1
|
Canals O, Lanzén A, Mendibil I, Bachiller E, Corrales X, Andonegi E, Cotano U, Rodríguez-Ezpeleta N. Increasing marine trophic web knowledge through DNA analyses of fish stomach content: a step towards an ecosystem-based approach to fisheries research. JOURNAL OF FISH BIOLOGY 2024; 105:431-443. [PMID: 38726501 DOI: 10.1111/jfb.15754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 08/20/2024]
Abstract
Multispecies and ecosystem models, which are key for the implementation of ecosystem-based approaches to fisheries management, require extensive data on the trophic interactions between marine organisms, including changes over time. DNA metabarcoding, by allowing the simultaneous taxonomic identification of the community present in hundreds of samples, could be used for speeding up large-scale stomach content data collection. Yet, for DNA metabarcoding to be routinely implemented, technical challenges should be addressed, such as the potentially complicated sampling logistics, the detection of a high proportion of predator DNA, and the inability to provide reliable abundance estimations. Here, we present a DNA metabarcoding assay developed to examine the diet of five commercially important fish, which can be feasibly incorporated into routinary samplings. The method is devised to speed up the analysis process by avoiding the stomach dissection and content extraction steps, while preventing the amplification of predator DNA by using blocking primers. Tested in mock samples and in real stomach samples, the method has proven effective and shows great effectiveness discerning diet variations due to predator ecology or prey availability. Additionally, by applying our protocol to mackerel stomachs previously analyzed by visual inspection, we showcase how DNA metabarcoding could complement visually based data by detecting overlooked prey by the visual approach. We finally discuss how DNA metabarcoding-based data can contribute to trophic data collection. Our work reinforces the potential of DNA metabarcoding for the study and monitoring of fish trophic interactions and provides a basis for its incorporation into routine monitoring programs, which will be critical for the implementation of ecosystem-based approaches to fisheries management.
Collapse
Affiliation(s)
- Oriol Canals
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
- IKERBASQUE - Basque Foundation for Science, Bilbao, Spain
| | - Iñaki Mendibil
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Eneko Bachiller
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Xavier Corrales
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Eider Andonegi
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Unai Cotano
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | | |
Collapse
|
2
|
Riaz M, Warren D, Wittwer C, Cocchiararo B, Hundertmark I, Reiners TE, Klimpel S, Pfenninger M, Khaliq I, Nowak C. Using eDNA to understand predator-prey interactions influenced by invasive species. Oecologia 2023; 202:757-767. [PMID: 37594600 PMCID: PMC10474997 DOI: 10.1007/s00442-023-05434-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Invasive predatory species may alter population dynamic processes of their prey and impact biological communities and ecosystem processes. Revealing biotic interactions, however, including the relationship between predator and prey, is a difficult task, in particular for species that are hard to monitor. Here, we present a case study that documents the utility of environmental DNA analysis (eDNA) to assess predator-prey interactions between two invasive fishes (Lepomis gibbosus, Pseudorasbora parva) and two potential amphibian prey species, (Triturus cristatus, Pelobates fuscus). We used species-specific TaqMan assays for quantitative assessment of eDNA concentrations from water samples collected from 89 sites across 31 ponds during three consecutive months from a local amphibian hotspot in Germany. We found a negative relationship between eDNA concentrations of the predators (fishes) and prey (amphibians) using Monte-Carlo tests. Our study highlights the potential of eDNA application to reveal predator-prey interactions and confirms the hypothesis that the observed local declines of amphibian species may be at least partly caused by recently introduced invasive fishes. Our findings have important consequences for local conservation management and highlight the usefulness of eDNA approaches to assess ecological interactions and guide targeted conservation action.
Collapse
Affiliation(s)
- Maria Riaz
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum, 63571, Frankfurt, Gelnhausen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany.
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Straße 9, 60438, Frankfurt Am Main, Germany.
| | - Dan Warren
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
| | - Claudia Wittwer
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum, 63571, Frankfurt, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Straße 9, 60438, Frankfurt Am Main, Germany
| | - Berardino Cocchiararo
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum, 63571, Frankfurt, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
| | - Inga Hundertmark
- Hessische Gesellschaft Für Ornithologie Und Naturschutz (HGON E. V.), Lindenstrasse 5, 61209, Echzell, Germany
| | - Tobias Erik Reiners
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum, 63571, Frankfurt, Gelnhausen, Germany
- Hessische Gesellschaft Für Ornithologie Und Naturschutz (HGON E. V.), Lindenstrasse 5, 61209, Echzell, Germany
| | - Sven Klimpel
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Straße 9, 60438, Frankfurt Am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
- Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 7, 55128, Mainz, Germany
| | - Imran Khaliq
- Department of Education, Punjab, Pakistan
- Department of Aquatic Ecology Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland
- Snow and Landscape Research (WSL), Swiss Federal Institute for Forest, Flüelastr. 11, 7260, Davos Dorf, Switzerland
| | - Carsten Nowak
- Conservation Genetics Section, Senckenberg Research Institute and Natural History Museum, 63571, Frankfurt, Gelnhausen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt Am Main, Germany
| |
Collapse
|
3
|
Novotny A, Serandour B, Kortsch S, Gauzens B, Jan KMG, Winder M. DNA metabarcoding highlights cyanobacteria as the main source of primary production in a pelagic food web model. SCIENCE ADVANCES 2023; 9:eadg1096. [PMID: 37126549 PMCID: PMC10132751 DOI: 10.1126/sciadv.adg1096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Models that estimate rates of energy flow in complex food webs often fail to account for species-specific prey selectivity of diverse consumer guilds. While DNA metabarcoding is increasingly used for dietary studies, methodological biases have limited its application for food web modeling. Here, we used data from dietary metabarcoding studies of zooplankton to calculate prey selectivity indices and assess energy fluxes in a pelagic resource-consumer network. We show that food web dynamics are influenced by prey selectivity and temporal match-mismatch in growth cycles and that cyanobacteria are the main source of primary production in the investigated coastal pelagic food web. The latter challenges the common assumption that cyanobacteria are not supporting food web productivity, a result that is increasingly relevant as global warming promotes cyanobacteria dominance. While this study provides a method for how DNA metabarcoding can be used to quantify energy fluxes in a marine food web, the approach presented here can easily be extended to other ecosystems.
Collapse
Affiliation(s)
- Andreas Novotny
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Baptiste Serandour
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Susanne Kortsch
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Environmental and Marine Biology, Åbo Akademi University, Turku 20500, Finland
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Kinlan M G Jan
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Lu Q, Cheng C, Xiao L, Li J, Li X, Zhao X, Lu Z, Zhao J, Yao M. Food webs reveal coexistence mechanisms and community organization in carnivores. Curr Biol 2023; 33:647-659.e5. [PMID: 36669497 DOI: 10.1016/j.cub.2022.12.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023]
Abstract
Globally, massive carnivore guild extirpations have led to trophic downgrading and compromised ecosystem services. However, the complexity of multi-carnivore food webs complicates accurate identification of species interactions and community organization. Here, we used fecal DNA metabarcoding to investigate three communities that together encompass eight large- and meso-carnivore species and their 44 prey taxa of the Qinghai-Tibet Plateau (QTP), one of the last places on Earth that still harbors intact carnivore assemblages. Quantitative food-web analyses revealed pronounced interspecific variations in the carnivores' prey compositions and dietary partitioning both between and within guilds. Additionally, body masses of the carnivores and their prey exhibited consistent hump-shaped correlations across communities. Overall, differences in prey diversity, size category, and proportional utilization among the carnivore species result in trophic niche segregation that likely promotes carnivore coexistence in the harsh QTP environment. Network structure analyses detected significant modularity in all food webs but nestedness in only one. Furthermore, network characterization identified pikas (Ochotona spp.), bharal (Pseudois nayaur), and domestic yak (Bos grunniens) as potential keystone prey across the areas. Our results paint a holistic and detailed picture of the QTP carnivore assemblages' trophic networks and demonstrate that the combined use of the molecular dietary approach and network analysis can generate structural insights into carnivore coexistence and can identify functionally important species in complex communities. Such knowledge can help safeguard carnivore guild integrity and enhance community resilience to environmental perturbations in the sensitive QTP ecosystems.
Collapse
Affiliation(s)
- Qi Lu
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chen Cheng
- Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China; Shan Shui Conservation Center, Beijing 100871, China
| | - Lingyun Xiao
- School of Life Sciences, Peking University, Beijing 100871, China; Department of Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, China
| | - Juan Li
- School of Life Sciences, Peking University, Beijing 100871, China; Department of Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xueyang Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiang Zhao
- Shan Shui Conservation Center, Beijing 100871, China
| | - Zhi Lu
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China; Shan Shui Conservation Center, Beijing 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Domestic Cattle in a National Park Restricting the Sika Deer Due to Diet Overlap. Animals (Basel) 2023; 13:ani13040561. [PMID: 36830347 PMCID: PMC9951756 DOI: 10.3390/ani13040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Managers need to know the extent of the conflict between livestock and wild animals. Although many studies have reported the conflict between livestock and wild animals, few have checked the extent of the conflict. Cattle raising in the Northeast Tiger and Leopard National Park is considered one of the main driving forces behind the restricted distribution of sika deer. To understand whether foraging competition is contributing to avoidance patterns between sika deer and cattle, we investigated their feeding habits using DNA barcoding and high-throughput sequencing. Our study shows that although cattle are grazers in the traditional division of herbivores, their diet shifted to a predominance of dicotyledonous woody plants, and this diet shift resulted in a high degree of dietary overlap between sika deer and cattle. Moreover, compared to sika deer, cattle diets are more diverse at the species level with a wider ecological niche. Our results confirm that overlapping dietary niches and the superior competitive abilities of cattle contribute to the restricted distribution of the sika deer, which has critical implications for the conservation of their predators. Our study suggests that cattle grazing should be prohibited in the Park and effective measures should be taken for the benefit of sika deer.
Collapse
|
6
|
Gupta A, David Figueroa H, O'Gorman E, Jones I, Woodward G, Petchey OL. How many predator guts are required to predict trophic interactions? FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Garrison JA, Motwani NH, Broman E, Nascimento FJA. Molecular diet analysis enables detection of diatom and cyanobacteria DNA in the gut of Macoma balthica. PLoS One 2022; 17:e0278070. [PMID: 36417463 PMCID: PMC9683582 DOI: 10.1371/journal.pone.0278070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Detritivores are essential to nutrient cycling, but are often neglected in trophic networks, due to difficulties with determining their diet. DNA analysis of gut contents shows promise of trophic link discrimination, but many unknown factors limit its usefulness. For example, DNA can be rapidly broken down, especially by digestion processes, and DNA provides only a snapshot of the gut contents at a specific time. Few studies have been performed on the length of time that prey DNA can be detected in consumer guts, and none so far using benthic detritivores. Eutrophication, along with climate change, is altering the phytoplankton communities in aquatic ecosystems, on which benthic detritivores in aphotic soft sediments depend. Nutrient-poor cyanobacteria blooms are increasing in frequency, duration, and magnitude in many water bodies, while nutrient-rich diatom spring blooms are shrinking in duration and magnitude, creating potential changes in diet of benthic detritivores. We performed an experiment to identify the taxonomy and quantify the abundance of phytoplankton DNA fragments on bivalve gut contents, and how long these fragments can be detected after consumption in the Baltic Sea clam Macoma balthica. Two common species of phytoplankton (the cyanobacteria Nodularia spumigena or the diatom Skeletonema marinoi) were fed to M. balthica from two regions (from the northern and southern Stockholm archipelago). After removing the food source, M. balthica gut contents were sampled every 24 hours for seven days to determine the number of 23S rRNA phytoplankton DNA copies and when the phytoplankton DNA could no longer be detected by quantitative PCR. We found no differences in diatom 18S rRNA gene fragments of the clams by region, but the southern clams showed significantly more cyanobacteria 16S rRNA gene fragments in their guts than the northern clams. Interestingly, the cyanobacteria and diatom DNA fragments were still detectable by qPCR in the guts of M. balthica one week after removal from its food source. However, DNA metabarcoding of the 23S rRNA phytoplankton gene found in the clam guts showed that added food (i.e. N. spumigena and S. marinoi) did not make up a majority of the detected diet. Our results suggest that these detritivorous clams therefore do not react as quickly as previously thought to fresh organic matter inputs, with other phytoplankton than large diatoms and cyanobacteria constituting the majority of their diet. This experiment demonstrates the viability of using molecular methods to determine feeding of detritivores, but further studies investigating how prey DNA signals can change over time in benthic detritivores will be needed before this method can be widely applicable to both models of ecological functions and conservation policy.
Collapse
Affiliation(s)
- Julie A. Garrison
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- * E-mail:
| | - Nisha H. Motwani
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Yao M, Zhang S, Lu Q, Chen X, Zhang SY, Kong Y, Zhao J. Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward. Mol Ecol 2022; 31:5132-5164. [PMID: 35972241 DOI: 10.1111/mec.16659] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Collapse
Affiliation(s)
- Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Shan Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Qi Lu
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Xiaoyu Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Si-Yu Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Yueqiao Kong
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Jindong Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Garrison JA, Nordström MC, Albertsson J, Nascimento FJA. Temporal and spatial changes in benthic invertebrate trophic networks along a taxonomic richness gradient. Ecol Evol 2022; 12:e8975. [PMID: 35784047 PMCID: PMC9168554 DOI: 10.1002/ece3.8975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Species interactions underlie most ecosystem functions and are important for understanding ecosystem changes. Representing one type of species interaction, trophic networks were constructed from biodiversity monitoring data and known trophic links to assess how ecosystems have changed over time. The Baltic Sea is subject to many anthropogenic pressures, and low species diversity makes it an ideal candidate for determining how pressures change food webs. In this study, we used benthic monitoring data for 20 years (1980-1989 and 2010-2019) from the Swedish coast of the Baltic Sea and Skagerrak to investigate changes in benthic invertebrate trophic interactions. We constructed food webs and calculated fundamental food web metrics evaluating network horizontal and vertical diversity, as well as stability that were compared over space and time. Our results show that the west coast of Sweden (Skagerrak) suffered a reduction in benthic invertebrate biodiversity by 32% between the 1980s and 2010s, and that the number of links, generality of predators, and vulnerability of prey have been significantly reduced. The other basins (Bothnian Sea, Baltic Proper, and Bornholm Basin) do not show any significant changes in species richness or consistent significant trends in any food web metrics investigated, demonstrating resilience at a lower species diversity. The decreased complexity of the Skagerrak food webs indicates vulnerability to further perturbations and pressures should be limited as much as possible to ensure continued ecosystem functions.
Collapse
Affiliation(s)
- Julie A. Garrison
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | | | - Jan Albertsson
- Umeå Marine Sciences CentreUmeå UniversityHörneforsSweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Baltic Sea CentreStockholm UniversityStockholmSweden
| |
Collapse
|
10
|
Hernvann PY, Gascuel D, Kopp D, Robert M, Rivot E. EcoDiet: A hierarchical Bayesian model to combine stomach, biotracer, and literature data into diet matrix estimation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2521. [PMID: 34918402 DOI: 10.1002/eap.2521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/26/2021] [Indexed: 06/14/2023]
Abstract
Although quantifying trophic interactions is a critical path to understanding and forecasting ecosystem functioning, fitting trophic models to field data remains challenging. It requires flexible statistical tools to combine different sources of information from the literature and fieldwork samples. We present EcoDiet, a hierarchical Bayesian modeling framework to simultaneously estimate food-web topology and diet composition of all consumers in the food web, by combining (1) a priori knowledge from the literature on both food-web topology and diet proportions; (2) stomach content analyses, with frequencies of prey occurrence used as the primary source of data to update the prior knowledge on the topological food-web structure; (3) and biotracers data through a mixing model (MM). Inferences are derived in a Bayesian probabilistic rationale that provides a formal way to incorporate prior information and quantifies uncertainty around both the topological structure of the food web and the dietary proportions. EcoDiet was implemented as an open-source R package, providing a user-friendly interface to execute the model, as well as examples and guidelines to familiarize with its use. We used simulated data to demonstrate the benefits of EcoDiet and how the framework can improve inferences on diet matrix by comparison with classical network MM. We applied EcoDiet to the Celtic Sea ecosystem, and showed how combining multiple data types within an integrated approach provides a more robust and holistic picture of the food-web topology and diet matrices than the literature or classical MM approach alone. EcoDiet has the potential to become a reference method for building diet matrices as a preliminary step of ecosystem modeling and to improve our understanding of prey-predator interactions.
Collapse
Affiliation(s)
- Pierre-Yves Hernvann
- DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Lorient, France
- DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, Ifremer, INRAE, Rennes, France
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Didier Gascuel
- DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, Ifremer, INRAE, Rennes, France
| | - Dorothée Kopp
- DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Lorient, France
| | - Marianne Robert
- DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Lorient, France
| | - Etienne Rivot
- DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, Ifremer, INRAE, Rennes, France
| |
Collapse
|
11
|
|
12
|
Manca F, Mulà C, Gustafsson C, Mauri A, Roslin T, Thomas DN, Benedetti-Cecchi L, Norkko A, Strona G. Unveiling the complexity and ecological function of aquatic macrophyte-animal networks in coastal ecosystems. Biol Rev Camb Philos Soc 2022; 97:1306-1324. [PMID: 35174616 PMCID: PMC9544924 DOI: 10.1111/brv.12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022]
Abstract
Network theory offers innovative tools to explore the complex ecological mechanisms regulating species associations and interactions. Although interest in ecological networks has grown steadily during the last two decades, the application of network approaches has been unequally distributed across different study systems: while some kinds of interactions (e.g. plant-pollinator and host-parasite) have been extensively investigated, others remain relatively unexplored. Among the latter, aquatic macrophyte-animal associations in coastal environments have been largely neglected, despite their major role in littoral ecosystems. The ubiquity of macrophyte systems, their accessibility and multi-faceted ecological, economical and societal importance make macrophyte-animal systems an ideal subject for ecological network science. In fact, macrophyte-animal networks offer an aquatic counterpart to terrestrial plant-animal networks. In this review, we show how the application of network analysis to aquatic macrophyte-animal associations has the potential to broaden our understanding of how coastal ecosystems function. Network analysis can also provide a key to understanding how such ecosystems will respond to on-going and future threats from anthropogenic disturbance and environmental change. For this, we: (i) identify key issues that have limited the application of network theory and modelling to aquatic animal-macrophyte associations; (ii) illustrate through examples based on empirical data how network analysis can offer new insights on the complexity and functioning of coastal ecosystems; and (iii) provide suggestions for how to design future studies and establish this new research line into network ecology.
Collapse
Affiliation(s)
- Federica Manca
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland
| | - Clelia Mulà
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland
| | - Camilla Gustafsson
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland
| | - Achille Mauri
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, Uppsala, 756 51, Sweden.,Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, PO Box 27 Latokartanonkaari 5, Helsinki, 00014, Finland
| | - David N Thomas
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland
| | | | - Alf Norkko
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland.,Baltic Sea Centre, Stockholm University, Svante Arrhenius väg 20 F, Stockholm, 106 91, Sweden
| | - Giovanni Strona
- Faculty of Biological and Environmental Sciences, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland.,Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 Viikinkaari 1, Helsinki, 00014, Finland
| |
Collapse
|
13
|
Boukhdoud L, Saliba C, Parker LD, McInerney NR, Kahale R, Saliba I, Maldonado JE, Kharrat MBD. Using DNA metabarcoding to decipher the diet plant component of mammals from the Eastern Mediterranean region. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Longevity of species populations depends largely on interactions among animals and plants in an ecosystem. Predation and seed dispersal are among the most important interactions necessary for species conservation and persistence, and diet analysis is a prerequisite tool to evaluate these interactions. Understanding these processes is crucial for identifying conservation targets and for executing efficient reforestation and ecological restoration. In this study, we applied a scat DNA metabarcoding technique using the P6-loop of the trnL (UAA) chloroplastic marker to describe the seasonal plant diet composition of 15 mammal species from a highly biodiverse Lebanese forest in the Eastern Mediterranean. We also recovered plant seeds, when present, from the scats for identification. The mammal species belong to 10 families from 5 different orders. More than 133 plant species from 54 plant families were detected and identified. Species from the Rosaceae, Poaceae, Apiaceae, Fabaceae, Fagaceae and Berberidaceae families were consumed by the majority of the mammals and should be taken into consideration in future reforestation and conservation projects. Our results showed that the DNA metabarcoding approach provides a promising method for tracking the dietary plant components of a wide diversity of mammals, yielding key insights into plant-animal interactions inside Lebanon’s forests.
Collapse
|
14
|
Drake LE, Cuff JP, Young RE, Marchbank A, Chadwick EA, Symondson WOC. An assessment of minimum sequence copy thresholds for identifying and reducing the prevalence of artefacts in dietary metabarcoding data. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Jordan P. Cuff
- School of Biosciences Cardiff University Cardiff UK
- Rothamsted Insect Survey, Rothamsted Research West Common Harpenden UK
| | | | | | | | | |
Collapse
|
15
|
Ollivier M, Lesieur V, Tavoillot J, Bénetière F, Tixier M, Martin J. An innovative approach combining metabarcoding and ecological interaction networks for selecting candidate biological control agents. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mélodie Ollivier
- CBGP Montpellier SupAgro INRAE CIRAD IRD Univ Montpellier Montpellier France
| | - Vincent Lesieur
- CBGP Montpellier SupAgro INRAE CIRAD IRD Univ Montpellier Montpellier France
- CSIRO Health and Biosecurity European Laboratory Montferrier sur Lez France
| | - Johannes Tavoillot
- CBGP IRD CIRAD INRAE Montpellier SupAgro Univ Montpellier Montpellier France
| | - Fanny Bénetière
- CBGP Montpellier SupAgro INRAE CIRAD IRD Univ Montpellier Montpellier France
| | | | | |
Collapse
|
16
|
Shao X, Lu Q, Xiong M, Bu H, Shi X, Wang D, Zhao J, Li S, Yao M. Prey partitioning and livestock consumption in the world's richest large carnivore assemblage. Curr Biol 2021; 31:4887-4897.e5. [PMID: 34551283 DOI: 10.1016/j.cub.2021.08.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
Large mammalian carnivores have undergone catastrophic declines during the Anthropocene across the world. Despite their pivotal roles as apex predators in food webs and ecosystem dynamics, few detailed dietary datasets of large carnivores exist, prohibiting deep understanding of their coexistence and persistence in human-dominated landscapes. Here, we present fine-scaled, quantitative trophic interactions among sympatric carnivores from three assemblages in the Mountains of Southwest China, a global biodiversity hotspot harboring the world's richest large-carnivore diversity, derived from DNA metabarcoding of 1,097 fecal samples. These assemblages comprise a large-carnivore guild ranging from zero to five species along with two mesocarnivore species. We constructed predator-prey food webs for each assemblage and identified 95 vertebrate prey taxa and 260 feeding interactions in sum. Each carnivore species consumed 6-39 prey taxa, and dietary diversity decreased with increased carnivore body mass across guilds. Dietary partitioning was more evident between large-carnivore and mesocarnivore guilds, yet different large carnivores showed divergent proportional utilization of different-sized prey correlating with their own body masses. Large carnivores particularly selected livestock in Tibetan-dominated regions, where the indigenous people show high tolerance toward wild predators. Our results suggest that dietary niche partitioning and livestock subsidies facilitate large-carnivore sympatry and persistence and have key implications for sustainable conservation promoting human-carnivore coexistence.
Collapse
Affiliation(s)
- Xinning Shao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qi Lu
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Mengyin Xiong
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongliang Bu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoyun Shi
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dajun Wang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Sheng Li
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Paula DP. Next-Generation Sequencing and Its Impacts on Entomological Research in Ecology and Evolution. NEOTROPICAL ENTOMOLOGY 2021; 50:679-696. [PMID: 34374956 DOI: 10.1007/s13744-021-00895-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The advent of NGS-based methods has been profoundly transforming entomological research. Through continual development and improvement of different methods and sequencing platforms, NGS has promoted mass elucidation of partial or whole genetic materials associated with beneficial insects, pests (of agriculture, forestry and animal, and human health), and species of conservation concern, helping to unravel ecological and evolutionary mechanisms and characterizing survival, trophic interactions, and dispersal. It is shifting the scale of biodiversity and environmental analyses from individuals and biodiversity indicator species to the large-scale study of communities and ecosystems using bulk samples of species or a mixed "soup" of environmental DNA. As the NGS-based methods have become more affordable, complexity demystified, and specificity and sensitivity proven, their use in entomological research has spread widely. This article presents several examples on how NGS-based methods have been used in entomology to provide incentives to apply them when appropriate and to open our minds to the expected advances in entomology that are yet to come.
Collapse
|
18
|
Hemprich-Bennett DR, Kemp VA, Blackman J, Struebig MJ, Lewis OT, Rossiter SJ, Clare EL. Altered structure of bat-prey interaction networks in logged tropical forests revealed by metabarcoding. Mol Ecol 2021; 30:5844-5857. [PMID: 34437745 DOI: 10.1111/mec.16153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo. Individual bats in logged rainforest consumed a lower richness of prey than those in old-growth forest. As a result, interaction networks in logged forests had a less nested structure. These network structures were associated with reduced network redundancy and thus increased vulnerability to perturbations in logged forests. Our results show how ecological interactions change between old-growth and logged forests, with potentially negative implications for ecosystem function and network stability.
Collapse
Affiliation(s)
- David R Hemprich-Bennett
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Victoria A Kemp
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Joshua Blackman
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Matthew J Struebig
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, UK
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Calderón-Sanou I, Münkemüller T, Zinger L, Schimann H, Yoccoz NG, Gielly L, Foulquier A, Hedde M, Ohlmann M, Roy M, Si-Moussi S, Thuiller W. Cascading effects of moth outbreaks on subarctic soil food webs. Sci Rep 2021; 11:15054. [PMID: 34301993 PMCID: PMC8302651 DOI: 10.1038/s41598-021-94227-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
The increasing severity and frequency of natural disturbances requires a better understanding of their effects on all compartments of biodiversity. In Northern Fennoscandia, recent large-scale moth outbreaks have led to an abrupt change in plant communities from birch forests dominated by dwarf shrubs to grass-dominated systems. However, the indirect effects on the belowground compartment remained unclear. Here, we combined eDNA surveys of multiple trophic groups with network analyses to demonstrate that moth defoliation has far-reaching consequences on soil food webs. Following this disturbance, diversity and relative abundance of certain trophic groups declined (e.g., ectomycorrhizal fungi), while many others expanded (e.g., bacterivores and omnivores) making soil food webs more diverse and structurally different. Overall, the direct and indirect consequences of moth outbreaks increased belowground diversity at different trophic levels. Our results highlight that a holistic view of ecosystems improves our understanding of cascading effects of major disturbances on soil food webs.
Collapse
Affiliation(s)
- Irene Calderón-Sanou
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000, Grenoble, France.
| | - Tamara Münkemüller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000, Grenoble, France
| | - Lucie Zinger
- Institut de Biologie de L'ENS (IBENS), Département de biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Heidy Schimann
- INRA EcoFoG (AgroParisTech, CNRS, CIRAD, INRA, Université Des Antilles, Université de Guyane), Kourou, France
| | - Nigel Gilles Yoccoz
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ludovic Gielly
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000, Grenoble, France
| | - Arnaud Foulquier
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000, Grenoble, France
| | - Mickael Hedde
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34398, Montpellier, France
| | - Marc Ohlmann
- Université Savoie Mont-Blanc, LAMA, 73000, Chambéry, France
| | - Mélanie Roy
- Laboratoire Évolution Et Diversité Biologique, CNRS, UMR 5174 UPS CNRS IRD, Université Toulouse 3 Paul Sabatier, Toulouse, France
- Instituto Franco-Argentino Para El Estudio del Clima Y Sus Impactos (UMI IFAECI/CNRS-CONICET-UBA-IRD), Dpto. de Ciencias de La Atmosfera Y Los Oceanos, FCEN, Universidad de Buenos Aires, Intendente Guiraldes 2160 - Ciudad Universitaria (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara Si-Moussi
- Eco&Sols, Univ Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, 34398, Montpellier, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, 38000, Grenoble, France
| |
Collapse
|
20
|
Novotny A, Zamora-Terol S, Winder M. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species. Proc Biol Sci 2021; 288:20210908. [PMID: 34130506 PMCID: PMC8206686 DOI: 10.1098/rspb.2021.0908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alternative pathways of energy transfer guarantee the functionality and productivity in marine food webs that experience strong seasonality. Nevertheless, the complexity of zooplankton interactions is rarely considered in trophic studies because of the lack of detailed information about feeding interactions in nature. In this study, we used DNA metabarcoding to highlight the diversity of trophic niches in a wide range of micro- and mesozooplankton, including ciliates, rotifers, cladocerans, copepods and their prey, by sequencing 16- and 18S rRNA genes. Our study demonstrates that the zooplankton trophic niche partitioning goes beyond both phylogeny and size and reinforces the importance of diversity in resource use for stabilizing food web efficiency by allowing for several different pathways of energy transfer. We further highlight that small, rarely studied zooplankton (rotifers and ciliates) fill an important role in the Baltic Sea pelagic primary production pathways and the potential of ciliates, rotifers and crustaceans in the utilization of filamentous and picocyanobacteria within the pelagic food web. The approach used in this study is a suitable entry point to ecosystem-wide food web modelling considering species-specific resource use of key consumers.
Collapse
Affiliation(s)
- Andreas Novotny
- Department of Ecology, Environment, and Plant Science, Stockholm University, Svante Arrhenius Väg 20A, 106 91 Stockholm, Sweden
| | - Sara Zamora-Terol
- Department of Ecology, Environment, and Plant Science, Stockholm University, Svante Arrhenius Väg 20A, 106 91 Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment, and Plant Science, Stockholm University, Svante Arrhenius Väg 20A, 106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Building food networks from molecular data: Bayesian or fixed-number thresholds for including links. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2020.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Traugott M, Thalinger B, Wallinger C, Sint D. Fish as predators and prey: DNA-based assessment of their role in food webs. JOURNAL OF FISH BIOLOGY 2021; 98:367-382. [PMID: 32441321 PMCID: PMC7891366 DOI: 10.1111/jfb.14400] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 05/04/2023]
Abstract
Fish are both consumers and prey, and as such part of a dynamic trophic network. Measuring how they are trophically linked, both directly and indirectly, to other species is vital to comprehend the mechanisms driving alterations in fish communities in space and time. Moreover, this knowledge also helps to understand how fish communities respond to environmental change and delivers important information for implementing management of fish stocks. DNA-based methods have significantly widened our ability to assess trophic interactions in both marine and freshwater systems and they possess a range of advantages over other approaches in diet analysis. In this review we provide an overview of different DNA-based methods that have been used to assess trophic interactions of fish as consumers and prey. We consider the practicalities and limitations, and emphasize critical aspects when analysing molecular derived trophic data. We exemplify how molecular techniques have been employed to unravel food web interactions involving fish as consumers and prey. In addition to the exciting opportunities DNA-based approaches offer, we identify current challenges and future prospects for assessing fish food webs where DNA-based approaches will play an important role.
Collapse
Affiliation(s)
- Michael Traugott
- Applied Animal Ecology, Department of ZoologyUniversity of InnsbruckInnsbruckAustria
| | - Bettina Thalinger
- Applied Animal Ecology, Department of ZoologyUniversity of InnsbruckInnsbruckAustria
- Centre for Biodiversity Genomics, University of GuelphGuelphCanada
| | - Corinna Wallinger
- Institute of Interdisciplinary Mountain Research, Austrian Academy of ScienceInnsbruckAustria
| | - Daniela Sint
- Applied Animal Ecology, Department of ZoologyUniversity of InnsbruckInnsbruckAustria
| |
Collapse
|
23
|
Pringle RM, Hutchinson MC. Resolving Food-Web Structure. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Food webs are a major focus and organizing theme of ecology, but the data used to assemble them are deficient. Early debates over food-web data focused on taxonomic resolution and completeness, lack of which had produced spurious inferences. Recent data are widely believed to be much better and are used extensively in theoretical and meta-analytic research on network ecology. Confidence in these data rests on the assumptions ( a) that empiricists correctly identified consumers and their foods and ( b) that sampling methods were adequate to detect a near-comprehensive fraction of the trophic interactions between species. Abundant evidence indicates that these assumptions are often invalid, suggesting that most topological food-web data may remain unreliable for inferences about network structure and underlying ecological and evolutionary processes. Morphologically cryptic species are ubiquitous across taxa and regions, and many trophic interactions routinely evade detection by conventional methods. Molecular methods have diagnosed the severity of these problems and are a necessary part of the cure.
Collapse
Affiliation(s)
- Robert M. Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Matthew C. Hutchinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
24
|
Lübcker N, Whiteman JP, Newsome SD, Millar RP, de Bruyn PJN. Can the carbon and nitrogen isotope values of offspring be used as a proxy for their mother's diet? Using foetal physiology to interpret bulk tissue and amino acid δ 15N values. CONSERVATION PHYSIOLOGY 2020; 8:coaa060. [PMID: 32765882 PMCID: PMC7397484 DOI: 10.1093/conphys/coaa060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/14/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The measurement of bulk tissue nitrogen (δ15N) and carbon isotope values (δ13C) chronologically along biologically inert tissues sampled from offspring can provide a longitudinal record of their mothers' foraging habits. This study tested the important assumption that mother-offspring stable isotope values are positively and linearly correlated. In addition, any change in the mother-offspring bulk tissues and individual amino acids that occurred during gestation was investigated. Whiskers sampled from southern elephant seal pups (Mirounga leonina) and temporally overlapping whiskers from their mothers were analyzed. This included n = 1895 chronologically subsampled whisker segments for bulk tissue δ15N and δ13C in total and n = 20 whisker segments for amino acid δ15N values, sampled from recently weaned pups (n = 17), juvenile southern elephant seals (SES) < 2 years old (n = 23) and adult female SES (n = 17), which included nine mother-offspring pairs. In contrast to previous studies, the mother-offspring pairs were not in isotopic equilibrium or linearly correlated during gestation: the Δ15N and Δ13C mother-offspring offsets increased by 0.8 and 1.2‰, respectively, during gestation. The foetal bulk δ15N values were 1.7 ± 0.5‰ (0.9-2.7‰) higher than mothers' δ15N values before birth, while the foetal δ13C increased by ~1.7‰ during gestation and were 1.0 ± 0.5‰ (0.0-1.9‰) higher than their mothers' δ13C at the end of pregnancy. The mother-offspring serine and glycine Δ15N differed by ~4.3‰, while the foetal alanine δ15N values were 1.4‰ lower than that of their mothers during the third trimester of pregnancy. The observed mother-offspring δ15N differences are likely explained by shuttling of glutamate-glutamine and glycine-serine amongst skeletal muscle, liver, placenta and foetal tissue. Foetal development relies primarily on remobilized endogenous maternal proteinaceous sources. Researchers should consider foetal physiology when using offspring bulk tissue isotope values as biomarkers for the mother's isotopic composition as part of monitoring programmes.
Collapse
Affiliation(s)
- Nico Lübcker
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - John P Whiteman
- Department of Biological Sciences, Old Dominion University, 5115 Hampton Boulevard, Norfolk, VA, 23529, USA
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Robert P Millar
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa
- Department of Integrative Biomedical Sciences, Neurosciences Institute and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - P J Nico de Bruyn
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
25
|
Bitter fruits of hard labour: diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia 2020; 193:377-388. [PMID: 32533359 PMCID: PMC7320956 DOI: 10.1007/s00442-020-04678-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/30/2020] [Indexed: 11/13/2022]
Abstract
Rapidly increasing urbanisation requires mitigation against associated losses of biodiversity and species abundance. In urban-breeding birds, altered food availability for nestlings is thought to reduce reproductive success compared to forest populations. To compensate for shortages of preferred foods, urban parents could increase their search effort for optimal diets or provision other foods. Here, we used telemetry and faecal metabarcoding on blue tits from one urban and one forest populations to compare parental effort and comprehensively describe nestling diet. Urban parents travelled on average 30% further than those in the forest, likely to offset limited availability of high-quality nestling food (i.e. caterpillars) in cities. Metabarcoding, based on a mean number of 30 identified taxa per faeces, revealed that the diets of urban chicks were nonetheless substantially shifted to include alternative foods. While in the forest caterpillars comprised 82 ± 11% of taxa provisioned to nestlings, in the city they constituted just 44 ± 10%. Pre-fledging chick mass as well as offspring numbers were lower in urban than in forest-reared broods. Thus, at least in our comparison of two sites, the hard labour of urban parents did not fully pay off, suggesting that improved habitat management is required to support urban-breeding birds.
Collapse
|
26
|
Martinez ND. Allometric Trophic Networks From Individuals to Socio-Ecosystems: Consumer–Resource Theory of the Ecological Elephant in the Room. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
27
|
Magalhães de Oliveira HF, Camargo NF, Hemprich-Bennett DR, Rodríguez-Herrera B, Rossiter SJ, Clare EL. Wing morphology predicts individual niche specialization in Pteronotus mesoamericanus (Mammalia: Chiroptera). PLoS One 2020; 15:e0232601. [PMID: 32392221 PMCID: PMC7213686 DOI: 10.1371/journal.pone.0232601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/17/2020] [Indexed: 12/30/2022] Open
Abstract
Morphological variation between individuals can increase niche segregation and decrease intraspecific competition when heterogeneous individuals explore their environment in different ways. Among bat species, wing shape correlates with flight maneuverability and habitat use, with species that possess broader wings typically foraging in more cluttered habitats. However, few studies have investigated the role of morphological variation in bats for niche partitioning at the individual level. To determine the relationship between wing shape and diet, we studied a population of the insectivorous bat species Pteronotus mesoamericanus in the dry forest of Costa Rica. Individual diet was resolved using DNA metabarcoding, and bat wing shape was assessed using geometric morphometric analysis. Inter-individual variation in wing shape showed a significant relationship with both dietary dissimilarity based on Bray-Curtis estimates, and nestedness derived from an ecological network. Individual bats with broader and more rounded wings were found to feed on a greater diversity of arthropods (less nested) in comparison to individuals with triangular and pointed wings (more nested). We conclude that individual variation in bat wing morphology can impact foraging efficiency leading to the observed overall patterns of diet specialization and differentiation within the population.
Collapse
Affiliation(s)
- Hernani Fernandes Magalhães de Oliveira
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
- School of Biological and Chemical Sciences, Queen Mary University of London, London, England, United Kingdom
| | | | - David R. Hemprich-Bennett
- School of Biological and Chemical Sciences, Queen Mary University of London, London, England, United Kingdom
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | | | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, England, United Kingdom
| | - Elizabeth L. Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, England, United Kingdom
| |
Collapse
|
28
|
Orr JA, Vinebrooke RD, Jackson MC, Kroeker KJ, Kordas RL, Mantyka-Pringle C, Van den Brink PJ, De Laender F, Stoks R, Holmstrup M, Matthaei CD, Monk WA, Penk MR, Leuzinger S, Schäfer RB, Piggott JJ. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc Biol Sci 2020; 287:20200421. [PMID: 32370677 DOI: 10.1098/rspb.2020.0421] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Anthropogenic environmental changes, or 'stressors', increasingly threaten biodiversity and ecosystem functioning worldwide. Multiple-stressor research is a rapidly expanding field of science that seeks to understand and ultimately predict the interactions between stressors. Reviews and meta-analyses of the primary scientific literature have largely been specific to either freshwater, marine or terrestrial ecology, or ecotoxicology. In this cross-disciplinary study, we review the state of knowledge within and among these disciplines to highlight commonality and division in multiple-stressor research. Our review goes beyond a description of previous research by using quantitative bibliometric analysis to identify the division between disciplines and link previously disconnected research communities. Towards a unified research framework, we discuss the shared goal of increased realism through both ecological and temporal complexity, with the overarching aim of improving predictive power. In a rapidly changing world, advancing our understanding of the cumulative ecological impacts of multiple stressors is critical for biodiversity conservation and ecosystem management. Identifying and overcoming the barriers to interdisciplinary knowledge exchange is necessary in rising to this challenge. Division between ecosystem types and disciplines is largely a human creation. Species and stressors cross these borders and so should the scientists who study them.
Collapse
Affiliation(s)
- James A Orr
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Rolf D Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kristy J Kroeker
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Rebecca L Kordas
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
| | - Chrystal Mantyka-Pringle
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Wildlife Conservation Society Canada, Whitehorse, Yukon Territory, Canada
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.,Wageningen Environmental Research, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | | | | | - Wendy A Monk
- Environment and Climate Change Canada at Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Marcin R Penk
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Sebastian Leuzinger
- Institute for Applied Ecology, Auckland University of Technology, Auckland, New Zealand
| | - Ralf B Schäfer
- Quantitative Landscape Ecology, iES-Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Jeremy J Piggott
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Chételat J, Ackerman JT, Eagles-Smith CA, Hebert CE. Methylmercury exposure in wildlife: A review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135117. [PMID: 31831233 DOI: 10.1016/j.scitotenv.2019.135117] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 05/12/2023]
Abstract
Exposure to methylmercury (MeHg) can result in detrimental health effects in wildlife. With advances in ecological indicators and analytical techniques for measurement of MeHg in a variety of tissues, numerous processes have been identified that can influence MeHg concentrations in wildlife. This review presents a synthesis of theoretical principals and applied information for measuring MeHg exposure and interpreting MeHg concentrations in wildlife. Mercury concentrations in wildlife are the net result of ecological processes influencing dietary exposure combined with physiological processes that regulate assimilation, transformation, and elimination. Therefore, consideration of both physiological and ecological processes should be integrated when formulating biomonitoring strategies. Ecological indicators, particularly stable isotopes of carbon, nitrogen, and sulfur, compound-specific stable isotopes, and fatty acids, can be effective tools to evaluate dietary MeHg exposure. Animal species differ in their physiological capacity for MeHg elimination, and animal tissues can be inert or physiologically active, act as sites of storage, transformation, or excretion of MeHg, and vary in the timing of MeHg exposure they represent. Biological influences such as age, sex, maternal transfer, and growth or fasting are also relevant for interpretation of tissue MeHg concentrations. Wildlife tissues that represent current or near-term bioaccumulation and in which MeHg is the predominant mercury species (such as blood and eggs) are most effective for biomonitoring ecosystems and understanding landscape drivers of MeHg exposure. Further research is suggested to critically evaluate the use of keratinized external tissues to measure MeHg bioaccumulation, particularly for less-well studied wildlife such as reptiles and terrestrial mammals. Suggested methods are provided to effectively use wildlife for quantifying patterns and drivers of MeHg bioaccumulation over time and space, as well as for assessing the potential risk and toxicological effects of MeHg on wildlife.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA 95620, United States
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, Oregon, 97331, United States
| | - Craig E Hebert
- Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Ottawa, ON K1A 0H3, Canada
| |
Collapse
|
30
|
Ollivier M, Lesieur V, Raghu S, Martin JF. Characterizing ecological interaction networks to support risk assessment in classical biological control of weeds. CURRENT OPINION IN INSECT SCIENCE 2020; 38:40-47. [PMID: 32088650 DOI: 10.1016/j.cois.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/04/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
A key element in weed biological control is the selection of a biological control agent that minimizes the risks of non-target attack and indirect effects on the recipient community. Network ecology is a promising approach that could help decipher tritrophic interactions in both the native and the invaded ranges, to complement quarantine-based host-specificity tests and gain insights on potential interactions of biological control agents. This review highlights practical questions addressed by networks, including 1) biological control agent selection, based on specialization indices, 2) risk assessment of biological control agent release into a novel environment, via particular patterns of association such as apparent competition between agent(s) and native herbivore(s), 3) network comparisons through structural metrics, 4) potential of network modelling and 5) limits of network construction methods.
Collapse
Affiliation(s)
- Melodie Ollivier
- CBGP, Montpellier SupAgro, INRAE, CIRAD, IRD, Univ Montpellier, Montpellier, France.
| | - Vincent Lesieur
- CBGP, Montpellier SupAgro, INRAE, CIRAD, IRD, Univ Montpellier, Montpellier, France; CSIRO Health and Biosecurity, European Laboratory, Montferrier sur Lez, 34980, France
| | | | - Jean-François Martin
- CBGP, Montpellier SupAgro, INRAE, CIRAD, IRD, Univ Montpellier, Montpellier, France
| |
Collapse
|
31
|
Kaunisto KM, Roslin T, Forbes MR, Morrill A, Sääksjärvi IE, Puisto AIE, Lilley TM, Vesterinen EJ. Threats from the air: Damselfly predation on diverse prey taxa. J Anim Ecol 2020; 89:1365-1374. [PMID: 32124439 DOI: 10.1111/1365-2656.13184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
To understand the diversity and strength of predation in natural communities, researchers must quantify the total amount of prey species in the diet of predators. Metabarcoding approaches have allowed widespread characterization of predator diets with high taxonomic resolution. To determine the wider impacts of predators, researchers should combine DNA techniques with estimates of population size of predators using mark-release-recapture (MRR) methods, and with accurate metrics of food consumption by individuals. Herein, we estimate the scale of predation exerted by four damselfly species on diverse prey taxa within a well-defined 12-ha study area, resolving the prey species of individual damselflies, to what extent the diets of predatory species overlap, and which fraction of the main prey populations are consumed. We identify the taxonomic composition of diets using DNA metabarcoding and quantify damselfly population sizes by MRR. We also use predator-specific estimates of consumption rates, and independent data on prey emergence rates to estimate the collective predation pressure summed over all prey taxa and specific to their main prey (non-biting midges or chironomids) of the four damselfly species. The four damselfly species collectively consumed a prey mass equivalent to roughly 870 (95% CL 410-1,800) g, over 2 months. Each individual consumed 29%-66% (95% CL 9.4-123) of its body weight during its relatively short life span (2.1-4.7 days; 95% CL 0.74-7.9) in the focal population. This predation pressure was widely distributed across the local invertebrate prey community, including 4 classes, 19 orders and c. 140 genera. Different predator species showed extensive overlap in diets, with an average of 30% of prey shared by at least two predator species. Of the available prey individuals in the widely consumed family Chironomidae, only a relatively small proportion (0.76%; 95% CL 0.35%-1.61%) were consumed. Our synthesis of population sizes, per-capita consumption rates and taxonomic distribution of diets identifies damselflies as a comparatively minor predator group of aerial insects. As the next step, we should add estimates of predation by larger odonate species, and experimental removal of odonates, thereby establishing the full impact of odonate predation on prey communities.
Collapse
Affiliation(s)
- Kari M Kaunisto
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, Finland
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andre Morrill
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Ilari E Sääksjärvi
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, Finland
| | - Anna I E Puisto
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, Finland.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Thomas M Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Eero J Vesterinen
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, Finland.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Roslin T, Traugott M, Jonsson M, Stone GN, Creer S, Symondson WOC. Introduction: Special issue on species interactions, ecological networks and community dynamics - Untangling the entangled bank using molecular techniques. Mol Ecol 2019; 28:157-164. [PMID: 30548494 DOI: 10.1111/mec.14974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/23/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Michael Traugott
- Mountain Agriculture Research Unit, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Mattias Jonsson
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Graham N Stone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Gwynedd, UK
| | | |
Collapse
|
33
|
Fülöp D, Szita É, Gerstenbrand R, Tholt G, Samu F. Consuming alternative prey does not influence the DNA detectability half-life of pest prey in spider gut contents. PeerJ 2019; 7:e7680. [PMID: 31660259 PMCID: PMC6814063 DOI: 10.7717/peerj.7680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Key natural enemy-pest interactions can be mapped in agricultural food webs by analysing predator gut content for the presence of a focal pest species. For this, PCR-based approaches are the most widely used methods providing the incidence of consumption of a focal pest in field sampled predators. To interpret such data the rate of prey DNA decay in the predators' gut, described by DNA detectability half-life (t 1/2), is needed. DNA decay may depend on the presence of alternative prey in the gut of generalist predators, but this effect has not been investigated in one of the major predatory arthropod groups, spiders. METHODS In a laboratory feeding experiment, we determined t 1/2 of the key cereal pest virus vector leafhopper Psammotettix alienus in the digestive tracts of its natural enemy, the spider Tibellus oblongus. We followed the fate of prey DNA in spiders which received only the focal prey as food, or as an alternative prey treatment they also received a meal of fruit flies after leafhopper consumption. After these feeding treatments, spiders were starved for variable time intervals prior to testing for leafhopper DNA in order to establish t 1/2. RESULTS We created a PCR protocol that detects P. alienus DNA in its spider predator. The protocol was further calibrated to the digestion speed of the spider by establishing DNA decay rate. Detectability limit was reached at 14 days, where c. 10% of the animals tested positive. The calculated t 1/2 = 5 days value of P. alienus DNA did not differ statistically between the treatment groups which received only the leafhopper prey or which also received fruit fly. The PCR protocol was validated in a field with known P. alienus infestation. In this applicability trial, we showed that 12.5% of field collected spiders were positive for the leafhopper DNA. We conclude that in our model system the presence of alternative prey did not influence the t 1/2 estimate of a pest species, which makes laboratory protocols more straightforward for the calibration of future field data.
Collapse
Affiliation(s)
- Dávid Fülöp
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Éva Szita
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Regina Gerstenbrand
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Gergely Tholt
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| | - Ferenc Samu
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
34
|
Rogy P, Wheeler TA, Solecki AM. Spatial distribution of acalyptrate fly (Diptera) assemblages in Northern Canada. Polar Biol 2019. [DOI: 10.1007/s00300-019-02535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
The marine fish food web is globally connected. Nat Ecol Evol 2019; 3:1153-1161. [PMID: 31358950 DOI: 10.1038/s41559-019-0950-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/20/2019] [Indexed: 12/25/2022]
Abstract
The productivity of marine ecosystems and the services they provide to humans are largely dependent on complex interactions between prey and predators. These are embedded in a diverse network of trophic interactions, resulting in a cascade of events following perturbations such as species extinction. The sheer scale of oceans, however, precludes the characterization of marine feeding networks through de novo sampling. This effort ought instead to rely on a combination of extensive data and inference. Here we investigate how the distribution of trophic interactions at the global scale shapes the marine fish food web structure. We hypothesize that the heterogeneous distribution of species ranges in biogeographic regions should concentrate interactions in the warmest areas and within species groups. We find that the inferred global metaweb of marine fish-that is, all possible potential feeding links between co-occurring species-is highly connected geographically with a low degree of spatial modularity. Metrics of network structure correlate with sea surface temperature and tend to peak towards the tropics. In contrast to open-water communities, coastal food webs have greater interaction redundancy, which may confer robustness to species extinction. Our results suggest that marine ecosystems are connected yet display some resistance to perturbations because of high robustness at most locations.
Collapse
|
36
|
Cirtwill AR, Eklöf A, Roslin T, Wootton K, Gravel D. A quantitative framework for investigating the reliability of empirical network construction. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alyssa R. Cirtwill
- Department of Physics, Chemistry and Biology (IFM)Linköping University Linköping Sweden
| | - Anna Eklöf
- Department of Physics, Chemistry and Biology (IFM)Linköping University Linköping Sweden
| | - Tomas Roslin
- Department of EcologySwedish University of Agricultural Sciences Uppsala Sweden
| | - Kate Wootton
- Department of EcologySwedish University of Agricultural Sciences Uppsala Sweden
| | - Dominique Gravel
- Département de biologieUniversité de Sherbrooke Sherbrooke Canada
| |
Collapse
|
37
|
Böhme K, Calo-Mata P, Barros-Velázquez J, Ortea I. Review of Recent DNA-Based Methods for Main Food-Authentication Topics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3854-3864. [PMID: 30901215 DOI: 10.1021/acs.jafc.8b07016] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adulteration and mislabeling of food products and the commercial fraud derived, either intentionally or not, is a global source of economic fraud to consumers but also to all stakeholders involved in food production and distribution. Legislation has been enforced all over the world aimed at guaranteeing the authenticity of the food products all along the distribution chain, thereby avoiding food fraud and adulteration. Accordingly, there is a growing need for new analytical methods able to verify that all the ingredients included in a foodstuff match the qualities claimed by the manufacturer or distributor. In this sense, the improved performance of most recent DNA-based tools in term of sensitivity, multiplexing ability, high-throughput, and relatively low-cost give them a game-changing role in food-authenticity-related topics. Here, we provide a thorough and updated vision on the recently reported approaches that are applying these DNA-based tools to assess the authenticity of food components and products.
Collapse
Affiliation(s)
- Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science , University of Santiago de Compostela , E-27002 Lugo , Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science , University of Santiago de Compostela , E-27002 Lugo , Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science , University of Santiago de Compostela , E-27002 Lugo , Spain
| | - Ignacio Ortea
- Proteomics Unit , Maimonides Institute for Biomedical Research (IMIBIC) , E-14004 Córdoba , Spain
| |
Collapse
|
38
|
Lopes RJ, Pinho CJ, Santos B, Seguro M, Mata VA, Egeter B, Vasconcelos R. Intricate trophic links between threatened vertebrates confined to a small island in the Atlantic Ocean. Ecol Evol 2019; 9:4994-5002. [PMID: 31031960 PMCID: PMC6476777 DOI: 10.1002/ece3.5105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023] Open
Abstract
Trophic networks in small isolated islands are in a fragile balance, and their disturbance can easily contribute toward the extinction vortex of species. Here, we show, in a small Atlantic island (Raso) in the Cabo Verde Archipelago, using DNA metabarcoding, the extent of trophic dependence of the Endangered giant wall gecko Tarentola gigas on endemic populations of vertebrates, including one of the rarest bird species of the world, the Critically Endangered Raso lark Alauda razae. We found that the Raso lark (27%), Iago sparrow Passer iagoensis (12%), Bulwer's petrel Bulweria bulwerii (15%), and the Cabo Verde shearwater Calonectris edwardsii (10%) are the most frequent vertebrate signatures found in the feces of the giant wall gecko. This work provides the first integrative assessment of their trophic links, an important issue to be considered for the long-term conservation of these small and isolated island ecosystems.
Collapse
Affiliation(s)
- Ricardo J. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
| | - Catarina J. Pinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Bárbara Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Mariana Seguro
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Vanessa A. Mata
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Bastian Egeter
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
| | - Raquel Vasconcelos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório AssociadoUniversidade do PortoVairãoPortugal
| |
Collapse
|
39
|
Corse E, Tougard C, Archambaud‐Suard G, Agnèse J, Messu Mandeng FD, Bilong Bilong CF, Duneau D, Zinger L, Chappaz R, Xu CC, Meglécz E, Dubut V. One-locus-several-primers: A strategy to improve the taxonomic and haplotypic coverage in diet metabarcoding studies. Ecol Evol 2019; 9:4603-4620. [PMID: 31031930 PMCID: PMC6476781 DOI: 10.1002/ece3.5063] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
In diet metabarcoding analyses, insufficient taxonomic coverage of PCR primer sets generates false negatives that may dramatically distort biodiversity estimates. In this paper, we investigated the taxonomic coverage and complementarity of three cytochrome c oxidase subunit I gene (COI) primer sets based on in silico analyses and we conducted an in vivo evaluation using fecal and spider web samples from different invertivores, environments, and geographic locations. Our results underline the lack of predictability of both the coverage and complementarity of individual primer sets: (a) sharp discrepancies exist observed between in silico and in vivo analyses (to the detriment of in silico analyses); (b) both coverage and complementarity depend greatly on the predator and on the taxonomic level at which preys are considered; (c) primer sets' complementarity is the greatest at fine taxonomic levels (molecular operational taxonomic units [MOTUs] and variants). We then formalized the "one-locus-several-primer-sets" (OLSP) strategy, that is, the use of several primer sets that target the same locus (here the first part of the COI gene) and the same group of taxa (here invertebrates). The proximal aim of the OLSP strategy is to minimize false negatives by increasing total coverage through multiple primer sets. We illustrate that the OLSP strategy is especially relevant from this perspective since distinct variants within the same MOTUs were not equally detected across all primer sets. Furthermore, the OLSP strategy produces largely overlapping and comparable sequences, which cannot be achieved when targeting different loci. This facilitates the use of haplotypic diversity information contained within metabarcoding datasets, for example, for phylogeography and finer analyses of prey-predator interactions.
Collapse
Affiliation(s)
- Emmanuel Corse
- Aix Marseille Univ, Avignon UnivCNRS, IRD, IMBEMarseilleFrance
- Agence de Recherche pour la Biodiversité à la Réunion (ARBRE)Saint‐Leu, La RéunionFrance
| | | | | | | | - Françoise D. Messu Mandeng
- Laboratory of Parasitology and Ecology, Departement of Animal Biology and PhysiologyUniversity of Yaoundé IYaoundéCameroon
| | - Charles F. Bilong Bilong
- Laboratory of Parasitology and Ecology, Departement of Animal Biology and PhysiologyUniversity of Yaoundé IYaoundéCameroon
| | - David Duneau
- Université Toulouse 3 Paul SabatierCNRS, ENSFEA, EDB (Laboratoire Évolution & Diversité Biologique)ToulouseFrance
| | - Lucie Zinger
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERMPSL Research UniversityParisFrance
| | - Rémi Chappaz
- Irstea, Aix Marseille Univ, RECOVERAix‐en‐ProvenceFrance
| | - Charles C.Y. Xu
- Redpath Museum and Department of BiologyMcGill UniversityMontréalQuebecCanada
| | - Emese Meglécz
- Aix Marseille Univ, Avignon UnivCNRS, IRD, IMBEMarseilleFrance
| | - Vincent Dubut
- Aix Marseille Univ, Avignon UnivCNRS, IRD, IMBEMarseilleFrance
| |
Collapse
|
40
|
Clare EL, Fazekas AJ, Ivanova NV, Floyd RM, Hebert PDN, Adams AM, Nagel J, Girton R, Newmaster SG, Fenton MB. Approaches to integrating genetic data into ecological networks. Mol Ecol 2018; 28:503-519. [PMID: 30427082 DOI: 10.1111/mec.14941] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/25/2018] [Indexed: 01/03/2023]
Abstract
As molecular tools for assessing trophic interactions become common, research is increasingly focused on the construction of interaction networks. Here, we demonstrate three key methods for incorporating DNA data into network ecology and discuss analytical considerations using a model consisting of plants, insects, bats and their parasites from the Costa Rica dry forest. The simplest method involves the use of Sanger sequencing to acquire long sequences to validate or refine field identifications, for example of bats and their parasites, where one specimen yields one sequence and one identification. This method can be fully quantified and resolved and these data resemble traditional ecological networks. For more complex taxonomic identifications, we target multiple DNA loci, for example from a seed or fruit pulp sample in faeces. These networks are also well resolved but gene targets vary in resolution and quantification is difficult. Finally, for mixed templates such as faecal contents of insectivorous bats, we use DNA metabarcoding targeting two sequence lengths (157 and 407 bp) of one gene region and a MOTU, BLAST and BIN association approach to resolve nodes. This network type is complex to generate and analyse, and we discuss the implications of this type of resolution on network analysis. Using these data, we construct the first molecular-based network of networks containing 3,304 interactions between 762 nodes of eight trophic functions and involving parasitic, mutualistic and predatory interactions. We provide a comparison of the relative strengths and weaknesses of these data types in network ecology.
Collapse
Affiliation(s)
- Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.,Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Aron J Fazekas
- The Arboretum, University of Guelph, Guelph, Ontario, Canada
| | - Natalia V Ivanova
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Robin M Floyd
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Amanda M Adams
- Department of Biology, Texas A&M University, College Station, Texas
| | - Juliet Nagel
- Center for Environmental Science, University of Maryland, Frostburg, Maryland
| | - Rebecca Girton
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Steven G Newmaster
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - M Brock Fenton
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
41
|
Vesterinen EJ, Puisto AIE, Blomberg AS, Lilley TM. Table for five, please: Dietary partitioning in boreal bats. Ecol Evol 2018; 8:10914-10937. [PMID: 30519417 PMCID: PMC6262732 DOI: 10.1002/ece3.4559] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023] Open
Abstract
Differences in diet can explain resource partitioning in apparently similar, sympatric species. Here, we analyzed 1,252 fecal droppings from five species (Eptesicus nilssonii, Myotis brandtii, M. daubentonii, M. mystacinus, and Plecotus auritus) to reveal their dietary niches using fecal DNA metabarcoding. We identified nearly 550 prey species in 13 arthropod orders. Two main orders (Diptera and Lepidoptera) formed the majority of the diet for all species, constituting roughly 80%-90% of the diet. All five species had different dietary assemblages. We also found significant differences in the size of prey species between the bat species. Our results on diet composition remain mostly unchanged when using either read counts as a proxy for quantitative diet or presence-absence data, indicating a strong biological pattern. We conclude that although bats share major components in their ecology (nocturnal life style, insectivory, and echolocation), species differ in feeding behavior, suggesting bats may have distinctive evolutionary strategies. Diet analysis helps illuminate life history traits of various species, adding to sparse ecological knowledge, which can be utilized in conservation planning.
Collapse
Affiliation(s)
- Eero J. Vesterinen
- Biodiversity UnitUniversity of TurkuTurkuFinland
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Anna S. Blomberg
- Biodiversity UnitUniversity of TurkuTurkuFinland
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Thomas M. Lilley
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
42
|
Eitzinger B, Abrego N, Gravel D, Huotari T, Vesterinen EJ, Roslin T. Assessing changes in arthropod predator–prey interactions through
DNA
‐based gut content analysis—variable environment, stable diet. Mol Ecol 2018; 28:266-280. [DOI: 10.1111/mec.14872] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Bernhard Eitzinger
- Faculty of Agriculture and Forestry University of Helsinki Helsinki Finland
- Nature Conservation and Landscape Ecology University of Freiburg Freiburg Germany
| | - Nerea Abrego
- Faculty of Agriculture and Forestry University of Helsinki Helsinki Finland
| | - Dominique Gravel
- Département de biologie Université de Sherbrooke Sherbrooke Quebec Canada
| | - Tea Huotari
- Faculty of Agriculture and Forestry University of Helsinki Helsinki Finland
| | - Eero J Vesterinen
- Faculty of Agriculture and Forestry University of Helsinki Helsinki Finland
- Biodiversity Unit University of Turku Turku Finland
| | - Tomas Roslin
- Faculty of Agriculture and Forestry University of Helsinki Helsinki Finland
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
43
|
Fernandes K, van der Heyde M, Bunce M, Dixon K, Harris RJ, Wardell-Johnson G, Nevill PG. DNA metabarcoding-a new approach to fauna monitoring in mine site restoration. Restor Ecol 2018. [DOI: 10.1111/rec.12868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kristen Fernandes
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Mieke van der Heyde
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Michael Bunce
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Kingsley Dixon
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Richard J. Harris
- School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Grant Wardell-Johnson
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| | - Paul G. Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences; Curtin University; GPO Box U1987, Perth WA 6102 Australia
| |
Collapse
|
44
|
Koskinen J, Roslin T, Nyman T, Abrego N, Michell C, Vesterinen EJ. Finding flies in the mushroom soup: Host specificity of fungus-associated communities revisited with a novel molecular method. Mol Ecol 2018; 28:190-202. [PMID: 30040155 DOI: 10.1111/mec.14810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 12/24/2022]
Abstract
Fruiting bodies of fungi constitute an important resource for thousands of other taxa. The structure of these diverse assemblages has traditionally been studied with labour-intensive methods involving cultivation and morphology-based species identification, to which molecular information might offer convenient complements. To overcome challenges in DNA extraction and PCR associated with the complex chemical properties of fruiting bodies, we developed a pipeline applicable for extracting amplifiable total DNA from soft fungal samples of any size. Our protocol purifies DNA in two sequential steps: (a) initial salt-isopropanol extraction of all nucleic acids in the sample is followed by (b) an extra clean-up step using solid-phase reversible immobilization (SPRI) magnetic beads. The protocol proved highly efficient, with practically all of our samples-regardless of biomass or other properties-being successfully PCR-amplified using metabarcoding primers and subsequently sequenced. As a proof of concept, we apply our methods to address a topical ecological question: is host specificity a major characteristic of fungus-associated communities, that is, do different fungus species harbour different communities of associated organisms? Based on an analysis of 312 fungal fruiting bodies representing 10 species in five genera from three orders, we show that molecular methods are suitable for studying this rich natural microcosm. Comparing to previous knowledge based on rearing and morphology-based identifications, we find a species-rich assemblage characterized by a low degree of host specialization. Our method opens up new horizons for molecular analyses of fungus-associated interaction webs and communities. Fruiting bodies of fungi constitute an important resource for thousands of other taxa. The structure of these diverse assemblages has traditionally been studied with labour-intensive methods involving cultivation and morphology-based species identification, to which molecular information might offer convenient complements. To overcome challenges in DNA extraction and PCR associated with the complex chemical properties of fruiting bodies, we developed a pipeline applicable for extracting amplifiable total DNA from soft fungal samples of any size. Our protocol purifies DNA in two sequential steps: (a) initial salt-isopropanol extraction of all nucleic acids in the sample is followed by (b) an extra clean-up step using solid-phase reversible immobilization (SPRI) magnetic beads. The protocol proved highly efficient, with practically all of our samples-regardless of biomass or other properties-being successfully PCR-amplified using metabarcoding primers and subsequently sequenced. As a proof of concept, we apply our methods to address a topical ecological question: is host specificity a major characteristic of fungus-associated communities, that is, do different fungus species harbour different communities of associated organisms? Based on an analysis of 312 fungal fruiting bodies representing 10 species in five genera from three orders, we show that molecular methods are suitable for studying this rich natural microcosm. Comparing to previous knowledge based on rearing and morphology-based identifications, we find a species-rich assemblage characterized by a low degree of host specialization. Our method opens up new horizons for molecular analyses of fungus-associated interaction webs and communities.
Collapse
Affiliation(s)
- Janne Koskinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Tomas Roslin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tommi Nyman
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Nerea Abrego
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Craig Michell
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Eero J Vesterinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,Biodiversity Unit, University of Turku, Turku, Finland
| |
Collapse
|
45
|
Deagle BE, Thomas AC, McInnes JC, Clarke LJ, Vesterinen EJ, Clare EL, Kartzinel TR, Eveson JP. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Mol Ecol 2018; 28:391-406. [PMID: 29858539 PMCID: PMC6905394 DOI: 10.1111/mec.14734] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Advances in DNA sequencing technology have revolutionized the field of molecular analysis of trophic interactions, and it is now possible to recover counts of food DNA sequences from a wide range of dietary samples. But what do these counts mean? To obtain an accurate estimate of a consumer's diet should we work strictly with data sets summarizing frequency of occurrence of different food taxa, or is it possible to use relative number of sequences? Both approaches are applied to obtain semi-quantitative diet summaries, but occurrence data are often promoted as a more conservative and reliable option due to taxa-specific biases in recovery of sequences. We explore representative dietary metabarcoding data sets and point out that diet summaries based on occurrence data often overestimate the importance of food consumed in small quantities (potentially including low-level contaminants) and are sensitive to the count threshold used to define an occurrence. Our simulations indicate that using relative read abundance (RRA) information often provides a more accurate view of population-level diet even with moderate recovery biases incorporated; however, RRA summaries are sensitive to recovery biases impacting common diet taxa. Both approaches are more accurate when the mean number of food taxa in samples is small. The ideas presented here highlight the need to consider all sources of bias and to justify the methods used to interpret count data in dietary metabarcoding studies. We encourage researchers to continue addressing methodological challenges and acknowledge unanswered questions to help spur future investigations in this rapidly developing area of research.
Collapse
Affiliation(s)
- Bruce E Deagle
- Australian Antarctic Division, Channel Highway, Kingston, TAS, Australia
| | | | - Julie C McInnes
- Australian Antarctic Division, Channel Highway, Kingston, TAS, Australia
| | - Laurence J Clarke
- Australian Antarctic Division, Channel Highway, Kingston, TAS, Australia.,Antarctic Climate & Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, TAS, Australia
| | - Eero J Vesterinen
- Biodiversity Unit and Department of Biology, University of Turku, Turku, Finland.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Tyler R Kartzinel
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| | | |
Collapse
|
46
|
Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods. Oecologia 2018; 187:689-699. [DOI: 10.1007/s00442-018-4147-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
47
|
Why We Need Sustainable Networks Bridging Countries, Disciplines, Cultures and Generations for Aquatic Biomonitoring 2.0: A Perspective Derived From the DNAqua-Net COST Action. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2018.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Pearson CE, Symondson WOC, Clare EL, Ormerod SJ, Iparraguirre Bolaños E, Vaughan IP. The effects of pastoral intensification on the feeding interactions of generalist predators in streams. Mol Ecol 2017; 27:590-602. [PMID: 29219224 PMCID: PMC5887918 DOI: 10.1111/mec.14459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/10/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022]
Abstract
Land‐use change can alter trophic interactions with wide‐ranging functional consequences, yet the consequences for aquatic food webs have been little studied. In part, this may reflect the challenges of resolving the diets of aquatic organisms using classical gut contents analysis, especially for soft‐bodied prey. We used next‐generation sequencing to resolve prey use in nearly 400 individuals of two predatory invertebrates (the Caddisfly, Rhyacophila dorsalis, and the Stonefly Dinocras cephalotes) in streams draining land with increasingly intensive livestock farming. Rhyacophila dorsalis occurred in all streams, whereas D. cephalotes was restricted to low intensities, allowing us to test whether: (i) apparent sensitivity to agriculture in the latter species reflects a more specialized diet and (ii) diet in R. dorsalis varied between sites with and without D. cephalotes. DNA was extracted from dissected gut contents, amplified without blocking probes and sequenced using Ion Torrent technology. Both predators were generalists, consuming 30 prey taxa with a preference for taxa that were abundant in all streams or that increased with intensification. Where both predators were present, their diets were nearly identical, and R. dorsalis's diet was virtually unchanged in the absence of D. cephalotes. The loss of D. cephalotes from more intensive sites was probably due to physicochemical stressors, such as sedimentation, rather than to dietary specialization, although wider biotic factors (e.g., competition with other predatory taxa) could not be excluded. This study provides a uniquely detailed description of predator diets along a land‐use intensity gradient, offering new insights into how anthropogenic stressors affect stream communities.
Collapse
Affiliation(s)
- C E Pearson
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - W O C Symondson
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - E L Clare
- School of Biological and Chemical Sciences, Queen Mary University, London, UK
| | - S J Ormerod
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - E Iparraguirre Bolaños
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.,Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| | - I P Vaughan
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
49
|
Šigut M, Kostovčík M, Šigutová H, Hulcr J, Drozd P, Hrček J. Performance of DNA metabarcoding, standard barcoding, and morphological approach in the identification of host-parasitoid interactions. PLoS One 2017; 12:e0187803. [PMID: 29236697 PMCID: PMC5728528 DOI: 10.1371/journal.pone.0187803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/26/2017] [Indexed: 11/19/2022] Open
Abstract
Understanding interactions between herbivores and parasitoids is essential for successful biodiversity protection and monitoring and for biological pest control. Morphological identifications employ insect rearing and are complicated by insects’ high diversity and crypsis. DNA barcoding has been successfully used in studies of host–parasitoid interactions as it can substantially increase the recovered real host–parasitoid diversity distorted by overlooked species complexes, or by species with slight morphological differences. However, this approach does not allow the simultaneous detection and identification of host(s) and parasitoid(s). Recently, high-throughput sequencing has shown high potential for surveying ecological communities and trophic interactions. Using mock samples comprising insect larvae and their parasitoids, we tested the potential of DNA metabarcoding for identifying individuals involved in host–parasitoid interactions to different taxonomic levels, and compared it to standard DNA barcoding and morphological approaches. For DNA metabarcoding, we targeted the standard barcoding marker cytochrome oxidase subunit I using highly degenerate primers, 2*300 bp sequencing on a MiSeq platform, and RTAX classification using paired-end reads. Additionally, using a large host–parasitoid dataset from a Central European floodplain forest, we assess the completeness and usability of a local reference library by confronting the number of Barcoding Index Numbers obtained by standard barcoding with the number of morphotypes. Overall, metabarcoding recovery was high, identifying 92.8% of the taxa present in mock samples, and identification success within individual taxonomic levels did not significantly differ among metabarcoding, standard barcoding, and morphology. Based on the current local reference library, 39.4% parasitoid and 90.7% host taxa were identified to the species level. DNA barcoding estimated higher parasitoid diversity than morphotyping, especially in groups with high level of crypsis. This study suggests the potential of metabarcoding for effectively recovering host–parasitoid diversity, together with more accurate identifications obtained from building reliable and comprehensive reference libraries, especially for parasitoids.
Collapse
Affiliation(s)
- Martin Šigut
- Department of Biology and Ecology/Institute of Environmental Technologies, University of Ostrava, Ostrava, Czech Republic
| | - Martin Kostovčík
- Department of Genetics and Microbiology, Charles University in Prague, Praha, Czech Republic
- BIOCEV, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vestec, Czech Republic
| | - Hana Šigutová
- Department of Biology and Ecology/Institute of Environmental Technologies, University of Ostrava, Ostrava, Czech Republic
- * E-mail: (HŠ); (PD)
| | - Jiří Hulcr
- School of Forest Resources and Conservation, University of Florida-IFAS, Gainesville, Florida, United States of America
- Entomology and Nematology Department, University of Florida-IFAS, Gainesville, Florida, United States of America
| | - Pavel Drozd
- Department of Biology and Ecology/Institute of Environmental Technologies, University of Ostrava, Ostrava, Czech Republic
- * E-mail: (HŠ); (PD)
| | - Jan Hrček
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
50
|
Rolls RJ, Baldwin DS, Bond NR, Lester RE, Robson BJ, Ryder DS, Thompson RM, Watson GA. A framework for evaluating food-web responses to hydrological manipulations in riverine systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:136-150. [PMID: 28783010 DOI: 10.1016/j.jenvman.2017.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/20/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
Environmental flows are used to restore elements of the hydrological regime altered by human use of water. One of the primary justifications and purposes for environmental flows is the maintenance of target species populations but, paradoxically, there has been little emphasis on incorporating the food-web and trophic dynamics that determine population-level responses into the monitoring and evaluation of environmental flow programs. We develop a generic framework for incorporating trophic dynamics into monitoring programs to identify the food-web linkages between hydrological regimes and population-level objectives of environmental flows. These linkages form the basis for objective setting, ecological targets and indicator selection that are necessary for planning monitoring programs with a rigorous scientific basis. Because there are multiple facets of trophic dynamics that influence energy production and transfer through food webs, the specific objectives of environmental flows need to be defined during the development of monitoring programs. A multitude of analytical methods exist that each quantify distinct aspects of food webs (e.g. energy production, prey selection, energy assimilation), but no single method can provide a basis for holistic understanding of food webs. Our paper critiques a range of analytical methods for quantifying attributes of food webs to inform the setting, monitoring and evaluation of trophic outcomes of environmental flows and advance the conceptual understanding of trophic dynamics in river-floodplain systems.
Collapse
Affiliation(s)
- Robert J Rolls
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
| | - Darren S Baldwin
- The Murray-Darling Freshwater Research Centre, La Trobe University, PO Box 821, Wodonga, VIC 3689, Australia; CSIRO Land and Water, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Nick R Bond
- The Murray-Darling Freshwater Research Centre, La Trobe University, PO Box 821, Wodonga, VIC 3689, Australia
| | - Rebecca E Lester
- School of Life and Environmental Sciences, Centre for Integrative Ecology, PO Box 423, Warrnambool, VIC 3280, Australia
| | - Barbara J Robson
- CSIRO Land and Water, GPO Box 1700, Canberra, ACT 2601, Australia
| | - Daren S Ryder
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Ross M Thompson
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| | - Garth A Watson
- The Murray-Darling Freshwater Research Centre, La Trobe University, PO Box 821, Wodonga, VIC 3689, Australia; CSIRO Land and Water, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|