1
|
Fuchs B, Mert S, Hofmann D, Kuhlmann C, Birt A, Wiggenhauser PS, Giunta RE, Chavez MN, Nickelsen J, Schenck TL, Moellhoff N. Bioactivated scaffolds promote angiogenesis and lymphangiogenesis for dermal regeneration in vivo. J Tissue Eng 2025; 16:20417314251317542. [PMID: 40078220 PMCID: PMC11898032 DOI: 10.1177/20417314251317542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/17/2025] [Indexed: 03/14/2025] Open
Abstract
Chronic wounds represent an unresolved medical challenge with significant impact for patients' quality of life and global healthcare. Diverse in origin, ischemic-hypoxic and inflammatory conditions play central roles as pathological features that impede proper tissue regeneration. In this study, we propose an innovative approach to address this challenge. Our novel strategy utilizes photosynthetic biomaterials to restore the wound healing process firstly by promoting a normoxic, regeneration-supporting environment and secondly by mitigating inflammation through restoring lymphatic fluid transport and improving blood perfusion. We designed bioartificial scaffolds with photosynthetic cyanobacteria (Synechococcus sp. PCC 7002) and assessed their functional integration in a bilateral full-thickness skin defect on the backs of mice over a period of 7 days. Illuminated photosynthetic cyanobacteria facilitated local tissue oxygenation independent of blood perfusion. Additionally, genetic modification enabled the secretion of lymphangiogenic hyaluronic acid (HA) into the wound area. After 7 days, the scaffolds were explanted and histologically examined, assessing cell migration (HE staining) and protein expression (CD31, LYVE-1, VEGFR3, Ly6G, and F4/80). Results demonstrated successful colonization of bioartificial scaffolds with cyanobacteria. Following implantation into bilateral full-thickness skin defects, we observed an adherent vascularized basal layer beneath the bioactivated scaffolds after 7 days. Substantial increases in cell migration within bacteria-loaden scaffolds were noted, accompanied by a heightened expression of lymphatic (LYVE-1 and VEGFR3) and endothelial cell markers (CD31). Simultaneously, an augmented expression of acute (Ly6G) and late (F4/80) inflammatory proteins was observed. In summary, we developed a viable photosynthetic scaffold by integrating cyanobacteria into dermal regeneration materials (DRM), promoting the expression of lymphatic, endothelial, and inflammatory proteins under hypoxic conditions. The findings from this study represent a significant advancement in establishing autotrophic tissue engineering approaches, advocating for the use of photosynthetic cells in treating a broad spectrum of hypoxic conditions.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sinan Mert
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Daniel Hofmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Constanze Kuhlmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Paul Severin Wiggenhauser
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Riccardo E Giunta
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Myra N Chavez
- Molecular Plant Science, Department Biology I, LMU Munich, Munich, Germany
| | - Jörg Nickelsen
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Findinier J, Joubert LM, Fakhimi N, Schmid MF, Malkovskiy AV, Chiu W, Burlacot A, Grossman AR. Dramatic changes in mitochondrial subcellular location and morphology accompany activation of the CO 2 concentrating mechanism. Proc Natl Acad Sci U S A 2024; 121:e2407548121. [PMID: 39405346 PMCID: PMC11513932 DOI: 10.1073/pnas.2407548121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/06/2024] [Indexed: 10/23/2024] Open
Abstract
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Ribulose 1,5 Bisphosphate Carboxylase/Oxygenase (Rubisco) into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization is a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limitation, although a role for this reorganization in CCM function remains unclear. We used the green microalga Chlamydomonas reinhardtii to monitor changes in mitochondrial position and ultrastructure as cells transition between high CO2 and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral cell location and orient in parallel tubular arrays that extend along the cell's apico-basal axis. We show that these ultrastructural changes correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membranes, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, with the latter involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial respiration in VLC-acclimated cells reduces the affinity of the cells for Ci. Overall, our results suggest that mitochondrial repositioning functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Lydia-Marie Joubert
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
| | - Neda Fakhimi
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Michael F. Schmid
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
| | - Andrey V. Malkovskiy
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
| | - Wah Chiu
- SLAC National Accelerator Laboratory, Division of CryoElectron Microscopy and Bioimaging, Menlo Park, CA94025
- Department of Bioengineering, Stanford University, Stanford, CA94305
| | - Adrien Burlacot
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
- Biology Department, Stanford University, Stanford, CA94305
| | - Arthur R. Grossman
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA94305
- Biology Department, Stanford University, Stanford, CA94305
| |
Collapse
|
3
|
Fuchs B, Mert S, Kuhlmann C, Birt A, Hofmann D, Wiggenhauser PS, Giunta RE, Chavez MN, Nickelsen J, Schenck TL, Moellhoff N. In Vivo Biocompatibility of Synechococcus sp. PCC 7002-Integrated Scaffolds for Skin Regeneration. J Funct Biomater 2024; 15:295. [PMID: 39452593 PMCID: PMC11508603 DOI: 10.3390/jfb15100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Cyanobacteria, commonly known as blue-green algae, are prevalent in freshwater systems and have gained interest for their potential in medical applications, particularly in skin regeneration. Among these, Synechococcus sp. strain PCC 7002 stands out because of its rapid proliferation and capacity to be genetically modified to produce growth factors. This study investigates the safety of Synechococcus sp. PCC 7002 when used in scaffolds for skin regeneration, focusing on systemic inflammatory responses in a murine model. We evaluated the following three groups: scaffolds colonized with genetically engineered bacteria producing hyaluronic acid, scaffolds with wild-type bacteria, and control scaffolds without bacteria. After seven days, we assessed systemic inflammation by measuring changes in cytokine profiles and lymphatic organ sizes. The results showed no significant differences in spleen, thymus, and lymph node weights, indicating a lack of overt systemic toxicity. Blood cytokine analysis revealed elevated levels of IL-6 and IL-1β in scaffolds with bacteria, suggesting a systemic inflammatory response, while TNF-α levels remained unaffected. Proteome profiling identified distinct cytokine patterns associated with bacterial colonization, including elevated inflammatory proteins and products, indicative of acute inflammation. Conversely, control scaffolds exhibited protein profiles suggestive of a rejection response, characterized by increased levels of cytokines involved in T and B cell activation. Our findings suggest that Synechococcus sp. PCC 7002 does not appear to cause significant systemic toxicity, supporting its potential use in biomedical applications. Further research is necessary to explore the long-term effects and clinical implications of these responses.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Sinan Mert
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Constanze Kuhlmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Daniel Hofmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Paul Severin Wiggenhauser
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Riccardo E. Giunta
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| | - Myra N. Chavez
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland;
| | - Jörg Nickelsen
- Molecular Plant Science, Department Biology I, LMU Munich, 80336 Munich, Germany;
| | | | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (A.B.); (D.H.); (P.S.W.); (R.E.G.); (N.M.)
| |
Collapse
|
4
|
Rodríguez-Bolaños M, Vargas-Romero G, Jaguer-García G, Aguilar-Gonzalez ZI, Lagos-Romero V, Miranda-Astudillo HV. Antares I: a Modular Photobioreactor Suitable for Photosynthesis and Bioenergetics Research. Appl Biochem Biotechnol 2024; 196:2176-2195. [PMID: 37486539 PMCID: PMC11035454 DOI: 10.1007/s12010-023-04629-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/25/2023]
Abstract
Oxygenic photosynthesis is responsible for most of the fixation of atmospheric CO2. The microalgal community can transport atmospheric carbon into biological cycles in which no additional CO2 is created. This represents a resource to confront the actual climate change crisis. These organisms have evolved to adapt to several environments and different spectral distribution of light that may strongly influence their metabolism. Therefore, there is a need for development of photobioreactors specialized in addressing spectral optimization. Here, a multi-scale modular photobioreactor made from standard glass materials, ad hoc light circuits, and easily accessible, small commercial devices is described. The system is suitable to manage the principal culture variables of research in bioenergetics and photosynthesis. Its performance was tested by growing four evolutionary-distant microalgal species with different endosymbiotic scenarios: Chlamydomonas reinhardtii (Archaeplastida, green primary plastid), Polytomella parva (Archaeplastida, colorless plastid), Euglena gracilis (Discoba, green secondary plastid), and Phaeodactylum tricornutum (Stramenophiles, red secondary plastid). Our results show an improvement of biomass production, as compared to the traditional flask system. The modulation of the incident light spectra allowed us to observe a far-red adaptation in Euglena gracilis with a difference on paramylon production, and it also significantly increased the maximal cell density of the diatom species under green light. Together, these confirm that for photobioreactors with artificial light, manipulation of the light spectrum is a critical parameter for controlling the optimal performance, depending on the downstream goals.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Vargas-Romero
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Girian Jaguer-García
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Zhaida I Aguilar-Gonzalez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Verónica Lagos-Romero
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor V Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Fuchs B, Mert S, Kuhlmann C, Taha S, Birt A, Nickelsen J, Schenck TL, Giunta RE, Wiggenhauser PS, Moellhoff N. Biocompatibility of Synechococcus sp. PCC 7002 with Human Dermal Cells In Vitro. Int J Mol Sci 2024; 25:3922. [PMID: 38612734 PMCID: PMC11012068 DOI: 10.3390/ijms25073922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Being the green gold of the future, cyanobacteria have recently attracted considerable interest worldwide. This study investigates the adaptability and biocompatibility of the cyanobacterial strain Synechococcus sp. PCC 7002 with human dermal cells, focusing on its potential application in biomedical contexts. First, we investigated the adaptability of Synechococcus PCC 7002 bacteria to human cell culture conditions. Next, we evaluated the biocompatibility of cyanobacteria with common dermal cells, like 3T3 fibroblasts and HaCaT keratinocytes. Therefore, cells were directly and indirectly cocultured with the corresponding cells, and we measured metabolic activity (AlamarBlue assay) and proliferation (cell count and PicoGreen assay). The lactate dehydrogenase (LDH) assay was performed to determine the cytotoxic effect of cyanobacteria and their nutrition medium on human dermal cells. The cyanobacteria exhibited exponential growth under conventional human cell culture conditions, with the temperature and medium composition not affecting their viability. In addition, the effect of illumination on the proliferation capacity was investigated, showing a significant impact of light exposure on bacterial growth. The measured oxygen production under hypoxic conditions demonstrated a sufficient oxygen supply for further tissue engineering approaches depending on the number of bacteria. There were no significant adverse effects on human cell viability and growth under coculture conditions, whereas the LDH assay assessed signs of cytotoxicity regarding 3T3 fibroblasts after 2 days of coculturing. These negative effects were dismissed after 4 days. The findings highlight the potential of Synechococcus sp. PCC 7002 for integration into biomedical approaches. We found no cytotoxicity of cyanobacteria on 3T3 fibroblasts and HaCaT keratinocytes, thus paving the way for further in vivo studies to assess long-term effects and systemic reactions.
Collapse
Affiliation(s)
- Benedikt Fuchs
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Sinan Mert
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Constanze Kuhlmann
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Sara Taha
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Alexandra Birt
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Jörg Nickelsen
- Molecular Plant Science, Department Biology I, LMU Munich, 80336 Munich, Germany;
| | - Thilo Ludwig Schenck
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Riccardo Enzo Giunta
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Paul Severin Wiggenhauser
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.M.); (C.K.); (S.T.); (A.B.); (T.L.S.); (R.E.G.); (P.S.W.); (N.M.)
| |
Collapse
|
6
|
Findinier J, Joubert LM, Schmid MF, Malkovskiy A, Chiu W, Burlacot A, Grossman AR. Dramatic Changes in Mitochondrial Subcellular Location and Morphology Accompany Activation of the CO 2 Concentrating Mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586705. [PMID: 38585955 PMCID: PMC10996633 DOI: 10.1101/2024.03.25.586705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Rubisco into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization appears to be a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limiting conditions, although a role for this reorganization in CCM function remains unclear. We used the green microalgae Chlamydomonas reinhardtii to monitor changes in the position and ultrastructure of mitochondrial membranes as cells transition between high CO2 (HC) and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral location, become wedged between the plasma membrane and chloroplast envelope, and mitochondrial membranes orient in parallel tubular arrays that extend from the cell's apex to its base. We show that these ultrastructural changes require protein and RNA synthesis, occur within 90 min of shifting cells to VLC conditions, correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membrane, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, which is involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial electron transport in VLC acclimated cells reduces the cell's affinity for inorganic carbon. Overall, our results suggest that CIA5-dependent mitochondrial repositioning/reorientation functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
| | - Lydia-Marie Joubert
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
| | - Michael F. Schmid
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
| | - Andrey Malkovskiy
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
| | - Wah Chiu
- SLAC National Accelerator Laboratory, Division of CryoEM and Bioimaging, Menlo Park, CA 94025, USA
- Stanford University, Department of Bioengineering, Stanford, CA 94305, USA
| | - Adrien Burlacot
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
- Stanford University, Biology Department, Stanford, CA 94305, USA
| | - Arthur R. Grossman
- The Carnegie Institution for Science, Biosphere Sciences & Engineering, Stanford, CA 94305, USA
- Stanford University, Biology Department, Stanford, CA 94305, USA
| |
Collapse
|
7
|
An Y, Wang D, Du J, Wang X, Xiao J. Pyrenoid: Organelle with efficient CO 2-Concentrating mechanism in algae. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154044. [PMID: 37392525 DOI: 10.1016/j.jplph.2023.154044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
The carbon dioxide emitted by human accounts for only a small fraction of global photosynthesis consumption, half of which is due to microalgae. The high efficiency of algae photosynthesis is attributed to the pyrenoid-based CO2-concentrating mechanism (CCM). The formation of pyrenoid which has a variety of Rubisco-binding proteins mainly depends on liquid-liquid phase separation (LLPS) of Rubisco, a CO2 fixing enzyme. At present, our understanding of pyrenoid at the molecular level mainly stems from studies of the model algae Chlamydomonas reinhardtii. In this article, we summarize the current research on the structure, assembly and application of Chlamydomonas reinhardtii pyrenoids, providing new ideas for improving crop photosynthetic performance and yield.
Collapse
Affiliation(s)
- Yaqi An
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Dong Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Jingxia Du
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xinwei Wang
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, China.
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Steensma AK, Shachar-Hill Y, Walker BJ. The carbon-concentrating mechanism of the extremophilic red microalga Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2023; 156:247-264. [PMID: 36780115 PMCID: PMC10154280 DOI: 10.1007/s11120-023-01000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/27/2023] [Indexed: 05/03/2023]
Abstract
Cyanidioschyzon merolae is an extremophilic red microalga which grows in low-pH, high-temperature environments. The basis of C. merolae's environmental resilience is not fully characterized, including whether this alga uses a carbon-concentrating mechanism (CCM). To determine if C. merolae uses a CCM, we measured CO2 uptake parameters using an open-path infra-red gas analyzer and compared them to values expected in the absence of a CCM. These measurements and analysis indicated that C. merolae had the gas-exchange characteristics of a CCM-operating organism: low CO2 compensation point, high affinity for external CO2, and minimized rubisco oxygenation. The biomass δ13C of C. merolae was also consistent with a CCM. The apparent presence of a CCM in C. merolae suggests the use of an unusual mechanism for carbon concentration, as C. merolae is thought to lack a pyrenoid and gas-exchange measurements indicated that C. merolae primarily takes up inorganic carbon as carbon dioxide, rather than bicarbonate. We use homology to known CCM components to propose a model of a pH-gradient-based CCM, and we discuss how this CCM can be further investigated.
Collapse
Affiliation(s)
- Anne K Steensma
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Michigan State University - Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Shimamura D, Yamano T, Niikawa Y, Hu D, Fukuzawa H. A pyrenoid-localized protein SAGA1 is necessary for Ca 2+-binding protein CAS-dependent expression of nuclear genes encoding inorganic carbon transporters in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2023; 156:181-192. [PMID: 36656499 DOI: 10.1007/s11120-022-00996-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 05/03/2023]
Abstract
Microalgae induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic affinity for dissolved inorganic carbon (Ci) under CO2-limiting conditions. In the model alga Chlamydomonas reinhardtii, the pyrenoid-localized Ca2+-binding protein CAS is required to express genes encoding the Ci-transporters, high-light activated 3 (HLA3), and low-CO2-inducible protein A (LCIA). To identify new factors related to the regulation or components of the CCM, we isolated CO2-requiring mutants KO-60 and KO-62. These mutants had insertions of a hygromycin-resistant cartridge in the StArch Granules Abnormal 1 (SAGA1) gene, which is necessary to maintain the number of pyrenoids and the structure of pyrenoid tubules in the chloroplast. In both KO-60 and the previously identified saga1 mutant, expression levels of 532 genes were significantly reduced. Among them, 10 CAS-dependent genes, including HLA3 and LCIA, were not expressed in the saga1 mutants. While CAS was expressed normally at the protein levels, the localization of CAS was dispersed through the chloroplast rather than in the pyrenoid, even under CO2-limiting conditions. These results suggest that SAGA1 is necessary not only for maintenance of the pyrenoid structure but also for regulation of the nuclear genes encoding Ci-transporters through CAS-dependent retrograde signaling under CO2-limiting stress.
Collapse
Affiliation(s)
- Daisuke Shimamura
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| | - Yuki Niikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Donghui Hu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
10
|
Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, McCormick AJ. New horizons for building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields. PLANT PHYSIOLOGY 2022; 190:1609-1627. [PMID: 35961043 PMCID: PMC9614477 DOI: 10.1093/plphys/kiac373] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 05/06/2023]
Abstract
Many photosynthetic species have evolved CO2-concentrating mechanisms (CCMs) to improve the efficiency of CO2 assimilation by Rubisco and reduce the negative impacts of photorespiration. However, the majority of plants (i.e. C3 plants) lack an active CCM. Thus, engineering a functional heterologous CCM into important C3 crops, such as rice (Oryza sativa) and wheat (Triticum aestivum), has become a key strategic ambition to enhance yield potential. Here, we review recent advances in our understanding of the pyrenoid-based CCM in the model green alga Chlamydomonas reinhardtii and engineering progress in C3 plants. We also discuss recent modeling work that has provided insights into the potential advantages of Rubisco condensation within the pyrenoid and the energetic costs of the Chlamydomonas CCM, which, together, will help to better guide future engineering approaches. Key findings include the potential benefits of Rubisco condensation for carboxylation efficiency and the need for a diffusional barrier around the pyrenoid matrix. We discuss a minimal set of components for the CCM to function and that active bicarbonate import into the chloroplast stroma may not be necessary for a functional pyrenoid-based CCM in planta. Thus, the roadmap for building a pyrenoid-based CCM into plant chloroplasts to enhance the efficiency of photosynthesis now appears clearer with new challenges and opportunities.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Yuwei Mao
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krzysztof Robin Pukacz
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
11
|
Koletti A, Dervisi I, Kalloniati C, Zografaki ME, Rennenberg H, Roussis A, Flemetakis E. Selenium-binding Protein 1 (SBD1): A stress response regulator in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2022; 189:2368-2381. [PMID: 35579367 PMCID: PMC9342975 DOI: 10.1093/plphys/kiac230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/04/2022] [Indexed: 05/20/2023]
Abstract
Selenium-binding proteins (SBPs) represent a ubiquitous protein family implicated in various environmental stress responses, although the exact molecular and physiological role of the SBP family remains elusive. In this work, we report the identification and characterization of CrSBD1, an SBP homolog from the model microalgae Chlamydomonas reinhardtii. Growth analysis of the C. reinhardtii sbd1 mutant strain revealed that the absence of a functional CrSBD1 resulted in increased growth under mild oxidative stress conditions, although cell viability rapidly declined at higher hydrogen peroxide (H2O2) concentrations. Furthermore, a combined global transcriptomic and metabolomic analysis indicated that the sbd1 mutant exhibited a dramatic quenching of the molecular and biochemical responses upon H2O2-induced oxidative stress when compared to the wild-type. Our results indicate that CrSBD1 represents a cell regulator, which is involved in the modulation of C. reinhardtii early responses to oxidative stress. We assert that CrSBD1 acts as a member of an extensive and conserved protein-protein interaction network including Fructose-bisphosphate aldolase 3, Cysteine endopeptidase 2, and Glutaredoxin 6 proteins, as indicated by yeast two-hybrid assays.
Collapse
Affiliation(s)
- Aikaterini Koletti
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Irene Dervisi
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15784, Greece
| | - Chrysanthi Kalloniati
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Maria-Eleftheria Zografaki
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Chongqing 400715, China
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, Athens 15784, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens 11855, Greece
| |
Collapse
|
12
|
Fei C, Wilson AT, Mangan NM, Wingreen NS, Jonikas MC. Modelling the pyrenoid-based CO 2-concentrating mechanism provides insights into its operating principles and a roadmap for its engineering into crops. NATURE PLANTS 2022; 8:583-595. [PMID: 35596080 PMCID: PMC9122830 DOI: 10.1038/s41477-022-01153-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 04/11/2022] [Indexed: 05/19/2023]
Abstract
Many eukaryotic photosynthetic organisms enhance their carbon uptake by supplying concentrated CO2 to the CO2-fixing enzyme Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer this pyrenoid-based CO2-concentrating mechanism (PCCM) into crops to increase yields. Here we develop a computational model for a PCCM on the basis of the postulated mechanism in the green alga Chlamydomonas reinhardtii. Our model recapitulates all Chlamydomonas PCCM-deficient mutant phenotypes and yields general biophysical principles underlying the PCCM. We show that an effective and energetically efficient PCCM requires a physical barrier to reduce pyrenoid CO2 leakage, as well as proper enzyme localization to reduce futile cycling between CO2 and HCO3-. Importantly, our model demonstrates the feasibility of a purely passive CO2 uptake strategy at air-level CO2, while active HCO3- uptake proves advantageous at lower CO2 levels. We propose a four-step engineering path to increase the rate of CO2 fixation in the plant chloroplast up to threefold at a theoretical cost of only 1.3 ATP per CO2 fixed, thereby offering a framework to guide the engineering of a PCCM into land plants.
Collapse
Affiliation(s)
- Chenyi Fei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
Yamano T, Toyokawa C, Shimamura D, Matsuoka T, Fukuzawa H. CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2022; 188:1081-1094. [PMID: 34791500 PMCID: PMC8825250 DOI: 10.1093/plphys/kiab528] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/15/2021] [Indexed: 05/18/2023]
Abstract
Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO2-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO2-limiting conditions (low-CO2 [LC] and very low-CO2 [VLC]). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO2-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO2-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3-15 µM CO2, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO2. Furthermore, LCIB relocated toward the pyrenoid at 2.6-3.4 µM CO2, even in cells in the dark or treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and cycloheximide in light. In contrast, in the mutant lacking CCM1, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO2. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO2 concentration with ∼7 µM as the boundary.
Collapse
Affiliation(s)
- Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Daisuke Shimamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Toshiki Matsuoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Neofotis P, Temple J, Tessmer OL, Bibik J, Norris N, Pollner E, Lucker B, Weraduwage SM, Withrow A, Sears B, Mogos G, Frame M, Hall D, Weissman J, Kramer DM. The induction of pyrenoid synthesis by hyperoxia and its implications for the natural diversity of photosynthetic responses in Chlamydomonas. eLife 2021; 10:67565. [PMID: 34936552 PMCID: PMC8694700 DOI: 10.7554/elife.67565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022] Open
Abstract
In algae, it is well established that the pyrenoid, a component of the carbon-concentrating mechanism (CCM), is essential for efficient photosynthesis at low CO2. However, the signal that triggers the formation of the pyrenoid has remained elusive. Here, we show that, in Chlamydomonas reinhardtii, the pyrenoid is strongly induced by hyperoxia, even at high CO2 or bicarbonate levels. These results suggest that the pyrenoid can be induced by a common product of photosynthesis specific to low CO2 or hyperoxia. Consistent with this view, the photorespiratory by-product, H2O2, induced the pyrenoid, suggesting that it acts as a signal. Finally, we show evidence for linkages between genetic variations in hyperoxia tolerance, H2O2 signaling, and pyrenoid morphologies.
Collapse
Affiliation(s)
- Peter Neofotis
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Joshua Temple
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Oliver L Tessmer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Jacob Bibik
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Nicole Norris
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Eric Pollner
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Ben Lucker
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, United States
| | - Alecia Withrow
- Center for Advanced Microscopy, Michigan State University, East Lansing, United States
| | - Barbara Sears
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Greg Mogos
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Melinda Frame
- Center for Advanced Microscopy, Michigan State University, East Lansing, United States
| | - David Hall
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| | - Joseph Weissman
- Corporate Strategic Research, ExxonMobil, Annandale, United States
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, United States
| |
Collapse
|
15
|
Chen B, Liu J, Xu G, Li G. Lowering pO 2 Interacts with Photoperiod to Alter Physiological Performance of the Coastal Diatom Thalassiosira pseudonana. Microorganisms 2021; 9:microorganisms9122541. [PMID: 34946142 PMCID: PMC8704836 DOI: 10.3390/microorganisms9122541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Exacerbating deoxygenation is extensively affecting marine organisms, with no exception for phytoplankton. To probe these effects, we comparably explored the growth, cell compositions, photosynthesis, and transcriptome of a diatom Thalassiosira pseudonana under a matrix of pO2 levels and Light:Dark cycles at an optimal growth light. The growth rate (μ) of T. pseudonana under a 8:16 L:D cycle was enhanced by 34% by low pO2 but reduced by 22% by hypoxia. Under a 16:8 L:D cycle, however, the μ decreased with decreasing pO2 level. The cellular Chl a content decreased with decreasing pO2 under a 8:16 L:D cycle, whereas the protein content decreased under a 16:8 L:D cycle. The prolonged photoperiod reduced the Chl a but enhanced the protein contents. The lowered pO2 reduced the maximal PSII photochemical quantum yield (FV/FM), photosynthetic oxygen evolution rate (Pn), and respiration rate (Rd) under the 8:16 or 16:8 L:D cycles. Cellular malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were higher under low pO2 than ambient pO2 or hypoxia. Moreover, the prolonged photoperiod reduced the FV/FM and Pn among all three pO2 levels but enhanced the Rd, MDA, and SOD activity. Transcriptome data showed that most of 26 differentially expressed genes (DEGs) that mainly relate to photosynthesis, respiration, and metabolism were down-regulated by hypoxia, with varying expression degrees between the 8:16 and 16:8 L:D cycles. In addition, our results demonstrated that the positive or negative effect of lowering pO2 upon the growth of diatoms depends on the pO2 level and is mediated by the photoperiod.
Collapse
Affiliation(s)
- Bokun Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (B.C.); (G.X.)
- Joint Laboratory for Ocean Research and Education of Dalhousie University, Shandong University and Xiamen University, Qingdao 266237, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (B.C.); (G.X.)
- Joint Laboratory for Ocean Research and Education of Dalhousie University, Shandong University and Xiamen University, Qingdao 266237, China
- Correspondence:
| | - Ge Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (B.C.); (G.X.)
- Marine Environmental Monitoring Centre of Ningbo, East China Sea Bureau of Ministry of Natural Resources, Ningbo 315016, China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510530, China;
| |
Collapse
|
16
|
Mehta AK, Chakraborty S. Multiscale integration of mixotrophic microalgal cultivation, lipid synthesis, rapid biomass harvesting, and nutrient recycling in pilot-scale photobioreactors. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Elucidation and genetic intervention of CO2 concentration mechanism in Chlamydomonas reinhardtii for increased plant primary productivity. J Biosci 2020. [DOI: 10.1007/s12038-020-00080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Kareya MS, Mariam I, Shaikh KM, Nesamma AA, Jutur PP. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO 2 in Microchloropsis gaditana NIES 2587. FRONTIERS IN PLANT SCIENCE 2020; 11:981. [PMID: 32719702 PMCID: PMC7348049 DOI: 10.3389/fpls.2020.00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Photosynthetic organisms fix inorganic carbon through carbon capture machinery (CCM) that regulates the assimilation and accumulation of carbon around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, few constraints that govern the central carbon metabolism are regulated by the carbon capture and partitioning machinery. In order to divert the cellular metabolism toward lipids and/or biorenewables it is important to investigate and understand the molecular mechanisms of the CO2-driven carbon partitioning. In this context, strategies for enhancement of CO2 fixation which will increase the overall biomass and lipid yields, can provide clues on understanding the carbon assimilation pathway, and may lead to new targets for genetic engineering in microalgae. In the present study, we have focused on the physiological and metabolomic response occurring within marine oleaginous microalgae Microchloropsis gaditana NIES 2587, under the influence of very-low CO2 (VLC; 300 ppm, or 0.03%) and high CO2 (HC; 30,000 ppm, or 3% v/v). Our results demonstrate that HC supplementation in M. gaditana channelizes the carbon flux toward the production of long chain polyunsaturated fatty acids (LC-PUFAs) and also increases the overall biomass productivities (up to 2.0 fold). Also, the qualitative metabolomics has identified nearly 31 essential metabolites, among which there is a significant fold change observed in accumulation of sugars and alcohols such as galactose and phytol in VLC as compared to HC. In conclusion, our focus is to understand the entire carbon partitioning and metabolic regulation within these photosynthetic cell factories, which will be further evaluated through multiomics approach for enhanced productivities of biomass, biofuels, and bioproducts (B3).
Collapse
Affiliation(s)
| | | | | | | | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
19
|
Kono A, Chou TH, Radhakrishnan A, Bolla JR, Sankar K, Shome S, Su CC, Jernigan RL, Robinson CV, Yu EW, Spalding MH. Structure and function of LCI1: a plasma membrane CO 2 channel in the Chlamydomonas CO 2 concentrating mechanism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1107-1126. [PMID: 32168387 PMCID: PMC7305984 DOI: 10.1111/tpj.14745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/18/2020] [Accepted: 02/20/2020] [Indexed: 05/19/2023]
Abstract
Microalgae and cyanobacteria contribute roughly half of the global photosynthetic carbon assimilation. Faced with limited access to CO2 in aquatic environments, which can vary daily or hourly, these microorganisms have evolved use of an efficient CO2 concentrating mechanism (CCM) to accumulate high internal concentrations of inorganic carbon (Ci ) to maintain photosynthetic performance. For eukaryotic algae, a combination of molecular, genetic and physiological studies using the model organism Chlamydomonas reinhardtii, have revealed the function and molecular characteristics of many CCM components, including active Ci uptake systems. Fundamental to eukaryotic Ci uptake systems are Ci transporters/channels located in membranes of various cell compartments, which together facilitate the movement of Ci from the environment into the chloroplast, where primary CO2 assimilation occurs. Two putative plasma membrane Ci transporters, HLA3 and LCI1, are reportedly involved in active Ci uptake. Based on previous studies, HLA3 clearly plays a meaningful role in HCO3- transport, but the function of LCI1 has not yet been thoroughly investigated so remains somewhat obscure. Here we report a crystal structure of the full-length LCI1 membrane protein to reveal LCI1 structural characteristics, as well as in vivo physiological studies in an LCI1 loss-of-function mutant to reveal the Ci species preference for LCI1. Together, these new studies demonstrate LCI1 plays an important role in active CO2 uptake and that LCI1 likely functions as a plasma membrane CO2 channel, possibly a gated channel.
Collapse
Affiliation(s)
- Alfredo Kono
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Tsung-Han Chou
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Present address: WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Abhijith Radhakrishnan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Present address: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jani Reddy Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, South Park Road, OX1 3QZ, UK
| | - Kannan Sankar
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Sayane Shome
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Present address: Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Robert L. Jernigan
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, South Park Road, OX1 3QZ, UK
| | - Edward W. Yu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Present address: Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Martin H. Spalding
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, IA 50011, USA
- To whom correspondence should be addressed.
| |
Collapse
|
20
|
Kono A, Spalding MH. LCI1, a Chlamydomonas reinhardtii plasma membrane protein, functions in active CO 2 uptake under low CO 2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1127-1141. [PMID: 32248584 DOI: 10.1111/tpj.14761] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/16/2020] [Accepted: 03/18/2020] [Indexed: 05/11/2023]
Abstract
In response to high CO2 environmental variability, green algae, such as Chlamydomonas reinhardtii, have evolved multiple physiological states dictated by external CO2 concentration. Genetic and physiological studies demonstrated that at least three CO2 physiological states, a high CO2 (0.5-5% CO2 ), a low CO2 (0.03-0.4% CO2 ) and a very low CO2 (< 0.02% CO2 ) state, exist in Chlamydomonas. To acclimate in the low and very low CO2 states, Chlamydomonas induces a sophisticated strategy known as a CO2 -concentrating mechanism (CCM) that enables proliferation and survival in these unfavorable CO2 environments. Active uptake of Ci from the environment is a fundamental aspect in the Chlamydomonas CCM, and consists of CO2 and HCO3- uptake systems that play distinct roles in low and very low CO2 acclimation states. LCI1, a putative plasma membrane Ci transporter, has been linked through conditional overexpression to active Ci uptake. However, both the role of LCI1 in various CO2 acclimation states and the species of Ci , HCO3- or CO2 , that LCI1 transports remain obscure. Here we report the impact of an LCI1 loss-of-function mutant on growth and photosynthesis in different genetic backgrounds at multiple pH values. These studies show that LCI1 appears to be associated with active CO2 uptake in low CO2 , especially above air-level CO2 , and that any LCI1 role in very low CO2 is minimal.
Collapse
Affiliation(s)
- Alfredo Kono
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
21
|
Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T, Ralph PJ. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. FRONTIERS IN PLANT SCIENCE 2020; 11:279. [PMID: 32256509 PMCID: PMC7090149 DOI: 10.3389/fpls.2020.00279] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Donna L. Sutherland
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Audrey S. Commault
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Christopher C. Hall
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Leen Labeeuw
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Janice I. McCauley
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Parijat Ray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
22
|
Nair A, Chakraborty S. Synergistic effects between autotrophy and heterotrophy in optimization of mixotrophic cultivation of Chlorella sorokiniana in bubble-column photobioreactors. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Smith-Harding TJ, Beardall J, Mitchell JG. The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri. JOURNAL OF PHYCOLOGY 2017; 53:1159-1170. [PMID: 28771812 DOI: 10.1111/jpy.12572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/22/2017] [Indexed: 06/07/2023]
Abstract
Carbon dioxide concentrating mechanisms (CCMs) act to improve the supply of CO2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase. There is substantial evidence that in some microalgal species CCMs involve an external carbonic anhydrase (CAext ) and that CAext activity is induced by low CO2 concentrations in the growth medium. However, much of this work has been conducted on cells adapted to air-equilibrium concentrations of CO2 , rather than to changing CO2 conditions caused by growing microalgal populations. We investigated the role of CAext in inorganic carbon (Ci ) acquisition and photosynthesis at three sampling points during the growth cycle of the cosmopolitan marine diatom Chaetoceros muelleri. We observed that CAext activity increased with decreasing Ci , particularly CO2 , concentration, supporting the idea that CAext is modulated by external CO2 concentration. Additionally, we found that the contribution of CAext activity to carbon acquisition for photosynthesis varies over time, increasing between the first and second sampling points before decreasing at the last sampling point, where external pH was high. Lastly, decreases in maximum quantum yield of photosystem II (Fv /Fm ), chlorophyll, maximum relative electron transport rate, light harvesting efficiency (α) and maximum rates of Ci - saturated photosynthesis (Vmax ) were observed over time. Despite this decrease in photosynthetic capacity an up-regulation of CCM activity, indicated by a decreasing half-saturation constant for CO2 (K0.5 CO2 ), occurred over time. The flexibility of the CCM during the course of growth in C. muelleri may contribute to the reported dominance and persistence of this species in phytoplankton blooms.
Collapse
Affiliation(s)
- Tamsyne Jade Smith-Harding
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - James Gordon Mitchell
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
24
|
Xu Z, Wang Y, Chen Y, Spalding MH, Dong L. Microfluidic chip for automated screening of carbon dioxide conditions for microalgal cell growth. BIOMICROFLUIDICS 2017; 11:064104. [PMID: 29204245 PMCID: PMC5699919 DOI: 10.1063/1.5012508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 11/06/2017] [Indexed: 05/27/2023]
Abstract
This paper reports on a microfluidic device capable of screening carbon dioxide (CO2) conditions for microalgal cell growth. The device mainly consists of a microfluidic cell culture (MCC) unit, a gas concentration gradient generator (CGG), and an in-line cell growth optical measurement unit. The MCC unit is structured with multiple aqueous-filled cell culture channels at the top layer, multiple CO2 flow channels at the bottom layer, and a commercial hydrophobic gas semipermeable membrane sandwiched between the two channel layers. The CGG unit provides different CO2 concentrations to support photosynthesis of microalgae in the culture channels. The integration of the commercial gas semipermeable membrane into the cell culture device allows rapid mass transport and uniform distribution of CO2 inside the culture medium without using conventional agitation-assisted convection methods, because the diffusion of CO2 from the gas flow channels to the culture channels is fast over a small length scale. In addition, automated in-line monitoring of microalgal cell growth is realized via the optical measurement unit that is able to detect changes in the light intensity transmitted through the cell culture in the culture channels. The microfluidic device also allows a simple grayscale analysis method to quantify the cell growth. The utility of the system is validated by growing Chlamydomonas reinhardtii cells under different low or very-low CO2 levels below the nominal ambient CO2 concentration.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Yingjun Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Yuncong Chen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
25
|
Matsuda Y, Hopkinson BM, Nakajima K, Dupont CL, Tsuji Y. Mechanisms of carbon dioxide acquisition and CO 2 sensing in marine diatoms: a gateway to carbon metabolism. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160403. [PMID: 28717013 PMCID: PMC5516112 DOI: 10.1098/rstb.2016.0403] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 01/03/2023] Open
Abstract
Diatoms are one of the most successful marine eukaryotic algal groups, responsible for up to 20% of the annual global CO2 fixation. The evolution of a CO2-concentrating mechanism (CCM) allowed diatoms to overcome a number of serious constraints on photosynthesis in the marine environment, particularly low [CO2]aq in seawater relative to concentrations required by the CO2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), which is partly due to the slow diffusion rate of CO2 in water and a limited CO2 formation rate from [Formula: see text] in seawater. Diatoms use two alternative strategies to take up dissolved inorganic carbon (DIC) from the environment: one primarily relies on the direct uptake of [Formula: see text] through plasma-membrane type solute carrier (SLC) 4 family [Formula: see text] transporters and the other is more reliant on passive diffusion of CO2 formed by an external carbonic anhydrase (CA). Bicarbonate taken up into the cytoplasm is most likely then actively transported into the chloroplast stroma by SLC4-type transporters on the chloroplast membrane system. Bicarbonate in the stroma is converted into CO2 only in close proximity to RubisCO preventing unnecessary CO2 leakage. CAs play significant roles in mobilizing DIC as it is progressively moved towards the site of fixation. However, the evolutionary types and subcellular locations of CAs are not conserved between different diatoms, strongly suggesting that this DIC mobilization strategy likely evolved multiple times with different origins. By contrast, the recent discovery of the thylakoid luminal θ-CA indicates that the strategy to supply CO2 to RubisCO in the pyrenoid may be very similar to that of green algae, and strongly suggests convergent coevolution in CCM function of the thylakoid lumen not only among diatoms but among eukaryotic algae in general. In this review, both experimental and corresponding theoretical models of the diatom CCMs are discussed.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Brian M Hopkinson
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Kensuke Nakajima
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | | | - Yoshinori Tsuji
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| |
Collapse
|
26
|
Kaplan A. On the cradle of CCM research: discovery, development, and challenges ahead. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3785-3796. [PMID: 28520892 DOI: 10.1093/jxb/erx122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Herein, 40 years after its discovery, I briefly and critically survey the development of ideas that propelled research on CO2-concentrating mechanisms (CCMs; a term proposed by Dean Price) of phytoplankton, mainly focusing on cyanobacteria. This is not a comprehensive review on CCM research, but a personal view on the past developments and challenges that lie ahead.
Collapse
Affiliation(s)
- Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 9190401, Israel
| |
Collapse
|
27
|
Wang L, Yamano T, Takane S, Niikawa Y, Toyokawa C, Ozawa SI, Tokutsu R, Takahashi Y, Minagawa J, Kanesaki Y, Yoshikawa H, Fukuzawa H. Chloroplast-mediated regulation of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2016; 113:12586-12591. [PMID: 27791081 PMCID: PMC5098658 DOI: 10.1073/pnas.1606519113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aquatic photosynthetic organisms, including the green alga Chlamydomonas reinhardtii, induce a CO2-concentrating mechanism (CCM) to maintain photosynthetic activity in CO2-limiting conditions by sensing environmental CO2 and light availability. Previously, a novel high-CO2-requiring mutant, H82, defective in the induction of the CCM, was isolated. A homolog of calcium (Ca2+)-binding protein CAS, originally found in Arabidopsis thaliana, was disrupted in H82 cells. Although Arabidopsis CAS is reported to be associated with stomatal closure or immune responses via a chloroplast-mediated retrograde signal, the relationship between a Ca2+ signal and the CCM associated with the function of CAS in an aquatic environment is still unclear. In this study, the introduction of an intact CAS gene into H82 cells restored photosynthetic affinity for inorganic carbon, and RNA-seq analyses revealed that CAS could function in maintaining the expression levels of nuclear-encoded CO2-limiting-inducible genes, including the HCO3- transporters high-light activated 3 (HLA3) and low-CO2-inducible gene A (LCIA). CAS changed its localization from dispersed across the thylakoid membrane in high-CO2 conditions or in the dark to being associated with tubule-like structures in the pyrenoid in CO2-limiting conditions, along with a significant increase of the fluorescent signals of the Ca2+ indicator in the pyrenoid. Chlamydomonas CAS had Ca2+-binding activity, and the perturbation of intracellular Ca2+ homeostasis by a Ca2+-chelator or calmodulin antagonist impaired the accumulation of HLA3 and LCIA. These results suggest that Chlamydomonas CAS is a Ca2+-mediated regulator of CCM-related genes via a retrograde signal from the pyrenoid in the chloroplast to the nucleus.
Collapse
Affiliation(s)
- Lianyong Wang
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Yamano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shunsuke Takane
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Niikawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Chihana Toyokawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shin-Ichiro Ozawa
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan;
| |
Collapse
|
28
|
Gérin S, Leprince P, Sluse FE, Franck F, Mathy G. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2016; 7:1158. [PMID: 27555854 PMCID: PMC4977305 DOI: 10.3389/fpls.2016.01158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the metabolic adaptations contributing to maintain cellular homeostasis upon extensive environmental changes. Some of the results presented here could be used as starting points for more specific fundamental or applied investigations.
Collapse
Affiliation(s)
- Stéphanie Gérin
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of LiegeLiege, Belgium
| | - Pierre Leprince
- Laboratory of Nervous System Disorders and Therapy, Faculty of Medicine, GIGA-Neurosciences, University of LiegeLiege, Belgium
| | - Francis E. Sluse
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of LiegeLiege, Belgium
| | - Fabrice Franck
- Laboratory of Bioenergetics, Department of Life Sciences, Faculty of Sciences, University of LiegeLiege, Belgium
| | - Grégory Mathy
- Upstream Process Sciences, UCB PharmaBraine l'Alleud, Belgium
| |
Collapse
|
29
|
Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2015; 112:7315-20. [PMID: 26015566 PMCID: PMC4466737 DOI: 10.1073/pnas.1501659112] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The supply of inorganic carbon (Ci; CO2 and HCO3 (-)) is an environmental rate-limiting factor in aquatic photosynthetic organisms. To overcome the difficulty in acquiring Ci in limiting-CO2 conditions, an active Ci uptake system called the CO2-concentrating mechanism (CCM) is induced to increase CO2 concentrations in the chloroplast stroma. An ATP-binding cassette transporter, HLA3, and a formate/nitrite transporter homolog, LCIA, are reported to be associated with HCO3 (-) uptake [Wang and Spalding (2014) Plant Physiol 166(4):2040-2050]. However, direct evidence of the route of HCO3 (-) uptake from the outside of cells to the chloroplast stroma remains elusive owing to a lack of information on HLA3 localization and comparative analyses of the contribution of HLA3 and LCIA to the CCM. In this study, we revealed that HLA3 and LCIA are localized to the plasma membrane and chloroplast envelope, respectively. Insertion mutants of HLA3 and/or LCIA showed decreased Ci affinities/accumulation, especially in alkaline conditions where HCO3 (-) is the predominant form of Ci. HLA3 and LCIA formed protein complexes independently, and the absence of LCIA decreased HLA3 mRNA accumulation, suggesting the presence of unidentified retrograde signals from the chloroplast to the nucleus to maintain HLA3 mRNA expression. Furthermore, although single overexpression of HLA3 or LCIA in high CO2 conditions did not affect Ci affinity, simultaneous overexpression of HLA3 with LCIA significantly increased Ci affinity/accumulation. These results highlight the HLA3/LCIA-driven cooperative uptake of HCO3 (-) and a key role of LCIA in the maintenance of HLA3 stability as well as Ci affinity/accumulation in the CCM.
Collapse
|
30
|
Wang Y, Stessman DJ, Spalding MH. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2 : how Chlamydomonas works against the gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:429-448. [PMID: 25765072 DOI: 10.1111/tpj.12829] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 05/04/2023]
Abstract
The CO2 concentrating mechanism (CCM) represents an effective strategy for carbon acquisition that enables microalgae to survive and proliferate when the CO2 concentration limits photosynthesis. The CCM improves photosynthetic performance by raising the CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), simultaneously enhancing carbon fixation and suppressing photorespiration. Active inorganic carbon (Ci) uptake, Rubisco sequestration and interconversion between different Ci species catalyzed by carbonic anhydrases (CAs) are key components in the CCM, and an array of molecular regulatory elements is present to facilitate the sensing of CO2 availability, to regulate the expression of the CCM and to coordinate interplay between photosynthetic carbon metabolism and other metabolic processes in response to limiting CO2 conditions. This review intends to integrate our current understanding of the eukaryotic algal CCM and its interaction with carbon assimilation, based largely on Chlamydomonas as a model, and to illustrate how Chlamydomonas acclimates to limiting CO2 conditions and how its CCM is regulated.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Dan J Stessman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
31
|
Gao H, Wang Y, Fei X, Wright DA, Spalding MH. Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:1-11. [PMID: 25660294 DOI: 10.1111/tpj.12788] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 05/11/2023]
Abstract
The CO2 concentrating mechanism (CCM) is a key component of the carbon assimilation strategy of aquatic microalgae. Induced by limiting CO2 and tightly regulated, the CCM enables these microalgae to respond rapidly to varying environmental CO2 supplies and to perform photosynthetic CO2 assimilation in a cost-effective way. A functional CCM in eukaryotic algae requires Rubisco sequestration, rapid interconversion between CO2 and HCO3(-) catalyzed by carbonic anhydrases (CAs), and active inorganic carbon (Ci) uptake. In the model microalga Chlamydomonas reinhardtii, a membrane protein HLA3 is proposed to be involved in active Ci uptake across the plasma membrane. In this study, we use an artificially designed transcription activator-like effector (dTALE) to activate the expression of HLA3. The successful activation of HLA3 expression demonstrates dTALE as a promising tool for gene-specific activation and investigation of gene function in Chlamydomonas. Activation of HLA3 expression in high CO2 acclimated cells, where HLA3 is not expressed, resulted in increased Ci accumulation and Ci-dependent photosynthetic O2 evolution specifically in very low CO2 concentrations, which confirms that HLA3 is indeed involved in Ci uptake, and suggests it is mainly associated with HCO3(-) transport in very low CO2 concentrations, conditions in which active CO2 uptake is highly limited.
Collapse
Affiliation(s)
- Han Gao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
32
|
Yao L, Gerde JA, Lee SL, Wang T, Harrata KA. Microalgae lipid characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1773-1787. [PMID: 25608629 DOI: 10.1021/jf5050603] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To meet the growing interest of utilizing microalgae biomass in the production of biofuels and nutraceutical and pharmaceutical lipids, we need suitable analytical methods and a comprehensive database for their lipid components. The objective of the present work was to demonstrate methodology and provide data on fatty acid composition, lipid class content and composition, characteristics of the unsaponifiables, and type of chlorophylls of five microalgae. Microalgae lipids were fractionated into TAG, FFA, and polar lipids using TLC, and the composition of fatty acids in total lipids and in each lipid class, hydrocarbons, and sterols were determined by GC-MS. Glyco- and phospholipids were profiled by LC/ESI-MS. Chlorophylls and their related metabolites were qualified by LC/APCI-MS. The melting and crystallization profiles of microalgae total lipids and their esters were analyzed by DSC to evaluate their potential biofuel applications. Significant differences and complexities of lipid composition among the algae tested were observed. The compositional information is valuable for strain selection, downstream biomass fractionation, and utilization.
Collapse
Affiliation(s)
- Linxing Yao
- Department of Food Science and Human Nutrition and ‡Department of Chemistry, Iowa State University , Ames, Iowa 50011, United States
| | | | | | | | | |
Collapse
|
33
|
Hanson DT, Collins AM, Jones HDT, Roesgen J, Lopez-Nieves S, Timlin JA. On-line stable isotope gas exchange reveals an inducible but leaky carbon concentrating mechanism in Nannochloropsis salina. PHOTOSYNTHESIS RESEARCH 2014; 121:311-22. [PMID: 24844569 PMCID: PMC8078823 DOI: 10.1007/s11120-014-0001-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/24/2014] [Indexed: 05/28/2023]
Abstract
Carbon concentrating mechanisms (CCMs) are common among microalgae, but their regulation and even existence in some of the most promising biofuel production strains is poorly understood. This is partly because screening for new strains does not commonly include assessment of CCM function or regulation despite its fundamental role in primary carbon metabolism. In addition, the inducible nature of many microalgal CCMs means that environmental conditions should be considered when assessing CCM function and its potential impact on biofuels. In this study, we address the effect of environmental conditions by combining novel, high frequency, on-line (13)CO2 gas exchange screen with microscope-based lipid characterization to assess CCM function in Nannochloropsis salina and its interaction with lipid production. Regulation of CCM function was explored by changing the concentration of CO2 provided to continuous cultures in airlift bioreactors where cell density was kept constant across conditions by controlling the rate of media supply. Our isotopic gas exchange results were consistent with N. salina having an inducible "pump-leak" style CCM similar to that of Nannochloropsis gaditana. Though cells grew faster at high CO2 and had higher rates of net CO2 uptake, we did not observe significant differences in lipid content between conditions. Since the rate of CO2 supply was much higher for the high CO2 conditions, we calculated that growing cells bubbled with low CO2 is about 40 % more efficient for carbon capture than bubbling with high CO2. We attribute this higher efficiency to the activity of a CCM under low CO2 conditions.
Collapse
Affiliation(s)
- David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, USA,
| | | | | | | | | | | |
Collapse
|
34
|
Wang Y, Spalding MH. LCIB in the Chlamydomonas CO2-concentrating mechanism. PHOTOSYNTHESIS RESEARCH 2014; 121:185-92. [PMID: 24307449 DOI: 10.1007/s11120-013-9956-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/22/2013] [Indexed: 05/19/2023]
Abstract
The CO2-concentrating mechanism confers microalgae a versatile and efficient strategy for adapting to a wide range of environmental CO2 concentrations. LCIB, which has been demonstrated as a key player in the eukaryotic algal CO2-concentrating mechanism (CCM), is a novel protein in Chlamydomonas lacking any recognizable domain or motif, and its exact function in the CCM has not been clearly defined. The unique air-dier growth phenotype and photosynthetic characteristics in the LCIB mutants, and re-localization of LCIB between different subcellular locations in response to different levels of CO2, have indicated that the function of LCIB is closely associated with a distinct low CO2 acclimation state. Here, we review physiological and molecular evidence linking LCIB with inorganic carbon accumulation in the CCM and discuss the proposed function of LCIB in several inorganic carbon uptake/accumulation pathways. Several new molecular characteristics of LCIB also are presented.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA,
| | | |
Collapse
|
35
|
Mortensen LM, Gislerød HR. The effect on growth of Chlamydomonas reinhardtii of flue gas from a power plant based on waste combustion. AMB Express 2014; 4:49. [PMID: 25401062 PMCID: PMC4230831 DOI: 10.1186/s13568-014-0049-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/23/2014] [Indexed: 11/20/2022] Open
Abstract
Flue gases from a power plant based on waste combustion were tested as a carbon dioxide (CO2) source for growing Chlamydomonas reinhardtii. To achieve recognition as an environmentally friendly hydrogen production method, waste gases should be used to grow this hydrogen-producing microalgae. The algae were grown in undiluted flue gas containing 11.4±0.2% CO2 by volume, in diluted flue gas containing 6.7±0.1% or 2.5±0.0% CO2, and in pure liquid CO2 at a concentration of 2.7±0.2%. The NOx concentration was 45±16 mg m(-3), the SO2 concentration was 36±19 mg m(-3), the HCl concentration 4.1±1.0 mg m(-3) and the O2 concentration 7.9±0.2% in the undiluted flue gas. Undiluted flue gas reduced the dry weight production by around 20-25% when grown at a photon flux density (PFD) of 300 μmol m(-2) s(-1) artificial light and at 24 or 33°C, compared with the other treatments. A less negative effect was found at the highest flue gas concentration when the algae were grown at 75 μmol m(-2) s(-1) PFD. Growing the algae outdoors at a day length of 12.5 h and a temperature of around 24°C, the dry weight production was higher (about 15%) in the 2.6% CO2 flue gas treatment compared with all other treatments. Reducing the light level by 30% through shading did not affect the dry weight production. Calculated on aerial basis the productivity reached approximately 70 g m(-2) day(-1) in the 300 μmol m(-2) s(-1) PFD treatment (corresponding to 25 mol m(-2) day(-1)) and approximately 17 g m(-2) day(-1) in the 75μmol m(-2) s(-1) PFD treatment (corresponding to 6.5 mol m(-2) day(-1)). The outdoor production reached around 14 g m(-2) day(-1). It was concluded that the negative effect of the undiluted flue gas was attributable to the high CO2 concentration and not to the other pollutants.
Collapse
Affiliation(s)
- Leiv M Mortensen
- Department of Plant Science, The University of Life Sciences, Ås NO-1432, Norway
| | - Hans R Gislerød
- Department of Plant Science, The University of Life Sciences, Ås NO-1432, Norway
| |
Collapse
|
36
|
Mortensen LM, Gislerød HR. The growth of Chlamydomonas reinhardtii as influenced by high CO 2 and low O 2 in flue gas from a silicomanganese smelter. JOURNAL OF APPLIED PHYCOLOGY 2014; 27:633-638. [PMID: 25866444 PMCID: PMC4387248 DOI: 10.1007/s10811-014-0357-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to find an inexpensive and environmentally friendly CO2 source for growing the hydrogen-producing microalgae Chlamydomonas reinhardtii. The effect of different flue gas concentrations from a silicomanganese smelter on the growth of these algae at a photon flux density of 200 μmol photons m-2 s-1 applied 24 h day-1 was studied. First, the algae were grown in a laboratory at 1.2, 6.8 and 17.1 % (v/v) pure CO2 gas mixed with fresh air. After 5 days of growth, the dry biomass per litre algal culture was slightly higher (17 %) at 6.8 % CO2 as compared to at 1.2 % CO2. A further increase to 17.1 % CO2 decreased the biomass by about 40 %. Then, the flue gas from a silicomanganese smelter was used as a CO2 source for growing the algae. The flue gas was characterized by a high CO2 concentration (about 17 % v/v), low oxygen concentration (about 4 %), about 100 ppm NO x and 1 ppm SO2. The culture medium bubbled with undiluted flue gas contained about 490 mg L-1 dissolved CO2 and 4.0 mg L-1 dissolved O2, while the lowest flue gas concentration contained about 280 mg L-1 CO2 and 7.1 mg L-1 O2. Undiluted flue gas (17.4 % CO2) decreased the biomass of the algae by about 40 % as compared with 4.8 % pure CO2 gas or flue gas diluted to a concentration of 6.3 % CO2. Flue gas diluted to give 10.0 % CO2 gave less reduction in the growth of the algae (22 %). It was concluded that the high CO2 concentration itself caused the growth reduction and not the air pollutants, and the very low O2 concentrations in the growth medium could not counteract this negative effect.
Collapse
Affiliation(s)
- Leiv M. Mortensen
- Department of Plant and Environmental Science, The University of Life Sciences, 1432 Ås, Norway
| | - Hans R. Gislerød
- Department of Plant and Environmental Science, The University of Life Sciences, 1432 Ås, Norway
| |
Collapse
|
37
|
Tirumani S, Kokkanti M, Chaudhari V, Shukla M, Rao BJ. Regulation of CCM genes in Chlamydomonas reinhardtii during conditions of light-dark cycles in synchronous cultures. PLANT MOLECULAR BIOLOGY 2014; 85:277-86. [PMID: 24590314 DOI: 10.1007/s11103-014-0183-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 02/19/2014] [Indexed: 05/19/2023]
Abstract
We have investigated transcript level changes of CO(2)-concentrating mechanism (CCM) genes during light-dark (12 h:12 h) cycles in synchronized Chlamydomonas reinhardtii at air-level CO(2). CCM gene transcript levels vary at various times of light-dark cycles, even at same air-level CO(2). Transcripts of inorganic carbon transporter genes (HLA3, LCI1, CCP1, CCP2 and LCIA) and mitochondrial carbonic anhydrase genes (CAH4 and CAH5) are up regulated in light, following which their levels decline in dark. Contrastingly, transcripts of chloroplast carbonic anhydrases namely CAH6, CAH3 and LCIB are up regulated in dark. CAH3 and LCIB transcript levels reached maximum by the end of dark, followed by high expression into early light period. In contrast, CAH6 transcript level stayed high in dark, followed by high level even in light. Moreover, the up regulation of transcripts in dark was undone by high CO(2), suggesting that the dark induced CCM transcripts were regulated by CO(2) even in dark when CCM is absent. Thus while the CAH3 transcript level modulations appear not to positively correlate with that of CCM, the protein regulation matched with CCM status: in spite of high transcript levels in dark, CAH3 protein reached peak level only in light and localized entirely to pyrenoid, a site functionally relevant for CCM. Moreover, in dark, CAH3 protein level not only reduced but also the protein localized as a diffused pattern in chloroplast. We propose that transcription of most CCM genes, followed by protein level changes including their intracellular localization of a subset is subject to light-dark cycles.
Collapse
Affiliation(s)
- Srikanth Tirumani
- B-202, Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400005, India
| | | | | | | | | |
Collapse
|
38
|
Riesberg G, Bigelow TA, Stessman DJ, Spalding MH, Yao L, Wang T, Xu J. Flow rate and duty cycle effects in lysis of Chlamydomonas reinhardtii using high-energy pulsed focused ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2014; 135:3632-3638. [PMID: 24916410 DOI: 10.1121/1.4874627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To consider microalgae lipid biofuel as a viable energy source, it is a necessity to maximize algal cell lysis, lipid harvest, and thus biofuel production versus the energy used to lyse the cells. Previous techniques have been to use energy consumptive ultrasound waves in the 10-40 kHz range in a stationary exposure environment. This study evaluated the potential of using 1.1 MHz ultrasound pulses in a new flow through type chamber on Chlamydomonas reinhardtii as a model organism for cell breakage. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at varied pulse repetition frequencies. First, variations in flow rate were examined at a constant duty cycle of 3.6%. After assessing flow rates, the duty cycle was varied to further explore the dependence on the tone burst parameters. Cell lysis was assessed by quantifying protein and chlorophyll release into the supernatant as well as by lipid extractability. Appropriate flow rates with higher duty cycles led to statistically significant increases in cell lysis relative to controls and other exposure conditions.
Collapse
Affiliation(s)
- Grant Riesberg
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011
| | - Timothy A Bigelow
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011
| | - Dan J Stessman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Linxing Yao
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011
| | - Tong Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011
| | - Jin Xu
- John Brown University, Siloam Springs, Arkansas 72761
| |
Collapse
|
39
|
Bigelow TA, Xu J, Stessman DJ, Yao L, Spalding MH, Wang T. Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time. ULTRASONICS SONOCHEMISTRY 2014; 21:1258-1264. [PMID: 24355286 DOI: 10.1016/j.ultsonch.2013.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure.
Collapse
Affiliation(s)
- Timothy A Bigelow
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Jin Xu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; Department of Engineering, John Brown University, Siloam Springs, AR 72761, USA
| | - Dan J Stessman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Linxing Yao
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Martin H Spalding
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Tong Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
40
|
Diffusion Limitation and CO2 Concentrating Mechanisms in Bryophytes. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-007-6988-5_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Glaesener AG, Merchant SS, Blaby-Haas CE. Iron economy in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2013; 4:337. [PMID: 24032036 PMCID: PMC3759009 DOI: 10.3389/fpls.2013.00337] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/09/2013] [Indexed: 05/05/2023]
Abstract
While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance.
Collapse
Affiliation(s)
- Anne G. Glaesener
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
- Institute of Genomics and Proteomics, David Geffen School of Medicine at the University of CaliforniaLos Angeles, CA, USA
| | - Crysten E. Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los AngelesLos Angeles, CA, USA
- *Correspondence: Crysten E. Blaby-Haas, Department of Chemistry and Biochemistry, University of California, Box 951569, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA e-mail:
| |
Collapse
|
42
|
James SC, Janardhanam V, Hanson DT. Simulating pH effects in an algal-growth hydrodynamics model(1). JOURNAL OF PHYCOLOGY 2013; 49:608-615. [PMID: 27007048 DOI: 10.1111/jpy.12071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 02/01/2013] [Indexed: 06/05/2023]
Abstract
Models and numerical simulations are relatively inexpensive tools that can be used to enhance economic competitiveness through operation and system optimization to minimize energy and resource consumption, while maximizing algal oil yield. This work uses modified versions of the U.S. Environmental Protection Agency's Environmental Fluid Dynamics Code (EFDC) in conjunction with the U.S. Army Corp of Engineers' water-quality code (CE-QUAL) to simulate flow hydrodynamics coupled to algal growth kinetics. The model allows the flexibility of manipulating a host of variables associated with algal growth such as temperature, light intensity, and nutrient availability. pH of the medium is a newly added operational parameter governing algal growth that affects algal photosynthesis, differential availability of inorganic forms of carbon, enzyme activity in algae cell walls, and oil production rates. A single-layer algal-growth/hydrodynamic model without pH limitation was verified by comparing solution curves of algal biomass and phosphorus concentrations to an analytical solution. Media pH, now included in the model as a growth-limiting factor, can be entered as a measured value or calculated based on CO2 concentrations. Upon adding the ability to limit growth due to pH, physically reasonable results have been obtained from the model both with and without pH limitation. When the model was used to simulate algal growth from a pond experiment in the greenhouse, a least-squares fitting technique yielded a maximum algal production (subsequently modulated by limitation factors) of 1.05 d(-1) . Overall, the measured and simulated biomass concentrations in the greenhouse pond were in close agreement.
Collapse
Affiliation(s)
- Scott C James
- Sandia National Laboratories, Thermal/Fluid Science and Engineering, Livermore, CA, 94551-0969, USA
- Exponent Inc., 320 Goddard, Suite 200, Irvine, California, 92618, USA
| | - Vijayasarathi Janardhanam
- Department of Physics & Astronomy, University of New Mexico, MSC03 2020, Albuquerque, New Mexico, 87131-0001, USA
| | - David T Hanson
- Department of Biology, University of New Mexico, Castetter Hall 192, Albuquerque, New Mexico, 87131-0001, USA
| |
Collapse
|
43
|
Gerde JA, Montalbo-Lomboy M, Yao L, Grewell D, Wang T. Evaluation of microalgae cell disruption by ultrasonic treatment. BIORESOURCE TECHNOLOGY 2012; 125:175-181. [PMID: 23026331 DOI: 10.1016/j.biortech.2012.08.110] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/23/2012] [Accepted: 08/25/2012] [Indexed: 06/01/2023]
Abstract
Microalgae are a promising feedstock for biofuels because of their capability to produce lipids. Cell disruption is necessary to maximize lipid extraction. Sonication conditions were evaluated for breaking heterotrophic (Schizochytrium limacinum) and autotrophic (Chlamydomonas reinhardtii) microalgae cells. Cell disruption was estimated by Nile red-lipids fluorescence quantification in S. limacinum and by the release of intracellular chlorophyll and carotenoids in green microalga C. reinhardtii. In both species, approximately 800 J/10 mL was the energy input necessary to maximize cell disruption, regardless of the cell concentrations studied. Increasing sonication time produced increasing amount of free radicals, quantified by the formation of hydroxyterephthalate. Sonication energy beyond the level needed for cell disruption induced oxidation of arachidonic acid, a polyunsaturated fatty acid typically found in marine lipids. Careful control of sonication conditions is necessary to maximize oil extraction at the lowest operational cost and to prevent oil from free radical-induced degradation.
Collapse
Affiliation(s)
- Jose A Gerde
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011-1061, USA
| | | | | | | | | |
Collapse
|
44
|
Ohno N, Inoue T, Yamashiki R, Nakajima K, Kitahara Y, Ishibashi M, Matsuda Y. CO(2)-cAMP-responsive cis-elements targeted by a transcription factor with CREB/ATF-like basic zipper domain in the marine diatom Phaeodactylum tricornutum. PLANT PHYSIOLOGY 2012; 158:499-513. [PMID: 22095044 PMCID: PMC3252111 DOI: 10.1104/pp.111.190249] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 11/14/2011] [Indexed: 05/19/2023]
Abstract
Expression controls of the carbon acquisition system in marine diatoms in response to environmental factors are an essential issue to understand the changes in marine primary productivity. A pyrenoidal β-carbonic anhydrase, PtCA1, is one of the most important candidates to investigate the control mechanisms of the CO(2) acquisition system in the marine diatom Phaeodactylum tricornutum. A detailed functional assay was carried out on the putative core regulatory region of the ptca1 promoter using a β-glucuronidase reporter in P. tricornutum cells under changing CO(2) conditions. A set of loss-of-function assays led to the identification of three CO(2)-responsive elements, TGACGT, ACGTCA, and TGACGC, at a region -86 to -42 relative to the transcription start site. Treatment with a cyclic (c)AMP analog, dibutyryl cAMP, revealed these three elements to be under the control of cAMP; thus, we designated them, from 5' to 3', as CO(2)-cAMP-Responsive Element1 (CCRE1), CCRE2, and CCRE3. Because the sequence TGACGT is known to be a typical target of human Activating Transcription Factor6 (ATF6), we searched for genes containing a basic zipper (bZIP) region homologous to that of ATF6 in the genome of P. tricornutum. Gel-shift assays using CCRE pentamers as labeled probes showed that at least one candidate of bZIP proteins, PtbZIP11, bound specifically to CCREs. A series of gain-of-function assays with CCREs fused to a minimal promoter strongly suggested that the alternative combination of CCRE1/2 or CCRE2/3 at proper distances from the minimal promoter is required as a potential target of PtbZIP11 for an effective CO(2) response of the ptca1 gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yusuke Matsuda
- Research Center for Environmental Bioscience, Department of Bioscience, Kwansei-Gakuin University, Sanda, Hyogo 669–1337, Japan
| |
Collapse
|
45
|
Sousa C, de Winter L, Janssen M, Vermuë MH, Wijffels RH. Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. BIORESOURCE TECHNOLOGY 2012; 104:565-70. [PMID: 22079686 DOI: 10.1016/j.biortech.2011.10.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 05/07/2023]
Abstract
The effect of partial oxygen pressure on growth of Neochloris oleoabundans was studied at sub-saturating light intensity in a fully-controlled stirred tank photobioreactor. At the three partial oxygen pressures tested (P(O)₂= 0.24; 0.63; 0.84 bar), the specific growth rate was 1.38; 1.36 and 1.06 day(-1), respectively. An increase of the P(CO)₂from 0.007 to 0.02 bar at P(O₂) of 0.84 bar resulted in an increase in the growth rate from 1.06 to 1.36 day(-1). These results confirm that the reduction of algal growth at high oxygen concentrations at sub-saturating light conditions is mainly caused by competitive inhibition of Rubisco. This negative effect on growth can be overcome by restoring the O(2)/CO(2) ratio by an increase in the partial carbon dioxide pressure. In comparison to general practice (P(O(2)) = 0.42 bar), working at partial O(2) pressure of 0.84 bar could reduce the energy requirement for degassing by a factor of 3-4.
Collapse
Affiliation(s)
- Cláudia Sousa
- Wetsus, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Spijkerman E, de Castro F, Gaedke U. Independent colimitation for carbon dioxide and inorganic phosphorus. PLoS One 2011; 6:e28219. [PMID: 22145031 PMCID: PMC3228739 DOI: 10.1371/journal.pone.0028219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/03/2011] [Indexed: 11/19/2022] Open
Abstract
Simultaneous limitation of plant growth by two or more nutrients is increasingly acknowledged as a common phenomenon in nature, but its cellular mechanisms are far from understood. We investigated the uptake kinetics of CO(2) and phosphorus of the algae Chlamydomonas acidophila in response to growth at limiting conditions of CO(2) and phosphorus. In addition, we fitted the data to four different Monod-type models: one assuming Liebigs Law of the minimum, one assuming that the affinity for the uptake of one nutrient is not influenced by the supply of the other (independent colimitation) and two where the uptake affinity for one nutrient depends on the supply of the other (dependent colimitation). In addition we asked whether the physiological response under colimitation differs from that under single nutrient limitation.We found no negative correlation between the affinities for uptake of the two nutrients, thereby rejecting a dependent colimitation. Kinetic data were supported by a better model fit assuming independent uptake of colimiting nutrients than when assuming Liebigs Law of the minimum or a dependent colimitation. Results show that cell nutrient homeostasis regulated nutrient acquisition which resulted in a trade-off in the maximum uptake rates of CO(2) and phosphorus, possibly driven by space limitation on the cell membrane for porters for the different nutrients. Hence, the response to colimitation deviated from that to a single nutrient limitation. In conclusion, responses to single nutrient limitation cannot be extrapolated to situations where multiple nutrients are limiting, which calls for colimitation experiments and models to properly predict growth responses to a changing natural environment. These deviations from single nutrient limitation response under colimiting conditions and independent colimitation may also hold for other nutrients in algae and in higher plants.
Collapse
Affiliation(s)
- Elly Spijkerman
- Department of Ecology and Ecosystem Modelling, University of Potsdam, Potsdam, Germany.
| | | | | |
Collapse
|
47
|
Matsuda Y, Nakajima K, Tachibana M. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. PHOTOSYNTHESIS RESEARCH 2011; 109:191-203. [PMID: 21287273 DOI: 10.1007/s11120-011-9623-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/06/2011] [Indexed: 05/24/2023]
Abstract
Marine diatoms, the major primary producer in ocean environment, are known to take up both CO(2) and HCO(3)(-) in seawater and efficiently concentrate them intracellularly, which enable diatom cells to perform high-affinity photosynthesis under limiting CO(2). However, mechanisms so far proposed for the inorganic carbon acquisition in marine diatoms are significantly diverse despite that physiological studies on this aspect have been done with only limited number of species. There are two major hypotheses about this; that is, they take up and concentrate both CO(2) and HCO(3)(-) as inorganic forms, and efficiently supply CO(2) to Rubisco by an aid of carbonic anhydrases (biophysical CO(2)-concentrating mechanism: CCM); and as the other hypothesis, biochemical conversion of HCO(3)(-) into C(4) compounds may play a major role to supply concentrated CO(2) to Rubisco. At moment however, physiological evidence for these hypotheses were not related well to molecular level evidence. In this study, recent progresses in molecular studies on diatom-carbon-metabolism genes were related to the physiological aspects of carbon acquisition. Furthermore, we discussed the mechanisms regulating CO(2) acquisition systems in response to changes in pCO(2). Recent findings about the participation of cAMP in the signaling pathway of CO(2) concentration strongly suggested the occurrences of mammalian-type-signaling pathways in diatoms to respond to changes in pCO(2). In fact, there were considerable numbers of putative adenylyl cyclases, which may take part in the processes of CO(2) signal capturing.
Collapse
Affiliation(s)
- Yusuke Matsuda
- Department of Bioscience, Research Center for Environmental Bioscience, Kwansei-Gakuin University, Sanda, Hyogo, Japan.
| | | | | |
Collapse
|
48
|
Duanmu D, Spalding MH. Insertional suppressors of Chlamydomonas reinhardtii that restore growth of air-dier lcib mutants in low CO2. PHOTOSYNTHESIS RESEARCH 2011; 109:123-132. [PMID: 21409559 DOI: 10.1007/s11120-011-9642-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 02/26/2011] [Indexed: 05/30/2023]
Abstract
Chlamydomonas reinhardtii and other microalgae show adaptive changes to limiting CO(2) conditions by induction of CO(2)-concentrating mechanisms. The limiting-CO(2)-inducible gene, LCIB, encodes a soluble plastid protein and is proposed to play a role in trapping CO(2) released by CAH3 (thylakoid lumen carbonic anhydrase) catalyzed dehydration of accumulated Ci, especially in low CO(2) (L-CO(2); ~0.04% CO(2)) conditions. To gain further insight into the mechanisms of Ci uptake and accumulation in L-CO(2) acclimated C. reinhardtii, we performed an insertional mutagenesis screen to isolate extragenic suppressors that restore the growth of lcib mutants (pmp1 and ad1) in L-CO(2). Four independent suppressors are described here and classified by their photosynthetic affinities for Ci and expression patterns of known limiting-CO(2)-inducible transcripts. Genetic analysis of the four suppressors identified two allelic, dominant suppressors (su4 and su5), and two recessive suppressors (su1 and su8). Consistent with the suppression phenotype, both the relative affinities of photosynthetic O(2) evolution and internal Ci accumulation in all four suppressors were substantially increased relative to pmp1/ad1 in L-CO(2) acclimated cells. The relative affinities of pmp-su1 and ad-su8 for Ci were nearly the same as wild type, but that of pmp-su4/su5 was intermediate between pmp-su1 and pmp1. Also, the interactions between lcib mutations and each of the three suppressors varied over the range of CO(2) acclimation states. Our results suggest complex contributions of LCIB-dependent and independent active Ci uptake/accumulation systems in various CO(2) acclimation states and therefore provide new clues about the roles played by LCIB in limiting Ci acclimation.
Collapse
Affiliation(s)
- Deqiang Duanmu
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
49
|
Raven JA, Giordano M, Beardall J, Maberly SC. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. PHOTOSYNTHESIS RESEARCH 2011; 109:281-296. [PMID: 21327536 DOI: 10.1007/s11120-011-9632-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/01/2011] [Indexed: 05/30/2023]
Abstract
Carbon dioxide concentrating mechanisms (also known as inorganic carbon concentrating mechanisms; both abbreviated as CCMs) presumably evolved under conditions of low CO(2) availability. However, the timing of their origin is unclear since there are no sound estimates from molecular clocks, and even if there were, there are no proxies for the functioning of CCMs. Accordingly, we cannot use previous episodes of high CO(2) (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate how organisms with CCMs responded. Present and predicted environmental change in terms of increased CO(2) and temperature are leading to increased CO(2) and HCO(3)(-) and decreased CO(3)(2-) and pH in surface seawater, as well as decreasing the depth of the upper mixed layer and increasing the degree of isolation of this layer with respect to nutrient flux from deeper waters. The outcome of these forcing factors is to increase the availability of inorganic carbon, photosynthetic active radiation (PAR) and ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The influence of these variations on CCM expression has been examined to varying degrees as acclimation by extant organisms. Increased PAR increases CCM expression in terms of CO(2) affinity, whilst increased UVB has a range of effects in the organisms examined; little relevant information is available on increased temperature. Decreased combined nitrogen supply generally increases CO(2) affinity, decreased iron availability increases CO(2) affinity, and decreased phosphorus supply has varying effects on the organisms examined. There are few data sets showing interactions amongst the observed changes, and even less information on genetic (adaptation) changes in response to the forcing factors. In freshwaters, changes in phytoplankton species composition may alter with environmental change with consequences for frequency of species with or without CCMs. The information available permits less predictive power as to the effect of the forcing factors on CCM expression than for their overall effects on growth. CCMs are currently not part of models as to how global environmental change has altered, and is likely to further alter, algal and aquatic plant primary productivity.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, UK.
| | | | | | | |
Collapse
|
50
|
Wang Y, Duanmu D, Spalding MH. Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. PHOTOSYNTHESIS RESEARCH 2011; 109:115-22. [PMID: 21409558 DOI: 10.1007/s11120-011-9643-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 02/28/2011] [Indexed: 05/04/2023]
Abstract
Many microalgae are capable of acclimating to CO(2) limited environments by operating a CO(2) concentrating mechanism (CCM), which is driven by various energy-coupled inorganic carbon (Ci; CO(2) and HCO(3)(-)) uptake systems. Chlamydomonas reinhardtii (hereafter, Chlamydomonas), a versatile genetic model organism, has been used for several decades to exemplify the active Ci transport in eukaryotic algae, but only recently have many molecular details behind these Ci uptake systems emerged. Recent advances in genetic and molecular approaches, combined with the genome sequencing of Chlamydomonas and several other eukaryotic algae have unraveled some unique characteristics associated with the Ci uptake mechanism and the Ci-recapture system in eukaryotic microalgae. Several good candidate genes for Ci transporters in Chlamydomonas have been identified, and a few specific gene products have been linked with the Ci uptake systems associated with the different acclimation states. This review will focus on the latest studies on characterization of functional components involved in the Ci uptake and the Ci-recapture in Chlamydomonas.
Collapse
Affiliation(s)
- Yingjun Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|