1
|
Zhou M, Li R, Lian G, Yang M, Li L, Yin Z, Li G, Zhao J, Tan R. Tetrahydrocurcumin alleviates colorectal tumorigenesis by modulating the SPP1/CD44 axis and preventing M2 tumor-associated macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156674. [PMID: 40220425 DOI: 10.1016/j.phymed.2025.156674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Recent studies show that secreted phosphoprotein 1 (SPP1) is linked to the progression of various cancers, including colorectal cancer (CRC). SPP1 also promotes M2 macrophage polarization, contributing to immune evasion in the tumor microenvironment. Tetrahydrocurcumin (THC) has been reported to alleviate CRC, but the mechanism remains unclear. PURPOSE The study aimed to explore how THC modulated the SPP1/CD44 axis to inhibit M2 polarization and suppress CRC development. METHODS Azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mouse model was used to assess the anti-CRC effects of THC. Transcriptome sequencing was conducted to identify the key targets of THC in CRC. The effects of THC on CRC cells were evaluated by CCK-8, colony formation, migration assays, immunofluorescence staining and flow cytometry. Human monocytic cells, THP-1, and colon cancer cell line, HCT116, were co-cultured, both directly or indirectly, to mimic the tumor-macrophage interactions, and investigate the role of SPP1/CD44 axis and the intervention effect of THC. RESULTS THC significantly inhibited CRC carcinogenesis in mice and improved pathologic symptoms, serum inflammatory markers, and intestinal barrier integrity. THC inhibited CRC cell proliferation, migration and colony formation, while promoting apoptosis. Transcriptome analysis identified SPP1 as a key target of THC against CRC. SPP1 facilitated CRC progression by activating the ERK signaling pathway and maintaining the M2-like phenotype of macrophage, which further exacerbated this response. THC inhibited CRC development by targeting the SPP1/CD44 axis, rather than the integrin pathway. CONCLUSIONS SPP1 played a crucial role in maintaining the M2 phenotype of macrophage and promoting CRC cells proliferation. THC inhibited the activation of ERK signals in CRC cells and phenotypic transformation of M2-like macrophages through the SPP1/CD44 axis, thereby regulating the tumor immune microenvironment to exert anti-CRC effect.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China; Translational Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610000, China.
| | - Guiyun Lian
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Mengni Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China; Translational Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Guiyu Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Junning Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China; National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China; National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China; Translational Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Ye S, Wu H, Liu J, Zhou J, He S, Li N. Circ_0044362 Facilitates the Progression of Epithelial Ovarian Cancer via Enhancing HOXB4 Transcription to Activate the RUNX1/IGFBP3 Axis. Mol Carcinog 2025; 64:1013-1024. [PMID: 40099691 DOI: 10.1002/mc.23905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/02/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Increasing numbers of studies have elucidated the emerging roles of circular RNA (circRNA) in cancer progression. However, the function of circRNAs in modulating their parental genes in ovarian cancer remains poorly understood. In this study, we identified that circ_0044362, a circRNA derived from homeobox B4 (HOXB4), significantly promotes the expression of its parental gene HOXB4 in ovarian cancer. Functionally, circ_0044362 promotes the malignant phenotypes of ovarian cancer cells. Further analysis revealed that circ_0044362 facilitates the transcriptional activation of its parental gene HOXB4 by directly guiding U1 small nuclear ribonucleoprotein (snRNP) to its promoter region, thereby enhancing the oncogenic behaviors of ovarian cancer cells. Furthermore, HOXB4 positively regulates runt-related transcription factor 1 (RUNX1) expression, with RUNX1 serving as a transcription factor to promote the transcription of insulin-like growth factor binding protein-3 (IGFBP3). Notably, inhibitors of either HOXB4, RUNX1, or IGFBP3 could reverse the oncogenic activity mediated by circ_0044362. Collectively, our findings reveal the involvement of the circ_0044362/HOXB4 pathway in ovarian cancer progression and provide potential therapeutic strategies for ovarian cancer treatment.
Collapse
Affiliation(s)
- Shengtou Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Han Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junjiang Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jianguo Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sisi He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Na Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Manjili DA, Babaei FN, Younesirad T, Ghadir S, Askari H, Daraei A. Dysregulated circular RNA and long non-coding RNA-Mediated regulatory competing endogenous RNA networks (ceRNETs) in ovarian and cervical cancers: A non-coding RNA-Mediated mechanism of chemotherapeutic resistance with new emerging clinical capacities. Arch Biochem Biophys 2025; 768:110389. [PMID: 40090441 DOI: 10.1016/j.abb.2025.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Cervical cancer (CC) and ovarian cancer (OC) are among the most common gynecological cancers with significant mortality in women, and their incidence is increasing. In addition to the prominent role of the malignant aspect of these cancers in cancer-related women deaths, chemotherapy drug resistance is a major factor that contributes to their mortality and presents a clinical obstacle. Although the exact mechanisms behind the chemoresistance in these cancers has not been revealed, accumulating evidence points to the dysregulation of non-coding RNAs (ncRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as key contributors. These ncRNAs perform the roles of regulators of signaling pathways linked to tumor formation and chemoresistance. Strong data from various recent studies have uncovered that the main mechanism of these ncRNAs in the induction of chemoresistance of CC and OC is done through a dysregulated miRNA sponge activity as competing endogenous RNA (ceRNA) in the competing endogenous RNA networks (ceRNETs), where a miRNA regulating a messenger RNA (mRNA) is trapped, thereby removing its inhibitory effect on the desired mRNA. Understanding these mechanisms is essential to enhancing treatment outcomes and managing the problem of drug resistance. This review provides a comprehensive overview of lncRNA- and circRNA-mediated ceRNETs as the core process of chemoresistance against the commonly used chemotherapeutics, including cisplatin, paclitaxel, oxaliplatin, carboplatin, and docetaxel in CC and OC. Furthermore, we highlight the clinical potential of these ncRNAs serving as diagnostic indicators of chemotherapy responses and therapeutic targets.
Collapse
Affiliation(s)
- Danial Amiri Manjili
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Naghdi Babaei
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Tayebeh Younesirad
- Department of Medical Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sara Ghadir
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Askari
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Liu Y, Chen T, Wang Y, Gao Y, Xie N, Xia W, Wang Q. Cinobufagin regulates the microRNA-149-3p/AFF4 axis to affect the proliferation and apoptosis of cisplatin-resistant ovarian cancer cells. J Chemother 2025:1-10. [PMID: 40432319 DOI: 10.1080/1120009x.2025.2508614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
Although cinobufagin has been demonstrated to inhibit the growth of various malignant tumors, its functional role in ovarian cancer remains unclear. In light of this, the present study aims to thoroughly investigate the effects of cinobufagin on ovarian cancer progression and elucidate its underlying molecular mechanisms, thereby providing novel insights into future therapeutic strategies. A2780/DDP, a cisplatin-resistant cell line for ovarian cancer, was treated with gradient doses of cinobufagin. The microRNA-149-3p and AFF4 binding sites were predicted by bioinformatics. In cisplatin-resistant ovarian cancer cells, microRNA-149-3p and AFF4 expression were detected using qRT-PCR, and the binding association between microRNA-149-3p and AFF4 was confirmed by dual-luciferase and RIP assays. Cell viability was assessed using the CCK-8 test, cell proliferation was identified using the EdU assay and colony formation, and cell apoptosis was identified using flow cytometry. The results showed that cinobufagin inhibited the proliferation and promoted apoptosis of cisplatin-resistant ovarian cancer cells. microRNA-149-3p was highly expressed in cisplatin-resistant ovarian cancer cells, while AFF4 was lowly expressed in these cells. Overexpression of microRNA-149-3p promoted the proliferation and inhibited the apoptosis of cisplatin-resistant ovarian cancer cells, which was reversed by the addition of cinobufagin. Overexpression of AFF4 suppressed proliferation and promoted apoptosis of cisplatin-resistant ovarian cancer cells. MicroRNA-149-3p repressed AFF4 expression, and partial attenuation of the effects of AFF4 overexpression on cell phenotype was observed when microRNA-149-3p was overexpressed. In conclusion,cinobufagin regulated microRNA-149-3p/AFF4 axis to inhibit proliferation of ovarian cancer cells and promote cell apoptosis. Targeting the microRNA-149-3p/AFF4 axis with cinobufagin could represent a novel therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Yunfei Liu
- Department of Pulmonary Oncology, Nanyang Second General Hospital, Nanyang, China
| | - Taoli Chen
- Department of Pulmonary Oncology, Nanyang Second General Hospital, Nanyang, China
| | - Yanpeng Wang
- Department of Pulmonary Oncology, Nanyang Second General Hospital, Nanyang, China
| | - Yuanyuan Gao
- Department of Pulmonary Oncology, Nanyang Second General Hospital, Nanyang, China
| | - Ning Xie
- Department of Pulmonary Oncology, Nanyang Second General Hospital, Nanyang, China
| | - Wanping Xia
- Department of Pulmonary Oncology, Nanyang Second General Hospital, Nanyang, China
| | - Qichuan Wang
- Department of Pulmonary Oncology, Nanyang Second General Hospital, Nanyang, China
| |
Collapse
|
5
|
Yang Y, Li S, To KKW, Zhu S, Wang F, Fu L. Tumor-associated macrophages remodel the suppressive tumor immune microenvironment and targeted therapy for immunotherapy. J Exp Clin Cancer Res 2025; 44:145. [PMID: 40380196 DOI: 10.1186/s13046-025-03377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 05/19/2025] Open
Abstract
Despite the significant advances in the development of immune checkpoint inhibitors (ICI), primary and acquired ICI resistance remains the primary impediment to effective cancer immunotherapy. Residing in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play a pivotal role in tumor progression by regulating diverse signaling pathways. Notably, accumulating evidence has confirmed that TAMs interplay with various cellular components within the TME directly or indirectly to maintain the dynamic balance of the M1/M2 ratio and shape an immunosuppressive TME, consequently conferring immune evasion and immunotherapy tolerance. Detailed investigation of the communication network around TAMs could provide potential molecular targets and optimize ICI therapies. In this review, we systematically summarize the latest advances in understanding the origin and functional plasticity of TAMs, with a focus on the key signaling pathways driving macrophage polarization and the diverse stimuli that regulate this dynamic process. Moreover, we elaborate on the intricate interplay between TAMs and other cellular constituents within the TME, that is driving tumor initiation, progression and immune evasion, exploring novel targets for cancer immunotherapy. We further discuss current challenges and future research directions, emphasizing the need to decode TAM-TME interactions and translate preclinical findings into clinical breakthroughs. In conclusion, while TAM-targeted therapies hold significant promise for enhancing immunotherapy outcomes, addressing key challenges-such as TAM heterogeneity, context-dependent plasticity, and therapeutic resistance-remains critical to achieving optimal clinical efficacy.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Sijia Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kenneth K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, 999077, P.R. China
| | - Shuangli Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
6
|
Jiang Y, Liang X, Sun H, Yin P, Zhou J, Yu C. Immunomodulatory role of RNA modifications in sex hormone-dependent cancers. Front Immunol 2025; 16:1513037. [PMID: 40406121 PMCID: PMC12095187 DOI: 10.3389/fimmu.2025.1513037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Recent studies have identified that RNA epigenetic modifications, including m6A, m1A, m5C, etc, play pivotal roles in tumor progression. These modifications influence mRNA stability, RNA processing, translational efficiency, and decoding precision. However, comprehensive reviews detailing the connection between m6A RNA modifications and hormone-dependent cancers in both male and female populations remain scarce(breast cancer, ovarian cancer, and endometrial cancer, prostate cancer). In this article, we explore the cellular and molecular roles of various RNA modifications alongside the key elements of the tumor microenvironment. We examine how these RNA modifications influence the development of hormone-dependent cancers through their impact on immune mechanisms. By enhancing our understanding of the function of RNA modifications within the immune systems of four specific tumors, we offer fresh insights for their potential applications in diagnosis and treatment.
Collapse
Affiliation(s)
- Yujia Jiang
- Gynecology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaolan Liang
- Gynecology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hongyi Sun
- Gynecology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ping Yin
- Department of Reproductive Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhou
- Gynecology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chaoqin Yu
- Gynecology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Guo Y, Gong Y, Wu M, Ji M, Xie F, Chen H, Niu H, Tang C. CircRNAs in the tumor microenvironment: new frontiers in cancer progression and therapy. Crit Rev Oncol Hematol 2025; 212:104754. [PMID: 40320223 DOI: 10.1016/j.critrevonc.2025.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
The tumor microenvironment (TME), a dynamic ecosystem which including immune cells, cancer-associated fibroblasts (CAFs), endothelial cells, pericytes and acellular components, is orchestrating cancer progression through crosstalk between malignant cells and stromal components and increasingly recognized as a therapeutic frontier. Within this intricate network, circular RNAs (circRNAs) have emerged as pivotal regulators due to their unique covalently closed structures, which confer exceptional stability and multifunctional capabilities. This regulation is mediated through multiple mechanisms, such as acting as microRNA (miRNA) sponges, interacting with proteins, and, in certain instances, encoding functional peptides. The interaction between circRNAs and the TME not only affects cancer growth and metastasis but also influences immune evasion and therapeutic resistance. Elucidating the mechanisms by which circRNAs orchestrate these interactions is essential for identifying novel diagnostic biomarkers and developing effective therapeutic strategies. Such insights are expected to bridge gaps in current cancer biology, offering promising avenues for precision oncology and ultimately improving clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Yipei Guo
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanxun Gong
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Man Wu
- School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - Mengjia Ji
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Fei Xie
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266013, China.
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu 241002, China; Postdoctoral Research Station of Clinical Medicine, Jinan University, Guangzhou 510632, China.
| | - Haitao Niu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao 266013, China.
| | - Chao Tang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
8
|
Zhang H, Yu Y, Qian C. Oligonucleotide-Based Modulation of Macrophage Polarization: Emerging Strategies in Immunotherapy. Immun Inflamm Dis 2025; 13:e70200. [PMID: 40325939 PMCID: PMC12053320 DOI: 10.1002/iid3.70200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 03/10/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Recent advances in immunotherapy have spotlighted macrophages as central mediators of disease treatment. Their polarization into pro‑inflammatory (M1) or anti‑inflammatory (M2) states critically influences outcomes in cancer, autoimmunity, and chronic inflammation. Oligonucleotides have emerged as highly specific, scalable, and cost‑effective agents for reprogramming macrophage phenotypes. OBJECTIVE To review oligonucleotide strategies-including ASOs, siRNAs, miRNA mimics/inhibitors, and aptamers-for directing macrophage polarization and their therapeutic implications. REVIEW SCOPE We examine key signaling pathways governing M1/M2 phenotypes, describe four classes of oligonucleotides and their mechanisms, and highlight representative preclinical and clinical applications. KEY INSIGHTS Agents such as AZD9150, MRX34, and AS1411 demonstrate macrophage reprogramming in cancer, inflammation, and infection models. Advances in ligand‑conjugated nanoparticles and chemical modifications improve delivery and stability, yet immunogenicity, off‑target effects, and formulation challenges remain significant barriers. FUTURE PERSPECTIVES Optimizing delivery platforms, enhancing molecular stability, and rigorous safety profiling are critical. Integration with emerging modalities-such as engineered CAR‑macrophages-will enable precise, disease‑specific interventions, and advance oligonucleotide‑guided macrophage modulation toward clinical translation.
Collapse
Affiliation(s)
- Hanfu Zhang
- National Key Laboratory of Immunity & Inflammation, Institute of ImmunologyNaval Medical UniversityShanghaiChina
- School of Molecular SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Institute of ImmunologyNaval Medical UniversityShanghaiChina
| | - Cheng Qian
- National Key Laboratory of Immunity & Inflammation, Institute of ImmunologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
9
|
Xing L, Wu S, Xue S, Li X. A Novel Neutrophil Extracellular Trap Signature Predicts Patient Chemotherapy Resistance and Prognosis in Lung Adenocarcinoma. Mol Biotechnol 2025; 67:1939-1957. [PMID: 38734842 DOI: 10.1007/s12033-024-01170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 05/13/2024]
Abstract
Chemoresistance is a key obstacle in the long-term survival of patients with locally and advanced lung adenocarcinoma (LUAD). This study used bioinformatic analysis to reveal the chemoresistance of gene-neutrophil extracellular traps (NETs) associated with LUAD. RNA sequencing data and LUAD expression patterns were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, respectively. The GeneCards database was used to identify NETosis-related genes (NRGs). To identify hub genes with significant and consistent expression, differential analysis was performed using the TCGA-LUAD and GEO datasets. LUAD subtypes were determined based on these hub genes, followed by prognostic analysis. Immunological scoring and infiltration analysis were conducted using NETosis scores (N-scores) derived from the TCGA-LUAD dataset. A clinical prognostic model was established and analyzed, and its clinical applications explored. Twenty-two hub genes were identified, and consensus clustering was used to identify two subgroups based on their expression levels. The Kaplan-Meier (KM) curves demonstrated statistically significant differences in prognosis between the two LUAD subtypes. Based on the median score, patients were further divided into high and low N-score groups, and KM curves showed that the N-scores were more precise at predicting the prognosis of patients with LUAD for overall survival (OS). Immunological infiltration analysis revealed significant differences in the abundances of 10 immune cell infiltrates between the high and low N-score groups. Risk scores indicated significant differences in prognosis between the two extreme score groups. The risk scores for the prognostic model also indicated significant differences between the two groups. The results provide new insights into NETosis-related differentially expressed genes (NRDEGs) associated with chemotherapy resistance in patients with LUAD. The established prognostic model is promising and could help with clinical applications to evaluate patient survival and therapeutic efficiency.
Collapse
Affiliation(s)
- Long Xing
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, Henan, China
- Department of Oncology, Affiliated Hospital of Qingdao Binhai University, Qingdao, Shandong, China
| | - Shuangli Wu
- Department of Special Examination, Affiliated Hospital of Qingdao Binhai University, Qingdao, Shandong, China
| | - Shiyue Xue
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Xingya Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
10
|
Zhang J, Yu Q, Zhu W, Sun X. Recent advances in the role of circRNA in cisplatin resistance in tumors. Cancer Gene Ther 2025; 32:497-506. [PMID: 40148680 DOI: 10.1038/s41417-025-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Cancer remains a major threat to human health, with chemotherapy serving as one of the main treatment strategies to alleviate patient suffering. However, prolonged chemotherapy often leads to the development of drug resistance, complicating treatment outcomes. Cisplatin, a commonly utilized chemotherapeutic agent, demonstrates efficacy against a range of cancers but frequently encounters resistance, posing a significant challenge in tumor management and prognosis. Drug resistance not only facilitates tumor progression but also reduces survival rates, highlighting the urgent need for innovative strategies to overcome this issue. In recent years, non-coding RNAs, particularly circular RNAs (circRNAs), have gained attention in cancer therapy due to their stability and specificity. Moreover, an increasing number of studies have reported that circRNAs are involved in cisplatin resistance across various types of cancer. This paper primarily reviews the mechanisms and roles of circRNA in mediating cisplatin resistance over the past 3 years. These findings highlight circRNAs as promising therapeutic targets for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Jiawen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiwen Yu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weijin Zhu
- Department of Clinical Laboratory Medicine, Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu, China
| | - Xiaochun Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
11
|
Li Y, Cao Y, He L, Wu J, Cai L, Zhou Y, Li H, Yang W, Sun T. Cisplatin reduces immunosuppression caused by tumor-associated macrophages through downregulating CD47-SIRPα signaling in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167876. [PMID: 40300658 DOI: 10.1016/j.bbadis.2025.167876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/08/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
The poor prognosis of glioblastoma (GBM) is partly attributed to the immunosuppressive microenvironment. The combination of standard temozolomide and other chemotherapy drugs can significantly enhance the therapeutic effect by reshaping the immune microenvironment. Cisplatin treatment induces immunogenic cell death in tumor cells, stimulating an immune response. Here, we investigated the immune-activating effect of cisplatin on tumor-associated macrophages (TAMs). The therapeutic benefit of temozolomide plus cisplatin was showed in a murine model of GBM, accompanied by the inhibition of tumor growth and enhancement of pro-inflammatory activation of TAMs. Furthermore, cisplatin treatment downregulated the expression of CD47 in glioma stem cells, SIRPα, and IL-6 in TAMs, thus promoting M1-like polarization of TAMs to enhance an immune-activating tumor microenvironment. Mechanically, cisplatin decreases the production of lactic acid by downregulating LDHA expression. A low level of lactate reduces histone H3K18 lactylation on the CD47 and IL-6 promoters, thereby suppressing gene transcription. Our study reveals a new mechanism by which cisplatin remodels the immune tumor microenvironment, suggesting that combining temozolomide with cisplatin chemotherapy may be a new treatment option for GBM.
Collapse
Affiliation(s)
- Yanyan Li
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yufei Cao
- Department of Critical Care Medicine, Affiliated First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linyan He
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Nhc Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Wu
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lize Cai
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youxin Zhou
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haiying Li
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
| | - Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
12
|
Xu C, Chen J, Tan M, Tan Q. The role of macrophage polarization in ovarian cancer: from molecular mechanism to therapeutic potentials. Front Immunol 2025; 16:1543096. [PMID: 40330466 PMCID: PMC12052780 DOI: 10.3389/fimmu.2025.1543096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Ovarian cancer (OC) remains the most lethal gynecological malignancy, primarily due to its late-stage diagnosis, frequent recurrence, and resistance to conventional chemotherapy. A critical factor contributing to OC's aggressiveness is the tumor microenvironment (TME), particularly the presence and polarization of tumor-associated macrophages (TAMs). TAMs, often skewed toward an immunosuppressive M2-like phenotype, facilitate tumor growth, angiogenesis, metastasis, and resistance to therapy. This comprehensive review delves into the multifaceted regulation of macrophage polarization in OC, highlighting key molecular pathways such as PTEN loss, Wnt/β-catenin signaling, NF-κB, Myc, STAT3, and JNK, among others. Additionally, it explores the role of chemokines, non-coding RNAs, and various proteins in modulating TAM phenotypes. Emerging evidence underscores the significance of extracellular vesicles (EVs) and ovarian cancer stem cells (CSCs) in promoting M2 polarization, thereby enhancing tumor progression and therapy resistance. The review also identifies critical biomarkers associated with macrophage polarization, including CD163, LILRB1, MUC2, and others, which hold prognostic and therapeutic potential. Therapeutic strategies targeting TAMs are extensively discussed, encompassing oncolytic viruses, engineered EVs, immunotherapies, nanoparticles, targeted therapies, and natural products. These approaches aim to reprogram TAMs from a pro-tumorigenic M2 state to an anti-tumorigenic M1 phenotype, thereby enhancing immune responses and overcoming resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Furthermore, the review addresses the interplay between macrophage polarization and therapy resistance, emphasizing the need for novel interventions to modulate the TME effectively. By synthesizing current knowledge on macrophage polarization in ovarian cancer, this study underscores the potential of targeting TAMs to improve clinical outcomes and personalize treatment strategies for OC patients. Continued research in this domain is essential to develop robust therapeutic frameworks that can mitigate the immunosuppressive TME and enhance the efficacy of existing and novel cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Qingqing Tan
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
13
|
Zhao Y, Xu H, Liu Q, Yuan Y, Li R, Li D, Zhang Y, Ran J, Yan X, Su J. The interaction between IL-33 and TRIM28 in the regulation of macrophage polarization in an ST2-independent manner. Int Immunopharmacol 2025; 152:114318. [PMID: 40054323 DOI: 10.1016/j.intimp.2025.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/24/2025]
Abstract
The tumor microenvironment provides optimal condition for the growth of ovarian cancer. Macrophages display a highly functional plasticity to respond various signals. Switching macrophages' phenotype is a potential therapeutic strategy for the treatment of cancer. We used RNA-sequencing(RNA-Seq) and Chromatin immunoprecipitation-sequencing(ChIP-Seq) analyses in bone-marrow-derived macrophages (BMDMs) from wild-type (WT) and its receptor interleukin-1 receptor like-1 (IL1RL1 or ST2) knockout(ST2-/-) mice revealed that the interaction between IL-33 and TRIM28, which plays an antioxidant role, regulates glycolysis in BMDMs by promoting the PI3K/Akt pathway in ST2-independent manner, thereby reducing M2 polarization of macrophages is a way to inhibit ovarian cancer growth.
Collapse
Affiliation(s)
- Yuanxin Zhao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Huadan Xu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Qingqing Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Yuan Yuan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Runyuan Li
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Yong Zhang
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Jingyi Ran
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Xiaoyu Yan
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| |
Collapse
|
14
|
Osborn G, López-Abente J, Adams R, Laddach R, Grandits M, Bax HJ, Chauhan J, Pellizzari G, Nakamura M, Stavraka C, Chenoweth A, Palhares LCGF, Evan T, Lim JHC, Gross A, Moise L, Jatiani S, Figini M, Bianchini R, Jensen-Jarolim E, Ghosh S, Montes A, Sayasneh A, Kristeleit R, Tsoka S, Spicer J, Josephs DH, Karagiannis SN. Hyperinflammatory repolarisation of ovarian cancer patient macrophages by anti-tumour IgE antibody, MOv18, restricts an immunosuppressive macrophage:Treg cell interaction. Nat Commun 2025; 16:2903. [PMID: 40210642 PMCID: PMC11985905 DOI: 10.1038/s41467-025-57870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/06/2025] [Indexed: 04/12/2025] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and treatment options remain limited. In a recent first-in-class Phase I trial, the monoclonal IgE antibody MOv18, specific for the tumour-associated antigen Folate Receptor-α, was well-tolerated and preliminary anti-tumoural activity observed. Pre-clinical studies identified macrophages as mediators of tumour restriction and pro-inflammatory activation by IgE. However, the mechanisms of IgE-mediated modulation of macrophages and downstream tumour immunity in human cancer remain unclear. Here we study macrophages from patients with epithelial ovarian cancers naive to IgE therapy. High-dimensional flow cytometry and RNA-seq demonstrate immunosuppressive, FcεR-expressing macrophage phenotypes. Ex vivo co-cultures and RNA-seq interaction analyses reveal immunosuppressive associations between patient-derived macrophages and regulatory T (Treg) cells. MOv18 IgE-engaged patient-derived macrophages undergo pro-inflammatory repolarisation ex vivo and display induction of a hyperinflammatory, T cell-stimulatory subset. IgE reverses macrophage-promoted Treg cell induction to increase CD8+ T cell expansion, a signature associated with improved patient prognosis. On-treatment tumours from the MOv18 IgE Phase I trial show evidence of this IgE-driven immune signature, with increased CD68+ and CD3+ cell infiltration. We demonstrate that IgE induces hyperinflammatory repolarised states of patient-derived macrophages to inhibit Treg cell immunosuppression. These processes may collectively promote immune activation in ovarian cancer patients receiving IgE therapy.
Collapse
Affiliation(s)
- Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Jacobo López-Abente
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Rebecca Adams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, UK
| | - Melanie Grandits
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Chara Stavraka
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - Lais C G F Palhares
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | - Theodore Evan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
| | | | | | | | | | - Mariangela Figini
- ANP2, Department of Advanced Diagnostics, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria
| | - Sharmistha Ghosh
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ana Montes
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Ahmad Sayasneh
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Rebecca Kristeleit
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King's College London, Guy's Hospital, London, UK.
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK.
| |
Collapse
|
15
|
Liu S, Liao S, He J, Zhou Y, He Q. IGF2BP2: an m 6A reader that affects cellular function and disease progression. Cell Mol Biol Lett 2025; 30:43. [PMID: 40205577 PMCID: PMC11983839 DOI: 10.1186/s11658-025-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 (IGF2BP2) is a widely studied N6-methyladenosine (m6A) modification reader, primarily functioning to recognize and bind to m6A modification sites on the mRNA of downstream target genes, thereby enhancing their stability. Previous studies have suggested that the IGF2BP2-m6A modification plays an essential role in cellular functions and the progression of various diseases. In this review, we focus on summarizing the molecular mechanisms by which IGF2BP2 enhances the mRNA stability of downstream target genes through m6A modification, thereby regulating cell ferroptosis, epithelial-mesenchymal transition (EMT), stemness, angiogenesis, inflammatory responses, and lipid metabolism, ultimately affecting disease progression. Additionally, we update the related research progress on IGF2BP2. This article aims to elucidate the effects of IGF2BP2 on cell ferroptosis, EMT, stemness, angiogenesis, inflammatory responses, and lipid metabolism, providing a new perspective for a comprehensive understanding of the relationship between IGF2BP2 and cell functions such as ferroptosis and EMT, as well as the potential for targeted IGF2BP2 therapy for tumors and other diseases.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Junyu He
- Department of Clinical Laboratory, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, 410007, Hunan, People's Republic of China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Qian He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China.
| |
Collapse
|
16
|
Zhao P, Zhu Z, Zheng X, Song Y, Chen C, Xu G, Ke X. Effects of circulating RNAs on tumor metabolism in lung cancer (Review). Oncol Lett 2025; 29:204. [PMID: 40070786 PMCID: PMC11894507 DOI: 10.3892/ol.2025.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
During the development and progression of lung cancer, cell metabolism function is altered. Thus, cells rely on aerobic glycolysis and abnormal lipid and amino acid metabolism to obtain energy and nutrients for growth, proliferation and drug resistance. Circular RNAs (circRNAs), a class of non-coding RNAs, serve important biological roles in the growth and development of tumors. Functionally, circRNAs act as molecular sponges that absorb microRNAs (miRNAs) and RNA-binding proteins and as protein scaffolds that regulate gene transcription and translation through the maintenance of mRNA stability. In addition, circRNAs are important regulators of tumor metabolism and promote tumor progression through mediating tumor cell proliferation, metastasis and the induction of chemoresistance. Results of previous studies reveal that circRNAs may serve a key role in regulating tumor metabolic processes in lung cancer, through miRNA sponging and alternative mechanisms. Thus, circRNAs demonstrate potential as therapeutic targets for lung cancer. The present study aimed to review the effects of circRNAs on lung cancer cell metabolism and provide novel insights into the clinical treatment of lung cancer. The present review may also provide a novel theoretical basis for the development of lung cancer drug targets.
Collapse
Affiliation(s)
- Pengfei Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhengfeng Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xinzhe Zheng
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
17
|
Xiong J, Huang J, Xu H, Wu Q, Zhao J, Chen Y, Fan G, Guan H, Xiao R, He Z, Wu S, Ouyang W, Wang S, Zhang L, Xia P, Zhang W, Wu M. CpG-Based Nanovaccines Enhance Ovarian Cancer Immune Response by Gbp2-Mediated Remodeling of Tumor-Associated Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412881. [PMID: 39985265 PMCID: PMC12005807 DOI: 10.1002/advs.202412881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/13/2025] [Indexed: 02/24/2025]
Abstract
CpG oligodeoxynucleotides (CpG), as an immunoadjuvant, can facilitate the transformation of tumor-associated macrophages (TAMs)into tumoricidal M1 macrophages. However, the accumulation of free CpG in tumor tissues remains a substantial challenge. To address this, a nanovaccine (PLGA-CpG@ID8-M) is engineered by encapsulating CpG within PLGA using ID8 ovarian cancer cell membranes (ID8-M). This nanovaccine demonstrates remarkable efficacy in reprogramming TAMs in ovarian cancer and significantly extends survival in ID8-bearing mice. Notably, these findings indicate that the nanovaccine can also mitigate chemotherapy-induced immunosuppression by increasing the proportion of M1-like TAMs and reducing the expression of CD47 on tumor cells, thereby achieving a synergistic effect in tumor immunotherapy. Mechanistically, through transcriptome sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and mass spectrometry-based proteomics, it is elucidated that the nanovaccine enhances the expression of Gbp2 and promotes the recruitment of Pin1, which activates the NFκB signaling pathway, leading to the M1 polarization of TAMs. Furthermore, macrophages with elevated Gbp2 expression significantly inhibit tumor growth in both ID8 ovarian cancer and 4T1 breast cancer models. Conversely, targeting Gbp2 diminishes the antitumor efficacy of the nanovaccine in vivo. This study offers an innovative approach to immunotherapy and elucidates a novel mechanism (Gbp2-Pin1-NFκB pathway) for remodeling TAMs.
Collapse
Affiliation(s)
- Jiaqiang Xiong
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Juyuan Huang
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Hanxiao Xu
- Department of Gastrointestinal OncologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Qiuji Wu
- Department of Radiation and Medical OncologyHubei Key Laboratory of Tumor Biological BehaviorHubei Provincial Clinical Research Center for CancerZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jiahui Zhao
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Yurou Chen
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Guanlan Fan
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Haotong Guan
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Rourou Xiao
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Zhaojin He
- The Second Clinical College of Wuhan UniversityWuhan430071China
| | - Siqi Wu
- The Second Clinical College of Wuhan UniversityWuhan430071China
| | - Wenliang Ouyang
- The Second Clinical College of Wuhan UniversityWuhan430071China
| | - Shixuan Wang
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430032China
| | - Lu Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsSchool of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyXianning437100China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Wei Zhang
- Department of Obstetrics and GynecologyZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Meng Wu
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430032China
| |
Collapse
|
18
|
Hua J, Wang Z, Cheng X, Dai J, Zhao P. Circular RNAs modulate cancer drug resistance: advances and challenges. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:17. [PMID: 40201313 PMCID: PMC11977347 DOI: 10.20517/cdr.2024.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Acquired drug resistance is a main factor contributing to cancer therapy failure and high cancer mortality, highlighting the necessity to develop novel intervention targets. Circular RNAs (circRNAs), an abundant class of RNA molecules with a closed loop structure, possess characteristics including high stability, which provide unique advantages in clinical application. Growing evidence indicates that aberrantly expressed circRNAs are associated with resistance against various cancer treatments, including targeted therapy, chemotherapy, radiotherapy, and immunotherapy. Therefore, targeting these aberrant circRNAs may offer a strategy to improve the efficiency of cancer therapy. Herein, we present a summary of the most recently studied circRNAs and their regulatory roles on cancer drug resistance. With the advances in artificial intelligence (AI)-based bioinformatics algorithms, circRNAs could emerge as promising biomarkers and intervention targets in cancer therapy.
Collapse
Affiliation(s)
- Jinghan Hua
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
| | - Zhe Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
| | - Xiaoxun Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
- The Second Clinical School of Anhui Medical University, Hefei 230000, Anhui, China
| | - Jiaojiao Dai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230000, Anhui, China
| | - Ping Zhao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
19
|
Zhang L, Zhao J, Su C, Wu J, Jiang L, Chi H, Wang Q. Organoid models of ovarian cancer: resolving immune mechanisms of metabolic reprogramming and drug resistance. Front Immunol 2025; 16:1573686. [PMID: 40191206 PMCID: PMC11968360 DOI: 10.3389/fimmu.2025.1573686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Metabolic reprogramming is a hallmark of ovarian cancer, enabling tumor progression, immune evasion and drug resistance. The tumor microenvironment (TME) further shapes metabolic adaptations, enabling cancer cells to withstand hypoxia and nutrient deprivation. While organoid models provide a physiologically relevant platform for studying these processes, they still lack immune and vascular components, limiting their ability to fully recapitulate tumor metabolism and drug responses. In this study, we investigated the key metabolic mechanisms involved in ovarian cancer progression, focusing on glycolysis, lipid metabolism and amino acid metabolism. We integrated metabolomic analyses and drug sensitivity assays to explore metabolic-TME interactions using patient-derived, adult stem cell-derived and iPSC-derived organ tissues. Among these, we found that glycolysis, lipid metabolism and amino acid metabolism play a central role in tumor progression and chemotherapy resistance. We identified methylglyoxal (MGO)-mediated BRCA2 dysfunction as a driver of immune escape, a role for sphingolipid signaling in tumor proliferation and a role for kynurenine metabolism in CD8+ T cell suppression. In addition, PI3K/AKT/mTOR and Wnt/β-catenin pathways promote chemoresistance through metabolic adaptation. By elucidating the link between metabolic reprogramming and immune evasion, this study identifies key metabolic vulnerabilities and potential drug targets in ovarian cancer. Our findings support the development of metabolically targeted therapies and increase the utility of organoid-based precision medicine models.
Collapse
Affiliation(s)
- Lanyue Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jiangnan Zhao
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Chunyu Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jianxi Wu
- Department of Preventive Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
21
|
Polajžer S, Černe K. Precision Medicine in High-Grade Serous Ovarian Cancer: Targeted Therapies and the Challenge of Chemoresistance. Int J Mol Sci 2025; 26:2545. [PMID: 40141188 PMCID: PMC11942020 DOI: 10.3390/ijms26062545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/22/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
The poor prognosis for high-grade serous ovarian cancer (HGSOC), the dominant subtype of ovarian cancer, reflects its aggressive nature, late diagnosis, and the highest mortality rate among all gynaecologic cancers. Apart from late diagnosis, the main reason for the poor prognosis and its unsuccessful treatment is primarily the emergence of chemoresistance to carboplatin. Although there is a good response to primary treatment, the disease recurs in 80% of cases, at which point it is largely resistant to carboplatin. The introduction of novel targeted therapies in the second decade of the 21st century has begun to transform the treatment of HGSOC, although their impact on overall survival remains unsatisfactory. Targeting the specific pathways known to be abnormally activated in HGSOC is especially difficult due to the molecular diversity of its subtypes. Moreover, a range of molecular changes are associated with acquired chemoresistance, e.g., reversion of BRCA1 and BRCA2 germline alleles. In this review, we examine the advantages and disadvantages of approved targeted therapies, including bevacizumab, PARP inhibitors (PARPis), and treatments targeting cells with neurotrophic tyrosine receptor kinase (NTRK), B-rapidly accelerated fibrosarcoma (BRAF), and rearranged during transfection (RET) gene alterations, as well as antibody-drug conjugates. Additionally, we explore promising new targets under investigation in ongoing clinical trials, such as immune checkpoint inhibitors, anti-angiogenic agents, phosphatidylinositol-3-kinase (PI3K) inhibitors, Wee1 kinase inhibitors, and ataxia telangiectasia and Rad3-related protein (ATR) inhibitors for platinum-resistant disease. Despite the development of new targeted therapies, carboplatin remains the fundamental medicine in HGSOC therapy. The correct choice of treatment strategy for better survival of patients with advanced HGSOC should therefore include a prediction of patients' risks of developing chemoresistance to platinum-based chemotherapy. Moreover, effective targeted therapy requires the selection of patients who are likely to derive clinical benefit while minimizing potential adverse effects, underscoring the essence of precision medicine.
Collapse
Affiliation(s)
| | - Katarina Černe
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Korytkova 2, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
22
|
Weng J, Liu H, Wu Z, Huang Y, Zhang S, Xu Y. Periplocin improves the sensitivity of oxaliplatin-resistant hepatocellular carcinoma cells by inhibiting M2 macrophage polarization. BIOMOLECULES & BIOMEDICINE 2025; 25:857-868. [PMID: 39207178 PMCID: PMC11959402 DOI: 10.17305/bb.2024.10928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The aim of this research was to investigate the impact of periplocin (PPLN) on oxaliplatin (OXA) resistance in hepatocellular carcinoma (HCC) cells and offer insights for improving clinical treatment of HCC. The IC50 value of HCC cell lines against OXA was detected by the CCK-8 assay, and an OXA-resistant HepG2 cell line (HepG2/OXA) was constructed. THP-1 cells were induced into M1 or M2 macrophages, and M2 macrophage-conditioned medium (M2-CM) was prepared. M1 and M2 macrophage polarization were detected using RT-qPCR and flow cytometry. CCK-8, EdU staining, clone formation assay, flow cytometry, and western blotting were used to assess the proliferation and apoptosis of HepG2/OXA cells treated with PPLN and M2-CM. Additionally, a nude mouse subcutaneous graft tumor model was constructed. PPLN enhanced the sensitivity of HepG2/OXA cells to OXA, reduced their clone-forming ability, and promoted their apoptosis. Notably, PPLN hindered M0 macrophage polarization to M2 macrophages, while M1 polarization remained unaffected. The proliferation-inhibiting and apoptosis-promoting effects of OXA+PPLN on HepG2/OXA cells were significantly attenuated by the addition of M2-CM, suggesting that PPLN improves the OXA sensitivity of HepG2/OXA cells by hindering M2 macrophage polarization. Furthermore, PPLN inhibited M2 macrophage polarization and improved the OXA sensitivity of HepG2/OXA cells in vivo. In conclusion, PPLN inhibited the proliferation of HepG2/OXA cells, promoted their apoptosis, and inhibited M2 macrophage polarization both in vivo and in vitro, which in turn enhanced the OXA sensitivity of HepG2/OXA cells.
Collapse
Affiliation(s)
- Jiefeng Weng
- Department of Hepatobiliary Pancreatic Surgery, Guangzhou First People’s Hospital, Guangzhou City, China
| | - Hui Liu
- Department of Hepatobiliary Pancreatic Surgery, Guangzhou First People’s Hospital, Guangzhou City, China
| | - Zhaofeng Wu
- Department of Hepatobiliary Pancreatic Surgery, Guangzhou First People’s Hospital, Guangzhou City, China
| | - Yu Huang
- Department of Hepatobiliary Pancreatic Surgery, Guangzhou First People’s Hospital, Guangzhou City, China
| | - Shuai Zhang
- Physical Examination Center, Guangzhou First People’s Hospital, Guangzhou City, China
| | - Yujie Xu
- Department of Hepatobiliary Pancreatic Surgery, Guangzhou First People’s Hospital, Guangzhou City, China
| |
Collapse
|
23
|
Hussen BM, Abdullah SR, Jaafar RM, Rasul MF, Aroutiounian R, Harutyunyan T, Liehr T, Samsami M, Taheri M. Circular RNAs as key regulators in cancer hallmarks: New progress and therapeutic opportunities. Crit Rev Oncol Hematol 2025; 207:104612. [PMID: 39755160 DOI: 10.1016/j.critrevonc.2024.104612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/22/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing. Advances in RNA sequencing and bioinformatics tools have enabled the identification and functional annotation of circRNAs across different cancer types. Clinically, circRNAs demonstrate high specificity and sensitivity in samples, offering potential as diagnostic and prognostic biomarkers. Additionally, therapeutic strategies involving circRNA mimics, inhibitors, and delivery systems are under investigation. However, their precise mechanisms remain unclear, and more clinical evidence is needed regarding their roles in cancer hallmarks. Understanding circRNAs will pave the way for novel diagnostic and therapeutic approaches, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Rayan Mazin Jaafar
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rouben Aroutiounian
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Tigran Harutyunyan
- Laboratory of General and Molecular Genetics, Research Institute of Biology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia; Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, Yerevan 0025, Armenia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Shang B, Li L, Wang G, Liu G, Yang X, Gao J, Yin W. Hsa_circ_0087784 enhances non-small cell lung cancer progression via the miR-576-5p/CDCA4 axis. Am J Med Sci 2025; 369:390-397. [PMID: 39278405 DOI: 10.1016/j.amjms.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) belong to a family of covalently closed single-stranded RNAs that have been implicated in cancer progression. Previous studies have reported that hsa_circ_0087784 was abnormally expressed in breast cancer. However, the role of hsa_circ_0087784 in non-small cell lung cancer (NSCLC) is unknown. METHODS Here, we used RT-qPCR and FISH to examine hsa_circ_0087784 expression in NSCLC cells and tissue samples. The dual-luciferase reporter assay was used to identify downstream targets of hsa_circ_0087784. Transwell migration, 5-ethynyl-2´-deoxyuridine, and CCK-8 assays were used to examine migration and proliferation. Tumorigenesis and metastasis assays were used to determine the role of hsa_circ_0087784 in NSCLC progression in a mouse tumor xenograft model in vivo. RESULTS We found that hsa_circ_0087784 was expressed at significantly high levels in NSCLC tissue samples and cell lines. Downregulation of hsa_circ_0087784 suppressed NSCLC cellular proliferation, as well as migration. Our dual-luciferase reporter assay revealed that miR-576-5p and CDCA4 were downstream targets of hsa_circ_0087784. CDCA4 overexpression or miR-576-5p suppression reversed the effects of hsa_circ_0087784 silencing on NSCLC cell migration, and EMT-related protein expression levels. CONCLUSION Our findings suggested that downregulation of hsa_circ_0087784 inhibited NSCLC metastasis and progression through the regulation of CDCA4 expression and miR-576-5p sponging.
Collapse
Affiliation(s)
- Bin Shang
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China.
| | - Long Li
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| | - Gang Wang
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| | - Gang Liu
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| | - Xiaosong Yang
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| | - Jian Gao
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| | - Weiwei Yin
- Department of Cardio-Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical University, #633 Longhua Road, Huaishang District, Bengbu 233000 Anhui, China
| |
Collapse
|
25
|
Teng F, Wei H, Che D, Miao K, Dong X. Identifying macrophage-associated subtypes in patients with serous ovarian cancer and exploring potential personalized therapeutic drugs using combined single-cell and bulk RNA sequencing omics. Heliyon 2025; 11:e42429. [PMID: 40028569 PMCID: PMC11870195 DOI: 10.1016/j.heliyon.2025.e42429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose We aimed to analyze the sensitivity of patients to chemotherapy drugs and actively explore potential new intervention targets, providing an essential reference for personalized treatment. Methods Candidate markers with significant differential expression in macrophages were identified by analyzing gene expression at the single-cell level. A weighted gene co-expression network (WGCN) was constructed on the GSE26712 dataset to explore the modules most relevant to macrophages. Differentially expressed genes for specific markers were identified. A multi-factor regulatory network was constructed based on single-cell dataset markers screening, differentially expressed genes, and genes commonly present in WGCNA modules. Different macrophage subtypes were identified using this network. Machine learning was used to filter and predict the markers' drug sensitivity, and the potential therapeutic compounds for specific markers were screened. Results We identified 14 and 17 of M1 and M2 macrophage candidate markers, respectively. In the multi-factor regulatory network of M1 macrophages, 6 out of 14 markers recognized 159 transcription factors (TFs) and 48 micro RNAs (miRNAs), whereas 13 of 17 markers recognized 191 TFs and 182 miRNAs in the multi-factor regulatory network of M2 macrophages. Filtering of the identified differentially expressed genes using random forests yielded 15 M1 and M2 macrophage-specific markers. Drug sensitivity prediction analysis and in vitro experiments revealed the close association of these markers with common chemotherapy drug sensitivity. Conclusion We identified specific M1 and M2 macrophage markers and found potential therapeutic compounds (dasatinib and afatinib) in these specific markers. These potential therapeutic compounds provide insight into the underlying mechanisms of serous ovarian cancer (OC) and inspire more effective treatment methods.
Collapse
Affiliation(s)
- Fei Teng
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Wei
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dehong Che
- Ultrasound Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kuo Miao
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqiu Dong
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Wang J, Zhu Y, He Y, Shao W. TAM-derived exosomal miR-589-3p accelerates ovarian cancer progression through BCL2L13. J Ovarian Res 2025; 18:36. [PMID: 39985077 PMCID: PMC11846191 DOI: 10.1186/s13048-025-01618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/05/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAM) are critical elements of intercellular communication in tumor microenvironment (TME), and exosomes are key mediators between tumor cells and the TME. According to previous reports, miRNAs exert a pivotal role in ovarian cancer (OC) development. The purpose of this work was to explore the function of TAM-derived exosomal miR-589-3p in OC development and elucidate the underlying molecular mechanisms. METHODS First, peripheral blood mononuclear cells (PBMC) were treated with IL-4 and IL-13 to polarize them into M2-type macrophages. Exosomes were separated from M2-type macrophages, and the physical properties of exosomes were evaluated using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Next, quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) was applied to examine the expression of relevant genes. Subsequently, Targetscan and miRDB were utilized to predict miR-589-3p target genes, and then the interaction between miR-589-3p and BCL2L13 was verified by dual luciferase assay and RNA Binding Protein Immunoprecipitation (RIP) assay. Finally, Cell Counting Kit-8 (CCK-8) and flow cytometry experiments were employed to explore the changes in the proliferative and apoptotic abilities of OC cells. RESULTS In this research, we demonstrated that TAM-derived exosomes facilitated OC cell proliferation and suppressed OC cell apoptosis. Then, qRT-PCR results indicated that miR-589-3p were markedly elevated after co-culture of TAM-derived exosomes with OC cells. In addition, we discovered that miR-589-3p was bound to BCL-2-like protein 13 (BCL2L13), which was confirmed through luciferase assay and RIP assay. Furthermore, functional analysis displayed that TAM-derived exosomes treated with miR-589-3p inhibitor attenuated the promotion of OC cell progression by exosomes. CONCLUSION TAM-derived exosomal miR-589-3p enhanced OC progression through BCL2L13, which offers a novel for OC therapy.
Collapse
Affiliation(s)
- Jianqing Wang
- Department of Gynecology and Obstetrics, Yancheng First People's Hospital, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224002, China
| | - Yan Zhu
- Department of Gynecology and Obstetrics, Yancheng First People's Hospital, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224002, China
| | - Yang He
- Department of Gynecology and Obstetrics, Yancheng First People's Hospital, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224002, China
| | - Weiwei Shao
- Department of Pathology, Yancheng First People's Hospital, Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, 224002, China.
- Department of Pathology, Yancheng Clinical College of Xuzhou Medical University, Yancheng First People's Hospital, No. 166, Yulong West Road, Yancheng, Jiangsu, 224002, China.
| |
Collapse
|
27
|
Guo Y, Huang Q, Heng Y, Zhou Y, Chen H, Xu C, Wu C, Tao L, Zhou L. Circular RNAs in cancer. MedComm (Beijing) 2025; 6:e70079. [PMID: 39901896 PMCID: PMC11788016 DOI: 10.1002/mco2.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Circular RNA (circRNA), a subtype of noncoding RNA, has emerged as a significant focus in RNA research due to its distinctive covalently closed loop structure. CircRNAs play pivotal roles in diverse physiological and pathological processes, functioning through mechanisms such as miRNAs or proteins sponging, regulation of splicing and gene expression, and serving as translation templates, particularly in the context of various cancers. The hallmarks of cancer comprise functional capabilities acquired during carcinogenesis and tumor progression, providing a conceptual framework that elucidates the nature of the malignant transformation. Although numerous studies have elucidated the role of circRNAs in the hallmarks of cancers, their functions in the development of chemoradiotherapy resistance remain unexplored and the clinical applications of circRNA-based translational therapeutics are still in their infancy. This review provides a comprehensive overview of circRNAs, covering their biogenesis, unique characteristics, functions, and turnover mechanisms. We also summarize the involvement of circRNAs in cancer hallmarks and their clinical relevance as biomarkers and therapeutic targets, especially in thyroid cancer (TC). Considering the potential of circRNAs as biomarkers and the fascination of circRNA-based therapeutics, the "Ying-Yang" dynamic regulations of circRNAs in TC warrant vastly dedicated investigations.
Collapse
Affiliation(s)
- Yang Guo
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Qiang Huang
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yu Heng
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Yujuan Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Hui Chen
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chengzhi Xu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Chunping Wu
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Lei Tao
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| | - Liang Zhou
- ENT Institute and Department of Otorhinolaryngology Eye & ENT Hospital, Fudan University Xuhui District Shanghai China
| |
Collapse
|
28
|
Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun Y, Ma N, Jiao Y. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol 2025; 8:77. [PMID: 39825074 PMCID: PMC11748638 DOI: 10.1038/s42003-024-07383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer. Additionally, we explore the role of CPIs in tumor drug resistance to gain a deeper understanding of their potential applications in the development of new anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Nan Zhang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Xinjia Wang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yu Li
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yiwei Lu
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Chengcheng Sheng
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yumeng Sun
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Ningye Ma
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| | - Yisheng Jiao
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| |
Collapse
|
29
|
Sun Y, Wu J, Sun W, Liu C, Shi X. Novel insights into the interaction between IGF2BPs and ncRNAs in cancers. Cancer Cell Int 2024; 24:437. [PMID: 39732659 DOI: 10.1186/s12935-024-03591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/28/2024] [Indexed: 12/30/2024] Open
Abstract
Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions. Recent studies, predominantly from 2018 onward, indicate that IGF2BPs can recognize and modulate ncRNAs via N6-methyladenosine (m6A) modifications, enriching the regulatory landscape of RNA-protein interactions in the context of cancer. This review explores the latest insights into the interplay between IGF2BPs and ncRNAs, emphasizing their potential influence on cancer biology.
Collapse
Affiliation(s)
- Yaya Sun
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Junjie Wu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Weimin Sun
- Department of General Surgery, Xuyi People's Hospital, Huai'an, 211700, China.
| | - Congxing Liu
- Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| | - Xin Shi
- Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Zhang S, Dou T, Li H, Yu H, Zhang W, Sun L, Yang J, Wang Z, Yang H. Knockdown of IGF2BP2 overcomes cisplatin-resistance in lung cancer through downregulating Spon2 gene. Hereditas 2024; 161:55. [PMID: 39731162 DOI: 10.1186/s41065-024-00360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Cisplatin (DDP) resistance has long posed a challenge in the clinical treatment of lung cancer (LC). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) has been identified as an oncogenic factor in LC, whereas its specific role in DDP resistance in LC remains unclear. RESULTS In this study, we investigated the role of IGF2BP2 on DDP resistance in DDP-resistant A549 cells (A549/DDP) in vitro and in a DDP-resistant lung tumor-bearing mouse model in vivo. Additionally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted to identify the potential mRNAs regulated by IGF2BP2, an N6-methyladenosine (m6A) regulator, in the tumor tissues of mice. Compared to normal tissues, IGF2BP2 levels were increased in LC tissues and in relapsed/resistant LC tissues. Most importantly, IGF2BP2 levels were significantly higher in relapsed/resistant LC tissues than in LC tissues. Significantly, knockdown of IGF2BP2 or DDP treatment inhibited A549 cell viability, migration, and cell cycle progression. Consistently, DDP treatment suppressed the viability and migration and triggered cell cycle arrest in A549/DDP cells in vitro, as well as reduced tumor volume and weight of A549/DDP tumor-bearing mice; meanwhile, the combination of DDP and IGF2BP2 siRNA further significantly inhibited A549/DDP cell growth in vitro and in vivo compared to DDP treatment alone. Furthermore, MeRIP-seq data showed that IGF2BP2 downregulation remarkably elevated m6A levels of spondin 2 (Spon2) and reduced mRNA levels of Spon2 in tumor tissues from A549 tumor-bearing mice. Meanwhile, the combination of DDP and IGF2BP2 siRNA notably reduced Spon2 levels, as well as inhibited the viability and induced apoptosis in A549/DDP cells; however, these effects were reversed by Spon2 overexpression. CONCLUSION Collectively, downregulation of IGF2BP2 could overcome DDP resistance in LC through declining the Spon2 gene expression in an m6A-dependent manner. These results may provide a new strategy for overcoming DDP resistance in LC.
Collapse
Affiliation(s)
- Shilei Zhang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Department of Oncology, Xilingol League Central Hospital, Xilingol, 026000, China
| | - Ting Dou
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Department of Graduate School, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, 010020, China
| | - Hong Li
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | - Hongfang Yu
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | - Wei Zhang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | - Liping Sun
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | - Jingwen Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | - Zhenfei Wang
- The Laboratory for Tumor Molecular Diagnosis, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China.
| | - Hao Yang
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China.
- Key Laboratoy of Radiation Physics and Biology of Inner, Mongolia Medical University, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Hohhot, 010020, China.
- Department of Radiation Oncology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region, No. 42, Zhaowuda Road, Saihan District, Hohhot, 010000, China.
| |
Collapse
|
31
|
Wang D, Han X, Liu HL. The role and research progress of tumor-associated macrophages in cervical cancer. Am J Cancer Res 2024; 14:5999-6011. [PMID: 39803646 PMCID: PMC11711540 DOI: 10.62347/ffxl7288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are important immune cells in the tumor micro-environment (TME) and play a key role in the occurrence and development of cervical cancer. Besides, targeting TAMs can significantly inhibit cervical cancer tumor growth, invasion, metastasis, and angiogenesis as well as affect immune regulation. This review summarizes the correlation between TAM and tumors, the mechanism of action of TAM in cervical cancer, and the potential application of TAM in the treatment of cervical cancer. Therefore, this study may provide new ideas and targets for the development of further treatment strategies for cervical cancer patients.
Collapse
Affiliation(s)
- Dan Wang
- Department of First Clinical Medical College, Gansu University of Chinese MedicineLanzhou, Gansu, China
| | - Xue Han
- Department of Gynecology, Gansu Provincial People’s HospitalLanzhou, Gansu, China
| | - Hui-Ling Liu
- Department of Gynecology, Gansu Provincial People’s HospitalLanzhou, Gansu, China
| |
Collapse
|
32
|
Ponton-Almodovar A, Sanderson S, Rattan R, Bernard JJ, Horibata S. Ovarian tumor microenvironment contributes to tumor progression and chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:53. [PMID: 39802952 PMCID: PMC11724355 DOI: 10.20517/cdr.2024.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Ovarian cancer is one of the deadliest gynecologic cancers affecting the female reproductive tract. This is largely attributed to frequent recurrence and development of resistance to the platinum-based drugs cisplatin and carboplatin. One of the major contributing factors to increased cancer progression and resistance to chemotherapy is the tumor microenvironment (TME). Extracellular signaling from cells within the microenvironment heavily influences progression and drug resistance in ovarian cancer. This is frequently done through metabolic reprogramming, the process where cancer cells switch between biochemical pathways to increase their chances of survival and proliferation. Here, we focus on how crosstalk between components of the TME and the tumor promotes resistance to platinum-based chemotherapy. We highlight the role of cancer-associated fibroblasts, immune cells, adipocytes, and endothelial cells in ovarian tumor progression, invasion, metastasis, and chemoresistance. We also highlight recent advancements in targeting components of the TME as a novel therapeutic avenue to combat chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Adriana Ponton-Almodovar
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Authors contributed equally
| | - Samuel Sanderson
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Authors contributed equally
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Health System, Detroit, MI 48202, USA
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Sachi Horibata
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
33
|
Malek Mohammadi M, Rismanchi H, Esmailzadeh S, Farahani A, Hedayati N, Alimohammadi M, Mafi A, Farahani N, Hushmandi K. The emerging role of circular RNAs in cisplatin resistance in ovarian cancer: From molecular mechanism to future potential. Noncoding RNA Res 2024; 9:1280-1291. [PMID: 39040815 PMCID: PMC11261309 DOI: 10.1016/j.ncrna.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ovarian cancer (OC) is the most common cause of death in female cancers. The prognosis of OC is very poor due to delayed diagnosis and identification of most patients in advanced stages, metastasis, recurrence, and resistance to chemotherapy. As chemotherapy with platinum-based drugs such as cisplatin (DDP) is the main treatment in most OC cases, resistance to DDP is an important obstacle to achieving satisfactory therapeutic efficacy. Consequently, knowing the different molecular mechanisms involved in resistance to DDP is necessary to achieve new therapeutic approaches. According to numerous recent studies, non-coding RNAs (ncRNAs) could regulate proliferation, differentiation, apoptosis, and chemoresistance in many cancers, including OC. Most of these ncRNAs are released by tumor cells into human fluid, allowing them to be used as tools for diagnosis. CircRNAs are ncRNA family members that have a role in the initiation, progression, and chemoresistance regulation of various cancers. In the current study, we investigated the roles of several circRNAs and their signaling pathways on OC progression and also on DDP resistance during chemotherapy.
Collapse
Affiliation(s)
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
34
|
Liu Y, Xiao H, Zeng H, Xiang Y. Beyond tumor‑associated macrophages involved in spheroid formation and dissemination: Novel insights for ovarian cancer therapy (Review). Int J Oncol 2024; 65:117. [PMID: 39513610 PMCID: PMC11575928 DOI: 10.3892/ijo.2024.5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Ovarian cancer (OC) is the most common and deadly malignant tumor of the female reproductive system. When OC cells detach from the primary tumor and enter the ascitic microenvironment, they are present as individual cells or multicellular spheroids in ascites. These spheroids, composed of cancer and non‑malignant cells, are metastatic units and play a crucial role in the progression of OC. However, little is known about the mechanism of spheroid formation and dissemination. Tumor‑associated macrophages (TAMs) in the center of spheroids are key in spheroid formation and metastasis and provide a potential target for OC therapy. The present review summarizes the key biological features of spheroids, focusing on the role of TAMs in spheroid formation, survival and peritoneal metastasis, and the strategies targeting TAMs to provide new insights in treating OC.
Collapse
Affiliation(s)
- Yuchen Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Haoyue Xiao
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hai Zeng
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
35
|
Li D, Hu S, Ye J, Zhai C, Liu J, Wang Z, Zhou X, Chen L, Zhou F. The Emerging Role of IGF2BP2 in Cancer Therapy Resistance: From Molecular Mechanism to Future Potential. Int J Mol Sci 2024; 25:12150. [PMID: 39596216 PMCID: PMC11595103 DOI: 10.3390/ijms252212150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Tumor resistance is one of the primary reasons for cancer treatment failure, significantly limiting the options and efficacy of cancer therapies. Therefore, overcoming resistance has become a critical factor in improving cancer treatment outcomes. IGF2BP2, as a reader of m6A methylation, plays a pivotal role in the post-transcriptional regulation of RNA through the methylation of m6A sites. It not only contributes to cancer initiation and progression but also plays a key role in tumor drug resistance. This review provides a comprehensive summary of the mechanisms by which IGF2BP2 contributes to therapy resistance, with the aim of improving the efficacy of chemotherapy in cancer treatment. Advancing research in this area is crucial for developing more effective therapies that could significantly improve the quality of life for cancer patients.
Collapse
Affiliation(s)
- Die Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Shiqi Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200433, China
| | - Jiarong Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Chaojie Zhai
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Jipeng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Zuao Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Xinchi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| | - Leifeng Chen
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; (D.L.); (S.H.); (J.Y.); (C.Z.); (J.L.); (Z.W.); (X.Z.)
| |
Collapse
|
36
|
Fang L, Zhu Z, Han M, Li S, Kong X, Yang L. Unlocking the potential of extracellular vesicle circRNAs in breast cancer: From molecular mechanisms to therapeutic horizons. Biomed Pharmacother 2024; 180:117480. [PMID: 39357330 DOI: 10.1016/j.biopha.2024.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Breast cancer remains the leading cause of cancer-related morbidity and mortality among women worldwide, underscoring the urgent need for novel diagnostic and therapeutic strategies. This review explores the emerging roles of circular RNAs (circRNAs) within extracellular vesicles (exosomes) in breast cancer. circRNAs, known for their stability and tissue-specific expression, are aberrantly expressed in breast cancer and regulate critical cellular processes such as proliferation, migration, and apoptosis, positioning them as promising biomarkers. Exosomes facilitate intercellular communication by delivering circRNAs, reflecting the physiological and pathological state of their source cells. This review highlights the multifaceted roles of exosomal circRNAs in promoting tumor growth, metastasis, and drug resistance through their modulation of tumor metabolism, the tumor microenvironment, and immune responses. In particular, we emphasize their contributions to chemotherapy resistance and their potential as both diagnostic markers and therapeutic targets. By synthesizing current research, this review provides novel insights into the clinical applications of exosomal circRNAs, offering a foundation for future studies aimed at improving breast cancer management through non-invasive diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Lijuan Fang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Zehua Zhu
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Mingyue Han
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Shaojie Li
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lusen Yang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China.
| |
Collapse
|
37
|
Gao Y, Lin H, Tang T, Wang Y, Chen W, Li L. Circular RNAs in programmed cell death: Regulation mechanisms and potential clinical applications in cancer: A review. Int J Biol Macromol 2024; 280:135659. [PMID: 39288849 DOI: 10.1016/j.ijbiomac.2024.135659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs with covalently closed structures formed by reverse splicing of precursor mRNAs. The widespread expression of circRNAs across species has been revealed by high-throughput sequencing and bioinformatics approaches, indicating their unique properties and diverse functions including acting as microRNA sponges and interacting with RNA-binding proteins. Programmed cell death (PCD), encompassing various forms such as apoptosis, necroptosis, pyroptosis, autophagy, and ferroptosis, is an essential process for maintaining normal development and homeostasis in the human body by eliminating damaged, infected, and aging cells. Many studies have demonstrated that circRNAs play crucial roles in tumourigenesis and development by regulating PCD in tumor cells, showing that circRNAs have the potential to be biomarkers and therapeutic targets in cancer. This review aims to comprehensively summarize the intricate associations between circRNAs and diverse PCD pathways in tumor cells, which play crucial roles in cancer development. Additionally, this review provides a detailed overview of the underlying mechanisms by which circRNAs modulate various forms of PCD for the first time. The ultimate objective is to offer valuable insights into the potential clinical significance of developing novel strategies based on circRNAs and PCD for cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yudi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hong Lin
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tiantian Tang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
38
|
Tang L, Tian H, Min Q, You H, Yin M, Yang L, Zhao Y, Wu X, Li M, Du F, Chen Y, Deng S, Li X, Chen M, Gu L, Sun Y, Xiao Z, Li W, Shen J. Decoding the epitranscriptome: a new frontier for cancer therapy and drug resistance. Cell Commun Signal 2024; 22:513. [PMID: 39434167 PMCID: PMC11492518 DOI: 10.1186/s12964-024-01854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
As the role of RNA modification in gene expression regulation and human diseases, the "epitranscriptome" has been shown to be an important player in regulating many physiological and pathological processes. Meanwhile, the phenomenon of cancer drug resistance is becoming more and more frequent, especially in the case of cancer chemotherapy resistance. In recent years, research on relationship between post-transcriptional modification and cancer including drug resistance has become a hot topic, especially the methylation of the sixth nitrogen site of RNA adenosine-m6A (N6-methyladenosine). m6A modification is the most common post-transcriptional modification of eukaryotic mRNA, accounting for 80% of RNA methylation modifications. At the same time, several other modifications of RNA, such as N1-methyladenosine (m1A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), pseudouridine (Ψ) and N7-methylguanosine (m7G) have also been demonstrated to be involved in cancer and drug resistance. This review mainly discusses the research progress of RNA modifications in the field of cancer and drug resistance and targeting of m6A regulators by small molecule modulators, providing reference for future study and development of combination therapy to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Lu Tang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Scientific Research and Experimental Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hua Tian
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qi Min
- Department of Pharmacy, Mianyang Hospital of TCM, Sichuan Mianyang, 621000, China
| | - Huili You
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mengshuang Yin
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Liqiong Yang
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Shuai Deng
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xiaobing Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Meijuan Chen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yuhong Sun
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Wanping Li
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Laboratory of Molecular Pharmacology, Southwest Medical University, Luzhou, Sichuan, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
39
|
Wang X, Yang M, Zhu J, Zhou Y, Li G. Role of exosomal non‑coding RNAs in ovarian cancer (Review). Int J Mol Med 2024; 54:87. [PMID: 39129308 DOI: 10.3892/ijmm.2024.5411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Ovarian cancer (OC) is a common gynecological disease with a high mortality rate worldwide due to its insidious nature and undetectability at an early stage. The standard treatment, combining platinum‑based chemotherapy with cytoreductive surgery, has suboptimal results. Therefore, early diagnosis of OC is crucial. All cell types secrete extracellular vesicles, particularly exosomes. Exosomes, which contain lipids, proteins, DNA and non‑coding RNAs (ncRNAs), are novel methods of intercellular communication that participate in tumor development and progression. ncRNAs are categorized by size into long ncRNAs (lncRNAs) and small ncRNAs (sncRNAs). sncRNAs further include transfer RNAs, small nucleolar RNAs, PIWI‑interacting RNAs and microRNAs (miRNAs). miRNAs inhibit protein translation and promote messenger RNA (mRNA) cleavage to suppress gene expression. By sponging downstream miRNAs, lncRNAs and circular RNAs can regulate target gene expression, thereby weakening the interactions between miRNAs and mRNAs. Exosomes and exosomal ncRNAs, commonly present in human biological fluids, are promising biomarkers for OC. The present article aimed to review the potential role of exosomal ncRNAs in the diagnosis and prognosis of OC by summarizing the characteristics, processes, roles and isolation methods of exosomes and exosomal ncRNAs.
Collapse
Affiliation(s)
- Xinchen Wang
- Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| | - Miao Yang
- Department of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Jiamei Zhu
- Department of Obstetrics and Gynecology, Jingjiang People's Hospital, Taizhou, Jiangsu 214500, P.R. China
| | - Yu Zhou
- Oriental Fortune Capital Post‑Doctoral Innovation Center, Shenzhen, Guangdong 518040, P.R. China
| | - Gencui Li
- Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
40
|
Zhou Y, Na C, Li Z. Novel insights into immune cells modulation of tumor resistance. Crit Rev Oncol Hematol 2024; 202:104457. [PMID: 39038527 DOI: 10.1016/j.critrevonc.2024.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Tumor resistance poses a significant challenge to effective cancer treatment, making it imperative to explore new therapeutic strategies. Recent studies have highlighted the profound involvement of immune cells in the development of tumor resistance. Within the tumor microenvironment, macrophages undergo polarization into the M2 phenotype, thus promoting the emergence of drug-resistant tumors. Neutrophils contribute to tumor resistance by forming extracellular traps. While T cells and natural killer (NK) cells exert their impact through direct cytotoxicity against tumor cells. Additionally, dendritic cells (DCs) have been implicated in preventing tumor drug resistance by stimulating T cell activation. In this review, we provide a comprehensive summary of the current knowledge regarding immune cell-mediated modulation of tumor resistance at the molecular level, with a particular focus on macrophages, neutrophils, DCs, T cells, and NK cells. The targeting of immune cell modulation exhibits considerable potential for addressing drug resistance, and an in-depth understanding of the molecular interactions between immune cells and tumor cells holds promise for the development of innovative therapies. Furthermore, we explore the clinical implications of these immune cells in the treatment of drug-resistant tumors. This review emphasizes the exploration of novel approaches that harness the functional capabilities of immune cells to effectively overcome drug-resistant tumors.
Collapse
Affiliation(s)
- Yi Zhou
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Chuhan Na
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| |
Collapse
|
41
|
Lin Y, Chen J, Xin S, Lin Y, Chen Y, Zhou X, Chen H, Li X. CYP24A1 affected macrophage polarization through degradation of vitamin D as a candidate biomarker for ovarian cancer prognosis. Int Immunopharmacol 2024; 138:112575. [PMID: 38963981 DOI: 10.1016/j.intimp.2024.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological malignancy with a poor prognosis in which mitochondria-related genes are involved deeply. In this study, we aim to screen mitochondria-related genes that play a role in OC prognosis and investigate its effects. Through single-cell sequencing technology and bioinformatics analysis, including TCGA ovarian cancer data analysis, gene expression signature analysis (GES), immune infiltration analysis, Gene Ontology (GO) enrichment analysis, Gene Set Enrichment Analysis (GSEA), and Principal Component Analysis (PCA), our findings revealed that CYP24A1 regulated macrophage polarization through vitamin D (VD) degradation and served as a target gene for the second malignant subtype of OC through bioinformatics analyses. For further validation, the expression and function of CYP24A1 in OC cells was investigated. And the expression of CYP24A1 was much higher in carcinoma than in paracancerous tissue, whereas the VD content decreased in the OC cell lines with CYP24A1 overexpression. Moreover, macrophages were polarized towards M1 after the intervention of VD-treated OC cell lines and inhibited the malignant phenotypes of OC. However, the effect could be reversed by overexpressing CYP24A1, resulting in the polarization of M2 macrophages, thereby promoting tumor progression, as verified by constructing xenograft models in vitro. In conclusion, our findings suggested that CYP24A1 induced M2 macrophage polarization through interaction with VD, thus promoting the malignant progression of OC.
Collapse
Affiliation(s)
- YaoXiang Lin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - JiongFei Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - SiJia Xin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Ya Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - YongChao Chen
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiaojing Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Hao Chen
- Department of Pathology, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| | - XiangJuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| |
Collapse
|
42
|
Shao M, Gao Y, Xu X, Chan DW, Du J. Exosomes: Key Factors in Ovarian Cancer Peritoneal Metastasis and Drug Resistance. Biomolecules 2024; 14:1099. [PMID: 39334866 PMCID: PMC11430201 DOI: 10.3390/biom14091099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian cancer remains a leading cause of death among gynecological cancers, largely due to its propensity for peritoneal metastasis and the development of drug resistance. This review concentrates on the molecular underpinnings of these two critical challenges. We delve into the role of exosomes, the nano-sized vesicles integral to cellular communication, in orchestrating the complex interactions within the tumor microenvironment that facilitate metastatic spread and thwart therapeutic efforts. Specifically, we explore how exosomes drive peritoneal metastasis by promoting epithelial-mesenchymal transition in peritoneal mesothelial cells, altering the extracellular matrix, and supporting angiogenesis, which collectively enable the dissemination of cancer cells across the peritoneal cavity. Furthermore, we dissect the mechanisms by which exosomes contribute to the emergence of drug resistance, including the sequestration and expulsion of chemotherapeutic agents, the horizontal transfer of drug resistance genes, and the modulation of critical DNA repair and apoptotic pathways. By shedding light on these exosome-mediated processes, we underscore the potential of exosomal pathways as novel therapeutic targets, offering hope for more effective interventions against ovarian cancer's relentless progression.
Collapse
Affiliation(s)
- Ming Shao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Department of Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - Yunran Gao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xiling Xu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - David Wai Chan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Juan Du
- Department of Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
43
|
Wu X, Zhou S, Wang L, Ma J, Zhou Y, Ruan Y, Shao H, Zhou X, Li H. Circ_103809 Aggravates the Malignant Phenotype of Pancreatic Cancer Through Modulating miR-197-3p/TSPAN3 Axis. Mol Biotechnol 2024; 66:2455-2466. [PMID: 37740818 DOI: 10.1007/s12033-023-00874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Pancreatic cancer (PC) is a malignant tumor with insidious clinical manifestations and dismal prognosis. Emerging reports have demonstrated that circRNAs exert pivotal biological function in PC. Here, we investigated the crucial biological role and underlying regulatory mechanisms of differentially expressed circ_103809 in PC. In this study, hsa_circ_103809 (hsa_circ_0072088) was identified as the research object via analyzing and screening the aberrantly expressed circRNAs in PC by GSE69362 dataset. The levels of circ_103809 in PC tissues and cells were assessed via qRT-PCR. Functional assays were conducted to monitor the impacts of circ_103809 on PC cells. Additionally, the downstream molecular targets and regulatory networks of circ_103809 were predicted by bioinformatics and validated using luciferase assays and rescue experiments. We found that circ_103809 was substantially upregulated in PC tissues and cells. Silencing circ_103809 restrained the growth viability, clonogenic rate, migration, and invasion capabilities of PC cells. Further mechanistic exploration disclosed that miR-197-3p was the downstream gene of circ_103809, while Tetraspanin-3 (TSPAN3) was a direct target of miR-197-3p. The suppressive effect of circ_103809 knockdown on malignant processes of PC cells was eliminated by miR-197-3p downregulation or TSPAN3 upregulation. Our study demonstrated that circ_103809 served as an innovative positive regulator in the growth and metastasis of PC cells. Furthermore, circ_103809 mediated the miR-197-3p/TSPAN3 axis to modulate the malignant progression of PC cells, which was prospected to be a probable biomarker and an efficient therapeutic target for PC.
Collapse
Affiliation(s)
- Xiang Wu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Li Huili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, 315000, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Shuping Zhou
- Ningbo College of Health Sciences, Ningbo, 315000, Zhejiang, China
| | - Luoluo Wang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Li Huili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, 315000, Zhejiang, China
| | - Jingyun Ma
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Li Huili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, 315000, Zhejiang, China
| | - Yang Zhou
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Yi Ruan
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Li Huili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, 315000, Zhejiang, China
| | - Hanjie Shao
- Health Science Center, Ningbo University, Ningbo, 315000, Zhejiang, China
| | - Xinhua Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Li Huili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, 315000, Zhejiang, China.
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Li Huili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
44
|
Vijayakumar S, Dhakshanamoorthy R, Baskaran A, Sabari Krishnan B, Maddaly R. Drug resistance in human cancers - Mechanisms and implications. Life Sci 2024; 352:122907. [PMID: 39004273 DOI: 10.1016/j.lfs.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cancers have complex etiology and pose a significant impact from the health care perspective apart from the socio-economic implications. The enormity of challenge posed by cancers can be understood from the fact that clinical trials for cancer therapy has yielded minimum potential promises compared to those obtained for other diseases. Surgery, chemotherapy and radiotherapy continue to be the mainstay therapeutic options for cancers. Among the challenges posed by these options, induced resistance to chemotherapeutic drugs is probably the most significant contributor for poor prognosis and ineffectiveness of the therapy. Drug resistance is a property exhibited by almost all cancer types including carcinomas, leukemias, myelomas, sarcomas and lymphomas. The mechanisms by which drug resistance is induced include the factors within the tumor microenvironment, mutations in the genes responsible for drug metabolism, changes in the surface drug receptors and increased drug efflux. We present here comprehensively the drug resistance in cancers along with their mechanisms. Also, apart from resistance to regularly used chemotherapeutic drugs, we present resistance induction to new generation therapeutic agents such as monoclonal antibodies. Finally, we have discussed the experimental approaches to understand the mechanisms underlying induction of drug resistance and potential ways to mitigate induced drug resistance.
Collapse
Affiliation(s)
- Sudikshaa Vijayakumar
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Raveena Dhakshanamoorthy
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Akshaya Baskaran
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - B Sabari Krishnan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
45
|
Son CJ, Carnino JM, Lee H, Jin Y. Emerging Roles of Circular RNA in Macrophage Activation and Inflammatory Lung Responses. Cells 2024; 13:1407. [PMID: 39272979 PMCID: PMC11394395 DOI: 10.3390/cells13171407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous loop, unlike linear RNA. The expression of circRNAs in mammals is often conserved across species and shows tissue and cell specificity. Some circRNA serve as gene regulators. However, the biological function of most circRNAs is unclear. CircRNA does not have 5' or 3' ends. The unique structure of circRNAs provides them with a much longer half-life and more resistance to RNase R than linear RNAs. Inflammatory lung responses occur in the pathogenesis and recovery of many lung diseases. Macrophages form the first line of host defense/innate immune responses and initiate/mediate lung inflammation. For example, in bacterial pneumonia, upon pro-inflammatory activation, they release early response cytokines/chemokines that recruit neutrophils, macrophages, and lymphocytes to sites of infection and clear pathogens. The functional effects and mechanisms by which circRNAs exert physiological or pathological roles in macrophage activation and lung inflammation remain poorly understood. In this article, we will review the current understanding and progress of circRNA biogenesis, regulation, secretion, and degradation. Furthermore, we will review the current reports on the role of circRNAs in macrophage activation and polarization, as well as in the process of inflammatory lung responses.
Collapse
Affiliation(s)
- Chang Jun Son
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Jonathan M. Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118, USA; (C.J.S.); (J.M.C.); (H.L.)
| |
Collapse
|
46
|
Lin J, Xia H, Yu J, Wang Y, Wang H, Xie D, Cheng C, Lu L, Bian T, Wu Y, Liu Q. circADAMTS6 via stabilizing CAMK2A is involved in smoking-induced emphysema through driving M2 macrophage polarization. ENVIRONMENT INTERNATIONAL 2024; 190:108832. [PMID: 38936066 DOI: 10.1016/j.envint.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Cigarette smoke (CS), an indoor environmental pollutant, is a prominent risk factor for emphysema, which is a pathological feature of chronic obstructive pulmonary disease (COPD). Emerging function of circRNAs in immune responses and disease progression shed new light to explore the pathogenesis of emphysema. In this research, we demonstrated, by single-cell RNA sequencing (scRNAseq), that the ratio of M2 macrophages were increased in lung tissues of humans and mice with smoking-related emphysema. Further, our data showed that circADAMTS6 was associated with cigarette smoke extract (CSE)-induced M2 macrophage polarization. Mechanistically, in macrophages, circADAMTS6 stabilized CAMK2A mRNA via forming a circADAMTS6/IGF2BP2/CAMK2A RNA-protein ternary complex to activate CREB, which drives M2 macrophage polarization and leads to emphysema. In addition, in macrophages of mouse lung tissues, downregulation of circADAMTS6 reversed M2 macrophage polarization, the proteinase/anti-proteinase imbalance, and the elastin degradation, which protecting against CS-induced emphysema. Moreover, for macrophages and in a model with co-cultured lung organoids, the target of circADAMTS6 restored the growth of lung organoids compared to CSE-treated macrophages. Our results also demonstrated that, for smokers and COPD smokers, elevation of circADAMTS6 negatively correlated with lung function. Overall, this study reveals a novel mechanism for circADAMTS6-driven M2 macrophage polarization in smoking-related emphysema and postulates that circADAMTS6 could serve as a diagnostic and therapeutic marker for smoking-related emphysema.
Collapse
Affiliation(s)
- Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, People's Republic of China
| | - Jinyan Yu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Hailan Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tao Bian
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, People's Republic of China.
| | - Yan Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
47
|
Zhu W, Zhang Y, Zhou Q, Zhen C, Huang H, Liu X. Identification and Comprehensive Analysis of circRNA-miRNA-mRNA Regulatory Networks in A2780 Cells Treated with Resveratrol. Genes (Basel) 2024; 15:965. [PMID: 39062744 PMCID: PMC11276136 DOI: 10.3390/genes15070965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC) is one of the most commonplace gynecological malignancies. This study explored the effects of resveratrol (RES) on OC cell proliferation and apoptosis. Proliferation activity was measured for A2780 cells treated with RES for 24 h and 48 h at concentrations of 0, 10, 25, 50, 75, 100, 150, 200, and 300 μM. RNA sequencing (RNA-seq) was performed to analyze the circular RNA (circRNA), microRNA (miRNA), and messenger RNA (mRNA) expression spectrum. The differentially expressed genes included 460 circRNAs, 1988 miRNAs, and 1671 mRNAs, and they were subjected to analyses including Gene Ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome enrichment. We selected signaling pathways enriched in the cell processes by mRNA KEGG, comprehensively analyzed the circRNA-miRNA-mRNA regulatory network, and verified several miRNAs expressed in the regulatory network diagram using the quantitative real-time polymerase chain reaction. The data showed that the cell proliferation of A2780 cells treated with RES for 24 h or 48 h decreased with increasing concentrations of RES. The circRNA-miRNA-mRNA regulatory network that we constructed provides new insights into the ability of RES to inhibit cell proliferation and promote apoptosis in A2780 cells.
Collapse
Affiliation(s)
- Weihua Zhu
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Yuanting Zhang
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Qianqian Zhou
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Cheng Zhen
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Herong Huang
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
48
|
Hao J, Zhao X, Wang C, Cao X, Liu Y. Recent Advances in Nanoimmunotherapy by Modulating Tumor-Associated Macrophages for Cancer Therapy. Bioconjug Chem 2024; 35:867-882. [PMID: 38919067 DOI: 10.1021/acs.bioconjchem.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cancer immunotherapy has yielded remarkable results across a variety of tumor types. Nevertheless, the complex and immunosuppressive microenvironment within solid tumors poses significant challenges to established therapies such as immune checkpoint blockade (ICB) and chimeric antigen receptor T-cell (CAR-T) therapy. Within the milieu, tumor-associated macrophages (TAMs) play a significant role by directly suppressing T-cell functionality and fostering an immunosuppressive environment. Effective regulation of TAMs is, therefore, crucial to enhancing the efficacy of immunotherapies. Various therapeutic strategies targeting TAM modulation have emerged, including blocking TAM recruitment, direct elimination, promoting repolarization toward the M1 phenotype, and enhancing phagocytic capacity against tumor cells. The recently introduced CAR macrophage (CAR-M) therapy opens new possibilities for macrophage-based immunotherapy. Compared with CAR-T, CAR-M may demonstrate superior targeting and infiltration capabilities toward solid tumors. This review predominantly delves into the origin and development process of TAMs, their role in promoting tumor growth, and provides a comprehensive overview of immunotherapies targeting TAMs. It underscores the significance of regulating TAMs in bolstering antitumor therapies while discussing the potential and challenges of developing TAMs as targets for immunotherapy.
Collapse
Affiliation(s)
- Jialei Hao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinzhi Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chun Wang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xianghui Cao
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Fu D, Shi X, Yi X, Wu D, He H, Zhou W, Cheng W. m6A reader IGF2BP2 promotes M2 macrophage polarization and malignant biological behavior of bladder cancer by stabilizing NRP1 mRNA expression. BMC Urol 2024; 24:147. [PMID: 39014364 PMCID: PMC11251312 DOI: 10.1186/s12894-024-01534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) has been confirmed to play oncogenic role in many cancers. However, the role and mechanism of IGF2BP2 in bladder cancer (BCa) still deserves to be further revealed. METHODS The mRNA and protein levels of IGF2BP2 and neuronilin-1 (NRP1) were detected by real-time quantitative PCR (RT-qPCR) and western blot. Cell proliferation, apoptosis, migration and invasion were determined using colony formation assay, EdU assay, CCK8 assay, flow cytometry and transwell assay. Xenograft tumor model was conducted to evaluate the role of IGF2BP2 in vivo. THP-1-M0 macrophages were co-cultured with the condition medium (CM) of BCa cells to induce polarization. M2 macrophage polarization was assessed by detecting the mRNA levels of M2 macrophage markers using RT-qPCR and measuring the proportion of M2 macrophage markers using flow cytometry. Moreover, MeRIP and RIP assay were performed to assess m6A level and the interaction between IGF2BP2 and NRP1. RESULTS IGF2BP2 and NRP1 were upregulated in BCa tissues and cells. IGF2BP2 knockdown suppressed BCa cell growth and metastasis, as well as inhibited BCa tumor growth. After THP-1-M0 macrophages were co-cultured with the CM of BCa cells, the levels of M2 macrophage markers were markedly enhanced, while this effect was abolished by IGF2BP2 knockdown. IGF2BP2 level was positively correlated with NRP1 level, and it could increase NRP1 mRNA stability. NRP1 overexpression reversed the suppressive effect of IGF2BP2 knockdown on M2 macrophage polarization and BCa cell progression. CONCLUSION m6A-reader IGF2BP2 enhanced M2 macrophage polarization and BCa cell progression by promoting NRP1 mRNA stability.
Collapse
Affiliation(s)
- Dian Fu
- Department of Urology, Jinling College of Clinical Medicine, Nanjing Medical University, No.305, Zhongshandong Road, Xuanwu District, Nanjing, Jiangsu, 210002, China
| | - Xiuquan Shi
- Department of Urology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305, Zhongshandong Road, Xuanwu District, Nanjing, Jiangsu, 210002, China
| | - Xiaoming Yi
- Department of Urology, Jinling College of Clinical Medicine, Nanjing Medical University, No.305, Zhongshandong Road, Xuanwu District, Nanjing, Jiangsu, 210002, China
| | - Ding Wu
- Department of Urology, Jinling College of Clinical Medicine, Nanjing Medical University, No.305, Zhongshandong Road, Xuanwu District, Nanjing, Jiangsu, 210002, China
| | - Haowei He
- Department of Urology, Jinling College of Clinical Medicine, Nanjing Medical University, No.305, Zhongshandong Road, Xuanwu District, Nanjing, Jiangsu, 210002, China
| | - Wenquan Zhou
- Department of Urology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305, Zhongshandong Road, Xuanwu District, Nanjing, Jiangsu, 210002, China.
| | - Wen Cheng
- Department of Urology, Jinling College of Clinical Medicine, Nanjing Medical University, No.305, Zhongshandong Road, Xuanwu District, Nanjing, Jiangsu, 210002, China.
| |
Collapse
|
50
|
Zhao Q, Shao H, Zhang T. Single-cell RNA sequencing in ovarian cancer: revealing new perspectives in the tumor microenvironment. Am J Transl Res 2024; 16:3338-3354. [PMID: 39114691 PMCID: PMC11301471 DOI: 10.62347/smsg9047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/30/2024] [Indexed: 08/10/2024]
Abstract
Single-cell sequencing technology has emerged as a pivotal tool for unraveling the complexities of the ovarian tumor microenvironment (TME), which is characterized by its cellular heterogeneity and intricate cell-to-cell interactions. Ovarian cancer (OC), known for its high lethality among gynecologic malignancies, presents significant challenges in treatment and diagnosis, partly due to the complexity of its TME. The application of single-cell sequencing in ovarian cancer research has enabled the detailed characterization of gene expression profiles at the single-cell level, shedding light on the diverse cell populations within the TME, including cancer cells, stromal cells, and immune cells. This high-resolution mapping has been instrumental in understanding the roles of these cells in tumor progression, invasion, metastasis, and drug resistance. By providing insight into the signaling pathways and cell-to-cell communication mechanisms, single-cell sequencing facilitates the identification of novel therapeutic targets and the development of personalized medicine approaches. This review summarizes the advancement and application of single-cell sequencing in studying the stromal components and the broader TME in OC, highlighting its implications for improving diagnosis, treatment strategies, and understanding of the disease's underlying biology.
Collapse
Affiliation(s)
- Qiannan Zhao
- Department of Clinical Laboratory, Yantaishan HospitalYantai 264003, Shandong, P. R. China
| | - Huaming Shao
- Department of Medical Laboratory, Qingdao West Coast Second HospitalQingdao 266500, Shandong, P. R. China
| | - Tianmei Zhang
- Department of Gynecology, Yantaishan HospitalYantai 264003, Shandong, P. R. China
| |
Collapse
|