) proteins in sustaining mammary luminal homeostasis, epithelial transformation, and breast cancer progression. Then, the current data on CP involvement in immune cell activation, maturation, migration, and tumor infiltration are evaluated. The CP status on the immune effector cells and their targeted tumor cells are highlighted in tumor immune regulation, including the antigen presentation and the formation of immune synapses (IS). CP-regulated antigen presentation and delivery and the formation of IS between the immune cells, especially between the immune effectors and tumor cells, will be addressed. Alterations of CP on the tumor cells, infiltrated immune effector cells, or both are discussed with these aspects. We conclude that CP-mediated tumor aggressiveness coupled with DCP-impaired immune cell disability may decide the degree of immunosuppressive status and responsiveness to immune checkpoint blockade (ICB). Further elucidating the dynamics of CP- or DCP-mediated immune regulation in TME will provide more critical insights into tumor-immune cell dynamics, which is required to invent more effective approaches for cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Shufeng Luo
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Cancer Center, Central South University, China, Hunan, Changsha
| | - Juan Shen
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Maya Lee
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Rachel Chen
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lun-Quan Sun
- Hunan Key Laboratory of Molecular Radiation Oncology, Xiangya Cancer Center, Central South University, China, Hunan, Changsha.
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, California, USA.
- NCI-designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, California, USA.
| |
Collapse
|
8
|
Qin T, Mattox AK, Campbell JS, Park JC, Shin KY, Li S, Sadow PM, Faquin WC, Micevic G, Daniels AJ, Haddad R, Garris CS, Pittet MJ, Mempel TR, ONeill A, Sartor MA, Pai SI. Epigenetic therapy sensitizes anti-PD-1 refractory head and neck cancers to immunotherapy rechallenge. J Clin Invest 2025; 135:e181671. [PMID: 40091844 PMCID: PMC11910227 DOI: 10.1172/jci181671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
BACKGROUNDImmune checkpoint blockade (ICB) is an effective treatment in a subset of patients diagnosed with head and neck squamous cell carcinoma (HNSCC); however, the majority of patients are refractory.METHODSIn a nonrandomized, open-label Phase 1b clinical trial, participants with recurrent and/or metastatic (R/M) HNSCC were treated with low-dose 5-azacytidine (5-aza) daily for either 5 or 10 days in combination with durvalumab and tremelimumab after progression on ICB. The primary objective was to assess the biologically effective dose of 5-aza as determined by molecular changes in paired baseline and on-treatment tumor biopsies; the secondary objective was safety.RESULTSThirty-eight percent (3 of 8) of participants with evaluable paired tissue samples had a greater-than 2-fold increase from baseline in IFN-γ signature and CD274 (programmed cell death protein 1 ligand, PD-L1) expression within the tumor microenvironment (TME), which was associated with increased CD8+ T cell infiltration and decreased infiltration of CD4+ T regulatory cells. The mean neutrophil-to-lymphocyte ratio (NLR) decreased by greater than 50%, from 14.2 (SD 22.6) to 6.9 (SD 5.2). Median overall survival (OS) was 16.3 months (95% CI 1.9, NA), 2-year OS rate was 24.7% (95% CI: 4.5%, 53.2%), and 58% (7 of 12) of treated participants demonstrated prolonged OS of greater than 12 months.CONCLUSIONOur findings suggest that low-dose 5-aza can reprogram systemic host immune responses and the local TME to increase IFN-γ and PD-L1 expression. The increased expression of these established biomarkers correlated with prolonged OS upon ICB rechallenge.TRIAL REGISTRATIONClinicalTrials.gov NCT03019003.FUNDINGNIH/NCI P01 CA240239.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Austin K. Mattox
- Department of Surgery, Division of Otolaryngology—Head and Neck Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jong Chul Park
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kee-Young Shin
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Shiting Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter M. Sadow
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William C. Faquin
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Goran Micevic
- Department of Dermatology, and
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew J. Daniels
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert Haddad
- Department of Medical Oncology, Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Christopher S. Garris
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mikael J. Pittet
- University of Geneva, Geneva, Switzerland
- AGORA Cancer Center and Swiss Cancer Center Leman, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Thorsten R. Mempel
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anne ONeill
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sara I. Pai
- Department of Surgery, and
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Feng E, Yang X, Yang J, Qu Q, Li X. LAMB1 promotes proliferation and metastasis in nasopharyngeal carcinoma and shapes the immune-suppressive tumor microenvironment. Braz J Otorhinolaryngol 2025; 91:101551. [PMID: 39874810 PMCID: PMC11808599 DOI: 10.1016/j.bjorl.2024.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE Laminin subunit Beta-1 (LAMB1), a component of the extracellular matrix, has been reported to be implicated in the development and progression of cancer. However, the role of LAMB1 in Nasopharyngeal Carcinoma (NPC) remains unknown. METHODS Three NPC datasets were utilized to identify LAMB1 as a targeted gene. The correlation between LAMB1 expression and clinical characteristics, prognosis was explored. KEGG and GO enrichment analyses were conducted to investigate LAMB1's functions in NPC. The CIBERSORT, xCell, MCPCOUNTER, and EPIC methods were used to assess the Cancer-Associated Fibroblasts (CAFs) and immune cells infiltration. We predicted LAMB1's effect on treatment using TIDE, CTRP, and CellMine databases. Finally, Western blot, CCK-8, Transwell, and Wound scratch were employed to validate LAMB1's effect on NPC cells. RESULTS LAMB1 was highly expressed in NPC. High-expression LAMB1 was correlated with poorer progression-free survival and impeded the infiltration of CD4+ T-cells, CD8+ T-cells and dendritic cells. It also diminished the expression of HLA and suppressed T-cells stimulation. Differential expressed cytokines and involved pathways were divergent across different level of fibroblasts infiltration. At high level of fibroblasts, LAMB1 indirectly inhibited immune cells by remolding extracellular matrix. But at low level of fibroblasts, LAMB1 directly suppressed immune response. Tumors with high LAMB1 level had weak responses to immunotherapy. In vitro experiment, LAMB1 significantly suppressed HLA-1 and enhanced the proliferation, migration, and invasion capabilities of NPC cells. CONCLUSION High expression of LAMB1 is significantly associated with an immune-suppressive tumor microenvironment in NPC. LAMB1 enhances the proliferation, migration and invasion of NPC cells. These findings suggest that LAMB1 may serve as a prognostic biomarker for predicting NPC progression and a potential therapeutic target to enhance the efficacy of existing immunotherapies. LEVEL OF EVIDENCE: 3
Collapse
Affiliation(s)
- Enzi Feng
- The Third Affiliated Hospital of Kunming Medical University, Department of Head and Neck Surgery, Kunming, China
| | - Xinyu Yang
- The Third Affiliated Hospital of Kunming Medical University, Department of Head and Neck Surgery, Kunming, China
| | - Jie Yang
- The Third Affiliated Hospital of Kunming Medical University, Department of Head and Neck Surgery, Kunming, China
| | - Qianqian Qu
- The Third Affiliated Hospital of Kunming Medical University, Department of Head and Neck Surgery, Kunming, China
| | - Xiaojiang Li
- The Third Affiliated Hospital of Kunming Medical University, Department of Head and Neck Surgery, Kunming, China.
| |
Collapse
|
10
|
Olislagers M, de Jong FC, Rutten VC, Boormans JL, Mahmoudi T, Zuiverloon TCM. Molecular biomarkers of progression in non-muscle-invasive bladder cancer - beyond conventional risk stratification. Nat Rev Urol 2025; 22:75-91. [PMID: 39095581 DOI: 10.1038/s41585-024-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
The global incidence of bladder cancer is more than half a million diagnoses each year. Bladder cancer can be categorized into non-muscle-invasive bladder cancer (NMIBC), which accounts for ~75% of diagnoses, and muscle-invasive bladder cancer (MIBC). Up to 45% of patients with NMIBC develop disease progression to MIBC, which is associated with a poor outcome, highlighting a clinical need to identify these patients. Current risk stratification has a prognostic value, but relies solely on clinicopathological parameters that might not fully capture the complexity of disease progression. Molecular research has led to identification of multiple crucial players involved in NMIBC progression. Identified biomarkers of progression are related to cell cycle, MAPK pathways, apoptosis, tumour microenvironment, chromatin stability and DNA-damage response. However, none of these biomarkers has been prospectively validated. Reported gene signatures of progression do not improve NMIBC risk stratification. Molecular subtypes of NMIBC have improved our understanding of NMIBC progression, but these subtypes are currently unsuitable for clinical implementation owing to a lack of prospective validation, limited predictive value as a result of intratumour subtype heterogeneity, technical challenges, costs and turnaround time. Future steps include the development of consensus molecular NMIBC subtypes that might improve conventional clinicopathological risk stratification. Prospective implementation studies of biomarkers and the design of biomarker-guided clinical trials are required for the integration of molecular biomarkers into clinical practice.
Collapse
Affiliation(s)
- Mitchell Olislagers
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Florus C de Jong
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Vera C Rutten
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
MacDonald WJ, Purcell C, Pinho-Schwermann M, Stubbs NM, Srinivasan PR, El-Deiry WS. Heterogeneity in Cancer. Cancers (Basel) 2025; 17:441. [PMID: 39941808 PMCID: PMC11816170 DOI: 10.3390/cancers17030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer heterogeneity is a major challenge in oncology, complicating diagnosis, prognostication, and treatment. The clinical heterogeneity of cancer, which leads to differential treatment outcomes between patients with histopathologically similar cancers, is attributable to molecular diversity manifesting through genetic, epigenetic, transcriptomic, microenvironmental, and host biology differences. Heterogeneity is observed between patients, individual metastases, and within individual lesions. This review discusses clinical implications of heterogeneity, emphasizing need for personalized approaches to overcome challenges posed by cancer's diverse presentations. Understanding of emerging molecular diagnostic and analytical techniques can provide a view into the multidimensional complexity of cancer heterogeneity. With over 90% of cancer-related deaths associated with metastasis, we additionally explore the role heterogeneity plays in treatment resistance and recurrence of metastatic lesions. Molecular insights from next-generation sequencing, single-cell transcriptomics, liquid biopsy technology, and artificial intelligence will facilitate the development of combination therapy regimens that can potentially induce lasting and even curative treatment outcomes.
Collapse
Affiliation(s)
- William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Nolan M. Stubbs
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Brown University and Brown University Health, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| |
Collapse
|
12
|
Zhang X, Sun K, Zhong B, Yan L, Cheng P, Wang Q. PMN-MDSCs are responsible for immune suppression in anti-PD-1 treated TAP1 defective melanoma. Clin Transl Oncol 2025:10.1007/s12094-024-03840-7. [PMID: 39825997 DOI: 10.1007/s12094-024-03840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/24/2024] [Indexed: 01/20/2025]
Abstract
INTRODUCTION The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1. In this study, we established mouse models of tumors with TAP1 deficiency, and we employed PMN-MDSC depletion to investigate their impact on the immune microenvironment within the tumors. We found that MDSC depletion significantly altered the immune-suppressive effects of TAP1-deficient tumor when anti-PD-1 treatment was administered. Targeting PMN-MDSC may be a promising therapeutic strategy for the treatment of tumors with TAP1 deficiency during ICB treatment. METHODS Immunohistochemistry (IHC) was conducted to assess TAP1 expression in mouse melanoma tissues. Ly6G, F4/80, and NKp46 markers were detected in B16 parental and TAP1 knockout tissues, respectively. To enhance anti-tumor immunity, hyperthermia-treated B16F10 WT cell suspension was injected prior to tumor cell introduction. Subsequently, we established B16F10 TAP1 knockout and WT melanoma mouse models. Tumors were collected, and the immune microenvironment was monitored accordingly. Anti-Ly6G antibody was administered to deplete polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Finally, flow cytometry analysis for immune infiltration, quantitative PCR for cytokine levels, and immunofluorescence assays were performed to analyze the immune response. RESULTS The level of Ly6G+ cell infiltration was significantly higher in samples exhibiting low TAP1 expression, while no differences were observed in the infiltration of F4/80+ cells or NKp46+ cells. Furthermore, the immune-suppressive effects associated with PMN-MDSCs were reversed following their elimination; this resulted in an increase in CD8+ T cells and a higher ratio of CD8+ T cells to Tregs, while the infiltration of innate immune cells remained unaffected. Functional markers of these immune cells indicated an active anti-tumoral immune response following the removal of PMN-MDSCs. Quantitative PCR analysis indicated elevated levels of TNF-α and IL-6, accompanied by decreased levels of TGF-β in the tumor microenvironment of TAP1. CONCLUSIONS Our data indicate that myeloid-derived suppressor cells (PMN-MDSCs) play an essential role in creating a tumorigenic immune microenvironment in TAP1 knockout tumors. Therefore, targeting PMN-MDSCs may become a promising therapeutic strategy for the treatment of tumors with TAP1 deficiency during ICB treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China
| | - Kaijun Sun
- Weifang People's Hospital, The First Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, Shandong, China
| | - Bingzheng Zhong
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China
| | - Likun Yan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Pengrui Cheng
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China
| | - Qiang Wang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.
| |
Collapse
|
13
|
Zhou T, Elenitoba-Johnson KSJ. HLA-I aberrations in cutaneous T-cell lymphoma. Blood 2025; 145:252-253. [PMID: 39820979 DOI: 10.1182/blood.2024027135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Affiliation(s)
- Ting Zhou
- Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
14
|
Kuligina ES, Romanko AA, Jankevic T, Martianov AS, Ivantsov AO, Sokolova TN, Trofimov D, Kashyap A, Cybulski C, Lubiński J, Imyanitov EN. HLA gene polymorphism is a modifier of age-related breast cancer penetrance in carriers of BRCA1 pathogenic alleles. Breast Cancer Res Treat 2025; 209:341-354. [PMID: 39306605 DOI: 10.1007/s10549-024-07497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/11/2024] [Indexed: 02/02/2025]
Abstract
PURPOSE Female carriers of germline BRCA1 mutations almost invariably develop breast cancer (BC); however, the age at onset is a subject of variation. We hypothesized that the age-related penetrance of BRCA1 mutations may depend on inherited variability in the host immune system. METHODS Next-generation sequencing was utilized for genotyping of HLA class I/II genes (HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQB1, and HLA-DRB1/3/4/5) in patients with BRCA1-associated BC with early (< / = 38 years, n = 215) and late (> / = 58 years, n = 108) age at onset. RESULTS HLA-DQB1*06:03P prevalence was higher in the late-onset group due to the excess of allele carriers [25/108 (23.1%) vs. 22/215 (10.2%); OR 2.96, p < 0.001]. For all HLA-I loci, there was a trend toward an increase in the number of homozygotes in the early-onset group. This trend reached statistical significance for the HLA-A [14.4% vs. 6.5%, p = 0.037; OR 2.4, p = 0.042]. The frequencies of HLA-DPB1, HLA-DQB1, and HLA-DRB1/3/4/5 homozygous genotypes did not differ between young-onset and late-onset patients. The maximum degree of homozygosity detected in this study was 6 out of 7 HLA class I/II loci; all six carriers of these genotypes were diagnosed with BC at the age < / = 38 years [OR 6.97, p = 0.187]. CONCLUSION HLA polymorphism may play a role in modifying the penetrance of BRCA1 pathogenic variants. Certain HLA alleles or HLA homozygosity may modify the risk of BC in BRCA1 carriers.
Collapse
Affiliation(s)
- Ekaterina S Kuligina
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia.
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, Pesochny-2, St. Petersburg, Russia, 197758.
| | - Alexandr A Romanko
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia
- St. Petersburg Pediatric Medical University, St. Petersburg, Russia
| | | | | | | | | | | | - Aniruddh Kashyap
- International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Cezary Cybulski
- International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jan Lubiński
- International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, St. Petersburg, Russia
- St. Petersburg Pediatric Medical University, St. Petersburg, Russia
- Mechnikov North-Western Medical University, St. Petersburg, Russia
| |
Collapse
|
15
|
Mühlenbruch L, Rieger D, Becker H, Santos Leite AM, Mäurer I, Schittenhelm J, Dubbelaar M, Bichmann L, Kohlbacher O, Rammensee HG, Gouttefangeas C, Tatagiba M, Walz JS, Tabatabai G. The immunopeptidomic landscape of ependymomas provides actionable antigens for T-cell-based immunotherapy. Neurooncol Adv 2025; 7:vdae226. [PMID: 40376681 PMCID: PMC12080555 DOI: 10.1093/noajnl/vdae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Background Ependymoma are primary tumors of the nervous system. Due to their growth pattern, many ependymomas can be managed with neurosurgical resection alone. A substantial proportion of these tumors recurs or displays infiltrative growth patterns. Further established therapeutic options include radiation therapy. Systemic treatment options include platinum-based therapeutic regimes or a combination of lapatinib and temozolomide. Peptide-based immunotherapy represents a promising therapeutic strategy relying on the induction of tumor-specific T cells targeting human leukocyte antigens (HLA)-presented peptides. Our work aimed to analyze the landscape of naturally presented HLA class I and II ligands of primary ependymomas (EPN) to delineate EPN-associated antigens. Methods We investigated 22 EPN tissue samples using a comparative mass spectrometry-based immunopeptidomic approach. Additionally, EPN-specific antigens were functionally characterized in T-cell-based immunogenicity assays. Results We discovered a subset of EPN-exclusive peptides including HLA-A*02 and HLA-A*25/HLA-A*26-restricted HLA ligands and identified a small panel of cancer/testis antigens (CTAs)-derived HLA ligands. Furthermore, we outlined immunopeptidomic alterations in different ependymoma subgroups and progressive ependymoma. Subsequently, we performed functional characterization of the previously identified HLA-A*02:01 restricted peptide FLDS to demonstrate immunogenicity in vitro. Conclusion The immunopeptidome landscape of EPNs provides actionable targets that could further be explored as a T cell-based immunotherapeutic strategy in this tumor entity.
Collapse
Affiliation(s)
- Lena Mühlenbruch
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - David Rieger
- Center for Personalized Medicine, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tuebingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Hannes Becker
- Department of Neurosurgery, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Center for Personalized Medicine, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tuebingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Ana Maia Santos Leite
- Institute for Immunology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Irina Mäurer
- Center for Personalized Medicine, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tuebingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Jens Schittenhelm
- German Cancer Consortium (DKTK), Partner Site Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Department of Neuropathology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Center for Personalized Medicine, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Marissa Dubbelaar
- Quantitative Biology Center (QBiC), Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Institute for Immunology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Leon Bichmann
- Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Institute for Immunology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Institute for Translational Bioinformatics, University Hospital Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Cluster of Excellence Machine Learning in the Sciences (EXC2064), University of Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Hans-Georg Rammensee
- German Cancer Consortium (DKTK), Partner Site Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Institute for Immunology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Cécile Gouttefangeas
- German Cancer Consortium (DKTK), Partner Site Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Institute for Immunology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Marcos Tatagiba
- German Cancer Consortium (DKTK), Partner Site Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Department of Neurosurgery, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Center for Personalized Medicine, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- German Cancer Consortium (DKTK), Partner Site Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Department of Peptide-based Immunotherapy, Institute of Immunology, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| | - Ghazaleh Tabatabai
- German Cancer Consortium (DKTK), Partner Site Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Center for Personalized Medicine, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tuebingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tuebingen, 72076 Tuebingen, Baden-Wuerttemberg, Germany
| |
Collapse
|
16
|
Benitez Fuentes JD, Bartolome Arcilla J, Mohamed Mohamed K, Lopez de Sa A, de Luna Aguilar A, Guevara-Hoyer K, Ballestin Martinez P, Lazaro Sanchez AD, Carosella ED, Ocaña A, Sánchez-Ramon S. Targeting of Non-Classical Human Leukocyte Antigens as Novel Therapeutic Strategies in Cancer. Cancers (Basel) 2024; 16:4266. [PMID: 39766165 PMCID: PMC11675049 DOI: 10.3390/cancers16244266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Human leukocyte antigens (HLAs) are essential regulators of immune responses against cancer, with classical HLAs well-documented for their role in tumor recognition and immune surveillance. In recent years, non-classical HLAs-including HLA-E, HLA-F, HLA-G, and HLA-H-have emerged as critical players in the immune landscape of cancer due to their diverse and less conventional functions in immune modulation. These molecules exhibit unique mechanisms that enable tumors to escape immune detection, promote tumor progression, and contribute to therapeutic resistance. This review provides a comprehensive examination of the current understanding of non-classical HLAs in solid cancers, focusing on their specific roles in shaping the tumor microenvironment and influencing immune responses. By analyzing how HLA-E, HLA-F, HLA-G, and HLA-H modulate interactions with immune cells, such as T cells, natural killer cells, and antigen-presenting cells, we highlight key pathways through which these molecules contribute to immune evasion and metastasis. Additionally, we review promising therapeutic strategies aimed at targeting non-classical HLAs, including emerging immunotherapies that could potentially enhance cancer treatment outcomes by reversing immune suppression within tumors. Understanding the influence of these non-classical HLAs in solid cancers may offer new insights into cancer immunology and may lead to the development of innovative and more effective immunotherapeutic approaches. This review underscores the importance of non-classical HLAs as potential therapeutic targets, providing a necessary foundation for future studies in the evolving field of cancer immunotherapy.
Collapse
Affiliation(s)
| | - Jorge Bartolome Arcilla
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Kauzar Mohamed Mohamed
- Department of Immunology, IML and IdISSC, Hospital Clinico San Carlos, 28040 Madrid, Spain; (K.M.M.); (K.G.-H.); (S.S.-R.)
| | - Alfonso Lopez de Sa
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
| | - Alicia de Luna Aguilar
- Department of Medical Oncology, Hospital General Universitario Morales Meseguer, 30008 Murcia, Spain;
| | - Kissy Guevara-Hoyer
- Department of Immunology, IML and IdISSC, Hospital Clinico San Carlos, 28040 Madrid, Spain; (K.M.M.); (K.G.-H.); (S.S.-R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| | - Pablo Ballestin Martinez
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
- Department of Medical Oncology, Hospital 12 de Octubre, 28041 Madrid, Spain
| | | | - Edgardo D. Carosella
- CEA, DRF-Institut de Biologie François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, 75010 Paris, France;
- U976 HIPI Unit, IRSL, Université Paris, 75006 Paris, France
| | - Alberto Ocaña
- Department of Medical Oncology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.B.A.); (A.L.d.S.); (P.B.M.)
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, 28040 Madrid, Spain
| | - Silvia Sánchez-Ramon
- Department of Immunology, IML and IdISSC, Hospital Clinico San Carlos, 28040 Madrid, Spain; (K.M.M.); (K.G.-H.); (S.S.-R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
17
|
Gassmann H, Thiede M, Weiß J, Biele E, Flohé L, Lachermaier H, Prexler C, Evdokimova V, Radvanyi L, Akhtar I, Morcos MNF, Auer F, Schober SJ, Hauer J, Thiel U, von Heyking K. Cytokine screening identifies TNF to potentially enhance immunogenicity of pediatric sarcomas. Front Immunol 2024; 15:1347404. [PMID: 39723214 PMCID: PMC11668575 DOI: 10.3389/fimmu.2024.1347404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/04/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Pediatric sarcomas, including osteosarcoma (OS), Ewing sarcoma (EwS) and rhabdomyosarcoma (RMS) carry low somatic mutational burden and low MHC-I expression, posing a challenge for T cell therapies. Our previous study showed that mediators of monocyte maturation sensitized the EwS cell line A673 to lysis by HLA-A*02:01/CHM1319-specific allorestricted T cell receptor (TCR) transgenic CD8+ T cells (CHM1319 CD8+ T cells). Methods In this study, we tested a panel of monocyte maturation cytokines for their ability to upregulate immunogenic cell surface markers on OS, EwS and RMS cell lines, using flow cytometry. xCELLigence, SRB and ELISpot assays were used to assess whether TNF pretreatment increases CD8+ T cell cytotoxicity. Results We observed that TNF and IL-1β upregulated MHC class I, ICAM-1 as well as CD83 and PD-L1 on the surface of pediatric sarcoma cell lines, while IL-4, GM-CSF, IL-6 and PGE2 failed to induce respective effects. Although pretreatment of pediatric sarcoma cell lines with TNF did not improve unspecific peripheral blood mononuclear cells (PBMCs) cytotoxicity, TNF enhanced specific lysis of 1/3 HLA-A2+ EwS cell lines by CHM1319 CD8+ T cells depending on MHC-I expression and ICAM-1 upregulation. Discussion Our study supports utilization of TNF or TNF-inducing regimens for upregulation of MHC-I and costimulatory surface molecules on pediatric sarcoma cells and for enhancing recognition of responsive HLA-A2+ EwS tumor cells by antigen-specific CD8+ T cells.
Collapse
Affiliation(s)
- Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Melanie Thiede
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Jennifer Weiß
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Emilie Biele
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Luisa Flohé
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Helena Lachermaier
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Carolin Prexler
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Irfan Akhtar
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Mina N. F. Morcos
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Franziska Auer
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian J. Schober
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hauer
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Kristina von Heyking
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Singh DD, Haque S, Kim Y, Han I, Yadav DK. Remodeling of tumour microenvironment: strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer. Front Immunol 2024; 15:1455211. [PMID: 39720730 PMCID: PMC11666570 DOI: 10.3389/fimmu.2024.1455211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) stands as the most complex and daunting subtype of breast cancer affecting women globally. Regrettably, treatment options for TNBC remain limited due to its clinical complexity. However, immunotherapy has emerged as a promising avenue, showing success in developing effective therapies for advanced cases and improving patient outcomes. Improving TNBC treatments involves reducing side effects, minimizing systemic toxicity, and enhancing efficacy. Unlike traditional cancer immunotherapy, engineered nonmaterial's can precisely target TNBC, facilitating immune cell access, improving antigen presentation, and triggering lasting immune responses. Nanocarriers with enhanced sensitivity and specificity, specific cellular absorption, and low toxicity are gaining attention. Nanotechnology-driven immunoengineering strategies focus on targeted delivery systems using multifunctional molecules for precise tracking, diagnosis, and therapy in TNBC. This study delves into TNBC's tumour microenvironment (TME) remodeling, therapeutic resistance, and immunoengineering strategies using nanotechnology.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
19
|
Jiang J, Shu W, Yao Q. Research advances on TIL therapy for colorectal cancer. Clin Transl Oncol 2024; 26:2917-2923. [PMID: 38806995 DOI: 10.1007/s12094-024-03530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy. Tumor-infiltrating lymphocyte (TIL) therapy, a form of adoptive cellular therapy (ACT), involves isolating T lymphocytes from tumor tissues, in vitro expansion, and reintroduction into the body to target and eliminate tumor cells. This article presents an overview of the development and application of TIL therapy in CRC, as well as the associated challenges.
Collapse
Affiliation(s)
- Jiaojiao Jiang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenxi Shu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinghua Yao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Yin X, Song Y, Deng W, Blake N, Luo X, Meng J. Potential predictive biomarkers in antitumor immunotherapy: navigating the future of antitumor treatment and immune checkpoint inhibitor efficacy. Front Oncol 2024; 14:1483454. [PMID: 39655071 PMCID: PMC11625675 DOI: 10.3389/fonc.2024.1483454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment modality, offering promising outcomes for various malignancies. However, the efficacy of ICIs varies among patients, highlighting the essential need of accurate predictive biomarkers. This review synthesizes the current understanding of biomarkers for ICI therapy, and discusses the clinical utility and limitations of these biomarkers in predicting treatment outcomes. It discusses three US Food and Drug Administration (FDA)-approved biomarkers, programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), and microsatellite instability (MSI), and explores other potential biomarkers, including tumor immune microenvironment (TIME)-related signatures, human leukocyte antigen (HLA) diversity, non-invasive biomarkers such as circulating tumor DNA (ctDNA), and combination biomarker strategies. The review also addresses multivariable predictive models integrating multiple features of patients, tumors, and TIME, which could be a promising approach to enhance predictive accuracy. The existing challenges are also pointed out, such as the tumor heterogeneity, the inconstant nature of TIME, nonuniformed thresholds and standardization approaches. The review concludes by emphasizing the importance of biomarker research in realizing the potential of personalized immunotherapy, with the goal of improving patient selection, treatment strategies, and overall outcomes in cancer treatment.
Collapse
Affiliation(s)
- Xiangyu Yin
- Department of Biological Sciences, School of Science, AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Yunjie Song
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Wanglong Deng
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Neil Blake
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Xinghong Luo
- Jiangsu Simcere Diagnostics Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
| | - Jia Meng
- Department of Biological Sciences, School of Science, AI University Research Centre, Xi’an Jiaotong-Liverpool University, Suzhou, China
- Institute of Biomedical Research, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei Provincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Withnell E, Secrier M. SpottedPy quantifies relationships between spatial transcriptomic hotspots and uncovers environmental cues of epithelial-mesenchymal plasticity in breast cancer. Genome Biol 2024; 25:289. [PMID: 39529126 PMCID: PMC11552145 DOI: 10.1186/s13059-024-03428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Spatial transcriptomics is revolutionizing the exploration of intratissue heterogeneity in cancer, yet capturing cellular niches and their spatial relationships remains challenging. We introduce SpottedPy, a Python package designed to identify tumor hotspots and map spatial interactions within the cancer ecosystem. Using SpottedPy, we examine epithelial-mesenchymal plasticity in breast cancer and highlight stable niches associated with angiogenic and hypoxic regions, shielded by CAFs and macrophages. Hybrid and mesenchymal hotspot distribution follows transformation gradients reflecting progressive immunosuppression. Our method offers flexibility to explore spatial relationships at different scales, from immediate neighbors to broader tissue modules, providing new insights into tumor microenvironment dynamics.
Collapse
Affiliation(s)
- Eloise Withnell
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - Maria Secrier
- Department of Genetics, Evolution and Environment, UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
22
|
Frederico SC, Raphael I, Nisnboym M, Huq S, Schlegel BT, Sneiderman CT, Jackson SA, Jain A, Olin MR, Rood BR, Pollack IF, Hwang EI, Rajasundaram D, Kohanbash G. Transcriptomic observations of intra and extracellular immunotherapy targets for pediatric brain tumors. Expert Rev Clin Immunol 2024; 20:1411-1420. [PMID: 39114885 DOI: 10.1080/1744666x.2024.2390023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES Despite surgical resection, chemoradiation, and targeted therapy, brain tumors remain a leading cause of cancer-related death in children. Immunotherapy has shown some promise and is actively being investigated for treating childhood brain tumors. However, a critical step in advancing immunotherapy for these patients is to uncover targets that can be effectively translated into therapeutic interventions. METHODS In this study, our team performed a transcriptomic analysis across pediatric brain tumor types to identify potential targets for immunotherapy. Additionally, we assessed components that may impact patient response to immunotherapy, including the expression of genes essential for antigen processing and presentation, inhibitory ligands and receptors, interferon signature, and overall predicted T cell infiltration. RESULTS We observed distinct expression patterns across tumor types. These included elevated expression of antigen genes and antigen processing machinery in some tumor types while other tumors had elevated inhibitory checkpoint receptors, known to be associated with response to checkpoint inhibitor immunotherapy. CONCLUSION These findings suggest that pediatric brain tumors exhibit distinct potential for specific immunotherapies. We believe our findings can guide investigators in their assessment of appropriate immunotherapy classes and targets in pediatric brain tumors.
Collapse
Affiliation(s)
- Stephen C Frederico
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michal Nisnboym
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brent T Schlegel
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sydney A Jackson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anya Jain
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Brian R Rood
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eugene I Hwang
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | | | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Molina-Alejandre M, Perea F, Calvo V, Martinez-Toledo C, Nadal E, Sierra-Rodero B, Casarrubios M, Casal-Rubio J, Martinez-Martí A, Insa A, Massuti B, Viteri S, Barneto Aranda I, Rodriguez-Abreu D, de Castro J, Martínez JM, Cobo M, Wistuba II, Parra ER, Martín-López J, Megías D, Muñoz-Viana R, Garrido F, Aptsiauri N, Ruiz-Cabello F, Provencio M, Cruz-Bermúdez A. Perioperative chemoimmunotherapy induces strong immune responses and long-term survival in patients with HLA class I-deficient non-small cell lung cancer. J Immunother Cancer 2024; 12:e009762. [PMID: 39428126 PMCID: PMC11492944 DOI: 10.1136/jitc-2024-009762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Loss of human leukocyte antigen (HLA) class I expression and loss of heterozygosity (LOH) are common events implicated in the primary resistance of non-small cell lung cancer (NSCLC) to immunotherapy. However, there is no data on perioperative chemoimmunotherapy (ChIO) efficacy or response mechanisms in the context of HLA class I defects. METHODS Baseline HLA class I tumor status (HLA-deficient (HLA-DEF) or HLA-proficient (HLA-PRO)) was determined by DNA LOH combined with immunohistochemistry for protein levels in tissue of 24 patients with NSCLC treated with perioperative nivolumab plus chemotherapy from NADIM trial (NCT03081689). We integrated HLA tumor status with molecular data (programmed death-ligand 1 (PD-L1), TMB, TCR repertoire, TILs populations, bulk RNA-seq, and spatial transcriptomics (ST)) and clinical outcomes (pathological response and survival data) to study the activity of perioperative ChIO considering HLA class I defects. RESULTS HLA-DEF tumors comprised 41.7% of analyzed tumors and showed a desert-like microenvironment at baseline, with lower PD-L1 levels and reduced immune infiltrate. However, perioperative ChIO induced similar complete pathological response (CPR) rates in both HLA-DEF and PRO tumors (50% and 60% respectively, p=0.670), as well as 3-year survival rates: Progression-free survival (PFS) and overall survival (OS) of 70% (95% CI 32.9% to 89.2%) for HLA-DEF, and PFS 71.4% (95% CI 40.6% to 88.2%) and OS 92.9% (95% CI 59.1% to 99.0%) for HLA-PRO (log-rank PFS p=0.909, OS p=0.137). Proof-of-concept ST analysis of a CPR HLA-DEF tumor after ChIO showed a strong immune response with tertiary lymphoid structures (TLS), CD4+T cells with HLA class II colocalization, and activated CD8+T cells. CONCLUSIONS Our findings highlight the activity of perioperative ChIO, and the potential role of TLS and T-cell immune response, in NSCLC HLA-DEF tumors.
Collapse
Affiliation(s)
- Marta Molina-Alejandre
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | - Francisco Perea
- Departamento de Bioquímica, Biología Molecular e Inmunología III. Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), Universidad de Granada Facultad de Medicina, Granada, Andalucía, Spain
| | - Virginia Calvo
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | - Cristina Martinez-Toledo
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | - Ernest Nadal
- Catalan Institute of Oncology. Oncobell Program. IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Belén Sierra-Rodero
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | - Marta Casarrubios
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | | | - Alex Martinez-Martí
- Departament of Medical Oncology, Hospital Universitari Vall d'Hebron, Barcelona, Catalunya, Spain
| | - Amelia Insa
- Fundación INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Bartomeu Massuti
- Hospital General Universitario Dr. Balmis de Alicante, Alicante, Spain
| | - Santiago Viteri
- Hospital Universitario Quiron Dexeus, Grupo Quironsalud, Barcelona, Catalunya, Spain
| | | | | | | | | | - Manuel Cobo
- Medical Oncology Intercenter Unit. IBIMA, Virgen de la Victoria University Hospital Pharmacy Clinic Management Unit, Malaga, Andalucía, Spain
| | - Ignacio I Wistuba
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin R Parra
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Javier Martín-López
- Pathological Anatomy, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | - Diego Megías
- Unidad de Microscopía Óptica Avanzada, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Rafael Muñoz-Viana
- Unidad de Bioinformática, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
| | - Federico Garrido
- Departamento de Bioquímica, Biología Molecular e Inmunología III. Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), Universidad de Granada Facultad de Medicina, Granada, Andalucía, Spain
| | - Natalia Aptsiauri
- Departamento de Bioquímica, Biología Molecular e Inmunología III. Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), Universidad de Granada Facultad de Medicina, Granada, Andalucía, Spain
| | - Francisco Ruiz-Cabello
- Departamento de Bioquímica, Biología Molecular e Inmunología III. Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), Universidad de Granada Facultad de Medicina, Granada, Andalucía, Spain
| | - Mariano Provencio
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | - Alberto Cruz-Bermúdez
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| |
Collapse
|
24
|
Sarabia-Sánchez MA, Tinajero-Rodríguez JM, Ortiz-Sánchez E, Alvarado-Ortiz E. Cancer Stem Cell markers: Symphonic masters of chemoresistance and immune evasion. Life Sci 2024; 355:123015. [PMID: 39182567 DOI: 10.1016/j.lfs.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Cancer Stem Cells (CSCs) are highly tumorigenic, chemoresistant, and immune evasive. They emerge as a central driver that gives rise to the bulk of tumoral mass, modifies the tumor microenvironment (TME), and exploits it, leading to poor clinical outcomes for patients with cancer. The existence of CSCs thus accounts for the failure of conventional therapies and immune surveillance. Identifying CSCs in solid tumors remains a significant challenge in modern oncology, with the use of cell surface markers being the primary strategy for studying, isolating, and enriching these cells. In this review, we explore CSC markers, focusing on the underlying signaling pathways that drive CSC self-renewal, which simultaneously makes them intrinsically chemoresistant and immune system evaders. We comprehensively discuss the autonomous and non-autonomous functions of CSCs, with particular emphasis on their interactions with the tumor microenvironment, especially immune cells. This reciprocal network enhances CSCs malignancy while compromising the surrounding niche, ultimately defining therapeutic vulnerabilities associated with each CSC marker. The most common CSCs surface markers addressed in this review-CD44, CD133, ICAM1/CD54, and LGR5-provide insights into the interplay between chemoresistance and immune evasion, two critically important phenomena in disease eradication. This new perspective on the state-of-the-art of CSCs will undoubtedly open new avenues for therapy.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Huixquilucan, México
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
25
|
Yuan M, Wan W, Xing W, Pu C, Wu X, Liao Z, Zhu X, Hu X, Li Z, Zhao Q, Zhao H, Xu X. Decoding the Immune Response and Its Biomarker B2M for High Altitude Pulmonary Edema in Rat: Implications for Diagnosis and Prognosis. J Inflamm Res 2024; 17:7195-7217. [PMID: 39411751 PMCID: PMC11476754 DOI: 10.2147/jir.s477633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose We aimed to investigate whether peripheral blood biomarkers B2M related to immune response can serve as indicators of HAPE pathophysiological characteristics or disease progression. Patients and Methods Bioinformatics technology was used to explore the peripheral blood pathophysiological mechanisms and immune hub genes related to the occurrence of HAPE. The hub gene was verified through animal experiments, and its function and correlation between its expression level and the diagnosis, treatment effect and prognosis of HAPE were explored. Results The GSVA results showed that the occurrence of HAPE was related to the down-regulation of immune response pathways by RUNX3 and STING. WGCNA results showed that the peripheral blood immune gene module related to the development of HAPE was related to the decrease of immune function and the increase of immune checkpoint molecule PD-L1 gene expression, and the expression of immune checkpoint genes LILRB2 and SIGLEC15 increased. Cytoscape software, RT-qPCR and WB confirmed that the hub gene B2M is a specific peripheral blood biomarker of HAPE. ROC, DCA, RT-qPCR, HE and Masson results showed that the expression of peripheral blood B2M has the ability to indicate the diagnosis, treatment effect and prognosis of HAPE. The decreased expression of B2M protein in peripheral blood leukocytes may be a marker of HAPE. Single-gene GSEA confirmed that the reduced expression of B2M in peripheral blood may be involved in the down-regulation of the antigen presentation pathway mediated by MHC class I molecules, was positively correlated with the down-regulation of the TNF signaling pathway, and was negatively correlated with the expression of LILRB2 and SIGLEC15. Conclusion The occurrence of HAPE may be related to decreased immune function and immune tolerance. Peripheral blood B2M may be involved in the related pathways, its expression level can prompt the diagnosis, treatment and prognosis of HAPE.
Collapse
Affiliation(s)
- Mu Yuan
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Weijun Wan
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Chengxiu Pu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiaofeng Wu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Zhikang Liao
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiyan Zhu
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xueting Hu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Zhan Li
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Qing Zhao
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Hui Zhao
- Research Department Fourth Laboratory, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, National Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People’s Republic of China
| |
Collapse
|
26
|
Li X, Ruan Z, Yang S, Yang Q, Li J, Hu M. Bioinformatic-Experimental Screening Uncovers Multiple Targets for Increase of MHC-I Expression through Activating the Interferon Response in Breast Cancer. Int J Mol Sci 2024; 25:10546. [PMID: 39408874 PMCID: PMC11476581 DOI: 10.3390/ijms251910546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Expression of major histocompatibility complex I (MHC-I) on tumor cells is extremely important for the antitumor immune response for its essential role in activating various immune cells, including tumor-specific CD8+ T cells. Cancers of lower MHC-I expression commonly exhibit less immune cell infiltration and worse prognosis in clinic. In this study, we conducted bioinformatic-experimental screening to identify potential gene targets to enhance MHC-I expression in breast cancer (BRCA). Through a combination of MHC-I scoring, gene expression correlation analysis, survival prognostication, and Cibersort tumor-infiltrated lymphocytes (TILs) scoring, we identify 144 genes negatively correlated with both MHC-I expression and TILs in breast cancer. Furthermore, we verified partially according to KEGG functional enrichment or gene-dependency analysis and figured out multiple genes, including PIP5K1A, NCKAP1, CYFIP1, DIS3, TBP, and EXOC1, as effective gene targets for increasing MHC-I expression in breast cancer. Mechanistically, knockout of each of these genes activated the intrinsic interferon response in breast cancer cells, which not only promoted MHC-I expression but also caused immunogenic cell death of breast cancer. Finally, the scRNA-seq confirmed the negative correlation of PIP5K1A et al. with TILs in breast cancer patients. Collectively, we identified multiple gene targets for an increase in MHC-I expression in breast cancer in this study.
Collapse
Affiliation(s)
| | | | | | | | - Jinpeng Li
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, State Key Laboratory of Virology, Wuhan University, Wuhan 430072, China; (X.L.); (Z.R.); (S.Y.); (Q.Y.)
| | - Mingming Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, State Key Laboratory of Virology, Wuhan University, Wuhan 430072, China; (X.L.); (Z.R.); (S.Y.); (Q.Y.)
| |
Collapse
|
27
|
Xanthopoulou E, Lamprou I, Mitrakas AG, Michos GD, Zois CE, Giatromanolaki A, Harris AL, Koukourakis MI. Autophagy Blockage Up-Regulates HLA-Class-I Molecule Expression in Lung Cancer and Enhances Anti-PD-L1 Immunotherapy Efficacy. Cancers (Basel) 2024; 16:3272. [PMID: 39409895 PMCID: PMC11476265 DOI: 10.3390/cancers16193272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Immune checkpoint inhibitors have an established role in non-small cell lung cancer (NSCLC) therapy. The loss of HLA-class-I expression allows cancer cell evasion from immune surveillance, disease progression, and failure of immunotherapy. The restoration of HLA-class-I expression may prove to be a game-changer in current immunotherapy strategies. Autophagic activity has been recently postulated to repress HLA-class-I expression in cancer cells. METHODS NSCLC cell lines (A549 and H1299) underwent late-stage (chloroquine and bafilomycin) and early-stage autophagy blockage (ULK1 inhibitors and MAP1LC3A silencing). The HLA-class-I expression was assessed with flow cytometry, a Western blot, and RT-PCR. NSCLC tissues were examined for MAP1LC3A and HLA-class-I expression using double immunohistochemistry. CD8+ T-cell cytotoxicity was examined in cancer cells pre-incubated with chloroquine and anti-PD-L1 monoclonal antibodies (Moabs); Results: A striking increase in HLA-class-I expression following incubation with chloroquine, bafilomycin, and IFNγ was noted in A549 and H1299 cancer cells, respectively. This effect was further confirmed in CD133+ cancer stem cells. HLA-class-I, β2-microglobulin, and TAP1 mRNA levels remained stable. Prolonged exposure to chloroquine further enhanced HLA-class-I expression. Similar results were noted following exposure to a ULK1 and a PIKfyve inhibitor. Permanent silencing of the MAP1LC3A gene resulted in enhanced HLA-class-I expression. In immunohistochemistry experiments, double LC3A+/HLA-class-I expression was seldom. Pre-incubation of H1299 cancer cells with chloroquine and anti-PD-L1 MoAbs increased the mean % of apoptotic/necrotic cells from 2.5% to 18.4%; Conclusions: Autophagy blockers acting either at late or early stages of the autophagic process may restore HLA-class-I-mediated antigen presentation, eventually leading to enhanced immunotherapy efficacy.
Collapse
Affiliation(s)
- Erasmia Xanthopoulou
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Ioannis Lamprou
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Achilleas G. Mitrakas
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Georgios D. Michos
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| | - Christos E. Zois
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Adrian L. Harris
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Michael I. Koukourakis
- Department of Radiotherapy/Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (E.X.); (I.L.); (A.G.M.); (G.D.M.); (C.E.Z.)
| |
Collapse
|
28
|
Thepmalee C, Jenkham P, Ramwarungkura B, Suwannasom N, Khoothiam K, Thephinlap C, Sawasdee N, Panya A, Yenchitsomanus PT. Enhancing cancer immunotherapy using cordycepin and Cordyceps militaris extract to sensitize cancer cells and modulate immune responses. Sci Rep 2024; 14:21907. [PMID: 39300166 DOI: 10.1038/s41598-024-72833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Integrating immunotherapy with natural compounds holds promise in enhancing the immune system's ability to eliminate cancer cells. Cordyceps militaris, a traditional Chinese medicine, emerges as a promising candidate in this regard. This study investigates the effects of cordycepin and C. militaris ethanolic extract (Cm-EE) on sensitizing cancer cells and regulating immune responses against breast cancer (BC) and hepatocellular carcinoma (HCC) cells. Cordycepin, pentostatin and adenosine were identified in Cm-EE. Cordycepin treatment decreased HLA-ABC-positive cells in pre-treated cancer cells, while Cm-EE increased NKG2D ligand and death receptor expression. Additionally, cordycepin enhanced NKG2D receptor and death ligand expression on CD3-negative effector immune cells, particularly on natural killer (NK) cells, while Cm-EE pre-treatment stimulated IL-2, IL-6, and IL-10 production. Co-culturing cancer cells with effector immune cells during cordycepin or Cm-EE incubation resulted in elevated cancer cell death. These findings highlight the potential of cordycepin and Cm-EE in improving the efficacy of cancer immunotherapy for BC and HCC.
Collapse
Affiliation(s)
- Chutamas Thepmalee
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Phanitaporn Jenkham
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Boonyanuch Ramwarungkura
- Division of Molecular Medicine, Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nittiya Suwannasom
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Krissana Khoothiam
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Chonthida Thephinlap
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Nunghathai Sawasdee
- Division of Molecular Medicine, Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aussara Panya
- Cell Engineering for Cancer Therapy Research Group, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
29
|
Georgopoulos AP, James LM, Sanders M. Nine Human Leukocyte Antigen (HLA) Class I Alleles are Omnipotent Against 11 Antigens Expressed in Melanoma Tumors. Cancer Inform 2024; 23:11769351241274160. [PMID: 39206277 PMCID: PMC11350539 DOI: 10.1177/11769351241274160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Objective Host immunogenetics (Human Leukocyte Antigen, HLA) play a critical role in the human immune response to melanoma, influencing both melanoma prevalence and immunotherapy outcomes. Beneficial outcomes hinge on the successful binding of epitopes of melanoma antigens to HLA Class I molecules for an effective engagement of cytotoxic CD8+ lymphocytes and subsequent elimination of the cancerous cell. This study evaluated the binding affinity and immunogenicity of HLA Class I to melanoma tumor antigens to identify alleles best suited to facilitate elimination of melanoma antigens. Methods In this study, we used freely available software tools to determine in silico the binding affinity and immunogenicity of 2462 reported HLA Class I alleles to all linear nonamer epitopes of 11 known antigens expressed in melanoma tumors (TRP2, S100, Tyrosinase, TRP1, PMEL(17), MAGE1, MAGE4, CTA, BAGE, GAGE/SSX2, Melan). Results We identified the following 9 HLA Class I alleles with very high immunogenicity and binding affinity against all 11 melanoma antigens: A*02:14, B*07:10, B*35:10, B*40:10, B*40:12, B*44:10, C*07:11, and C*07:13, and C*07:14. Conclusion These 9 HLA alleles possess the potential to aid in the elimination of melanoma both by themselves and by enhancing the beneficial effect of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Lisa M James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matthew Sanders
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
30
|
Lapuente-Santana Ó, Sturm G, Kant J, Ausserhofer M, Zackl C, Zopoglou M, McGranahan N, Rieder D, Trajanoski Z, da Cunha Carvalho de Miranda NF, Eduati F, Finotello F. Multimodal analysis unveils tumor microenvironment heterogeneity linked to immune activity and evasion. iScience 2024; 27:110529. [PMID: 39161957 PMCID: PMC11331718 DOI: 10.1016/j.isci.2024.110529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 07/13/2024] [Indexed: 08/21/2024] Open
Abstract
The cellular and molecular heterogeneity of tumors is a major obstacle to cancer immunotherapy. Here, we use a systems biology approach to derive a signature of the main sources of heterogeneity in the tumor microenvironment (TME) from lung cancer transcriptomics. We demonstrate that this signature, which we called iHet, is conserved in different cancers and associated with antitumor immunity. Through analysis of single-cell and spatial transcriptomics data, we trace back the cellular origin of the variability explaining the iHet signature. Finally, we demonstrate that iHet has predictive value for cancer immunotherapy, which can be further improved by disentangling three major determinants of anticancer immune responses: activity of immune cells, immune infiltration or exclusion, and cancer-cell foreignness. This work shows how transcriptomics data can be integrated to derive a holistic representation of the phenotypic heterogeneity of the TME and to predict its unfolding and fate during immunotherapy with immune checkpoint blockers.
Collapse
Affiliation(s)
- Óscar Lapuente-Santana
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Boehringer Ingelheim International Pharma GmbH & Co KG, 55216 Ingelheim am Rhein, Germany
| | - Joan Kant
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Markus Ausserhofer
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Constantin Zackl
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Maria Zopoglou
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6DD, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London WC1E 6DD, UK
| | - Dietmar Rieder
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Federica Eduati
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AZ Eindhoven, the Netherlands
| | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
31
|
Deng K, Liang L, Yang Y, Wu Y, Li Y, Zhang R, Tian Y, Lu C. The Wdr5-H3K4me3 Epigenetic Axis Regulates Pancreatic Tumor Immunogenicity and Immune Suppression. Int J Mol Sci 2024; 25:8773. [PMID: 39201460 PMCID: PMC11354242 DOI: 10.3390/ijms25168773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The WDR5/MLL1-H3K4me3 epigenetic axis is often activated in both tumor cells and tumor-infiltrating immune cells to drive various cellular responses in the tumor microenvironment and has been extensively studied in hematopoietic cancer, but its respective functions in tumor cells and immune cells in the context of tumor growth regulation of solid tumor is still incompletely understood. We report here that WDR5 exhibits a higher expression level in human pancreatic tumor tissues compared with adjacent normal pancreas. Moreover, WDR5 expression is negatively correlated with patients' response to chemotherapy or immunotherapy in human colon cancer and melanoma. However, WDR5 expression is positively correlated with the HLA level in human cancer cells, and H3K4me3 enrichment is observed at the promoter region of the HLA-A, HLA-B, and HLA-C genes in pancreatic cancer cells. Using mouse tumor cell lines and in vivo tumor models, we determined that WDR5 deficiency or inhibition significantly represses MHC I expression in vitro and in vivo in pancreatic tumor cells. Mechanistically, we determine that WDR5 deficiency inhibits H3K4me3 deposition at the MHC I (H2K) promoter region to repress MHC I (H2K) transcription. On the other hand, WDR5 depletion leads to the effective downregulation of immune checkpoints and immunosuppressive cytokines, including TGFβ and IL6, in the pancreatic tumor microenvironments. Our data determine that WDR5 not only regulates tumor cell immunogenicity to suppress tumor growth but also activates immune suppressive pathways to promote tumor immune evasion. Selective activation of the WDR5-MHC I pathway and/or selective inhibition of the WDR5-immune checkpoint and WDR5-cytokine pathways should be considered in WDR5-based epigenetic cancer immunotherapy.
Collapse
Affiliation(s)
- Kaidi Deng
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| | - Liyan Liang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| | - Yingcui Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| | - Yanmin Wu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| | - Yan Li
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| | - Rongrong Zhang
- Institute of Materia Medica, Peking Union Medical College, Beijing 100050, China; (R.Z.); (Y.T.)
| | - Yulin Tian
- Institute of Materia Medica, Peking Union Medical College, Beijing 100050, China; (R.Z.); (Y.T.)
| | - Chunwan Lu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (K.D.); (L.L.); (Y.Y.); (Y.W.); (Y.L.)
| |
Collapse
|
32
|
Geva R, Vieito M, Ramon J, Perets R, Pedregal M, Corral E, Doger B, Calvo E, Bardina J, Garralda E, Brown RJ, Greger JG, Wu S, Steinbach D, Yao TWS, Cao Y, Lauring J, Chaudhary R, Patel J, Patel B, Moreno V. Safety and clinical activity of JNJ-78306358, a human leukocyte antigen-G (HLA-G) x CD3 bispecific antibody, for the treatment of advanced stage solid tumors. Cancer Immunol Immunother 2024; 73:205. [PMID: 39105878 PMCID: PMC11303617 DOI: 10.1007/s00262-024-03790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND JNJ-78306358 is a bispecific antibody that redirects T cells to kill human leukocyte antigen-G (HLA-G)-expressing tumor cells. This dose escalation study evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity of JNJ-78306358 in patients with advanced solid tumors. METHODS Adult patients with metastatic/unresectable solid tumors with high prevalence of HLA-G expression were enrolled. Dose escalation was initiated with once-weekly subcutaneous administration with step-up dosing to mitigate cytokine release syndrome (CRS). RESULTS Overall, 39 heavily pretreated patients (colorectal cancer: n = 23, ovarian cancer: n = 10, and renal cell carcinoma: n = 6) were dosed in 7 cohorts. Most patients (94.9%) experienced ≥ 1 treatment-emergent adverse events (TEAEs); 87.2% had ≥ 1 related TEAEs. About half of the patients (48.7%) experienced CRS, which were grade 1/2. Nine patients (23.1%) received tocilizumab for CRS. No grade 3 CRS was observed. Dose-limiting toxicities (DLTs) of increased transaminases, pneumonitis and recurrent CRS requiring a dose reduction were reported in 4 patients, coinciding with CRS. No treatment-related deaths reported. No objective responses were noted, but 2 patients had stable disease > 40 weeks. JNJ-78306358 stimulated peripheral T cell activation and cytokine release. Anti-drug antibodies were observed in 45% of evaluable patients with impact on exposure. Approximately half of archival tumor samples (48%) had expression of HLA-G by immunohistochemistry. CONCLUSION JNJ-78306358 showed pharmacodynamic effects with induction of cytokines and T cell activation. JNJ-78306358 was associated with CRS-related toxicities including increased transaminases and pneumonitis which limited its dose escalation to potentially efficacious levels. Trial registration number ClinicalTrials.gov (No. NCT04991740).
Collapse
Affiliation(s)
- Ravit Geva
- Sourasky Medical Center, Tel-Aviv university, Tel-Aviv, Israel.
| | - Maria Vieito
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jorge Ramon
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Ruth Perets
- Rambam Medical Center, and Technion-Israel Institute of Technology, Haifa, Israel
| | - Manuel Pedregal
- START Madrid-FJD, Hospital Fundacion Jimenez Diaz, Madrid, Spain
| | - Elena Corral
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Bernard Doger
- START Madrid-FJD, Hospital Fundacion Jimenez Diaz, Madrid, Spain
| | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Jorge Bardina
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Garralda
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Shujian Wu
- Janssen Research and Development, Horsham, PA, USA
| | | | | | - Yu Cao
- Janssen Research and Development, Raritan, NJ, USA
| | - Josh Lauring
- Janssen Research and Development, Spring House, PA, USA
| | | | - Jaymala Patel
- Janssen Research and Development, Spring House, PA, USA
| | - Bharvin Patel
- Janssen Research and Development, Spring House, PA, USA
| | - Victor Moreno
- START Madrid-FJD, Hospital Fundacion Jimenez Diaz, Madrid, Spain
| |
Collapse
|
33
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
34
|
Grau Bejar JF, Yaniz Galende E, Zeng Q, Genestie C, Rouleau E, de Bruyn M, Klein C, Le Formal A, Edmond E, Moreau M, Plat A, Gouy S, Maulard A, Pautier P, Michels J, Oaknin A, Colomba-Blameble E, Leary A. Immune predictors of response to immune checkpoint inhibitors in mismatch repair-deficient endometrial cancer. J Immunother Cancer 2024; 12:e009143. [PMID: 38955419 PMCID: PMC11218029 DOI: 10.1136/jitc-2024-009143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Patients with mismatch repair-deficient (MMRd) endometrial cancer (EC) can derive great benefit from immune checkpoint inhibitors (ICI). However not all responses and predictors of primary resistance are lacking. METHODS We compared the immune tumor microenvironment of MMRd EC ICI-responders (Rs) and ICI non-responders (NRs), using spatial multiplexed immune profiling and unsupervised hierarchical clustering analysis. RESULTS Overall, NRs exhibited drastically lower CD8+, absent terminally differentiated T cells, lack of mature tertiary lymphoid structures and dendritic cells, as well as loss of human leukocyte antigen class I. However, no single marker could predict R versus NR with confidence. Clustering analysis identified a combination of four immune features that demonstrated that accurately predicted ICI response, with a discriminative power of 92%. Finally, 80% of NRs lacked programmed death-ligand 1, however, 60% exhibited another actionable immune checkpoint (T-cell immunoglobulin and mucin containing protein-3, indoleamine 2,3-dioxygenase 1, or lymphocyte activation gene 3). CONCLUSIONS These findings underscore the potential of immune tumor microenvironment features for identifying patients with MMRd EC and primary resistance to ICI who should be oriented towards trials testing novel immunotherapeutic combinations.
Collapse
Affiliation(s)
- Juan Francisco Grau Bejar
- Gynecological Oncology Programme, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
| | - Elisa Yaniz Galende
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
| | - Qinghe Zeng
- Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris, France
- Centre d'Histologie, Imagerie cellulaire et Cytométrie (CHIC), Centre de Recherche des Cordeliers, Centre de Recherche des Cordeliers, Paris, France
| | | | - Etienne Rouleau
- Department of Medical Biology and Pathology, Cancer Genetics Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Marco de Bruyn
- Obstetrics & Gynecology, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands
| | - Christophe Klein
- Centre d'Histologie, Imagerie cellulaire et Cytométrie (CHIC), Centre de Recherche des Cordeliers, Centre de Recherche des Cordeliers, Paris, France
| | - Audrey Le Formal
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
| | - Elodie Edmond
- Experimental and Translational Pathology Platform (PETRA), AMMICa Inserm US23/UAR CNRS 3655, Gustave Roussy Institute, Villejuif, France
| | - Maëva Moreau
- Department of Medical Biology and Pathology, Cancer Genetics Laboratory, Gustave Roussy Institute, Villejuif, France
| | - Annechien Plat
- Obstetrics & Gynecology, University of Groningen Faculty of Medical Sciences, Groningen, The Netherlands
| | - Sebastien Gouy
- Department of Gynecologic Surgery, Department of Surgery, Gustave Roussy Institute, Villejuif, France
| | - Amandine Maulard
- Department of Gynecologic Surgery, Department of Surgery, Gustave Roussy Institute, Villejuif, France
| | - Patricia Pautier
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Judith Michels
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Ana Oaknin
- Gynecological Oncology Programme, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Emeline Colomba-Blameble
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| | - Alexandra Leary
- Gynecological Cancer Translational Research Laboratory, INSERM U981, Gustave Roussy Institute, Villejuif, France
- Gynecological Cancer Unit, Department of Medical Oncology, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
35
|
Yaniz-Galende E, Zeng Q, Bejar-Grau JF, Klein C, Blanc-Durand F, Le Formal A, Pujade-Lauraine E, Chardin L, Edmond E, Marty V, Ray-Coquard I, Joly F, Ferron G, Pautier P, Berton-Rigaud D, Lortholary A, Dohollou N, Desauw C, Fabbro M, Malaurie E, Bonichon-Lamaichhane N, Bello Roufai D, Gantzer J, Rouleau E, Genestie C, Leary A. Spatial Profiling of Ovarian Carcinoma and Tumor Microenvironment Evolution under Neoadjuvant Chemotherapy. Clin Cancer Res 2024; 30:2790-2800. [PMID: 38669064 PMCID: PMC11215404 DOI: 10.1158/1078-0432.ccr-23-3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE This study investigates changes in CD8+ cells, CD8+/Foxp3 ratio, HLA I expression, and immune coregulator density at diagnosis and upon neoadjuvant chemotherapy (NACT), correlating changes with clinical outcomes. EXPERIMENTAL DESIGN Multiplexed immune profiling and cell clustering analysis were performed on paired matched ovarian cancer samples to characterize the immune tumor microenvironment (iTME) at diagnosis and under NACT in patients enrolled in the CHIVA trial (NCT01583322). RESULTS Several immune cell (IC) subsets and immune coregulators were quantified pre/post-NACT. At diagnosis, patients with higher CD8+ T cells and HLA I+-enriched tumors were associated with a better outcome. The CD8+/Foxp3+ ratio increased significantly post-NACT in favor of increased immune surveillance, and the influx of CD8+ T cells predicted better outcomes. Clustering analysis stratified pre-NACT tumors into four subsets: high Binf, enriched in B clusters; high Tinf and low Tinf, according to their CD8+ density; and desert clusters. At baseline, these clusters were not correlated with patient outcomes. Under NACT, tumors were segregated into three clusters: high BinfTinf, low Tinf, and desert. The high BinfTinf, more diverse in IC composition encompassing T, B, and NK cells, correlated with improved survival. PDL1 was rarely expressed, whereas TIM3, LAG3, and IDO1 were more prevalent. CONCLUSIONS Several iTMEs exist during tumor evolution, and the NACT impact on iTME is heterogeneous. Clustering analysis of patients unravels several IC subsets within ovarian cancer and can guide future personalized approaches. Targeting different checkpoints such as TIM3, LAG3, and IDO1, more prevalent than PDL1, could more effectively harness antitumor immunity in this anti-PDL1-resistant malignancy.
Collapse
Affiliation(s)
- Elisa Yaniz-Galende
- Université Paris-Saclay, Gustave-Roussy Cancer Campus, Inserm U981, Villejuif, France.
| | - Qinghe Zeng
- Centre d’Histologie, d’Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.
| | - Juan F. Bejar-Grau
- Université Paris-Saclay, Gustave-Roussy Cancer Campus, Inserm U981, Villejuif, France.
- Gynaecologic Cancer Programme, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Christophe Klein
- Centre d’Histologie, d’Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.
| | - Felix Blanc-Durand
- Université Paris-Saclay, Gustave-Roussy Cancer Campus, Inserm U981, Villejuif, France.
- Departement of Medecine, Gustave-Roussy Cancer Campus, INSERM U981, Université Paris-Saclay, Villejuif, France.
| | - Audrey Le Formal
- Université Paris-Saclay, Gustave-Roussy Cancer Campus, Inserm U981, Villejuif, France.
| | | | - Laure Chardin
- Université Paris-Saclay, Gustave-Roussy Cancer Campus, Inserm U981, Villejuif, France.
| | - Elodie Edmond
- AMMICa Platform, INSERM US23, CNRS UAR 3655, AMMICa, Villejuif, France.
| | - Virginie Marty
- AMMICa Platform, INSERM US23, CNRS UAR 3655, AMMICa, Villejuif, France.
| | | | | | - Gwenael Ferron
- Institut Claudius Regaud IUCT Oncopole, Toulouse, France.
| | - Patricia Pautier
- Departement of Medecine, Gustave-Roussy Cancer Campus, INSERM U981, Université Paris-Saclay, Villejuif, France.
| | | | | | | | - Christophe Desauw
- Centre Hospitalier Régional Universitaire de Lille, Hôpital Huriez, Lille, France.
| | - Michel Fabbro
- Institut du Cancer de Montpellier–ICM Val d’Aurelle, Montpellier, France.
| | | | | | | | | | - Etienne Rouleau
- Cancer Genetics Laboratory, Gustave Roussy Institute, Villejuif, France.
| | | | - Alexandra Leary
- Université Paris-Saclay, Gustave-Roussy Cancer Campus, Inserm U981, Villejuif, France.
- Departement of Medecine, Gustave-Roussy Cancer Campus, INSERM U981, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
36
|
Yao H, Huang C, Zou J, Liang W, Zhao Y, Yang K, Zhong Z, Zhou S, Li J, Li Y, Xu L, Huang K, Lian G. Extracellular vesicle-packaged lncRNA from cancer-associated fibroblasts promotes immune evasion by downregulating HLA-A in pancreatic cancer. J Extracell Vesicles 2024; 13:e12484. [PMID: 39041344 PMCID: PMC11263977 DOI: 10.1002/jev2.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by immune evasion that contribute to poor prognosis. Cancer-associated fibroblasts (CAFs) play a pivotal role in orchestrating the PDAC tumour microenvironment. We investigated the role of CAF-derived extracellular vesicle (EV)-packaged long non-coding RNAs (lncRNAs) in immune evasion and explored gene therapy using engineered EVs loading small interfering RNAs (siRNAs) as a potential therapeutic strategy. Our findings highlight the significance of EV-packaged lncRNA RP11-161H23.5 from CAF in promoting PDAC immune evasion by downregulating HLA-A expression, a key component of antigen presentation. Mechanistically, RP11-161H23.5 forms a complex with CNOT4, a subunit of the mRNA deadenylase CCR4-NOT complex, enhancing the degradation of HLA-A mRNA by shortening its poly(A) tail. This immune evasion mechanism compromises the anti-tumour immune response. To combat this, we propose an innovative approach utilising engineered EVs as natural and biocompatible nanocarriers for siRNA-based gene therapy and this strategy holds promise for enhancing the effectiveness of immunotherapy in PDAC. Overall, our study sheds light on the critical role of CAF-derived EV-packaged lncRNA RP11-161H23.5/CNOT4/HLA-A axis in PDAC immune evasion and presents a novel avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Hanming Yao
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jinmao Zou
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Weiling Liang
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yue Zhao
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Kege Yang
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Ziyi Zhong
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Shurui Zhou
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jiajia Li
- Department of NephrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Yaqing Li
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Lishu Xu
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Kaihong Huang
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Guoda Lian
- Department of GastroenterologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
37
|
Wang Y, Seliger B. Identification of RNA-binding protein hnRNP C targeting the 3'UTR of the TAP-associated glycoprotein tapasin in melanoma. Oncoimmunology 2024; 13:2370928. [PMID: 38948930 PMCID: PMC11212565 DOI: 10.1080/2162402x.2024.2370928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Deregulation or loss of the human leukocyte antigen class I (HLA-I) molecules on tumor cells leading to inhibition of CD8+ T cell recognition is an important tumor immune escape strategy, which could be caused by a posttranscriptional control of molecules in the HLA-I pathway mediated by RNA-binding proteins (RBPs). So far, there exists only limited information about the interaction of RBPs with HLA-I-associated molecules, but own work demonstrated a binding of the heterogeneous ribonucleoprotein C (hnRNP C) to the 3' untranslated region (UTR) of the TAP-associated glycoprotein tapasin (tpn). In this study, in silico analysis of pan-cancer TCGA datasets revealed that hnRNP C is higher expressed in tumor specimens compared to corresponding normal tissues, which is negatively correlated to tpn expression, T cell infiltration and the overall survival of tumor patients. Functional analysis demonstrated an upregulation of tpn expression upon siRNA-mediated downregulation of hnRNP C, which is accompanied by an increased HLA-I surface expression. Thus, hnRNP C has been identified to target tpn and its inhibition could improve the HLA-I surface expression on melanoma cells suggesting its use as a possible biomarker for T-cell-based tumor immunotherapies.
Collapse
Affiliation(s)
- Yuan Wang
- Institute for Medical Immunology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
- Institute of Translational Immunology, Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
| |
Collapse
|
38
|
Alviano AM, Biondi M, Grassenis E, Biondi A, Serafini M, Tettamanti S. Fully equipped CARs to address tumor heterogeneity, enhance safety, and improve the functionality of cellular immunotherapies. Front Immunol 2024; 15:1407992. [PMID: 38887285 PMCID: PMC11180895 DOI: 10.3389/fimmu.2024.1407992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Although adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells has achieved unprecedented response rates in patients with certain hematological malignancies, this therapeutic modality is still far from fulfilling its remarkable potential, especially in the context of solid cancers. Antigen escape variants, off-tumor destruction of healthy tissues expressing tumor-associated antigens (TAAs), poor CAR-T cell persistence, and the occurrence of functional exhaustion represent some of the most prominent hurdles that limit CAR-T cell ability to induce long-lasting remissions with a tolerable adverse effect profile. In this review, we summarize the main approaches that have been developed to face such bottlenecks, including the adapter CAR (AdCAR) system, Boolean-logic gating, epitope editing, the modulation of cell-intrinsic signaling pathways, and the incorporation of safety switches to precisely control CAR-T cell activation. We also discuss the most pressing issues pertaining to the selection of co-stimulatory domains, with a focus on strategies aimed at promoting CAR-T cell persistence and optimal antitumor functionality.
Collapse
Affiliation(s)
- Antonio Maria Alviano
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Biondi
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Erica Grassenis
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Andrea Biondi
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Serafini
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sarah Tettamanti
- Tettamanti Center and Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
39
|
Yonker LM, Kinane TB. Depths of Dysfunctional Epithelial and Immune Crosstalk in Cystic Fibrosis Revealed. Am J Respir Crit Care Med 2024; 209:1292-1293. [PMID: 38358817 PMCID: PMC11146573 DOI: 10.1164/rccm.202401-0181ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/15/2024] [Indexed: 02/17/2024] Open
Affiliation(s)
- Lael M Yonker
- Department of Pediatrics Massachusetts General Hospital Boston, Massachusetts
- Harvard Medical School Boston, Massachusetts
| | - T Bernard Kinane
- Department of Pediatrics Massachusetts General Hospital Boston, Massachusetts
- Harvard Medical School Boston, Massachusetts
| |
Collapse
|
40
|
Jiang C, Zhang S, Jiang L, Chen Z, Chen H, Huang J, Tang J, Luo X, Yang G, Liu J, Chi H. Precision unveiled: Synergistic genomic landscapes in breast cancer-Integrating single-cell analysis and decoding drug toxicity for elite prognostication and tailored therapeutics. ENVIRONMENTAL TOXICOLOGY 2024; 39:3448-3472. [PMID: 38450906 DOI: 10.1002/tox.24205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Globally, breast cancer, with diverse subtypes and prognoses, necessitates tailored therapies for enhanced survival rates. A key focus is glutamine metabolism, governed by select genes. This study explored genes associated with T cells and linked them to glutamine metabolism to construct a prognostic staging index for breast cancer patients for more precise medical treatment. METHODS Two frameworks, T-cell related genes (TRG) and glutamine metabolism (GM), stratified breast cancer patients. TRG analysis identified key genes via hdWGCNA and machine learning. T-cell communication and spatial transcriptomics emphasized TRG's clinical value. GM was defined using Cox analyses and the Lasso algorithm. Scores categorized patients as TRG_high+GM_high (HH), TRG_high+GM_low (HL), TRG_low+GM_high (LH), or TRG_low+GM_low (LL). Similarities between HL and LH birthed a "Mixed" class and the TRG_GM classifier. This classifier illuminated gene variations, immune profiles, mutations, and drug responses. RESULTS Utilizing a composite of two distinct criteria, we devised a typification index termed TRG_GM classifier, which exhibited robust prognostic potential for breast cancer patients. Our analysis elucidated distinct immunological attributes across the classifiers. Moreover, by scrutinizing the genetic variations across groups, we illuminated their unique genetic profiles. Insights into drug sensitivity further underscored avenues for tailored therapeutic interventions. CONCLUSION Utilizing TRG and GM, a robust TRG_GM classifier was developed, integrating clinical indicators to create an accurate predictive diagnostic map. Analysis of enrichment disparities, immune responses, and mutation patterns across different subtypes yields crucial subtype-specific characteristics essential for prognostic assessment, clinical decision-making, and personalized therapies. Further exploration is warranted into multiple fusions between metrics to uncover prognostic presentations across various dimensions.
Collapse
Affiliation(s)
- Chenglu Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zipei Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jingyi Tang
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiufang Luo
- Geriatric department, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, Ohio, USA
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Hao Chi
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
41
|
Linder A, Westbom-Fremer S, Mateoiu C, Olsson Widjaja A, Österlund T, Veerla S, Ståhlberg A, Ulfenborg B, Hedenfalk I, Sundfeldt K. Genomic alterations in ovarian endometriosis and subsequently diagnosed ovarian carcinoma. Hum Reprod 2024; 39:1141-1154. [PMID: 38459814 PMCID: PMC11063555 DOI: 10.1093/humrep/deae043] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
STUDY QUESTION Can the alleged association between ovarian endometriosis and ovarian carcinoma be substantiated by genetic analysis of endometriosis diagnosed prior to the onset of the carcinoma? SUMMARY ANSWER The data suggest that ovarian carcinoma does not originate from ovarian endometriosis with a cancer-like genetic profile; however, a common precursor is probable. WHAT IS KNOWN ALREADY Endometriosis has been implicated as a precursor of ovarian carcinoma based on epidemiologic studies and the discovery of common driver mutations in synchronous disease at the time of surgery. Endometrioid ovarian carcinoma and clear cell ovarian carcinoma are the most common endometriosis-associated ovarian carcinomas (EAOCs). STUDY DESIGN, SIZE, DURATION The pathology biobanks of two university hospitals in Sweden were scrutinized to identify women with surgically removed endometrioma who subsequently developed ovarian carcinoma (1998-2016). Only 45 archival cases with EAOC and previous endometriosis were identified and after a careful pathology review, 25 cases were excluded due to reclassification into non-EAOC (n = 9) or because ovarian endometriosis could not be confirmed (n = 16). Further cases were excluded due to insufficient endometriosis tissue or poor DNA quality in either the endometriosis, carcinoma, or normal tissue (n = 9). Finally 11 cases had satisfactory DNA from all three locations and were eligible for further analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Epithelial cells were collected from formalin-fixed and paraffin-embedded (FFPE) sections by laser capture microdissection (endometrioma n = 11) or macrodissection (carcinoma n = 11) and DNA was extracted. Normal tissue from FFPE sections (n = 5) or blood samples collected at cancer diagnosis (n = 6) were used as the germline controls for each included patient. Whole-exome sequencing was performed (n = 33 samples). Somatic variants (single-nucleotide variants, indels, and copy number alterations) were characterized, and mutational signatures and kataegis were assessed. Microsatellite instability and mismatch repair status were confirmed with PCR and immunohistochemistry, respectively. MAIN RESULTS AND THE ROLE OF CHANCE The median age for endometriosis surgery was 42 years, and 54 years for the subsequent ovarian carcinoma diagnosis. The median time between the endometriosis and ovarian carcinoma was 10 (7-30) years. The data showed that all paired samples harbored one or more shared somatic mutations. Non-silent mutations in cancer-associated genes were frequent in endometriosis; however, the same mutations were never observed in subsequent carcinomas. The degree of clonal dominance, demonstrated by variant allele frequency, showed a positive correlation with the time to cancer diagnosis (Spearman's rho 0.853, P < 0.001). Mutations in genes associated with immune escape were the most conserved between paired samples, and regions harboring these genes were frequently affected by copy number alterations in both sample types. Mutational burdens and mutation signatures suggested faulty DNA repair mechanisms in all cases. LARGE SCALE DATA Datasets are available in the supplementary tables. LIMITATIONS, REASONS FOR CAUTION Even though we located several thousands of surgically removed endometriomas between 1998 and 2016, only 45 paired samples were identified and even fewer, 11 cases, were eligible for sequencing. The observed high level of intra- and inter-heterogeneity in both groups (endometrioma and carcinoma) argues for further studies of the alleged genetic association. WIDER IMPLICATIONS OF THE FINDINGS The observation of shared somatic mutations in all paired samples supports a common cellular origin for ovarian endometriosis and ovarian carcinoma. However, contradicting previous conclusions, our data suggest that cancer-associated mutations in endometriosis years prior to the carcinoma were not directly associated with the malignant transformation. Rather, a resilient ovarian endometriosis may delay tumorigenesis. Furthermore, the data indicate that genetic alterations affecting the immune response are early and significant events. STUDY FUNDING/COMPETING INTEREST(S) The present work has been funded by the Sjöberg Foundation (2021-01145 to K.S.; 2022-01-11:4 to A.S.), Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (965552 to K.S.; 40615 to I.H.; 965065 to A.S.), Swedish Cancer Society (21-1848 to K.S.; 21-1684 to I.H.; 22-2080 to A.S.), BioCARE-A Strategic Research Area at Lund University (I.H. and S.W.-F.), Mrs Berta Kamprad's Cancer Foundation (FBKS-2019-28, I.H.), Cancer and Allergy Foundation (10381, I.H.), Region Västra Götaland (A.S.), Sweden's Innovation Agency (2020-04141, A.S.), Swedish Research Council (2021-01008, A.S.), Roche in collaboration with the Swedish Society of Gynecological Oncology (S.W.-F.), Assar Gabrielsson Foundation (FB19-86, C.M.), and the Lena Wäpplings Foundation (C.M.). A.S. declares stock ownership and is also a board member in Tulebovaasta, SiMSen Diagnostics, and Iscaff Pharma. A.S. has also received travel support from EMBL, Precision Medicine Forum, SLAS, and bioMCC. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Collapse
Affiliation(s)
- A Linder
- Department of Obstetrics and Gynecology, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - S Westbom-Fremer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Lund University Cancer Centre (LUCC), Lund University, Lund, Sweden
| | - C Mateoiu
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - A Olsson Widjaja
- Department of Obstetrics and Gynecology, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - T Österlund
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - S Veerla
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Lund University Cancer Centre (LUCC), Lund University, Lund, Sweden
| | - A Ståhlberg
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - B Ulfenborg
- Department of Biology and Bioinformatics, Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - I Hedenfalk
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Lund University Cancer Centre (LUCC), Lund University, Lund, Sweden
| | - K Sundfeldt
- Department of Obstetrics and Gynecology, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
42
|
Giatromanolaki A, Michos GD, Xanthopoulou E, Koukourakis MI. HLA-class-I expression loss, tumor microenvironment and breast cancer prognosis. Cell Immunol 2024; 399-400:104816. [PMID: 38507936 DOI: 10.1016/j.cellimm.2024.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Loss of HLA-class-I molecule expression by cancer cells is a frequent event in human tumors that may lead to immune evasion from cytotoxic T-cells. We examined the expression patterns of HLA-class-I molecules in a series of 175 patients with operable breast cancer (BCa). Extensive loss of BCa cell HLA-class-I expression was noted 76.6 % of patients (27.5 % complete loss). A significant association of HLA-preservation with high TIL-density (p = 0.001) was documented. Preservation of HLA was evident only in BCa carcinomas with low HIF1α expression and high TIL-density. Cell line experiments (MCF7 and T47D) showed that induction of HLAs in cancer cells following incubation with lymphocytes or IFNγ, was abrogated under hypoxic conditions. HLA-preservation was linked with better distant metastasis-free survival (p = 0.01), which was confirmed also in multivariate analysis (p = 0.02, HR 3.17). Studying the expression of HLA-class-I molecules in parallel with TIL-density and HIF1α expression may identify subgroups of BCa patients who would benefit from immunotherapy.
Collapse
Affiliation(s)
- Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios D Michos
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Erasmia Xanthopoulou
- Department of Radiotherapy / Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael I Koukourakis
- Department of Radiotherapy / Oncology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
43
|
Zielińska H, Dukat-Mazurek A, Sadowska-Klasa A, Trzonkowski P, Zaucha JM, Piekarska A. Impact of Circulating Lymphoma Cells on HLA Typing Outcomes in Patients with Diffuse Large B-Cell Lymphoma: A Case Report. Transplant Proc 2024; 56:1026-1028. [PMID: 38714370 DOI: 10.1016/j.transproceed.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/29/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Recipient's high resolution HLA typing is required in allogeneic hematopoietic cell transplantation from unrelated donors, as well as for haploidentical family donors. For these purposes, Next-Generation Sequencing (NGS) methods are the gold standard. METHODS We present a case of a patient with an incorrect HLA typing result caused by the population of circulating lymphoma cells. The first HLA examination was performed from peripheral blood (PB) using NGS in the active phase of diffuse large B-cell lymphoma with bone marrow involvement. RESULTS Because of rare and inconclusive results, confirmed twice for the A* locus (A*02:32N), real-time polymerase chain reaction (RT-PCR)was performed. With RT-PCR method, we obtained more expected results according to the population allele frequency: in HLA-A locus (A*02:01) but also in DQB1 (DQB1*03:01, not as in NGS - DQB1*03:10). For the final verification, we used swab material and we obtained unambiguous NGS result with expected, frequent HLA-A*02:01 and DQB1*03:01 alleles corresponding to the RT-PCR result from PB. CONCLUSIONS To conclude, we suspect that the discrepancies between NGS and RT-PCR results were caused by the presence of a significant amount of circulating lymphoma cells in the peripheral blood sample. Lymphomagenic mutations may involve the histocompatibility antigen coding region and affect HLA expressed on malignant cells. This finding may be relevant for the selection of test material in primary and confirmatory HLA testing in patients with active hematological malignancies because of the strong impact of incorrect HLA typing on the procedure of a donor selection.
Collapse
Affiliation(s)
- Hanna Zielińska
- Department of Medical Immunology, Medical University of Gdansk, Poland.
| | | | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Poland
| | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, Poland
| | - Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdansk, Poland
| |
Collapse
|
44
|
Oszwald A, Zisser L, Compérat E, Müllauer L. Panel Comparative Analysis Tool: An Open-Source Comparative Analysis Tool for Next-Generation Sequencing Panel Target Regions. J Mol Diagn 2024; 26:423-429. [PMID: 38508412 DOI: 10.1016/j.jmoldx.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 03/22/2024] Open
Abstract
Multigene next-generation sequencing (NGS) panels have become a routine diagnostic method in the contemporary practice of personalized medicine. To avoid inadequate test choice or interpretation, a detailed understanding of the precise panel target regions is required. However, the necessary bioinformatic expertise is not always available, and publicly accessible and easily interpretable analyses of target regions are scarce. To address this critical knowledge gap, we present the Panel Comparative Analysis Tool (PanelCAT), an open-source application to analyze, visualize, and compare NGS panel DNA target regions. PanelCAT uses Reference Sequence, ClinVar, and Catalogue of Somatic Mutations in Cancer mutation census databases to quantify the exon and mutation coverage of target regions and provides interactive graphical representations and search functions to inspect the results. We demonstrate the utility of PanelCAT by analyzing two large NGS panels (TruSight Oncology 500 and Human Pan Cancer Panel) to validate the advertised target genes, quantify targeted exons and mutations, and identify differences between panels. PanelCAT will enable institutions and researchers to catalog and visualize NGS panel target regions independent of the manufacturer, promote transparency of panel limitations, and share this information with employees and requisitioners.
Collapse
Affiliation(s)
- André Oszwald
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
| | - Lucia Zisser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Eva Compérat
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Schlegel P. T cells for advanced synovial sarcoma or myxoid round cell liposarcoma. Lancet 2024; 403:1421-1423. [PMID: 38554722 DOI: 10.1016/s0140-6736(24)00411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; Department of Pediatric Hematology and Oncology, Westmead Children's Hospital, Sydney, NSW 2145, Australia.
| |
Collapse
|
46
|
Ricciuti B, Lamberti G, Puchala SR, Mahadevan NR, Lin JR, Alessi JV, Chowdhury A, Li YY, Wang X, Spurr L, Pecci F, Di Federico A, Venkatraman D, Barrichello AP, Gandhi M, Vaz VR, Pangilinan AJ, Haradon D, Lee E, Gupta H, Pfaff KL, Welsh EL, Nishino M, Cherniack AD, Johnson BE, Weirather JL, Dryg ID, Rodig SJ, Sholl LM, Sorger P, Santagata S, Umeton R, Awad MM. Genomic and Immunophenotypic Landscape of Acquired Resistance to PD-(L)1 Blockade in Non-Small-Cell Lung Cancer. J Clin Oncol 2024; 42:1311-1321. [PMID: 38207230 PMCID: PMC11095860 DOI: 10.1200/jco.23.00580] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/27/2023] [Accepted: 10/24/2023] [Indexed: 01/13/2024] Open
Abstract
PURPOSE Although immune checkpoint inhibitors (ICI) have extended survival in patients with non-small-cell lung cancer (NSCLC), acquired resistance (AR) to ICI frequently develops after an initial benefit. However, the mechanisms of AR to ICI in NSCLC are largely unknown. METHODS Comprehensive tumor genomic profiling, machine learning-based assessment of tumor-infiltrating lymphocytes, multiplexed immunofluorescence, and/or HLA-I immunohistochemistry (IHC) were performed on matched pre- and post-ICI tumor biopsies from patients with NSCLC treated with ICI at the Dana-Farber Cancer Institute who developed AR to ICI. Two additional cohorts of patients with intervening chemotherapy or targeted therapies between biopsies were included as controls. RESULTS We performed comprehensive genomic profiling and immunophenotypic characterization on samples from 82 patients with NSCLC and matched pre- and post-ICI biopsies and compared findings with a control cohort of patients with non-ICI intervening therapies between biopsies (chemotherapy, N = 32; targeted therapies, N = 89; both, N = 17). Putative resistance mutations were identified in 27.8% of immunotherapy-treated cases and included acquired loss-of-function mutations in STK11, B2M, APC, MTOR, KEAP1, and JAK1/2; these acquired alterations were not observed in the control groups. Immunophenotyping of matched pre- and post-ICI samples demonstrated significant decreases in intratumoral lymphocytes, CD3e+ and CD8a+ T cells, and PD-L1-PD1 engagement, as well as increased distance between tumor cells and CD8+PD-1+ T cells. There was a significant decrease in HLA class I expression in the immunotherapy cohort at the time of AR compared with the chemotherapy (P = .005) and the targeted therapy (P = .01) cohorts. CONCLUSION These findings highlight the genomic and immunophenotypic heterogeneity of ICI resistance in NSCLC, which will need to be considered when developing novel therapeutic strategies aimed at overcoming resistance.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sreekar R. Puchala
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA
| | | | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA
| | - Joao V. Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Alexander Chowdhury
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA
| | - Yvonne Y. Li
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Xinan Wang
- Harvard School of Public Health, Boston, MA
| | - Liam Spurr
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Federica Pecci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Deepti Venkatraman
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | - Malini Gandhi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Victor R. Vaz
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Andy J. Pangilinan
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Danielle Haradon
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Elinton Lee
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hersh Gupta
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA
| | - Kathleen L. Pfaff
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Emma L. Welsh
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Andrew D. Cherniack
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA
| | - Bruce E. Johnson
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jason L Weirather
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ian D Dryg
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Peter Sorger
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA
| | - Renato Umeton
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
47
|
Souza VGP, Telkar N, Lam WL, Reis PP. Comprehensive Analysis of Lung Adenocarcinoma and Brain Metastasis through Integrated Single-Cell Transcriptomics. Int J Mol Sci 2024; 25:3779. [PMID: 38612588 PMCID: PMC11012108 DOI: 10.3390/ijms25073779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a highly prevalent and lethal form of lung cancer, comprising approximately half of all cases. It is often diagnosed at advanced stages with brain metastasis (BM), resulting in high mortality rates. Current BM management involves complex interventions and conventional therapies that offer limited survival benefits with neurotoxic side effects. The tumor microenvironment (TME) is a complex system where cancer cells interact with various elements, significantly influencing tumor behavior. Immunotherapies, particularly immune checkpoint inhibitors, target the TME for cancer treatment. Despite their effectiveness, it is crucial to understand metastatic lung cancer and the specific characteristics of the TME, including cell-cell communication mechanisms, to refine treatments. Herein, we investigated the tumor microenvironment of brain metastasis from lung adenocarcinoma (LUAD-BM) and primary tumors across various stages (I, II, III, and IV) using single-cell RNA sequencing (scRNA-seq) from publicly available datasets. Our analysis included exploring the immune and non-immune cell composition and the expression profiles and functions of cell type-specific genes, and investigating the interactions between different cells within the TME. Our results showed that T cells constitute the majority of immune cells present in primary tumors, whereas microglia represent the most dominant immune cell type in BM. Interestingly, microglia exhibit a significant increase in the COX pathway. Moreover, we have shown that microglia primarily interact with oligodendrocytes and endothelial cells. One significant interaction was identified between DLL4 and NOTCH4, which demonstrated a relevant association between endothelial cells and microglia and between microglia and oligodendrocytes. Finally, we observed that several genes within the HLA complex are suppressed in BM tissue. Our study reveals the complex molecular and cellular dynamics of BM-LUAD, providing a path for improved patient outcomes with personalized treatments and immunotherapies.
Collapse
Affiliation(s)
- Vanessa G. P. Souza
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
48
|
Fang S, Zheng L, Shu GF, Xiaoxiao C, Guo X, Ding Y, Yang W, Chen J, Zhao Z, Tu J, Chen M, Ji JS. Multiple Immunomodulatory Strategies Based on Targeted Regulation of Proprotein Convertase Subtilisin/Kexin Type 9 and Immune Homeostasis against Hepatocellular Carcinoma. ACS NANO 2024; 18:8811-8826. [PMID: 38466366 DOI: 10.1021/acsnano.3c11775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Immunotherapy is the most promising systemic therapy for hepatocellular carcinoma. However, the outcome remains poor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a role in altering cell-surface protein levels, potentially undermining the efficacy of immunotherapy against tumors. This highlights its potential as a target for antitumor therapy. Herein, CaCO3-based nanoparticles coencapsulated with DOX, an immunogenic cell death (ICD) inducer, and evolocumab was developed to enhanced the efficacy of immunotherapy. The obtained DOX/evolocumab-loaded CaCO3 nanoparticle (named DECP) exhibits a good capacity of acid neutralization and causes ICD of cancer cells. In addition, DECP is able to evaluate the cell-surface level of MHC-I, a biomarker that correlates positively with patients' overall survival. Upon intravenous injection, DECP accumulates within the tumor site, leading to growth inhibition of hepa1-6 bearing subcutaneous tumors. Specifically, DECP treatment causes augmented ratios of matured dendritic cells, tumor-infiltrating CD8+ T cells and natural killing cells, while concurrently depleting Foxp3+ regulatory T cells. Peritumoral delivery of DECP enhances the immune response of distant tumors and exhibits antitumor effects when combined with intravenous αPD-L1 therapy in a bilateral tumor model. This study presents CaCO3-based nanoparticles with multiple immunomodulatory strategies against hepatocellular carcinoma by targeting PCSK9 inhibition and modulating immune homeostasis in the unfavorable TME.
Collapse
Affiliation(s)
- Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Liyun Zheng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Gao-Feng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| | - Chen Xiaoxiao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Xiaoju Guo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Yiming Ding
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Wenjing Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Jiale Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Jian-Song Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| |
Collapse
|
49
|
Cho U, Im S, Park HS. Exploring histological predictive biomarkers for immune checkpoint inhibitor therapy response in non-small cell lung cancer. J Pathol Transl Med 2024; 58:49-58. [PMID: 38389279 PMCID: PMC10948248 DOI: 10.4132/jptm.2024.01.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Treatment challenges persist in advanced lung cancer despite the development of therapies beyond the traditional platinum-based chemotherapy. The early 2000s marked a shift to tyrosine kinase inhibitors targeting epidermal growth factor receptor, ushering in personalized genetic-based treatment. A further significant advance was the development of immune checkpoint inhibitors (ICIs), especially for non-small cell lung cancer. These target programmed death-ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4, which enhanced the immune response against tumor cells. However, not all patients respond, and immune-related toxicities arise. This review emphasizes identifying biomarkers for ICI response prediction. While PD-L1 is a widely used, validated biomarker, its predictive accuracy is imperfect. Investigating tumor-infiltrating lymphocytes, tertiary lymphoid structure, and emerging biomarkers such as high endothelial venule, Human leukocyte antigen class I, T-cell immunoreceptors with Ig and ITIM domains, and lymphocyte activation gene-3 counts is promising. Understanding and exploring additional predictive biomarkers for ICI response are crucial for enhancing patient stratification and overall care in lung cancer treatment.
Collapse
Affiliation(s)
- Uiju Cho
- Department of Pathology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Soyoung Im
- Department of Pathology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Hyung Soon Park
- Division of Medical Oncology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
50
|
Yang Q, Lv Z, Wang M, Kong M, Zhong C, Gao K, Wan X. LATS1/2 loss promote tumor immune evasion in endometrial cancer through downregulating MHC-I expression. J Exp Clin Cancer Res 2024; 43:54. [PMID: 38383447 PMCID: PMC10880206 DOI: 10.1186/s13046-024-02979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND LATS1/2 are frequently mutated and down-regulated in endometrial cancer (EC), but the contributions of LATS1/2 in EC progression remains unclear. Impaired antigen presentation due to mutations or downregulation of the major histocompatibility complex class I (MHC-I) has been implicated in tumor immune evasion. Herein, we elucidate the oncogenic role that dysregulation of LATS1/2 in EC leads to immune evasion through the down-regulation of MHC-I. METHODS The mutation and expression as well as the clinical significance of LATS1/2 in EC was assessed in the TCGA cohort and our sample cohort. CRISPR-Cas9 was used to construct knockout cell lines of LATS1/2 in EC. Differentially expressed genes were analyzed by RNA-seq. The interaction between LATS1/2 and STAT1 was verified using co-immunoprecipitation and GST pull-down assays. Mass spectrometry, in vitro kinase assays, ChIP-qPCR, flow cytometry, immunohistochemistry, immunofluorescence and confocal microscopy were performed to investigate the regulation of LATS1/2 on MHC-I through interaction with and phosphorylate STAT1. The killing effect of activated PBMCs on EC cells were used to monitor anti-tumor activity. RESULTS Here, we demonstrate that LATS1/2 are frequently mutated and down-regulated in EC. Moreover, LATS1/2 loss was found to be associated with a significant down-regulation of MHC-I, independently of the Hippo-YAP pathway. Instead, LATS1/2 were found to directly interact with and phosphorylate STAT1 at Ser727, a crucial transcription factor for MHC-I upregulation in response to interferon-gamma (IFN-γ) signaling, to promote STAT1 accumulating and moving into the nucleus to enhance the transcriptional activation of IRF1/NLRC5 on MHC-I. Additionally, the loss of LATS1/2 was observed to confer increased resistance of EC cells to immune cell-mediated killing and this resistance could be reversed by over-expression of MHC-I. CONCLUSION Our findings indicate that dysregulation of LATS1/2 in EC leads to immune evasion through the down-regulation of MHC-I, leading to the suppression of infiltrating activated CD8 + T cells and highlight the importance of LATS1/2 in IFN-γ signaling-mediated tumor immune response, suggesting that LATS1/2 is a promising target for immune checkpoint blockade therapy in EC.
Collapse
Affiliation(s)
- Qianlan Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Zehen Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Mengfei Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Mengwen Kong
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Cheng Zhong
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai, 200092, China.
| |
Collapse
|