1
|
Ambrosini M, Manca P, Nasca V, Sciortino C, Ghelardi F, Seligmann JF, Taieb J, Pietrantonio F. Epidemiology, pathogenesis, biology and evolving management of MSI-H/dMMR cancers. Nat Rev Clin Oncol 2025; 22:385-407. [PMID: 40181086 DOI: 10.1038/s41571-025-01015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Deficiency in DNA mismatch repair (dMMR) is a common pathway of carcinogenesis across different tumour types and confers a characteristic microsatellite instability-high (MSI-H) molecular phenotype. The prevalence of the MSI-H/dMMR phenotype is highest in endometrial and colorectal cancers, and this phenotype is associated with a distinct tumour biology, prognosis and responsiveness to various anticancer treatments. In a minority of patients, MSI-H/dMMR cancers result from an inherited pathogenic variant in the context of Lynch syndrome, which has important implications for familial genetic screening. Whether these hereditary cancers have a different biology and clinical behaviour to their sporadic counterparts remains uncertain. Interest in this tumour molecular subtype has increased following the discovery of the high sensitivity of metastatic MSI-H/dMMR cancers to immune-checkpoint inhibitors (ICIs) in a histology-agnostic manner, which reflects the genomic hypermutation resulting from dMMR that renders these tumours highly immunogenic and immune infiltrated. This vulnerability is now also being exploited in early stage disease settings. Despite this common biological foundation, different MSI-H/dMMR cancers have histotype-specific features that correspond to their particular cell or tissue of origin, which might be associated with differences in prognosis and sensitivity to ICIs. In this Review, we provide an overview of the epidemiology, biology, pathogenesis, clinical diagnosis and treatment of MSI-H/dMMR tumours as a histology-agnostic cancer phenomenon. We also highlight peculiarities associated with specific pathogenetic alterations and histologies of MSI-H/dMMR tumours.
Collapse
Affiliation(s)
- Margherita Ambrosini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vincenzo Nasca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carolina Sciortino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Ghelardi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jenny F Seligmann
- Division of Oncology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Julien Taieb
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Paris-Cité University, SIRIC CARPEM Comprehensive Cancer Center, Paris, France
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
2
|
Rahimi A, Baghernejadan Z, Hazrati A, Malekpour K, Samimi LN, Najafi A, Falak R, Khorramdelazad H. Combination therapy with immune checkpoint inhibitors in colorectal cancer: Challenges, resistance mechanisms, and the role of microbiota. Biomed Pharmacother 2025; 186:118014. [PMID: 40157004 DOI: 10.1016/j.biopha.2025.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Colorectal cancer (CRC) is still one of the leading causes of cancer deaths worldwide. Even though there has been progress in cancer immunotherapy, the results of applying immune checkpoint inhibitors (ICIs) have been unsatisfactory, especially in microsatellite stable (MSS) CRC. Single-agent ICIs that target programmed cell death-1 (PD-1)/ PD-L1, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell Ig- and mucin-domain-containing molecule-3 (TIM-3), and lymphocyte activation gene (LAG)-3 have emerged as having specific benefits. However, many primary and secondary resistance mechanisms are available in the tumor microenvironment (TME) that prevent it from happening. Combination strategies, such as the use of anti-PD-1 and anti-CTLA-4, can be effective in overcoming these resistance pathways, but toxicities remain a significant concern. Moreover, ICIs have been integrated with various treatment modalities, including chemotherapy, radiotherapy, antibiotics, virotherapy, polyadenosine diphosphate-ribose polymerase (PARP) inhibitors, and heat shock protein 90 (HSP90) inhibitors. The outcomes observed in both preclinical and clinical settings have been encouraging. Interestingly, manipulating gut microbiota via fecal microbiota transplantation (FMT) has been identified as a new strategy to increase the efficacy of immunotherapy in CRC patients. Therefore, integrating ICIs with other treatment approaches holds promise in enhancing the prognosis of CRC patients. This review focuses on the unmet need for new biomarkers to select patients for combination therapies and the ongoing work to overcome resistance and immune checkpoint blockade.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
3
|
Saris J, Li Yim AYF, Bootsma S, Lenos KJ, Franco Fernandez R, Khan HN, Verhoeff J, Poel D, Mrzlikar NM, Xiong L, Schijven MP, van Grieken NCT, Kranenburg O, Wildenberg ME, Logiantara A, Jongerius C, Garcia Vallejo JJ, Gisbertz SS, Derks S, Tuynman JB, D'Haens GRAM, Vermeulen L, Grootjans J. Peritoneal resident macrophages constitute an immunosuppressive environment in peritoneal metastasized colorectal cancer. Nat Commun 2025; 16:3669. [PMID: 40246872 PMCID: PMC12006467 DOI: 10.1038/s41467-025-58999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Patients with peritoneal metastasized colorectal cancer (PM-CRC) have a dismal prognosis. We hypothesized that an immunosuppressive environment in the peritoneal cavity underlies poor prognosis. We define the composition of the human peritoneal immune system (PerIS) using single-cell technologies in 18 patients with- and without PM-CRC, as well as in matched peritoneal metastases (n = 8). Here we show that the PerIS contains abundant immunosuppressive C1Q+VSIG4+ and SPP1+VSIG4+ peritoneal-resident macrophages (PRMs), as well as monocyte-like cavity macrophages (mono-CMs), which share features with tumor-associated macrophages, even in homeostasis. In PM-CRC, expression of immunosuppressive cytokines IL10 and VEGF increases, while simultaneously expression of antigen-presenting molecules decreases in PRMs. These intratumoral suppressive PRMs originate from the PerIS, and intraperitoneal depletion of PRMs in vivo using anti-CSF1R combined with anti-PD1 significantly reduces tumor burden and improves survival. Thus, PRMs define a metastatic site-specific immunosuppressive niche, and targeting PRMs is a promising treatment strategy for PM-CRC.
Collapse
Affiliation(s)
- J Saris
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - A Y F Li Yim
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - S Bootsma
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - K J Lenos
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - R Franco Fernandez
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - H N Khan
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - J Verhoeff
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Molecular Cell Biology & Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D Poel
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - N M Mrzlikar
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - L Xiong
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M P Schijven
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Digital Health, Amsterdam, The Netherlands
| | - N C T van Grieken
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - O Kranenburg
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, The Netherlands
- Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, The Netherlands
| | - M E Wildenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Logiantara
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - C Jongerius
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - J J Garcia Vallejo
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Molecular Cell Biology & Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S S Gisbertz
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - S Derks
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J B Tuynman
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G R A M D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - L Vermeulen
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
- Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - J Grootjans
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Oncode Institute, Amsterdam, The Netherlands.
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Zhang J, Zhu H, Liu W, Miao J, Mao Y, Li Q. Prognostic and predictive molecular biomarkers in colorectal cancer. Front Oncol 2025; 15:1532924. [PMID: 40308511 PMCID: PMC12040681 DOI: 10.3389/fonc.2025.1532924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Precision medicine has brought revolutionary changes to the diagnosis and treatment of cancer patients, and is currently a hot and challenging research topic. Currently, the treatment regimens for most colorectal cancer (CRC) patients are mainly determined by several biomakers, including Microsatellite Instability (MSI), RAS, and BRAF. However, the roles of promising biomarkers such as HER-2, consensus molecular subtypes (CMS), and circulating tumor DNA (ctDNA) in CRC are not yet fully clear. Therefore, it is urgent to explore the potential of these emerging biomarkers in the diagnosis and treatment of CRC patients. In this paper, we discuss recent advances in CRC biomarkers, especially clinical data, and focus on the roles of biomarkers in prognosis, prediction, treatment strategies, and the intrinsic connections with clinical pathological features, hoping to promote better precision medicine for colorectal cancer.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Hao Zhu
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wentao Liu
- Department of General Surgery, Affiliated Drum Tower Hospital, JiangSu University, Nanjing, China
| | - Ji Miao
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yonghuan Mao
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Qiang Li
- Department of General Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Wang T, Zeng H, Hu T, Zhang J, Wang Z. Baseline Inflammatory Burden Index Predicts Primary Resistance to Combinations of ICIs With Chemotherapy in Patients With HER-2-Negative Advanced Gastric Cancer. J Gastric Cancer 2025; 25:266-275. [PMID: 40200871 PMCID: PMC11982513 DOI: 10.5230/jgc.2025.25.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 10/02/2024] [Indexed: 04/10/2025] Open
Abstract
PURPOSE Combinations of immune checkpoint inhibitors (ICIs) and chemotherapy have become the standard first-line treatment for human epidermal growth factor receptor 2 (HER-2)-negative advanced gastric cancer. However, primary resistance remains a challenge, with no effective biomarkers available for its prediction. This retrospective study explores the relationship between the baseline inflammatory burden index (IBI) and primary resistance in such context. MATERIALS AND METHODS We analyzed 62 patients with HER-2-negative advanced gastric cancer who received ICIs and chemotherapy as their first-line treatment. The IBI was calculated as follows: C-reactive protein (mg/L) × neutrophil count (10³/mm³)/lymphocyte count (10³/mm³). Based on disease progression within 6 months, patients were categorized into the primary resistant or the control group. We compared baseline characteristics and IBI scores between the groups and assessed the predictive value of the IBI using the receiver operating characteristic curve. Both univariate and multivariate binary logistic regression analyses were conducted to identify factors influencing primary resistance. RESULTS Nineteen patients were included in the primary resistance group, and forty-three patients were included in the control group. The IBI was significantly higher in the resistant group compared to the control group (P<0.01). The area under the curve for the IBI was 0.82, indicating a strong predictive value. Multivariate analysis identified the IBI as an independent predictor of primary resistance (P=0.014). CONCLUSIONS The baseline IBI holds promise as a predictor of primary resistance to combined ICIs and chemotherapy in patients with HER-2-negative advanced gastric cancer.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Huihui Zeng
- Department of Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Ting Hu
- Department of Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Junhao Zhang
- Department of Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zishu Wang
- Department of Oncology, the First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| |
Collapse
|
6
|
Wang Q, Wen Y, Bi B, Li K, Liu Y, Li B, Zhou S, Li Z, Xu J, Qiu M, Li Y, Wu M, Chen Y, Wu W, Zhao J. Oxygen/sulfate radicals-generating CaS 2O 8 nanosonosensitizers induce PANoptosis and calcium overload for enhanced peritoneal metastasis immunotherapy. Sci Bull (Beijing) 2025:S2095-9273(25)00243-9. [PMID: 40118724 DOI: 10.1016/j.scib.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
Peritoneal metastasis (PM) is typically intractable by immunotherapy due to an immunosuppressive microenvironment and the peritoneal-plasma barrier. Sonodynamic therapy (SDT) presents unique advantages of noninvasive in situ treatment and the potential for antitumor immune activation. Building upon SDT technology, the study reports on a novel biodegradable sonosensitizer, CaS2O8, characterized by a narrow bandgap, abundant oxygen vacancies and a rapid ultrasound (US) response for abdominal SDT. Such sonosensitizer only produces lethal reactive oxygen species (ROS) after US irradiation, which is nontoxic in a physiological environment. After US irradiation, CaS2O8 yields a large amount of sulfate radical (SO4-), as well as sonodynamic related ROS (OH, and 1O2), which exerts a synergistic effect with Ca2+ overload to induce Z-conformation nucleic acid by augmenting oxidative damage. As a result, the PANoptosis is initiated through the ZBP1/RIPK3 pathway in tumor cells. This inflammatory cell death leads to a multi-faceted release of tumor cell contents which serve as an in situ tumor antigen to induce a robust antitumor immune response. Notably, the precision sono-immunotherapy enhances the infiltration of T cells into tumors by transforming an immunosuppressive phenotype into an immunostimulatory one. Therefore, targeting PANoptosis by CaS2O8-induced SDT can provide an alternative or additional clinical treatment and prolonged survival outcome for patients with PM.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yingfei Wen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Bo Bi
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Kuan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Yuanqi Liu
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Binbin Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Shangbo Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Zihang Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Jiaqi Xu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Miaojuan Qiu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - You Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China
| | - Meiying Wu
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Yu Chen
- Materdicine Laboratory, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
7
|
Liu Y, Zhang J, Lai C, Wang W, Huang Y, Bao X, Yan H, Sun X, Liu Q, Chen D, Dai X, Qian X, Zhao P. Injectable celastrol-loading emulsion hydrogel for immunotherapy of low-immunogenic cancer. J Nanobiotechnology 2025; 23:183. [PMID: 40050985 PMCID: PMC11887069 DOI: 10.1186/s12951-025-03154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
Immunotherapy, exemplified by immune checkpoint blockade (ICB), has been extensively employed in antitumor treatments. Nevertheless, its efficacy in addressing low-immunogenic tumors has not yielded satisfactory results, primarily due to the depletion and inadequate infiltration of effector T cells within the tumor microenvironment (TME). Here, we construct an injectable water-in-oil emulsion hydrogel to load clinically used Celastrol (Gel@Cel), which addresses the limitations of Cel's hydrophobicity. Cel can both inhibit tumor cell proliferation and promote tumor cell apoptosis, while simultaneously inducing immunogenic cell death, through activation of the AKT and MAPK pathways. In a model of clinically refractory hepatocellular carcinoma with malignant ascites, intraperitoneal administration of Gel@Cel significantly inhibits tumor progression and activates antitumor immune effects through lipase-controlled release of Cel, as compared to free Cel. Intriguingly, the Gel@Cel induces the activation of dendritic cells, resulting in the infiltration of cytotoxic T cells in the TME of ascites. Furthermore, the administration of Cel increases the expression of programmed cell death protein ligand-1 (PD-L1) in tumor cells. Moreover, combining the PD-1 antibody (αPD-1) with Gel@Cel further enhances the antitumor effect and amplifies the immune activation. In conclusion, Gel@Cel exhibits promising therapeutic potential in the treatment of low-immunogenic tumors, especially when combined with ICB therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
| | - Jia Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
- College of Energy Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yangyue Huang
- Department of Hepatobiliary Pancreatic Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Haimeng Yan
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
| | - Xuqi Sun
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
| | - Qiqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Dong Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.
- College of Energy Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Xinyu Qian
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Nasca V, Zhao J, Ros J, Lonardi S, Zwart K, Cohen R, Fakih M, Jayachandran P, Roodhart JML, Derksen J, Intini R, Bergamo F, Mazzoli G, Ghelardi F, Ligero M, Jonnagaddala J, Hawkins N, Ward RL, Wankhede D, Brenner H, Hoffmeister M, Vitellaro M, Salvatore L, Gallois C, Laurent-Puig P, Cremolini C, Overman MJ, Taieb J, Tougeron D, Andre T, Kather JN, Sundar R, Carmona J, Elez E, Koopman M, Pietrantonio F. Sex and outcomes of patients with microsatellite instability-high and BRAF V600E mutated metastatic colorectal cancer receiving immune checkpoint inhibitors. J Immunother Cancer 2025; 13:e010598. [PMID: 39929672 PMCID: PMC11815414 DOI: 10.1136/jitc-2024-010598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are the gold standard therapy in patients with deficient mismatch repair (dMMR)/microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). A significant proportion of patients show resistance, making the identification of determinants of response crucial. Growing evidence supports the role of sex in determining susceptibility to anticancer therapies, but data is lacking for patients with MSI-H CRC. METHODS In this real-world cohort comprising 624 patients with MSI-H mCRC receiving ICIs, we investigated the impact of sex on patients' outcomes, overall and according to RAS-BRAF mutational status or type of treatment (anti-PD-(L)1 with or without anti-CTLA-4 agents). We then investigated these associations also in two independent cohorts of patients with early-stage or advanced MSI-H CRC unexposed to ICIs. Finally, we explored two public microarray and RNA-seq datasets from patients with non-metastatic or metastatic MSI-H CRC to gain translational insights on the association between sex, BRAF status and immune contextures/ICI efficacy. RESULTS Although no differences were observed between females and males either overall or in the BRAF wild-type cohort, male sex was associated with inferior progression-free survival (PFS) and overall survival (OS) in the BRAF mutated cohort (in multivariable models, HR for PFS: 1.79, 95% CI: 1.13 to 2.83, p=0.014, and for OS: 2.33, 95% CI: 1.36 to 3.98, p=0.002). Males receiving anti-PD-(L)1 monotherapy had the worst outcomes, with a 3-year PFS and 3-year OS of 23.9% and 41.8%, respectively, while the addition of anti-CTLA-4 agents rescued such a worse outcome. We also observed that females experienced a higher frequency of any-grade immune-related adverse events. Conversely, sex was not prognostic in the independent cohorts of patients with MSI-H CRCs not treated with ICIs. Exploratory transcriptomic analyses suggest that tumors of males with BRAF mutated MSI-H metastatic CRC are characterized by an enrichment of androgen receptor signature and an immune-depleted microenvironment, with a reduction in memory B cells, activated natural killer cells, and activated myeloid dendritic cells. CONCLUSIONS Overall, our findings suggest a complex interplay between sex and BRAF mutational status that may modulate the activity of ICIs in patients with MSI-H mCRC and pave the way to novel tailored strategies.
Collapse
Affiliation(s)
- Vincenzo Nasca
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Joseph Zhao
- Department of Medicine, National University Hospital, Singapore
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sara Lonardi
- Medical Oncology 1, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Koen Zwart
- Department of Medical Oncology, Utrecht University, Utrecht, The Netherlands
| | - Romain Cohen
- Department of Medical Oncology, Saint-Antoine hospital, APHP, Sorbonne University, Paris, France
| | - Marwan Fakih
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center Duarte, Duarte, California, USA
| | - Priya Jayachandran
- Oncology, University of Southern California, Los Angeles, California, USA
| | | | - Jeroen Derksen
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rossana Intini
- Medical Oncology 1, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Francesca Bergamo
- Medical Oncology 1, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Giacomo Mazzoli
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Filippo Ghelardi
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Marta Ligero
- Else Kroener Fresenius Center for Digital Health, Technical University of Dresden, Dresden, Germany
| | - Jitendra Jonnagaddala
- School of Population Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nicholas Hawkins
- School of Medical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Robyn L Ward
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Durgesh Wankhede
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Lisa Salvatore
- Cancer Comprehensive Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Claire Gallois
- CARPEM, SIRIC, Université Paris Cité, Georges Pompidou European Hospital, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Paris, Île-de-France, France
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julien Taieb
- Department of Digestive Oncology, Georges Pompidou European Hospital, Paris, France
| | - David Tougeron
- Gastroenterology and Hepatology Department, University Hospital Centre Poitiers, Poitiers, France
| | - Thierry Andre
- Department of Medical Oncology, Saint-Antoine hospital, APHP, Sorbonne University, Paris, France
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University of Dresden, Dresden, Germany
| | - Raghav Sundar
- Department of Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Javier Carmona
- Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elena Elez
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Miriam Koopman
- Department of Medical Oncology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
9
|
Luo D, Zhou J, Ruan S, Zhang B, Zhu H, Que Y, Ying S, Li X, Hu Y, Song Z. Overcoming immunotherapy resistance in gastric cancer: insights into mechanisms and emerging strategies. Cell Death Dis 2025; 16:75. [PMID: 39915459 PMCID: PMC11803115 DOI: 10.1038/s41419-025-07385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options in advanced stages. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting PD1/PD-L1, has emerged as a promising therapeutic approach. However, a significant proportion of patients exhibit primary or acquired resistance, limiting the overall efficacy of immunotherapy. This review provides a comprehensive analysis of the mechanisms underlying immunotherapy resistance in GC, including the role of the tumor immune microenvironment, dynamic PD-L1 expression, compensatory activation of other immune checkpoints, and tumor genomic instability. Furthermore, the review explores GC-specific factors such as molecular subtypes, unique immune evasion mechanisms, and the impact of Helicobacter pylori infection. We also discuss emerging strategies to overcome resistance, including combination therapies, novel immunotherapeutic approaches, and personalized treatment strategies based on tumor genomics and the immune microenvironment. By highlighting these key areas, this review aims to inform future research directions and clinical practice, ultimately improving outcomes for GC patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Dingtian Luo
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuiliang Ruan
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binzhong Zhang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Huali Zhu
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yangming Que
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shijie Ying
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaowen Li
- Pathology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanmin Hu
- Intensive Care Unit, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
10
|
Sui Q, Zhou Y, Li M, Wang D, Cui R, Cai X, Liu J, Wang X, Teng D, Zhou J, Hou H, Zhang S, Zheng M. Design, synthesis, and structure-activity relationship studies of triazolo-pyrimidine derivatives as WRN inhibitors for the treatment of MSI tumors. Eur J Med Chem 2025; 282:117039. [PMID: 39561494 DOI: 10.1016/j.ejmech.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Werner syndrome RecQ helicase (WRN), a member of the RecQ helicase family, has recently been identified as a synthetic lethal target in microsatellite instability (MSI) tumors. The triazolo-pyrimidine compound HRO761 is the first WRN inhibitor to enter clinical trials, but research on this scaffold remains limited. Here, we designed a series of derivatives to systematically study the structure-activity relationship (SAR) of triazolo-pyrimidine scaffolds, leading to the discovery of compound S35. S35 exhibited excellent WRN helicase inhibitory activity (ADP-Glo kinase assay IC50 = 16.1 nM, fluorometric helicase assay IC50 = 23.5 nM). Additionally, S35 exhibited excellent cellular selectivity, with antiproliferative activity against multiple MSI cell lines (GI50 = 36.4-306 nM), while the GI50 values for multiple microsatellite stability (MSS) cell lines were greater than 20,000 nM. Furthermore, we observed that compound S35 induced DNA damage and caused G2/M cell cycle arrest in MSI cells, which did not occur in MSS cells. S35 demonstrated favorable oral pharmacokinetic properties, with oral administration resulting in dose-dependent tumor growth inhibition in the SW48 xenograft model. These findings provide a promising outlook for the development of WRN inhibitors for the treatment of MSI tumors.
Collapse
Affiliation(s)
- Qibang Sui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Yuanyang Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China
| | - Manjia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dan Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rongrong Cui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Cai
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jia Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaofeng Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Dan Teng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Lingang Laboratory, Shanghai, 200031, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Lingang Laboratory, Shanghai, 200031, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
11
|
Sun Y, Yang B, Wen T, Guo X, Li D, Shi R, Zhang F, Wang D, Li C, Qu X. ANXA10 sensitizes microsatellite instability-high colorectal cancer to anti-PD-1 immunotherapy via assembly of HLA-DR dimers by regulating CD74. Cell Biol Toxicol 2025; 41:25. [PMID: 39789407 PMCID: PMC11717857 DOI: 10.1007/s10565-024-09982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers. METHODS The characteristic gene was screened by data analysis of single-cell and bulk transcriptome sequencing from public datasets. MSI-H CRC cells co-cultured with peripheral blood mononuclear cells and syngeneic model in C57BL/6 mice were performed to detect the sensitivity to anti-PD-1 treatments respectively. RESULTS ANXA10 was identified as a characteristic gene of MSI-H CRC and its expression was obviously greater in MSI-H than MSS CRC. ANXA10 significantly sensitized MSI-H CRC to anti-PD-1 treatments in vitro and in vivo. Specifically, ANXA10 promoted HLA-DR dimers in and on the surface of MSI-H CRC by increasing CD74 expression. Besides, this work demonstrated that ANXA10 contributed to better clinical benefits with anti-PD-1 therapy in MSI-H CRC patients. CONCLUSIONS Our results provided a novel molecular marker ANXA10 to identify benefit population of MSI-H CRC for improving efficacy of anti-PD-1 and contributed to selection of treatment strategies.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Bowen Yang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Xiaoyu Guo
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Danni Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Ruichuan Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Fuqiang Zhang
- Department of Anus and Intestine Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dongni Wang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Ce Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China.
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, Shenyang, Liaoning, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China.
| |
Collapse
|
12
|
Wang W, Mei Z, Chen Y, Jiang J, Qu Y, Saifuding K, Zhou N, Bulibu G, Tang Y, Zhai X, Jiang Z. Immune checkpoint inhibitors for patients with mismatch repair deficient or microsatellite instability-high advanced cancers: a meta-analysis of phase I-III clinical trials. Int J Surg 2025; 111:1357-1372. [PMID: 39166943 PMCID: PMC11745646 DOI: 10.1097/js9.0000000000002007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Mismatch repair deficient (dMMR) and microsatellite instability-high (MSI-H) cancers are associated with an increased number of somatic mutations, which can render tumors more susceptible to immune checkpoint blockade. However, a comprehensive evaluation of the efficacy profile of immune checkpoint inhibitors in this patient population across multiple cancer types is lacking. This study aims to address this knowledge gap by synthesizing data from phase I-III clinical trials. METHODS A systematic search was conducted in PubMed, Embase, the Cochrane Central Register of Controlled Trials, and Google Scholar from inception until June 2024. Eligible studies included randomized controlled trials (RCTs), nonrandomized comparative studies, and single-arm trials investigating immune checkpoint inhibitors in patients with dMMR/MSI-H advanced cancers. The primary outcome was objective response rate (ORR), and the secondary outcomes included disease control rate (DCR), 1-year, 2-year, and 3-year overall survival (OS) and progression-free survival (PFS) rates. Subgroup analyses were conducted for the primary outcome stratified by major study characteristics. RESULTS Of the 10 802 identified studies, 19 trials in 25 studies totaling 2052 participants met the inclusion criteria and were included in the meta-analysis. The pooled ORR was 41.7% (95% CI, 35.7-47.7%). The pooled DCR was 68.9% (95% CI, 62.2-75.7%). The pooled 12-month, 24-month, and 36-month OS rates were 29.1% (95% CI, 19.9-38.3%), 35.8% (95% CI, 23.6-48.0%), and 35.8% (95% CI, 23.6-48.0%), respectively. The pooled 12-month, 24-month, and 36-month PFS rates were 46.4% (95% CI, 39.1-53.8%), 67.0% (95% CI, 55.2-78.8%), and 63.1% (95% CI, 37.3-88.9%), respectively. CONCLUSIONS The study establishes the therapeutic potential of immune checkpoint inhibitors in dMMR/MSI-H advanced cancers, highlighting the importance of MSI status in this context. Further, head-to-head comparisons are needed to conclusively determine MSI's predictive power relative to proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors.
Collapse
Affiliation(s)
- Wei Wang
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine
- Anorectal Disease Institute of Shuguang Hospital
| | - Yajie Chen
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Jian Jiang
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Yanli Qu
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Keyoumu Saifuding
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Ning Zhou
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Gilisihan Bulibu
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Yong Tang
- Department of Digestive Internal Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xin Jiang Province
| | - Xinyu Zhai
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine Shanghai
| | - Zhi Jiang
- Department of Perioperative Research Center of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, People’s Republic of China
| |
Collapse
|
13
|
Ren J, Wang K, Meng Q, Xu C, Liu C, Wang Y, Wang G. A multicenter retrospective study of the combination of immune checkpoint inhibitors and chemotherapy regimens with or without liver metastasis for the first-line treatment of advanced gastric cancer. Ther Adv Med Oncol 2024; 16:17588359241308389. [PMID: 39712075 PMCID: PMC11663263 DOI: 10.1177/17588359241308389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024] Open
Abstract
Background Several studies have indicated that the use of immune checkpoint inhibitors (ICI) can prolong the survival of patients with advanced gastric cancer (AGC). However, it remains unclear whether the presence of liver metastasis leads to systemic immune suppression, resulting in poorer immune therapy outcomes. This study aims to investigate whether liver metastasis affects the efficacy of ICI in first-line treatment for AGC patients. Methods The data of AGC patients undergoing combined immunotherapy and chemotherapy treatment at Harbin Medical University Cancer Hospital and the First Hospital of Shanxi Medical University from January 2018 to January 2023 were collected. The Kaplan-Meier method and Cox proportional hazards regression analysis were employed to analyze the overall survival (OS) and progression-free survival (PFS) of the patients. Results A total of 162 patients with AGC who were human epidermal growth factor receptor 2 (Her 2) negative and treated with immunotherapy in the first line were included in the study. Patients were divided into two groups, the liver metastasis group (LM group, n = 40) and the group without liver metastasis (NLM group, n = 122) according to the presence of liver metastasis. The results of the present study indicate that there was no statistically significant difference in the median OS, with median OS of 17 and 15 months, respectively (p = 0.29). Similarly, no significant difference was observed in the median PFS between the two groups (p = 0.65). Conclusion This study suggests that the presence or absence of liver metastasis does not significantly affect the prognosis of AGC patients receiving first-line treatment with ICI.
Collapse
Affiliation(s)
- Jing Ren
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ke Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qianhao Meng
- Department of Oncology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Chang Xu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Changqing Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yusheng Wang
- Department of Oncology Digestive, the First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, China
| |
Collapse
|
14
|
Provenzano L, Gwee YX, Conca V, Lonardi S, Bozzarelli S, Tamburini E, Passardi A, Zaniboni A, Tosi F, Aprile G, Nasca V, Boccaccino A, Ambrosini M, Vetere G, Carullo M, Guaglio M, Battaglia L, Zhao JJ, Chia DKA, Yong WP, Tan P, So J, Kim G, Shabbir A, Ong CAJ, Casella F, Cremolini C, Bencivenga M, Sundar R, Pietrantonio F. Unveiling the prognostic significance of malignant ascites in advanced gastrointestinal cancers: a marker of peritoneal carcinomatosis burden. Ther Adv Med Oncol 2024; 16:17588359241289517. [PMID: 39502404 PMCID: PMC11536604 DOI: 10.1177/17588359241289517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Background Ascites is common in advanced gastrointestinal cancers with peritoneal metastases (PM) and negatively impacts patient survival. No study to date has specifically evaluated the relationship between ascites, PM and survival outcomes in metastatic colorectal cancer (mCRC) and metastatic gastric cancer (mGC). Objectives This study aims to investigate and elucidate the relationship between malignant ascites, PM and survival outcomes in both mCRC and mGC patients. Design This is a retrospective analysis of prospectively collected clinical trial data of mCRC and mGC patients with PM. Methods We performed two pooled analyses, firstly of two Italian randomized trials enrolling patients with mCRC eligible for systemic therapy (TRIBE2; VALENTINO), and secondly of gastric cancer and peritoneal metastasis (GCPM) patients who underwent bi-directional therapeutic treatment comprising systemic and peritoneal-directed therapies. Results Of 900 mCRC patients, 39 (4.3%) had PM with malignant ascites. Compared to the group without PM, median progression-free and overall survival were significantly inferior in the ascites group (hazard ratio (HR) for progression-free survival (PFS) 1.68, 95% confidence interval (CI): 1.21-2.35, p = 0.007; HR for overall survival (OS) 2.14, 95% CI: 1.57-3.01, p < 0.001), but not in the group of PM without ascites (HR for PFS 1.10, 95% CI: 0.91 - 1.34; HR for OS 1.04, 95% CI: 0.84 - 1.30). Of 170 patients with GCPM, those with ascites had higher median Peritoneal Cancer Index scores (23 vs 9, p < 0.001). Median OS was significantly inferior among those with ascites compared to those without (13.0 vs 21.0 months, HR 1.71, 95% CI: 1.16-2.52, p = 0.007). Conclusion Ascites identifies a subgroup of patients with PM and poor outcomes, for whom tailored research are needed.
Collapse
Affiliation(s)
- Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Yong Xiang Gwee
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
| | - Veronica Conca
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Sara Lonardi
- Medical Oncology 3 Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Silvia Bozzarelli
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) ‘Dino Amadori’, Meldola, Italy
| | - Alberto Zaniboni
- Unity of Oncology, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Federica Tosi
- Department of Hematology, Oncology and Molecular Oncology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8, Vicenza, Italy
| | - Vincenzo Nasca
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandra Boccaccino
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Margherita Ambrosini
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | | | - Marcello Guaglio
- Colorectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luigi Battaglia
- Colorectal Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Joseph Jonathan Zhao
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
| | - Daryl Kai Ann Chia
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jimmy So
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Guowei Kim
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Asim Shabbir
- Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Chiara Cremolini
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
- Unity of Oncology, University Hospital of Pisa, Pisa, Italy
| | - Maria Bencivenga
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Department of Surgery, Dentistry, Pediatrics and Gynaecology, Upper GI Surgery Unit, University of Verona, Verona, Italy
| | - Raghav Sundar
- Department of Haematology–Oncology, National University Cancer Institute, 1E Kent Ridge Road, Singapore 119228, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.Venezian, 1, Milan 20133, Italy
| |
Collapse
|
15
|
Cortés-Guiral D, Kranenburg O, Sgarbura O, Van Der Speeten K, Taibi A, Hübner M, Yacoov AB. PIPAC Pharmacologic and Clinical Data. J Surg Oncol 2024; 130:1337-1348. [PMID: 39315493 DOI: 10.1002/jso.27900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Pressurized intraperitoneal aerosol chemotherapy (PIPAC) emerged as an innovative intraperitoneal chemotherapy delivery system to overcome the issue of limited efficacy of systemic therapies to induce response in peritoneal malignancies. Promising results for patients with mesothelioma peritonei and peritoneal metastasis from gastric, ovarian, colorectal, pancreatic, and hepatobiliary tumors origin are changing the landscape for patients otherwise just facing palliative treatment. Ongoing trials will shed more light on the actual benefits of PIPAC.
Collapse
Affiliation(s)
- Delia Cortés-Guiral
- IVOQA (Viamed Advanced Surgical Oncology Institute), Hospital Viamed Santa Elena, Madrid, Spain
| | - Onno Kranenburg
- Lab Translational Oncology Cancer, Department of Surgical Oncology, Regenerative Medicine and Stem Cells, Utrecht Platform for Organoid Technology (UPORT), UMCU, Utrecht, The Netherlands
- Laboratory of Translational Oncology, Division of Imaging and Cancer, UMCU, Utrecht, The Netherlands
| | - Olivia Sgarbura
- Department of Surgical Oncology, Cancer Institute Montpellier, Montpellier, France
| | - Kurt Van Der Speeten
- Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Faculty of Medicine and Life Sciences, BIOMED Research Institute, University Hasselt, Hasselt, Belgium
| | - Albdelkader Taibi
- Digestive Surgery Department, Dupuytren Limoges University Hospital, Limoges, France. CNRS, XLIM, UMR 7252, University Limoges, Limoges, France
| | - Martin Hübner
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Almog Ben Yacoov
- Department of General Surgery C and Surgical Oncology, Sheba Medical Center, Ramat Gan, Israel, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
16
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
17
|
Xu M, Liu D, Wang L, Sun S, Liu S, Zhou Z. Clinical implications of CT-detected ascites in gastric cancer: association with peritoneal metastasis and systemic inflammatory response. Insights Imaging 2024; 15:237. [PMID: 39373781 PMCID: PMC11460829 DOI: 10.1186/s13244-024-01818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the diagnostic significance of computed tomography (CT) detected ascites in gastric cancer (GC) with peritoneal metastasis (PM) and investigate its association with systemic inflammatory response. METHODS This retrospective study included 111 GCs with ascites (PM: n = 51; No PM: n = 60). Systemic inflammatory indexes, tumor markers, and the CT-assessed characteristics of ascites were collected. The differences in parameters between the two groups were analyzed. Diagnostic performance was obtained by receiver operating characteristic curve analysis. The association between the volume of ascites and clinical characteristics was evaluated with correlation analysis. RESULTS In this study, over half of GCs with ascites were not involved with PM. The systemic immune-inflammation index (SII), neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), five tumor markers, and the characteristics of ascites showed significant differences between the two groups (all p < 0.05). Among them, SII, NLR, PLR, and the volume of ascites achieved the areas under the curve of 0.700, 0.698, 0.704, and 0.903, respectively. Moreover, the volumes of ascites showed positive correlations with SII, NLR, and PLR in GCs with PM, and the volumes of ascites detected in the upper abdomen were more strongly correlated with CA125 level (all p < 0.05). CONCLUSION Many GCs with CT-detected ascites did not occur with synchronous PM. The presence of upper abdominal ascites had certain clinical significance for diagnosing PM in GCs. Systemic inflammatory indexes were elevated and positively correlated with the volume of ascites in GCs with PM, which might suggest the enhanced systemic inflammatory response. CRITICAL RELEVANCE STATEMENT CT-detected ascites in the upper abdomen played an indicative role in identifying synchronous PM in GCs, and the systemic inflammatory response was enhanced in GCs with PM, which might be helpful for clinical evaluation. KEY POINTS Many GCs with CT-detected ascites did not occur with synchronous PM. CT-detected ascites in the upper abdomen help in identifying PM in GCs. GCs with PM showed elevated systemic inflammatory indexes and enhanced systemic inflammatory response.
Collapse
Affiliation(s)
- Mengying Xu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China
| | - Dan Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 210008, Nanjing, China
| | - Le Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China
| | - Shuangshuang Sun
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China.
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China.
| |
Collapse
|
18
|
Peng H, Jiang L, Yuan J, Wu X, Chen N, Liu D, Liang Y, Xie Y, Jia K, Li Y, Feng X, Li J, Zhang X, Shen L, Chen Y. Single-cell characterization of differentiation trajectories and drug resistance features in gastric cancer with peritoneal metastasis. Clin Transl Med 2024; 14:e70054. [PMID: 39422697 PMCID: PMC11488346 DOI: 10.1002/ctm2.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Gastric cancer patients with peritoneal metastasis (GCPM) experience a rapidly deteriorating clinical trajectory characterized by therapeutic resistance and dismal survival, particularly following the development of malignant ascites. However, the intricate dynamics within the peritoneal microenvironment (PME) during the treatment process remain largely unknown. METHODS Matched samples from primary tumours (PT), peritoneal metastases (PM), and paired pre-treatment and post-chemo/immunotherapy (anti-PD-1/PD-L1) progression malignant ascites samples, were collected from 48 patients. These samples were subjected to single-cell RNA sequencing (n = 30), multiplex immunofluorescence (n = 30), and spatial transcriptomics (n = 3). Furthermore, post hoc analyses of a phase 1 clinical trial (n = 20, NCT03710265) and an in-house immunotherapy cohort (n = 499) were conducted to validate the findings. RESULTS Tracing the evolutionary trajectory of epithelial cells unveiled the terminally differentially MUC1+ cancer cells with a high epithelial-to-mesenchymal transition potential, and they demonstrated spatial proximity with fibroblasts and endothelial cells, correlating with poor prognosis. A significant expansion of macrophage infiltrates, which exhibited the highest proangiogenic activity, was observed in the ascites compared with PT and PM. Besides, higher C1Q+ macrophage infiltrates correlated with significantly lower GZMA+ T-lymphocyte infiltrates in therapeutic failure cases, potentially mediated by the LGALS9-CD45 and SPP1-CD44 ligand-receptor interactions. In the chemoresistant group, intimate interactions between C1Q+ macrophages and fibroblasts through the complement activation pathway were found. In the group demonstrating immunoresistance, heightened TGF-β production activity was detected in MUC1+ cancer cells, and they were skewed to interplay with C1Q+ macrophages through the GDF15-TGF-βR2 axis. Ultimately, post hoc analyses indicated that co-targeting TGF-β and PDL1 pathways may confer superior clinical benefits than sole anti-PD-1/PD-L1 therapy for patients presenting with GCPM at the time of diagnosis. CONCLUSIONS Our findings elucidated the cellular differentiation trajectories and crucial drug resistance features within PME, facilitating the exploration of effective targets for GCPM treatment. HIGHLIGHTS MUC1+ cancer cells with a high epithelial-to-mesenchymal transition potential and exhibiting spatial proximity to fibroblasts and endothelial cells constitute the driving force of gastric cancer peritoneal metastasis (GCPM). Higher C1Q+ macrophage infiltrates correlated with significantly lower GZMA+ T-lymphocyte infiltrates within the peritoneal microenvironment in therapeutic failure cases. Co-targeting TGF-β and PDL1 pathways may confer superior clinical benefits than sole anti-PD-1/PD-L1 therapy for patients presenting with GCPM at diagnosis.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Lei Jiang
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Jiajia Yuan
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiangrong Wu
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Nan Chen
- Department of Gastrointestinal Surgery IIIKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and InstituteBeijingChina
| | - Dan Liu
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Yueting Liang
- Department of Radiation OncologyPeking University Cancer Hospital and InstituteBeijingChina
| | - Yi Xie
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Keren Jia
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Yanyan Li
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Xujiao Feng
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Jian Li
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiaotian Zhang
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Lin Shen
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
| | - Yang Chen
- Department of Gastrointestinal OncologyKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and InstituteBeijingChina
- Department of Gastrointestinal CancerBeijing GoBroad HospitalBeijingChina
| |
Collapse
|
19
|
Hulst L, Cappuyns S, Peeters F, Vulsteke F, Van Herpe F, Van Cutsem E, Dekervel J. Clinical and Molecular Variables Associated With Early Progression to Checkpoint Inhibitors in MSI-High Metastatic Colorectal Cancer: A Retrospective Cohort Study. Clin Colorectal Cancer 2024; 23:230-237.e1. [PMID: 39097473 DOI: 10.1016/j.clcc.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/29/2024] [Accepted: 06/30/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND About one third of patients with deficient mismatch repair/microsatellite instability-high metastatic colorectal cancer (dMMR/MSI-H mCRC) experience primary resistance or early progression on immune checkpoint inhibitors (ICI), while others benefit from exceptionally long-lasting responses. In this single-centre retrospective study, we aimed to identify variables associated with improved overall survival (OS) as well as early disease progression. METHODS All dMMR/MSI-H mCRC patients treated with ICI between 2014 and 2022 were included. Baseline patient demographics, tumour characteristics as well response and outcome data were recorded. OS was estimated using the Kaplan-Meier method. Uni- and multivariate cox regression analysis was used to identify parameters associated with improved OS. Clinicopathological factors associated with early progression (≤ 12 months after treatment initiation) were assessed using uni- and multivariate logistic regression analysis. RESULTS About 84 ICI-treated dMMR/MSI-H mCRC patients were included. Progressive disease occurred in 37 (44%) patients, but only in 11 (19%) patients with disease control at 12 months. Median OS was 80 months and improved outcome was associated with a lower neutrophile-to-lymphocyte ratio (NLR) (P = .004) and the presence of immune-related adverse events (irAEs) (P = .015). Early progression was associated with poor performance status (P = .036), a higher blood CRP level (P = .033) and absence of irAEs (P = .002). CONCLUSION Disease progression in ICI-treated dMMR/MSI-H mCRC rarely occurs in patients experiencing disease control for at least 12 months. Performance status, presence of immune-related adverse events, CRP levels, CEA levels and NLR can be helpful to identify those patients that may benefit from ICI treatment, guiding clinicians in therapeutic decisions.
Collapse
Affiliation(s)
- L Hulst
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - S Cappuyns
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - F Peeters
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - F Vulsteke
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - F Van Herpe
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - E Van Cutsem
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium
| | - J Dekervel
- Department of Gastro-enterology and Hepatology, Digestive Oncology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium.
| |
Collapse
|
20
|
Chao PH, Chan V, Wu J, Andrew LJ, Li SD. Resiquimod-loaded cationic liposomes cure mice with peritoneal carcinomatosis and induce specific anti-tumor immunity. J Control Release 2024; 372:362-371. [PMID: 38909698 DOI: 10.1016/j.jconrel.2024.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Peritoneal carcinomatosis (PC) is characterized by a high recurrence rate and mortality following cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC), primarily due to incomplete cancer elimination. To enhance the standard of care for PC, we developed two cationic liposomal formulations aimed at localizing a toll-like receptor agonist, resiquimod (R848), in the peritoneal cavity to activate the immune system locally to specifically eradicate residual tumor cells. These formulations effectively extended R848 retention in the peritoneum by >10-fold, resulting in up to a 2-fold increase in interferon α (IFN-α) induction in the peritoneal fluid, without increasing the plasma levels. In a CT26 colon cancer model with peritoneal metastases, these liposomal R848 formulations, when combined with oxaliplatin (OXA)-an agent used in HIPEC that induces immunogenic cell death-increased tumor infiltration of effector immune cells, including DCs, CD4, and CD8 T cells. This led to the complete elimination of PC in 60-70% of the mice, while the control mice reached humane endpoints by 30 days. The cured mice developed specific antitumor immunity, as re-challenging them with the same tumor cells did not result in tumor establishment. However, inoculation with a different tumor line led to tumor development. Additionally, exposing CT26 tumor antigens to the splenocytes isolated from the cured mice induced the expansion of CD4 and CD8 T cells and the release of IFN-γ, demonstrating long-term immune memory to the specific tumor. The anti-tumor efficacy of these liposomal R848 formulations was mediated via CD8 T cells with different levels of involvement of CD4 and B cells, and the combination with an anti-PD-1 antibody achieved a cure rate of 90%.
Collapse
Affiliation(s)
- Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Vanessa Chan
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lucas J Andrew
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
21
|
Chen W, Yan YH, Young B, Pinto A, Jiang Q, Song N, Yaseen A, Yao W, Zhang DY, Zhang JX. Microsatellite Instability Detection in Cancer: A Multiplex qPCR Approach that Obviates the Need for Matching Normal Samples. Clin Chem 2024; 70:830-840. [PMID: 38581343 DOI: 10.1093/clinchem/hvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Microsatellite instability (MSI) indicates DNA mismatch repair deficiency in certain types of cancer, such as colorectal cancer. The current gold standard technique, PCR-capillary electrophoresis (CE), requires matching normal samples and specialized instrumentation. We developed VarTrace, a rapid and low-cost quantitative PCR (qPCR) assay, to evaluate MSI using solely the tumor sample DNA, obviating the requirement for matching normal samples. METHODS One hundred and one formalin-fixed paraffin-embedded (FFPE) tumor samples were tested using VarTrace and compared with the Promega OncoMate assay utilizing PCR-CE. Tumor percentage limit of detection was evaluated on contrived samples derived from clinical high MSI (MSI-H) samples. Analytical sensitivity, specificity, limit of detection, and input requirements were assessed using synthetic commercial reference standards. RESULTS VarTrace successfully analyzed all 101 clinical FFPE samples, demonstrating 100% sensitivity and 98% specificity compared to OncoMate. It detected MSI-H with 97% accuracy down to 10% tumor. Analytical studies using synthetic samples showed a limit of detection of 5% variant allele frequency and a limit of input of 0.5 ng. CONCLUSIONS This study validates VarTrace as a swift, accurate, and economical assay for MSI detection in samples with low tumor percentages without the need for matching normal DNA. VarTrace's capacity for highly sensitive MSI analysis holds potential for enhancing the efficiency of clinical work flows and broadening the availability of this test.
Collapse
Affiliation(s)
- Wei Chen
- NuProbe USA, R&D and Innovation Department, Houston, TX, United States
| | - Yan Helen Yan
- NuProbe USA, R&D and Innovation Department, Houston, TX, United States
| | - Blake Young
- NuProbe USA, R&D and Innovation Department, Houston, TX, United States
| | - Alessandro Pinto
- NuProbe USA, R&D and Innovation Department, Houston, TX, United States
| | - Qi Jiang
- NuProbe USA, R&D and Innovation Department, Houston, TX, United States
| | - Nanjia Song
- NuProbe USA, R&D and Innovation Department, Houston, TX, United States
| | - Adam Yaseen
- NuProbe USA, R&D and Innovation Department, Houston, TX, United States
| | - Weijie Yao
- NuProbe USA, R&D and Innovation Department, Houston, TX, United States
| | - David Yu Zhang
- NuProbe USA, R&D and Innovation Department, Houston, TX, United States
| | | |
Collapse
|
22
|
Zhou KI, Hanks BA, Strickler JH. Management of Microsatellite Instability High (MSI-H) Gastroesophageal Adenocarcinoma. J Gastrointest Cancer 2024; 55:483-496. [PMID: 38133871 PMCID: PMC11186732 DOI: 10.1007/s12029-023-01003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Gastroesophageal cancer is a major cause of cancer-related mortality worldwide. Treatment of both early stage and advanced disease remains highly reliant on cytotoxic chemotherapy. About 4-24% of gastroesophageal cancers are microsatellite instability high (MSI-H). The MSI-H subtype is associated with favorable prognosis, resistance to cytotoxic chemotherapy, and sensitivity to immune checkpoint inhibitors (ICI). Recent studies have demonstrated promising activity of ICIs in the MSI-H subtype, resulting in fundamental changes in the management of MSI-H gastroesophageal adenocarcinoma. PURPOSE In this review, we discuss the prevalence, characteristics, prognosis, and management of MSI-H gastroesophageal adenocarcinoma, with a focus on recent and ongoing studies that have changed the landscape of treatment for the MSI-H subtype. We also discuss current challenges in the management of resectable and advanced MSI-H gastroesophageal cancer, including the need for more accurate biomarkers of response to ICI therapy.
Collapse
Affiliation(s)
- Katherine I Zhou
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA
| | - Brent A Hanks
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - John H Strickler
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
23
|
Nikolouzakis TK, Chrysos E, Docea AO, Fragkiadaki P, Souglakos J, Tsiaoussis J, Tsatsakis A. Current and Future Trends of Colorectal Cancer Treatment: Exploring Advances in Immunotherapy. Cancers (Basel) 2024; 16:1995. [PMID: 38893120 PMCID: PMC11171065 DOI: 10.3390/cancers16111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer of the colon and rectum (CRC) has been identified among the three most prevalent types of cancer and cancer-related deaths for both sexes. Even though significant progress in surgical and chemotherapeutic techniques has markedly improved disease-free and overall survival rates in contrast to those three decades ago, recent years have seen a stagnation in these improvements. This underscores the need for new therapies aiming to augment patient outcomes. A number of emerging strategies, such as immune checkpoint inhibitors (ICIs) and adoptive cell therapy (ACT), have exhibited promising outcomes not only in preclinical but also in clinical settings. Additionally, a thorough appreciation of the underlying biology has expanded the scope of research into potential therapeutic interventions. For instance, the pivotal role of altered telomere length in early CRC carcinogenesis, leading to chromosomal instability and telomere dysfunction, presents a promising avenue for future treatments. Thus, this review explores the advancements in CRC immunotherapy and telomere-targeted therapies, examining potential synergies and how these novel treatment modalities intersect to potentially enhance each other's efficacy, paving the way for promising future therapeutic advancements.
Collapse
Affiliation(s)
| | - Emmanuel Chrysos
- Department of General Surgery, University General Hospital of Heraklion, 71110 Heraklion, Greece; (T.K.N.); (E.C.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Persefoni Fragkiadaki
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - John Tsiaoussis
- Department of Anatomy, Medical School, University of Crete, 70013 Heraklion, Greece;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece; (P.F.); (A.T.)
| |
Collapse
|
24
|
Li Y, Jiang L, Chen Y, Li Y, Yuan J, Lu J, Zhang Z, Liu S, Feng X, Xiong J, Jiang Y, Zhang X, Li J, Shen L. Specific lineage transition of tumor-associated macrophages elicits immune evasion of ascitic tumor cells in gastric cancer with peritoneal metastasis. Gastric Cancer 2024; 27:519-538. [PMID: 38460015 PMCID: PMC11016508 DOI: 10.1007/s10120-024-01486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/23/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Gastric cancer with peritoneal metastasis (PM-GC), recognized as one of the deadliest cancers. However, whether and how the tumor cell-extrinsic tumor microenvironment (TME) is involved in the therapeutic failure remains unknown. Thus, this study systematically assessed the immunosuppressive tumor microenvironment in ascites from patients with PM-GC, and its contribution to dissemination and immune evasion of ascites-disseminated tumor cells (aDTCs). METHODS Sixty-three ascites and 43 peripheral blood (PB) samples from 51 patients with PM-GC were included in this study. aDTCs in ascites and circulating tumor cells (CTCs) in paired PB were immunophenotypically profiled. Using single-cell RNA transcriptional sequencing (scRNA-seq), crosstalk between aDTCs and the TME features of ascites was inspected. Further studies on the mechanism underlying aDTCs-immune cells crosstalk were performed on in vitro cultured aDTCs. RESULTS Immune cells in ascites interact with aDTCs, prompting their immune evasion. Specifically, we found that the tumor-associated macrophages (TAMs) in ascites underwent a continuum lineage transition from cathepsinhigh (CTShigh) to complement 1qhigh (C1Qhigh) TAM. CTShigh TAM initially attracted the metastatic tumor cells to ascites, thereafter, transitioning terminally to C1Qhigh TAM to trigger overproliferation and immune escape of aDTCs. Mechanistically, we demonstrated that C1Qhigh TAMs significantly enhanced the expression of PD-L1 and NECTIN2 on aDTCs, which was driven by the activation of the C1q-mediated complement pathway. CONCLUSIONS For the first time, we identified an immunosuppressive macrophage transition from CTShigh to C1Qhigh TAM in ascites from patients with PM-GC. This may contribute to developing potential TAM-targeted immunotherapies for PM-GC.
Collapse
Affiliation(s)
- Yilin Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lei Jiang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yanyan Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiajia Yuan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jialin Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Zizhen Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Shengde Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xujiao Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | | | - Yan Jiang
- Singleron Biotechnologies, Nanjing, China
| | - Xiaotian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jian Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
25
|
Ferretti S, Hamon J, de Kanter R, Scheufler C, Andraos-Rey R, Barbe S, Bechter E, Blank J, Bordas V, Dammassa E, Decker A, Di Nanni N, Dourdoigne M, Gavioli E, Hattenberger M, Heuser A, Hemmerlin C, Hinrichs J, Kerr G, Laborde L, Jaco I, Núñez EJ, Martus HJ, Quadt C, Reschke M, Romanet V, Schaeffer F, Schoepfer J, Schrapp M, Strang R, Voshol H, Wartmann M, Welly S, Zécri F, Hofmann F, Möbitz H, Cortés-Cros M. Discovery of WRN inhibitor HRO761 with synthetic lethality in MSI cancers. Nature 2024; 629:443-449. [PMID: 38658754 PMCID: PMC11078746 DOI: 10.1038/s41586-024-07350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jutta Blank
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | | | - Elena Gavioli
- Novartis BioMedical Research, Basel, Switzerland
- Novartis Pharma AG, Basel, Switzerland
| | | | - Alisa Heuser
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | - Grainne Kerr
- Novartis BioMedical Research, Basel, Switzerland
| | | | - Isabel Jaco
- Novartis BioMedical Research, Basel, Switzerland
| | - Eloísa Jiménez Núñez
- Novartis BioMedical Research, Basel, Switzerland
- Pierre Fabre Laboratories, Toulouse, France
| | | | | | | | | | | | | | | | - Ross Strang
- Novartis BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Novartis BioMedical Research, Basel, Switzerland
| | | | - Sarah Welly
- Novartis BioMedical Research, Basel, Switzerland
| | | | - Francesco Hofmann
- Novartis BioMedical Research, Basel, Switzerland
- Pierre Fabre Laboratories, Toulouse, France
| | | | | |
Collapse
|
26
|
Baltgalvis KA, Lamb KN, Symons KT, Wu CC, Hoffman MA, Snead AN, Song X, Glaza T, Kikuchi S, Green JC, Rogness DC, Lam B, Rodriguez-Aguirre ME, Woody DR, Eissler CL, Rodiles S, Negron SM, Bernard SM, Tran E, Pollock J, Tabatabaei A, Contreras V, Williams HN, Pastuszka MK, Sigler JJ, Pettazzoni P, Rudolph MG, Classen M, Brugger D, Claiborne C, Plancher JM, Cuartas I, Seoane J, Burgess LE, Abraham RT, Weinstein DS, Simon GM, Patricelli MP, Kinsella TM. Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature 2024; 629:435-442. [PMID: 38658751 DOI: 10.1038/s41586-024-07318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms1-5. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214. This compound selectively engages a cysteine (C727) located in a region of the helicase domain subject to interdomain movement during DNA unwinding. VVD-133214 binds WRN protein cooperatively with nucleotide and stabilizes compact conformations lacking the dynamic flexibility necessary for proper helicase function, resulting in widespread double-stranded DNA breaks, nuclear swelling and cell death in MSI-high (MSI-H), but not in microsatellite-stable, cells. The compound was well tolerated in mice and led to robust tumour regression in multiple MSI-H colorectal cancer cell lines and patient-derived xenograft models. Our work shows an allosteric approach for inhibition of WRN function that circumvents competition from an endogenous ATP cofactor in cancer cells, and designates VVD-133214 as a promising drug candidate for patients with MSI-H cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Betty Lam
- Vividion Therapeutics, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Piergiorgio Pettazzoni
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Markus G Rudolph
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Moritz Classen
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Doris Brugger
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Christopher Claiborne
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Jean-Marc Plancher
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Isabel Cuartas
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | | | - Robert T Abraham
- Vividion Therapeutics, San Diego, CA, USA
- Odyssey Therapeutics, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
27
|
Moreau M, Alouani E, Flecchia C, Falcoz A, Gallois C, Auclin E, André T, Cohen R, Hollebecque A, Turpin A, Pernot S, Masson T, Di Fiore F, Dutherge M, Mazard T, Hautefeuille V, Van Laethem JL, De la Fouchardière C, Perkins G, Ben-Abdelghani M, Sclafani F, Aparicio T, Kim S, Vernerey D, Taieb J, Guimbaud R, Tougeron D. A multicenter study evaluating efficacy of immune checkpoint inhibitors in advanced non-colorectal digestive cancers with microsatellite instability. Eur J Cancer 2024; 202:114033. [PMID: 38537314 DOI: 10.1016/j.ejca.2024.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND One randomized phase III trial comparing chemotherapy (CT) with immune checkpoint inhibitors (ICI) has demonstrated significant efficacy of ICI in deficient DNA mismatch repair system/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer. However, few studies have compared ICI with CT in other advanced dMMR/MSI-H digestive tumors. METHODS In this multicenter study, we included patients with advanced dMMR/MSI-H non-colorectal digestive tumors treated with chemotherapy and/or ICIs. Patients were divided retrospectively into two groups, a CT group and an immunotherapy (IO) group. The primary endpoint was progression-free survival (PFS). A propensity score approach using the inverse probability of treatment weighting (IPTW) method was applied to deal with potential differences between the two groups. RESULTS 133 patients (45.1/27.1/27.8% with gastric/small bowel/other carcinomas) were included. The majority of patients received ICI in 1st (29.1%) or 2nd line (44.4%). The 24-month PFS rates were 7.9% in the CT group and 71.2% in the IO group. Using the IPTW method, IO treatment was associated with better PFS (HR=0.227; 95% CI 0.147-0.351; p < 0.0001). The overall response rate was 26.3% in the CT group versus 60.7% in the IO group (p < 0.001) with prolonged duration of disease control in the IO group (p < 0.001). In multivariable analysis, predictive factors of PFS for patients treated with IO were good performance status, absence of liver metastasis and prior primary tumor resection, whereas no association was found for the site of the primary tumor. CONCLUSIONS In the absence of randomized trials, our study highlights the superior efficacy of ICI compared with standard-of-care therapy in patients with unresectable or metastatic dMMR/MSI-H non-colorectal digestive cancer, regardless of tumor type, with acceptable toxicity.
Collapse
Affiliation(s)
- Mathilde Moreau
- Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers 86000, France
| | - Emily Alouani
- Digestive Oncology Department, Toulouse University Hospital, IUCT Rangueil-Larrey, 31059 Toulouse, France
| | - Clémence Flecchia
- Department of Digestive Oncology, Georges-Pompidou European Hospital, Paris 75015, France
| | - Antoine Falcoz
- Methodological and Quality of Life in Oncology Unit, University Hospital of Besançon, Besançon, France; INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Claire Gallois
- Department of Digestive Oncology, Georges-Pompidou European Hospital, Paris 75015, France
| | - Edouard Auclin
- Department of Digestive Oncology, Georges-Pompidou European Hospital, Paris 75015, France
| | - Thierry André
- Sorbonne University, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC CURAMUS, Centre de Recherche Saint Antoine, Paris, France
| | - Romain Cohen
- Sorbonne University, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC CURAMUS, Centre de Recherche Saint Antoine, Paris, France
| | - Antoine Hollebecque
- Department of Medical Oncology, Gustave Roussy Institute, Villejuif 94805, France
| | - Anthony Turpin
- Medical Oncology Department, CHU Lille, University of Lille, Lille, France
| | - Simon Pernot
- Medical Oncology Department, Bergonié Institute, Bordeaux 33076, France
| | - Thérèse Masson
- Medical Oncology Department, La Rochelle Hospital, La Rochelle 17019, France
| | - Frederic Di Fiore
- Department of Medical Oncology, Rouen University Hospital, Rouen 76000, France
| | - Marie Dutherge
- Department of Medical Oncology, Rouen University Hospital, Rouen 76000, France
| | - Thibault Mazard
- Department of Medical Oncology, IRCM, INSERM, University of Montpellier, ICM, Montpellier, France
| | - Vincent Hautefeuille
- Department of Hepato-Gastroenterology and Digestive Oncology, Amiens University Hospital, Amiens, France
| | - Jean-Luc Van Laethem
- Digestive Oncology Department, Erasme Hospital, The Brussels University Hospital, Anderlecht 1070, Belgium
| | | | - Géraldine Perkins
- Department of Medical Oncology, Rennes University Hospital, Ponchaillou, Rennes 35000, France
| | - Meher Ben-Abdelghani
- Department of Medical Oncology, European Oncology Institute of Strasbourg, Strasbourg 67200, France
| | - Francesco Sclafani
- Digestive Oncology Department, Institut Jules Bordet, The Brussels University Hospital, Anderlecht 1070, Belgium
| | - Thomas Aparicio
- Gastroenterology Department, Saint-Louis Hospital, Paris 75010, France
| | - Stefano Kim
- Department of Medical Oncology, Besançon University Hospital, Besançon 25000, France
| | - Dewi Vernerey
- Methodological and Quality of Life in Oncology Unit, University Hospital of Besançon, Besançon, France; INSERM, Etablissement Français du Sang Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Besançon, France
| | - Julien Taieb
- Department of Digestive Oncology, Georges-Pompidou European Hospital, Paris 75015, France
| | - Rosine Guimbaud
- Digestive Oncology Department, Toulouse University Hospital, IUCT Rangueil-Larrey, 31059 Toulouse, France
| | - David Tougeron
- Hepato-Gastroenterology Department, Poitiers University Hospital, Poitiers 86000, France.
| |
Collapse
|
28
|
Flecchia C, Auclin E, Alouani E, Mercier M, Hollebecque A, Turpin A, Mazard T, Pernot S, Dutherage M, Cohen R, Borg C, Hautefeuille V, Sclafani F, Ben-Abdelghani M, Aparicio T, De La Fouchardière C, Herve C, Perkins G, Heinrich K, Kunzmann V, Gallois C, Guimbaud R, Tougeron D, Taieb J. Primary resistance to immunotherapy in patients with a dMMR/MSI metastatic gastrointestinal cancer: who is at risk? An AGEO real-world study. Br J Cancer 2024; 130:442-449. [PMID: 38102227 PMCID: PMC10844357 DOI: 10.1038/s41416-023-02524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The outstanding efficacy of immunotherapy in metastatic dMMR/MSI gastro-intestinal (GI) cancers has led to a rapid increase in the number of patients treated. However, 20-30% of patients experience primary resistance to immune checkpoint inhibitors (ICIPR) and need better characterization. METHODS This AGEO real-world study retrospectively analyzed the efficacy and safety of ICIs and identified clinical variables associated with ICIPR in patients with metastatic dMMR/MSI GI cancers treated with immunotherapy between 2015 and 2022. RESULTS 399 patients were included, 284 with colorectal cancer (CRC) and 115 with non-CRC, mostly treated by an anti-PD(L)1 (88.0%). PFS at 24 months was 55.8% (95CI [50.8-61.2]) and OS at 48 months was 59.1% (95CI [53.0-65.9]). ORR was 51.0%, and 25.1% of patients were ICIPR. There was no statistical difference in ORR, DCR, PFS, or OS between CRC and non-CRC groups. In multivariable analysis, ICIPR was associated with ECOG-PS ≥ 2 (OR = 3.36), liver metastases (OR = 2.19), peritoneal metastases (OR = 2.00), ≥1 previous line of treatment (OR = 1.83), and age≤50 years old (OR = 1.76). CONCLUSION These five clinical factors associated with primary resistance to ICIs should be considered by physicians to guide treatment choice in GI dMMR/MSI metastatic cancer patients.
Collapse
Affiliation(s)
- Clémence Flecchia
- Department of Digestive Oncology, Georges Pompidou European Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Edouard Auclin
- CARPEM, SIRIC, Université Paris Cité, Georges Pompidou European Hospital, Paris, France
| | - Emily Alouani
- Digestive Oncology Department, Rangueil Hospital, University Hospital of Toulouse, Toulouse, France
| | - Mathilde Mercier
- Gastroenterology and Hepatology Department, Poitiers University Hospital, Poitiers, France
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy Institute, Saclay University, 94800, Villejuif, France
| | - Anthony Turpin
- Department of Medical Oncology, CNRS UMR9020, Inserm UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, CHU Lille, Lille, France
| | - Thibault Mazard
- Department of Medical Oncology, Institut de Recherche en Cancérologie de Montpellier, INSERM, University of Montpellier, ICM, Montpellier, France
| | - Simon Pernot
- Department of Digestive Oncology, Institut Bergonié, Bordeaux, France
| | - Marie Dutherage
- Department of Medical Oncology, Henri Becquerel Centre, Rouen, France
| | - Romain Cohen
- Department of Medical Oncology, Sorbonne University, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Vincent Hautefeuille
- Department of Hepato-Gastroenterology and Digestive Oncology, CHU Amiens Picardie, Amiens, France
| | - Francesco Sclafani
- Department of Digestive Oncology, Institut Jules Bordet, The Brussels University Hospital, Université Libre de Bruxelles, 1070, Anderlecht, Belgium
| | | | - Thomas Aparicio
- Gastroenterology Department, Saint Louis Hospital, APHP, Paris, France
| | | | - Camille Herve
- Department of Medical Oncology, GHM, Grenoble, France
| | | | - Kathrin Heinrich
- Department of Medicine III and Comprehensive Cancer Center (CCC Munich LMU), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Volker Kunzmann
- Department of Internal Medicine II, University Hospital Würzburg, Germany on behalf of the WERA Comprehensive Cancer Center Alliance, Würzburg, Germany
| | - Claire Gallois
- CARPEM, SIRIC, Université Paris Cité, Georges Pompidou European Hospital, Paris, France
| | - Rosine Guimbaud
- Digestive Oncology Department, Rangueil Hospital, University Hospital of Toulouse, Toulouse, France
| | - David Tougeron
- Gastroenterology and Hepatology Department, Poitiers University Hospital, Poitiers, France
| | - Julien Taieb
- Department of Digestive Oncology, Georges Pompidou European Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France.
| |
Collapse
|
29
|
Nakayama Y, Ando T, Takahashi N, Tsukada K, Takagi H, Goto Y, Nakaya A, Nakada N, Yoshita H, Motoo I, Ueda A, Ueda Y, Sakumura M, Kajiura S, Ogawa K, Hosokawa A, Yasuda I. The Efficacy and Safety of Nivolumab Plus mFOLFOX6 in Gastric Cancer with Severe Peritoneal Metastasis. J Clin Med 2024; 13:834. [PMID: 38337528 PMCID: PMC10856034 DOI: 10.3390/jcm13030834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: Nivolumab plus chemotherapy is established as a first-line treatment for advanced gastric cancer (AGC). While mFOLFOX6 is commonly used for AGC with severe peritoneal metastasis, the efficacy of nivolumab combined with it remains uncertain. We evaluated the outcomes of nivolumab plus mFOLFOX6 for AGC with severe peritoneal metastasis in clinical practice. (2) Methods: This multicenter retrospective study was conducted between December 2021 and June 2023. We investigated AGC patients with massive ascites or inadequate oral intake due to severe peritoneal metastasis and who received nivolumab plus mFOLFOX6. (3) Results: Among 106 patients treated with nivolumab plus chemotherapy, 21 (19.8%) had severe peritoneal metastasis, with 14 receiving nivolumab plus mFOLFOX6. The median progression-free survival was 7.4 months (95%CI 1.9-10.1), and the median overall survival was 10.7 months (95%CI 5.3-NA), with four patients (28.5%) surviving more than 12 months. Improved ascites and oral intake were observed in 6/14 patients (42.8%) and 10/11 patients (90.9%), respectively. The major grade 3 or more adverse events included leukopenia (28.5%) and neutropenia (21.4%), with no severe immune-related adverse events reported. (4) Conclusions: The safety and moderate efficacy of nivolumab plus mFOLFOX6 were suggested even in AGC patients with severe peritoneal metastasis.
Collapse
Affiliation(s)
- Yurika Nakayama
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (I.M.); (A.U.); (Y.U.); (M.S.); (S.K.); (I.Y.)
| | - Takayuki Ando
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (I.M.); (A.U.); (Y.U.); (M.S.); (S.K.); (I.Y.)
| | - Naoki Takahashi
- Department of Gastroenterology, Kouseiren Takaoka Hospital, 5-10 Eirakumachi, Takaoka-shi 933-8555, Japan; (N.T.); (K.T.)
| | - Kenichiro Tsukada
- Department of Gastroenterology, Kouseiren Takaoka Hospital, 5-10 Eirakumachi, Takaoka-shi 933-8555, Japan; (N.T.); (K.T.)
| | - Hiroaki Takagi
- Department of Medical Oncology, Toyama Prefectural Central Hospital, 2-2-78 Nishinagae, Toyama-shi 930-8550, Japan; (H.T.); (K.O.)
| | - Yuno Goto
- Department of Gastroenterology, Takaoka City Hospital, 4-1 Takaramachi, Takaoka-shi 933-8550, Japan; (Y.G.); (A.N.)
| | - Atsuko Nakaya
- Department of Gastroenterology, Takaoka City Hospital, 4-1 Takaramachi, Takaoka-shi 933-8550, Japan; (Y.G.); (A.N.)
| | - Naokatsu Nakada
- Department of Gastroenterology, Itoigawa General Hospital, 457-1 Takegahana, Itoigawa-shi 941-8502, Japan;
| | - Hiroki Yoshita
- Department of Gastroenterology, Toyama Nishi General Hospital, 1019 Fuchumachi Shimokutsuwada, Toyama-shi 939-2716, Japan;
| | - Iori Motoo
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (I.M.); (A.U.); (Y.U.); (M.S.); (S.K.); (I.Y.)
| | - Akira Ueda
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (I.M.); (A.U.); (Y.U.); (M.S.); (S.K.); (I.Y.)
| | - Yuko Ueda
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (I.M.); (A.U.); (Y.U.); (M.S.); (S.K.); (I.Y.)
| | - Miho Sakumura
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (I.M.); (A.U.); (Y.U.); (M.S.); (S.K.); (I.Y.)
| | - Shinya Kajiura
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (I.M.); (A.U.); (Y.U.); (M.S.); (S.K.); (I.Y.)
| | - Kohei Ogawa
- Department of Medical Oncology, Toyama Prefectural Central Hospital, 2-2-78 Nishinagae, Toyama-shi 930-8550, Japan; (H.T.); (K.O.)
| | - Ayumu Hosokawa
- Department of Clinical Oncology, University of Miyazaki Hospital, Kihara-5200 Kiyotakecho, Miyazaki-shi 889-1692, Japan;
| | - Ichiro Yasuda
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (Y.N.); (I.M.); (A.U.); (Y.U.); (M.S.); (S.K.); (I.Y.)
| |
Collapse
|
30
|
Cervantes B, André T, Cohen R. Deficient mismatch repair/microsatellite unstable colorectal cancer: therapeutic advances and questions. Ther Adv Med Oncol 2024; 16:17588359231170473. [PMID: 38205076 PMCID: PMC10777764 DOI: 10.1177/17588359231170473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/30/2023] [Indexed: 01/12/2024] Open
Abstract
The microsatellite instability (MSI) phenotype is related to a deficiency of the DNA mismatch repair (dMMR) system and is observed in 5% of metastatic colorectal cancers (mCRCs). MSI/dMMR phenotype testing should be routine for all CRCs regardless of stage. Two complementary techniques with a high concordance (90-97%) allow us to determine the MSI/dMMR status of a tumor: immunohistochemistry and polymerase chain reaction. Since 2020 and the results of the phase III KEYNOTE 177 trial, pembrolizumab [anti-programmed cell death protein 1 (PD1)] is the new standard of care in first-line MSI/dMMR mCRC. To date, no combination of chemtotherapy ± targeted therapy with immune checkpoint inhibitors (ICIs) has been validated in the management of MSI/dMMR mCRC, and it is not known whether this combination would be beneficial. It is also unclear whether dual therapy with two ICIs is more effective than monotherapy. Several phase III trials are ongoing to answer these questions. Despite a high response rate and long-term benefit of a first line by anti-PD1, 30-50% of patients with MSI/dMMR mCRC experience an early or secondary progression. There are currently no validated predictive biomarkers of anti-PD1 ± anti-cytotoxic T lymphocyte antigen-4 resistance in patients with MSI/dMMR mCRC. In case of early progression on ICIs, the first two questions to consider are the possibility of pseudoprogression and the correct diagnosis of MSI/dMMR status. To date, there are no data on the use of adjuvant ICIs for MSI/dMMR resected colon cancers. By contrast, data are accumulating regarding the efficacy of neoadjuvant ICIs, with at least two-thirds of patients in the different trials in pathological complete response, making it possible to envisage 'Watch and wait' strategies in future.
Collapse
Affiliation(s)
- Baptiste Cervantes
- Department of Medical Oncology, Saint-Antoine Hospital, Sorbonne University, Paris, France AP-HP
| | - Thierry André
- Department of Medical Oncology, Saint-Antoine Hospital, Sorbonne University, Paris, France
- AP-HP; SIRIC CURAMUS, INSERM, Unité Mixte de Recherche Scientifique 938, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Paris, France
| | - Romain Cohen
- Department of Medical Oncology, Saint-Antoine Hospital, Sorbonne University, Paris, France
- AP-HP, SIRIC CURAMUS, INSERM, Unité Mixte de Recherche Scientifique 938, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Saint-Antoine Hospital, 184 rue du Fg Saint-Antoine 75012 Paris, France
| |
Collapse
|
31
|
Wu Z, Li G, Wang W, Zhang K, Fan M, Jin Y, Lin R. Immune checkpoints signature-based risk stratification for prognosis of patients with gastric cancer. Cell Signal 2024; 113:110976. [PMID: 37981068 DOI: 10.1016/j.cellsig.2023.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Until now, few researches have comprehensive explored the role of immune checkpoints (ICIs) and tumor microenvironment (TME) in gastric cancer (GC) patients based on the genomic data. RNA-sequence data and clinical information were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) database, GSE84437 and GSE84433. Univariate Cox analysis identified 60 ICIs with prognostic values, and these genes were then subjected to NMF cluster analysis and the GC samples (n = 804) were classified into two distinct subtypes (Cluster 1: n = 583; Cluster 2: n = 221). The Kaplan-Meier curves for OS analysis indicated that C1 predicted a poorer prognosis. The C2 subtype illustrated a relatively better prognosis and characteristics of "hot tumors," including high immune score, overexpression of immune checkpoint molecules, and enriched tumor-infiltrated immune cells, indicating that the NMF clustering in GC was robust and stable. Regarding the patient's heterogeneity, an ICI-score was constructed to quantify the ICI patterns in individual patients. Moreover, the study found that the low ICI-score group contained mostly MSI-low events, and the high ICI-score group contained predominantly MSI-high events. In addition, the ICI-score groups had good responsiveness to CTLA4 and PD-1 based on The Cancer Immunome Atlas (TCIA) database. Our research firstly constructed ICIs signature, as well as identified some hub genes in GC patients.
Collapse
Affiliation(s)
- Zenghong Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Fan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Xu H, Jia Z, Liu F, Li J, Huang Y, Jiang Y, Pu P, Shang T, Tang P, Zhou Y, Yang Y, Su J, Liu J. Biomarkers and experimental models for cancer immunology investigation. MedComm (Beijing) 2023; 4:e437. [PMID: 38045830 PMCID: PMC10693314 DOI: 10.1002/mco2.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The rapid advancement of tumor immunotherapies poses challenges for the tools used in cancer immunology research, highlighting the need for highly effective biomarkers and reproducible experimental models. Current immunotherapy biomarkers encompass surface protein markers such as PD-L1, genetic features such as microsatellite instability, tumor-infiltrating lymphocytes, and biomarkers in liquid biopsy such as circulating tumor DNAs. Experimental models, ranging from 3D in vitro cultures (spheroids, submerged models, air-liquid interface models, organ-on-a-chips) to advanced 3D bioprinting techniques, have emerged as valuable platforms for cancer immunology investigations and immunotherapy biomarker research. By preserving native immune components or coculturing with exogenous immune cells, these models replicate the tumor microenvironment in vitro. Animal models like syngeneic models, genetically engineered models, and patient-derived xenografts provide opportunities to study in vivo tumor-immune interactions. Humanized animal models further enable the simulation of the human-specific tumor microenvironment. Here, we provide a comprehensive overview of the advantages, limitations, and prospects of different biomarkers and experimental models, specifically focusing on the role of biomarkers in predicting immunotherapy outcomes and the ability of experimental models to replicate the tumor microenvironment. By integrating cutting-edge biomarkers and experimental models, this review serves as a valuable resource for accessing the forefront of cancer immunology investigation.
Collapse
Affiliation(s)
- Hengyi Xu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ziqi Jia
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fengshuo Liu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiayi Li
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yansong Huang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yiwen Jiang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengming Pu
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Tongxuan Shang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Pengrui Tang
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yongxin Zhou
- Eight‐year MD ProgramSchool of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yufan Yang
- School of MedicineTsinghua UniversityBeijingChina
| | - Jianzhong Su
- Oujiang LaboratoryZhejiang Lab for Regenerative Medicine, Vision, and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center /National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
33
|
Hyung S, Ko J, Heo YJ, Blum SM, Kim ST, Park SH, Park JO, Kang WK, Lim HY, Klempner SJ, Lee J. Patient-derived exosomes facilitate therapeutic targeting of oncogenic MET in advanced gastric cancer. SCIENCE ADVANCES 2023; 9:eadk1098. [PMID: 38000030 PMCID: PMC10672184 DOI: 10.1126/sciadv.adk1098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Gastric cancer (GC) with peritoneal metastases and malignant ascites continues to have poor prognosis. Exosomes mediate intercellular communication during cancer progression and promote therapeutic resistance. Here, we report the significance of exosomes derived from malignant ascites (EXOAscites) in cancer progression and use modified exosomes as resources for cancer therapy. EXOAscites from patients with GC stimulated invasiveness and angiogenesis in an ex vivo three-dimensional autologous tumor spheroid microfluidic system. EXOAscites concentration increased invasiveness, and blockade of their secretion suppressed tumor progression. In MET-amplified GC, EXOAscites contain abundant MET; their selective delivery to tumor cells enhanced angiogenesis and invasiveness. Exosomal MET depletion substantially reduced invasiveness; an additive therapeutic effect was induced when combined with MET and/or VEGFR2 inhibition in a patient-derived MET-amplified GC model. Allogeneic MET-harboring exosome delivery induced invasion and angiogenesis in a MET non-amplified GC model. MET-amplified patient tissues showed higher exosome concentration than their adjacent normal tissues. Manipulating exosome content and production may be a promising complementary strategy against GC.
Collapse
Affiliation(s)
- Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul, Republic of Korea
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | | | - Steven M. Blum
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Samuel J. Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Vaccaro A, van de Walle T, Ramachandran M, Essand M, Dimberg A. Of mice and lymphoid aggregates: modeling tertiary lymphoid structures in cancer. Front Immunol 2023; 14:1275378. [PMID: 37954592 PMCID: PMC10639130 DOI: 10.3389/fimmu.2023.1275378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Tertiary lymphoid structures (TLS) are lymph node-like aggregates that can form in association with chronic inflammation or cancer. Mature TLS are organized into B and T cell zones, and are not encapsulated but include all cell types necessary for eliciting an adaptive immune response. TLS have been observed in various cancer types and are generally associated with a positive prognosis as well as increased sensitivity to cancer immunotherapy. However, a comprehensive understanding of the roles of TLS in eliciting anti-tumor immunity as well as the mechanisms involved in their formation and function is still lacking. Further studies in orthotopic, immunocompetent cancer models are necessary to evaluate the influence of TLS on cancer therapies, and to develop new treatments that promote their formation in cancer. Here, we review key insights obtained from functional murine studies, discuss appropriate models that can be used to study cancer-associated TLS, and suggest guidelines on how to identify TLS and distinguish them from other antigen-presenting niches.
Collapse
Affiliation(s)
- Alessandra Vaccaro
- *Correspondence: Alessandra Vaccaro, ; Tiarne van de Walle, ; Anna Dimberg,
| | | | | | | | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Berger JM, Preusser M, Berghoff AS, Bergen ES. Malignant ascites: Current therapy options and treatment prospects. Cancer Treat Rev 2023; 121:102646. [PMID: 39492370 DOI: 10.1016/j.ctrv.2023.102646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Ascites formation is a common complication of cancer with a significant symptomatic burden for patients. Malignant ascites (MA) is defined by the presence of tumor cells within the ascitic fluid. It does not only cause substantial morbidity, but is also associated with impaired survival. Considering the frequent occurrence of MA, it still represents a clinical challenge for physicians with limited therapy options, mainly comprising of the treatment of the primary tumor and effusion drainage. Particularly the lack of pathophysiological insight limits the development of effective, causative therapies. Causes of MA development such as lymphatic vessel obstruction and the effects of tumor secreted vascular endothelial growth factor (VEGF) have been known for decades. Novel research suggests that the intraperitoneal immune system may also induce and maintain MA accumulation. In this review, we assess current knowledge on the pathophysiology of MA and summarize available evidence of treatment approaches. Also, factors contributing to ascites formation without proof of tumor cells in the peritoneal cavity, defined as paramalignant ascites, with potential treatment strategies are discussed. We further focus on novel findings in the pathophysiology of MA that might lead to treatment improvement in the near future and discussed relevant knowledge gaps in this field.
Collapse
Affiliation(s)
- Julia M Berger
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Elisabeth S Bergen
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Bhamidipati D, Subbiah V. Tumor-agnostic drug development in dMMR/MSI-H solid tumors. Trends Cancer 2023; 9:828-839. [PMID: 37517955 DOI: 10.1016/j.trecan.2023.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H) represents a distinct phenotype among solid tumors characterized by frequent frameshift mutations resulting in the generation of neoantigens that are highly immunogenic. Seminal studies identified that dMMR/MSI-H tumors are exquisitely sensitive to immune checkpoint inhibitors, which has dramatically improved outcomes for patients harboring dMMR/MSI-H tumors. Nevertheless, many patients develop resistance to single-agent immune checkpoint blockade, prompting the need for improved therapeutic options for this patient population. In this review, we highlight key studies examining the efficacy of PD1 inhibitors in the metastatic and neoadjuvant setting for patients with dMMR/MSI-H tumors, describe resistance mechanisms to immune checkpoint blockade, and discuss novel treatment approaches that are currently under investigation for dMMR/MSI-H tumors.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, TN, USA.
| |
Collapse
|
37
|
Taïeb J, Bouche O, André T, Le Malicot K, Laurent-Puig P, Bez J, Toullec C, Borg C, Randrian V, Evesque L, Corbinais S, Perrier H, Buecher B, Di Fiore F, Gallois C, Emile JF, Lepage C, Elhajbi F, Tougeron D. Avelumab vs Standard Second-Line Chemotherapy in Patients With Metastatic Colorectal Cancer and Microsatellite Instability: A Randomized Clinical Trial. JAMA Oncol 2023; 9:1356-1363. [PMID: 37535388 PMCID: PMC10401392 DOI: 10.1001/jamaoncol.2023.2761] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/24/2023] [Indexed: 08/04/2023]
Abstract
IMPORTANCE Only 1 randomized clinical trial has shown the superiority of immune checkpoint inhibitors in patients with deficient mismatch repair and/or microsatellite instability (dMMR/MSI) metastatic colorectal cancer (mCRC) in the first-line setting. OBJECTIVES To determine whether avelumab (an anti-programmed cell death ligand 1 antibody) improves progression-free survival (PFS) compared with standard second-line chemotherapy in patients with dMMR/MSI mCRC. DESIGN, SETTING, AND PARTICIPANTS The SAMCO-PRODIGE 54 trial is a national open-label phase 2 randomized clinical trial that was conducted from April 24, 2018, to April 29, 2021, at 49 French sites. Patients with dMMR/MSI mCRC who experienced progression while receiving standard first-line therapy were included in the analysis. INTERVENTIONS Patients were randomized to receive standard second-line therapy or avelumab every 2 weeks until progression, unacceptable toxic effects, or patient refusal. MAIN OUTCOME AND MEASURES The primary end point was PFS according to RECIST (Response Evaluation Criteria in Solid Tumours), version 1.1, evaluated by investigators in patients with mCRC and confirmed dMMR and MSI status who received at least 1 dose of treatment (modified intention-to-treat [mITT] population). RESULTS A total of 122 patients were enrolled in the mITT population. Median age was 66 (IQR, 56-76) years, 65 patients (53.3%) were women, 100 (82.0%) had a right-sided tumor, and 52 (42.6%) had BRAF V600E-mutated tumors. There was no difference in patients and tumor characteristics between treatment groups. No new safety concerns in either group were detected, with fewer treatment-related adverse events of at least grade 3 in the avelumab group than in the chemotherapy group (20 [31.7%] vs 34 [53.1%]; P = .02). After a median follow-up of 33.3 (95% CI, 28.3-34.8) months, avelumab was superior to chemotherapy with or without targeted agents with respect to PFS (15 [24.6%] vs 5 [8.2%] among patients without progression; P = .03). Rates of PFS rates at 12 months were 31.2% (95% CI, 20.1%-42.9%) and 19.4% (95% CI, 10.6%-30.2%) in the avelumab and control groups, respectively, and 27.4% (95% CI, 16.8%-39.0%) and 9.1% (95% CI, 3.2%-18.8%) at 18 months. Objective response rates were similar in both groups (18 [29.5%] vs 16 [26.2%]; P = .45). Among patients with disease control, 18 (75.7%) in the avelumab group compared with 9 (19.1%) in the control group had ongoing disease control at 18 months. CONCLUSIONS The SAMCO-PRODIGE 54 phase 2 randomized clinical trial showed, in patients with dMMR/MSI mCRC, better PFS and disease control duration with avelumab over standard second-line treatment, with a favorable safety profile. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03186326.
Collapse
Affiliation(s)
- Julien Taïeb
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP Centre, Université Paris Cité, Paris, France
| | - Olivier Bouche
- Department of Digestive Oncology, Centre Hospitalier Universitaire (CHU) Reims, Reims, France
| | - Thierry André
- Sorbonne Université and Hôpital Saint Antoine, INSERM 938 and Site de Recherche Intégrée sur le Cancer CURAMUS, Paris, France
| | - Karine Le Malicot
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM Lipides Nutrition Cancer–Unité Mixte de Recherche 1231, University of Burgundy and Franche Comté, Dijon, France
| | - Pierre Laurent-Puig
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
- Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP Centre, Université Paris Cité, Paris, France
| | - Jérémie Bez
- Fédération Francophone de Cancérologie Digestive, EPICAD INSERM Lipides Nutrition Cancer–Unité Mixte de Recherche 1231, University of Burgundy and Franche Comté, Dijon, France
| | - Clémence Toullec
- Department of Medical Oncology, Institut du Cancer, Avignon-Provence, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Violaine Randrian
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - Ludovic Evesque
- Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France
| | | | - Hervé Perrier
- Department of Hepato-Gastroenterology, Hôpital Saint-Joseph, Marseille, France
| | - Bruno Buecher
- Department of Oncology, Institut Curie, Paris, France
| | - Frederic Di Fiore
- Hepatogastroenterology Department, CHU Rouen, University of Rouen Normandy, INSERM 1245, Institut de Recherche en Oncologie Group, Normandie University, Rouen, France
| | - Claire Gallois
- Institut du Cancer Paris Cancer Research for Personalized Medicine, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Paris, France
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique, Sorbonne Université, Université Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Jean Francois Emile
- EA4340, Pathology Department and INSERM, Ambroise Paré Hospital, Boulogne, France
| | - Côme Lepage
- Sorbonne Université and Hôpital Saint Antoine, INSERM 938 and Site de Recherche Intégrée sur le Cancer CURAMUS, Paris, France
- Department of Digestive Oncology, University Hospital Dijon, University of Burgundy and Franche Comté, Dijon, France
| | - Farid Elhajbi
- Medical Oncology Department, Oscar Lambret Center, Lille, France
| | - David Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
38
|
Tian BW, Han CL, Wang HC, Yan LJ, Ding ZN, Liu H, Mao XC, Tian JC, Xue JS, Yang LS, Tan SY, Dong ZR, Yan YC, Wang DX, Li T. Effect of liver metastasis on the efficacy of immune checkpoint inhibitors in cancer patients: a systemic review and meta-analysis. Clin Exp Metastasis 2023; 40:255-287. [PMID: 37308706 DOI: 10.1007/s10585-023-10217-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2024]
Abstract
Liver metastasis is a frequent phenomenon in advanced tumor disease. Immune checkpoint inhibitors (ICIs) are a new class of therapeutics that can improve the prognosis of cancer patients. The purpose of this study is to elucidate the relationship between liver metastasis and survival outcomes of patients receiving ICIs treatment. We searched four main databases, including PubMed, EMBASE, Cochrane Library, and Web of Science. Overall survival (OS) and progression-free survival (PFS) were the survival outcomes of our concern. Hazard ratio (HR) with 95% confidence interval (CI) were used to evaluate the relationship between liver metastasis and OS/ PFS. Finally, 163 articles were included in the study. The pooled results showed that patients with liver metastasis receiving ICIs treatment had worse OS (HR=1.82, 95%CI:1.59-2.08) and PFS (HR=1.68, 95%CI:1.49-1.89) than patients without liver metastasis. The effect of liver metastasis on ICIs efficacy differed in different tumor types, and patients with urinary system tumors (renal cell carcinoma OS: HR=2.47, 95%CI:1.76-3.45; urothelial carcinoma OS: HR=2.37, 95%CI:2.03-2.76) had the worst prognosis, followed by patients with melanoma (OS: HR=2.04, 95%CI:1.68-2.49) or non-small cell lung cancer (OS: HR=1.81, 95%CI:1.72-1.91). ICIs efficacy in digestive system tumors (colorectal cancer OS: HR=1.35, 95%CI:1.07-1.71; gastric cancer/ esophagogastric cancer OS: HR=1.17, 95%CI:0.90-1.52) was less affected, and peritoneal metastasis and the number of metastases have a greater clinical significance than liver metastasis based on univariate data. For cancer patients receiving ICIs treatment, the occurrence of liver metastasis is associated with poor prognosis. Different cancer types and metastatic sites may hold a different prognostic effect on the efficacy of ICIs treatment in cancer patients.
Collapse
Affiliation(s)
- Bao-Wen Tian
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Cheng-Long Han
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Han-Chao Wang
- Institute for Financial Studies, Shandong Univeristy, Jinan, 250100, People's Republic of China
| | - Lun-Jie Yan
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Zi-Niu Ding
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Hui Liu
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Xin-Cheng Mao
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Jin-Cheng Tian
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Jun-Shuai Xue
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Long-Shan Yang
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Si-Yu Tan
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Zhao-Ru Dong
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Yu-Chuan Yan
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Dong-Xu Wang
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China
| | - Tao Li
- Department of general surgery, Qilu Hospital, Shandong University, 107 West Wen Hua Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
39
|
Manca P, Corti F, Intini R, Mazzoli G, Miceli R, Germani MM, Bergamo F, Ambrosini M, Cristarella E, Cerantola R, Boccaccio C, Ricagno G, Ghelardi F, Randon G, Leoncini G, Milione M, Fassan M, Cremolini C, Lonardi S, Pietrantonio F. Tumour mutational burden as a biomarker in patients with mismatch repair deficient/microsatellite instability-high metastatic colorectal cancer treated with immune checkpoint inhibitors. Eur J Cancer 2023; 187:15-24. [PMID: 37099945 DOI: 10.1016/j.ejca.2023.03.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are the standard treatment in patients with mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). Tumour mutational burden (TMB) is a promising biomarker for the prediction of treatment outcomes. PATIENTS AND METHODS We screened 203 patients with dMMR/MSI-H mCRC treated with an anti-PD-(L)1 (anti-Programmed-Death-(Ligand)1) plus or minus an anti-Cytotoxic T-Lymphocyte Antigen 4 (anti-CTLA-4) agent at three Italian Academic Centers. TMB was tested by Foundation One Next Generation Sequencing assay and correlated with clinical outcomes, in the overall population and according to ICI regimen. RESULTS We included 110 patients with dMMR/MSI-H mCRC. Eighty patients received anti-PD-(L)1 monotherapy and 30 received anti-CTLA-4 combinations. Median TMB was 49 mut/Mb (range: 8-251 mut/Mb). The optimal prognostic cut-off for progression-free survival (PFS) stratification was 23 mut/Mb. Patients with TMB ≤23 mut/Mb had significantly worse PFS (adjusted Hazard Ratio [aHR] = 4.26, 95% confidence interval [CI]:1.85-9.82, p = 0.001) and overall survival (OS) (aHR = 5.14, 95% CI: 1.76-14.98, p = 0.003). Using a cut-off optimised for predicting treatment outcome, anti-CTLA-4 combination was associated with a significant PFS/OS benefit versus anti-PD-(L)1 monotherapy in patients with TMB>40 mut/Mb (2-year PFS: 100.0% versus 70.7%, p = 0.002; 2-year OS: 100.0% versus 76.0%, p = 0.025), but not in those with TMB ≤40 mut/Mb (2-year PFS: 59.7% versus 68.6%, p = 0.888; 2-year OS: 80.0% versus 81.0%, p = 0.949). CONCLUSION Patients with dMMR/MSI-H mCRC and relatively lower TMB value displayed early disease progression when receiving ICIs, whereas patients with the highest TMB values may obtain the maximal benefit from intensified anti-CTLA-4/PD-1 combination.
Collapse
Affiliation(s)
- Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. https://twitter.com/@paomanca
| | - Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rossana Intini
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giacomo Mazzoli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosalba Miceli
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Maria Germani
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesca Bergamo
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Margherita Ambrosini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eleonora Cristarella
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Cerantola
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Chiara Boccaccio
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gianmarco Ricagno
- Department of Medical Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy; Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Filippo Ghelardi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Leoncini
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Milione
- First Division of Pathology, Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy; Veneto Institute of Oncology IOV, IRCCS, Padua, Italy
| | - Chiara Cremolini
- Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Sara Lonardi
- Department of Medical Oncology 3, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
40
|
Randon G, Aoki Y, Cohen R, Provenzano L, Nasca V, Klempner SJ, Maron SB, Cerantola R, Chao J, Fornaro L, Ferrari Bravo W, Ghelardi F, Ambrosini M, Manca P, Salati M, Kawazoe A, Zhu V, Cowzer D, Genovesi V, Lonardi S, Shitara K, André T, Pietrantonio F. Outcomes and a prognostic classifier in patients with microsatellite instability-high metastatic gastric cancer receiving PD-1 blockade. J Immunother Cancer 2023; 11:e007104. [PMID: 37277193 PMCID: PMC10255232 DOI: 10.1136/jitc-2023-007104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Subgroup analyses of randomized trials suggest the superiority of immune checkpoint inhibitor-based therapy over chemotherapy in patients with mismatch-repair deficient (dMMR) and/or microsatellite instability-high (MSI-high) advanced gastric or gastroesophageal junction adenocarcinoma. However, these subgroups are small and studies examining prognostic features within dMMR/MSI-high patients are lacking. METHODS We conducted an international cohort study at tertiary cancer centers and collected baseline clinicopathologic features of patients with dMMR/MSI-high metastatic or unresectable gastric cancer treated with anti-programmed cell death protein-1 (PD-1)-based therapies. The adjusted HRs of variables significantly associated with overall survival (OS) were used to develop a prognostic score. RESULTS One hundred and thirty patients were included. At a median follow-up of 25.1 months, the median progression-free survival (PFS) was 30.3 months (95% CI: 20.4 to NA) and 2-year PFS rate was 56% (95% CI: 48% to 66%). Median OS was of 62.5 months (95% CI: 28.4 to NA) and 2-year OS rate was 63% (95% CI: 55% to 73%). Among the 103 Response Evaluation Criteria in Solid Tumors-evaluable patients, objective response rate was 66% and disease control rate 87% across lines of therapy. In the multivariable models, Eastern Cooperative Oncology Group Performance Status of 1 or 2, non-resected primary tumor, presence of bone metastases and malignant ascites were independently associated with poorer PFS and OS. These four clinical variables were used to build a three-category (ie, good, intermediate, and poor risk) prognostic score. Compared with patients with good risk, patients with intermediate risk score had numerically inferior PFS and OS (2-year PFS rate: 54.3% versus 74.5%, HR 1.90, 95% CI: 0.99 to 3.66; 2-year OS rate: 66.8% versus 81.2%, HR 1.86, 95% CI: 0.87 to 3.98), whereas patients with poor risk score had significantly inferior PFS and OS (2-year PFS rate: 10.6%, HR 9.65, 95% CI: 4.67 to 19.92; 2-year OS rate: 13.3%, HR 11.93, 95% CI: 5.42 to 26.23). CONCLUSIONS Overall outcomes with anti-PD-1-based therapies are favorable in MSI-high gastroesophageal adenocarcinomas. However, within this overall favorable subgroup a more accurate prognostication using baseline clinical characteristics might identify patients at higher risk of rapid disease progression who may deserve intensified immunotherapy combination strategies.
Collapse
Affiliation(s)
- Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Yu Aoki
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Kashiwa, Japan
| | - Romain Cohen
- Department of Medical Oncology, Saint-Antoine Hospital, APHP, Sorbonne University, Paris, France
| | - Leonardo Provenzano
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Vincenzo Nasca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Samuel J Klempner
- Department of Medicine, Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Steven B Maron
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Joseph Chao
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Lorenzo Fornaro
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Walter Ferrari Bravo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Filippo Ghelardi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Margherita Ambrosini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paolo Manca
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Massimiliano Salati
- Division of Oncology, Department of Oncology and Hematology, University Hospital Modena, Modena, Italy
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Chiba, Japan
| | - Valerie Zhu
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Darren Cowzer
- Department of Medicine, Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Virginia Genovesi
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Sara Lonardi
- Department of Oncology, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center-Hospital East, Chiba, Japan
| | - Thierry André
- Department of Medical Oncology, Saint-Antoine Hospital, APHP, Sorbonne University, Paris, France
| | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
41
|
Disis ML, Adams SF, Bajpai J, Butler MO, Curiel T, Dodt SA, Doherty L, Emens LA, Friedman CF, Gatti-Mays M, Geller MA, Jazaeri A, John VS, Kurnit KC, Liao JB, Mahdi H, Mills A, Zsiros E, Odunsi K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gynecologic cancer. J Immunother Cancer 2023; 11:e006624. [PMID: 37295818 PMCID: PMC10277149 DOI: 10.1136/jitc-2022-006624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced gynecologic cancers have historically lacked effective treatment options. Recently, immune checkpoint inhibitors (ICIs) have been approved by the US Food and Drug Administration for the treatment of cervical cancer and endometrial cancer, offering durable responses for some patients. In addition, many immunotherapy strategies are under investigation for the treatment of earlier stages of disease or in other gynecologic cancers, such as ovarian cancer and rare gynecologic tumors. While the integration of ICIs into the standard of care has improved outcomes for patients, their use requires a nuanced understanding of biomarker testing, treatment selection, patient selection, response evaluation and surveillance, and patient quality of life considerations, among other topics. To address this need for guidance, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline. The Expert Panel drew on the published literature as well as their own clinical experience to develop evidence- and consensus-based recommendations to provide guidance to cancer care professionals treating patients with gynecologic cancer.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Sarah F Adams
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Jyoti Bajpai
- Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tyler Curiel
- Dartmouth-Hitchcock's Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Laura Doherty
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | - Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veena S John
- Department of Medical Oncology & Hematology, Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Katherine C Kurnit
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - John B Liao
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Haider Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anne Mills
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
42
|
Strating E, Verhagen MP, Wensink E, Dünnebach E, Wijler L, Aranguren I, De la Cruz AS, Peters NA, Hageman JH, van der Net MMC, van Schelven S, Laoukili J, Fodde R, Roodhart J, Nierkens S, Snippert H, Gloerich M, Rinkes IB, Elias SG, Kranenburg O. Co-cultures of colon cancer cells and cancer-associated fibroblasts recapitulate the aggressive features of mesenchymal-like colon cancer. Front Immunol 2023; 14:1053920. [PMID: 37261365 PMCID: PMC10228738 DOI: 10.3389/fimmu.2023.1053920] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Background Poor prognosis in colon cancer is associated with a high content of cancer-associated fibroblasts (CAFs) and an immunosuppressive tumor microenvironment. The relationship between these two features is incompletely understood. Here, we aimed to generate a model system for studying the interaction between cancer cells and CAFs and their effect on immune-related cytokines and T cell proliferation. Methods CAFs were isolated from colon cancer liver metastases and were immortalized to prolong lifespan and improve robustness and reproducibility. Established medium and matrix compositions that support the growth of patient-derived organoids were adapted to also support CAF growth. Changes in growth pattern and cellular re-organization were assessed by confocal microscopy, live cell imaging, and immunofluorescence. Single cell RNA sequencing was used to study CAF/organoid co-culture-induced phenotypic changes in both cell types. Conditioned media were used to quantify the production of immunosuppressive factors and to assess their effect on T cell proliferation. Results We developed a co-culture system in which colon cancer organoids and CAFs spontaneously organize into superstructures with a high capacity to contract and stiffen the extracellular matrix (ECM). CAF-produced collagen IV provided a basement membrane supporting cancer cell organization into glandular structures, reminiscent of human cancer histology. Single cell RNA sequencing analysis showed that CAFs induced a partial epithelial-to-mesenchymal-transition in a subpopulation of cancer cells, similar to what is observed in the mesenchymal-like consensus molecular subtype 4 (CMS4) colon cancer. CAFs in co-culture were characterized by high expression of ECM components, ECM-remodeling enzymes, glycolysis, hypoxia, and genes involved in immunosuppression. An expression signature derived from CAFs in co-culture identified a subpopulation of glycolytic myofibroblasts specifically residing in CMS1 and CMS4 colon cancer. Medium conditioned by co-cultures contained high levels of the immunosuppressive factors TGFβ1, VEGFA and lactate, and potently inhibited T cell proliferation. Conclusion Co-cultures of organoids and immortalized CAFs recapitulate the histological, biophysical, and immunosuppressive features of aggressive mesenchymal-like human CRC. The model can be used to study the mechanisms of immunosuppression and to test therapeutic strategies targeting the cross-talk between CAFs and cancer cells. It can be further modified to represent distinct colon cancer subtypes and (organ-specific) microenvironments.
Collapse
Affiliation(s)
- Esther Strating
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Emerens Wensink
- Department of Medical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ester Dünnebach
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Liza Wijler
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Itziar Aranguren
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alberto Sanchez De la Cruz
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niek A. Peters
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joris H. Hageman
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mirjam M. C. van der Net
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, Utrecht, Netherlands
| | - Susanne van Schelven
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jamila Laoukili
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Riccardo Fodde
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Jeanine Roodhart
- Department of Medical Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Hugo Snippert
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, Utrecht, Netherlands
| | - Martijn Gloerich
- Center for Molecular Medicine, Division LAB, University Medical Center Utrecht, Utrecht, Netherlands
| | - Inne Borel Rinkes
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sjoerd G. Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, Netherlands
- Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
43
|
Barraud S, Tougeron D, Villeneuve L, Eveno C, Bayle A, Parc Y, Pocard M, André T, Cohen R. Immune checkpoint inhibitors for patients with isolated peritoneal carcinomatosis from dMMR/MSI-H colorectal cancer, a BIG-RENAPE collaboration. Dig Liver Dis 2023; 55:673-678. [PMID: 36266207 DOI: 10.1016/j.dld.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors has significantly improved the survival of patients with MSI/dMMR mCRC. These tumors are associated with a specific metastatic spread, i.e. frequent peritoneal carcinomatosis (PC) that may be treated surgically when there is no other metastatic location. We aimed at evaluating the prognosis of patients treated with immune checkpoint inhibitors for MSI/dMMR mCRC with isolated PC. MATERIAL AND METHODS All consecutive patients with isolated PC from MSI/dMMR mCRC, initially considered as unresectable by multidisciplinary team meeting, treated with immune checkpoint inhibitors were included in this French multicenter cohort study. RESULTS Among 45 patients included, we observed 11 complete responses and 10 partial responses for an overall response rate iRECIST of 46%. After a median follow-up of 24.4 months, the median progression-free survival (PFS) and overall survival (OS) were not reached. Seven of the eight patients who underwent cytoreductive surgery after treatment with anti-PD1 ± anti-CTLA-4 were in complete pathologic response. CONCLUSION These results demonstrate long-term benefit of immune checkpoint inhibitors for patients with isolated PC from MSI/dMMR mCRC. Such treatment appears as the best therapeutic option for patients with isolated PC from MSI/dMMR mCRC. With a majority of pathological complete responses for patients who underwent surgery for residual lesions, the value of such therapeutic strategy remains unknown.
Collapse
Affiliation(s)
- Solenn Barraud
- Sorbonne Université, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - David Tougeron
- Université de Poitiers, Faculté de Médecine et de Pharmacie and Department of Hepatology and Gastroenterology, Centre hospitalo-universitaire de Poitiers, Poitiers, France
| | - Laurent Villeneuve
- Clinical Research and Epidemiological Unit, Department of Public Health, Lyon University Hospital, EA 3738, University of Lyon, Lyon, France
| | - Clarisse Eveno
- Department of Digestive and Oncological Surgery, Claude Huriez University Hospital, and UMR- S1277- CANTHER Laboratory, "Cancer Heterogeneity, Plasticity and Resistance to Therapies", Lille, France
| | - Arnaud Bayle
- Drug Development Department (DITEP), Gustave Roussy, Villejuif, France; Oncostat U1018, Inserm, Université Paris-Saclay, Équipe Labellisée Ligue Contre le Cancer, Villejuif, France
| | - Yann Parc
- Sorbonne Université, Department of Digestive Surgery, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - Marc Pocard
- Hepato-Biliary-Pancreatic Gastrointestinal Surgery and Liver Transplantation, Pitié-Salpêtrière Hospital, Assistance Publique/Hôpitaux de Paris, and Université Paris Cité, UMR INSERM 1275 CAP Paris-Tech, Lariboisière Hospital, F-75010 Paris, France
| | - Thierry André
- Sorbonne Université, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France
| | - Romain Cohen
- Sorbonne Université, Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, and INSERM UMRS 938, Équipe Instabilité des Microsatellites et Cancer, Équipe Labellisée par la Ligue Nationale Contre le Cancer et SIRIC CURAMUS, Centre de recherche Saint Antoine, Paris, France.
| |
Collapse
|
44
|
Ornella MSC, Badrinath N, Kim KA, Kim JH, Cho E, Hwang TH, Kim JJ. Immunotherapy for Peritoneal Carcinomatosis: Challenges and Prospective Outcomes. Cancers (Basel) 2023; 15:cancers15082383. [PMID: 37190310 DOI: 10.3390/cancers15082383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Peritoneal metastasis, also known as peritoneal carcinomatosis (PC), is a refractory cancer that is typically resistant to conventional therapies. The typical treatment for PC is a combination of cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Recently, research in this area has seen significant advances, particularly in immunotherapy as an alternative therapy for PC, which is very encouraging. Catumaxomab is a trifunctional antibody intraperitoneal (IP) immunotherapy authorized in Europe that can be used to diminish malignant ascites by targeting EpCAM. Intraperitoneal (IP) immunotherapy breaks immunological tolerance to treat peritoneal illness. Increasing T-cell responses and vaccination against tumor-associated antigens are two methods of treatment. CAR-T cells, vaccine-based therapeutics, dendritic cells (DCs) in combination with pro-inflammatory cytokines and NKs, adoptive cell transfer, and immune checkpoint inhibitors are promising treatments for PC. Carcinoembryonic antigen-expressing tumors are suppressed by IP administration of CAR-T cells. This reaction was strengthened by anti-PD-L1 or anti-Gr1. When paired with CD137 co-stimulatory signaling, CAR-T cells for folate receptor cancers made it easier for T-cell tumors to find their way to and stay alive in the body.
Collapse
Affiliation(s)
- Mefotse Saha Cyrelle Ornella
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Narayanasamy Badrinath
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Kyeong-Ae Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jung Hee Kim
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Euna Cho
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Bionoxx Inc., Parkview Tower #1905, 248 Jeongjail-ro, Bundang-gu, Seongnam 13554, Republic of Korea
| | - Jae-Joon Kim
- Division of Hematology & Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
45
|
Ziranu P, Pretta A, Pozzari M, Maccioni A, Badiali M, Fanni D, Lai E, Donisi C, Persano M, Gerosa C, Puzzoni M, Bardanzellu F, Ambu R, Pusceddu V, Dubois M, Cerrone G, Migliari M, Murgia S, Spanu D, Pretta G, Aimola V, Balconi F, Murru S, Faa G, Scartozzi M. CDX-2 expression correlates with clinical outcomes in MSI-H metastatic colorectal cancer patients receiving immune checkpoint inhibitors. Sci Rep 2023; 13:4397. [PMID: 36928082 PMCID: PMC10020482 DOI: 10.1038/s41598-023-31538-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) showed efficacy in metastatic colorectal cancer (mCRC) with mismatch-repair deficiency or high microsatellite instability (dMMR-MSI-H). Unfortunately, a patient's subgroup did not benefit from immunotherapy. Caudal-related homeobox transcription factor 2 (CDX-2) would seem to influence immunotherapy's sensitivity, promoting the chemokine (C-X-C motif) ligand 14 (CXCL14) expression. Therefore, we investigated CDX-2 role as a prognostic-predictive marker in patients with mCRC MSI-H. We retrospectively collected data from 14 MSI-H mCRC patients treated with ICIs between 2019 and 2021. The primary endpoint was the 12-month progression-free-survival (PFS) rate. The secondary endpoints were overall survival (OS), PFS, objective response rate (ORR), and disease control rate (DCR). The PFS rate at 12 months was 81% in CDX-2 positive patients vs 0% in CDX-2 negative patients (p = 0.0011). The median PFS was not reached (NR) in the CDX-2 positive group versus 2.07 months (95%CI 2.07-10.8) in CDX-2 negative patients (p = 0.0011). Median OS was NR in CDX-2-positive patients versus 2.17 months (95% Confidence Interval [CI] 2.17-18.7) in CDX2-negative patients (p = 0.026). All CDX-2-positive patients achieved a disease response, one of them a complete response. Among CDX-2-negative patients, one achieved stable disease, while the other progressed rapidly (ORR: 100% vs 0%, p = 0.0005; DCR: 100% vs 50%, p = 0.02). Twelve patients received 1st-line pembrolizumab (11 CDX-2 positive and 1 CDX-2 negative) not reaching median PFS, while two patients (1 CDX-2 positive and 1 CDX-2 negative) received 3rd-line pembrolizumab reaching a median PFS of 10.8 months (95% CI, 10.8-12.1; p = 0.036). Although our study reports results on a small population, the prognostic role of CDX-2 in CRC seems confirmed and could drive a promising predictive role in defining the population more sensitive to immunotherapy treatment. Modulating the CDX-2/CXCL14 axis in CDX-2-negative patients could help overcome primary resistance to immunotherapy.
Collapse
Affiliation(s)
- Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Marta Pozzari
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Antonio Maccioni
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Manuela Badiali
- Genetic and Genomic Laboratory, Pediatric Children Hospital A. Cao ASL8, Cagliari, Italy
| | - Daniela Fanni
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Clelia Donisi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Clara Gerosa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Fabio Bardanzellu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Rossano Ambu
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Giulia Cerrone
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Sara Murgia
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Dario Spanu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Gianluca Pretta
- Science Department, King's School Hove, Hangleton Way, Hove, BN3 8BN, UK
| | - Valentina Aimola
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Francesca Balconi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy
| | - Stefania Murru
- Genetic and Genomic Laboratory, Pediatric Children Hospital A. Cao ASL8, Cagliari, Italy
| | - Gavino Faa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital and University of Cagliari, Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio Per Sestu, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
46
|
Bootsma S, Bijlsma MF, Vermeulen L. The molecular biology of peritoneal metastatic disease. EMBO Mol Med 2023; 15:e15914. [PMID: 36700339 PMCID: PMC9994485 DOI: 10.15252/emmm.202215914] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/27/2023] Open
Abstract
Peritoneal metastases are a common form of tumor cell dissemination in gastrointestinal malignancies. Peritoneal metastatic disease (PMD) is associated with severe morbidity and resistance to currently employed therapies. Given the distinct route of dissemination compared with distant organ metastases, and the unique microenvironment of the peritoneal cavity, specific tumor cell characteristics are needed for the development of PMD. In this review, we provide an overview of the known histopathological, genomic, and transcriptomic features of PMD. We find that cancers representing the mesenchymal subtype are strongly associated with PMD in various malignancies. Furthermore, we discuss the peritoneal niche in which the metastatic cancer cells reside, including the critical role of the peritoneal immune system. Altogether, we show that PMD should be regarded as a distinct disease entity, that requires tailored treatment strategies.
Collapse
Affiliation(s)
- Sanne Bootsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Center Amsterdam, Cancer BiologyAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Center Amsterdam, Cancer BiologyAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular MedicineAmsterdam UMC, Location University of AmsterdamAmsterdamThe Netherlands
- Cancer Center Amsterdam, Cancer BiologyAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology MetabolismAmsterdamThe Netherlands
- Oncode InstituteAmsterdamThe Netherlands
| |
Collapse
|
47
|
Ohm H, Abdel-Rahman O. Impact of Patient Characteristics on the Outcomes of Patients with Gastrointestinal Cancers Treated with Immune Checkpoint Inhibitors. Curr Oncol 2023; 30:786-802. [PMID: 36661709 PMCID: PMC9858132 DOI: 10.3390/curroncol30010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Gastrointestinal (GI) cancers are a group of malignancies that globally account for a significant portion of cancer incidence and cancer-related death. Survival outcomes for esophageal, gastric, pancreatic, and hepatobiliary cancers remain poor, but new treatment paradigms are emerging with the advent of immune checkpoint inhibitor (ICI) therapy. This review characterizes patient-related prognostic factors that influence the response to ICI therapy. We performed an analysis of the landmark randomized clinical trials in esophageal, gastric, colorectal, hepatocellular, pancreatic, and biliary tract cancers in terms of patient demographic factors. A literature review of smaller retrospective studies investigating patient-related factors was completed. The immunological bases for these associations were further explored. The key predictive factors identified include age, sex, performance status, geography, body mass index, sarcopenia, gut microbiome, various biochemical factors, and disease distribution.
Collapse
Affiliation(s)
- Hyejee Ohm
- Department of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Omar Abdel-Rahman
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
48
|
Nasca V, Barretta F, Corti F, Lonardi S, Niger M, Elez ME, Fakih M, Jayachandran P, Shah AT, Salati M, Fenocchio E, Salvatore L, Cremolini C, Ros J, Ambrosini M, Mazzoli G, Intini R, Overman MJ, Miceli R, Pietrantonio F. Association of immune-related adverse events with the outcomes of immune checkpoint inhibitors in patients with dMMR/MSI-H metastatic colorectal cancer. J Immunother Cancer 2023; 11:jitc-2022-005493. [PMID: 36593068 PMCID: PMC9809233 DOI: 10.1136/jitc-2022-005493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) show a tremendous activity in microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC), but a consistent fraction of patients does not respond. Prognostic/predictive markers are needed. Despite previous investigations in other tumor types, immune-related adverse events (irAEs) have not been well evaluated in patients with MSI-H cancers treated with ICIs. METHODS We conducted an international cohort study at tertiary cancer centers collecting clinic-pathological features from 331 patients with MSI-H mCRC treated with ICIs. Of note, the irAEs were summarized using a 'burden score' constructed in a way that the same score value could be obtained by cumulating many low-grade irAEs or few high-grade irAEs; as a result, the lower the burden the better. Clearly, the irAE burden is not a baseline information, thus it was modeled as a time-dependent variable in univariable and multivariable Cox models. RESULTS Among 331 patients, irAEs were reported in 144 (43.5%) patients. After a median follow-up time of 29.7 months, patients with higher burden of skin, endocrine and musculoskeletal irAEs (the latter two's effect was confirmed at multivariable analysis) had longer overall survival (OS), as opposed to gastrointestinal, pneumonitis, neurological, liver, renal and other irAEs, which showed an harmful effect. Similar results were observed for progression-free survival (PFS). Based on the results retrieved from organ-specific irAEs, 'aggregated' burden scores were developed to distinguish 'protective' (endocrine and musculoskeletal) and 'harmful' (gastrointestinal, pneumonitis, neurological, hepatic) irAEs showing prognostic effects on OS and PFS. CONCLUSIONS Our results demonstrate that not all irAEs could exert a protective effect on oncologic outcome. An easy-to-use model for ICIs toxicity (burden score of protective and harmful irAEs) may be used as surrogate marker of response.
Collapse
Affiliation(s)
- Vincenzo Nasca
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Francesco Barretta
- Unit of Clinical Epidemiology and Trial Organization, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Francesca Corti
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Sara Lonardi
- Department of Medical Oncology, Istituto Oncologico Veneto Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Monica Niger
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Maria Elena Elez
- Medical Oncology Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Marwan Fakih
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center Duarte, Duarte, California, USA
| | - Priya Jayachandran
- Oncology, University of Southern California, Los Angeles, California, USA
| | | | | | - Elisabetta Fenocchio
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, Candiolo, Italy
| | - Lisa Salvatore
- Oncologia Medica, Università Cattolica del Sacro Cuore, Roma, Italy
- Cancer Comprehensive Center, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Roma, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Javier Ros
- Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Hospital Vall Hebron, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Margherita Ambrosini
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Giacomo Mazzoli
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Rossana Intini
- Department of Oncology, IRCCS Istituto Oncologico Veneto, Padova, Italy
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rosalba Miceli
- Unit of Clinical Epidemiology and Trial Organization, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| | - Filippo Pietrantonio
- Department of Medical Oncology, IRCCS Fondazione Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
49
|
Küçükköse E, Heesters BA, Villaudy J, Verheem A, Cercel M, van Hal S, Boj SF, Borel Rinkes IHM, Punt CJA, Roodhart JML, Laoukili J, Koopman M, Spits H, Kranenburg O. Modeling resistance of colorectal peritoneal metastases to immune checkpoint blockade in humanized mice. J Immunother Cancer 2022; 10:jitc-2022-005345. [PMID: 36543378 PMCID: PMC9772695 DOI: 10.1136/jitc-2022-005345] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The immunogenic nature of metastatic colorectal cancer (CRC) with high microsatellite instability (MSI-H) underlies their responsiveness to immune checkpoint blockade (ICB). However, resistance to ICB is commonly observed, and is associated with the presence of peritoneal-metastases and ascites formation. The mechanisms underlying this site-specific benefit of ICB are unknown. METHODS We created a novel model for spontaneous multiorgan metastasis in MSI-H CRC tumors by transplanting patient-derived organoids (PDO) into the cecum of humanized mice. Anti-programmed cell death protein-1 (PD-1) and anti-cytotoxic T-lymphocytes-associated protein 4 (CTLA-4) ICB treatment effects were analyzed in relation to the immune context of primary tumors, liver metastases, and peritoneal metastases. Immune profiling was performed by immunohistochemistry, flow cytometry and single-cell RNA sequencing. The role of B cells was assessed by antibody-mediated depletion. Immunosuppressive cytokine levels (interleukin (IL)-10, transforming growth factor (TGF)b1, TGFb2, TGFb3) were determined in ascites and serum samples by ELISA. RESULTS PDO-initiated primary tumors spontaneously metastasized to the liver and the peritoneum. Peritoneal-metastasis formation was accompanied by the accumulation of ascites. ICB completely cleared liver metastases and reduced primary tumor mass but had no effect on peritoneal metastases. This mimics clinical observations. After therapy discontinuation, primary tumor masses progressively decreased, but peritoneal metastases displayed unabated growth. Therapy efficacy correlated with the formation of tertiary lymphoid structures (TLS)-containing B cells and juxtaposed T cells-and with expression of an interferon-γ signature together with the B cell chemoattractant CXCL13. B cell depletion prevented liver-metastasis clearance by anti-CTLA-4 treatment. Peritoneal metastases were devoid of B cells and TLS, while the T cells in these lesions displayed a dysfunctional phenotype. Ascites samples from patients with cancer with peritoneal metastases and from the mouse model contained significantly higher levels of IL-10, TGFb1, TGFb2 and TGFb3 than serum samples. CONCLUSIONS By combining organoid and humanized mouse technologies, we present a novel model for spontaneous multiorgan metastasis by MSI-H CRC, in which the clinically observed organ site-dependent benefit of ICB is recapitulated. Moreover, we provide empirical evidence for a critical role for B cells in the generation of site-dependent antitumor immunity following anti-CTLA-4 treatment. High levels of immunosuppressive cytokines in ascites may underlie the observed resistance of peritoneal metastases to ICB.
Collapse
Affiliation(s)
- Emre Küçükköse
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Balthasar A Heesters
- Pharmaceutical Sciences, Utrecht University Faculty of Science, Utrecht, The Netherlands
| | - Julien Villaudy
- J&S Preclinical Solutions, Oss, The Netherlands,AIMM Therapeutics, Amsterdam, The Netherlands
| | - André Verheem
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Sylvia F Boj
- Hubrecht Organoid Technology, Utrecht, The Netherlands
| | - Inne H M Borel Rinkes
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis J A Punt
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine M L Roodhart
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jamila Laoukili
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hergen Spits
- AIMM Therapeutics, Amsterdam, The Netherlands,Experimental Immunology, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, The Netherlands,Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Han S, Chok AY, Peh DYY, Ho JZM, Tan EKW, Koo SL, Tan IBH, Ong JCA. The distinct clinical trajectory, metastatic sites, and immunobiology of microsatellite-instability-high cancers. Front Genet 2022; 13:933475. [DOI: 10.3389/fgene.2022.933475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Microsatellite-instability-high (MSI-H) cancers form a spectrum of solid organ tumors collectively known as Lynch Syndrome cancers, occurring not only in a subset of colorectal, endometrial, small bowel, gastric, pancreatic, and biliary tract cancers but also in prostate, breast, bladder, and thyroid cancers. Patients with Lynch Syndrome harbor germline mutations in mismatch repair genes, with a high degree of genomic instability, leading to somatic hypermutations and, therefore, oncogenesis and cancer progression. MSI-H cancers have unique clinicopathological characteristics compared to their microsatellite-stable (MSS) counterparts, marked by a higher neoantigen load, immune cell infiltration, and a marked clinical response to immune checkpoint blockade. Patients with known Lynch Syndrome may be detected early through surveillance, but some patients present with disseminated metastatic disease. The treatment landscape of MSI-H cancers, especially colorectal cancers, has undergone a paradigm shift and remains to be defined, with immune checkpoint blockade coming to the forefront of treatment strategies in the stage IV setting. We summarize in this review the clinical features of MSI-H cancers with a specific interest in the pattern of spread or recurrence, disease trajectory, and treatment strategies. We also summarize the tumor-immune landscape and genomic profile of MSI-H cancers and potential novel therapeutic strategies.
Collapse
|