1
|
Feng Y, Qu J, Zou X, Cao W, Zhou Y. Establishment of Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Hirsutella satumaensis. Fungal Biol 2025; 129:101548. [PMID: 40023529 DOI: 10.1016/j.funbio.2025.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/21/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Hirsutella satumaensis, an endoparasitic fungus that targets Lepidoptera insects, holds significant potential for biocontrol applications. However, its molecular study has been limited due to the absence of an efficient genetic transformation system. In this study, an optimized Agrobacterium tumefaciens-mediated transformation protocol was developed for H. satumaensis using binary vectors pBARGPE1-GFP and pK2-bar, which carry the green fluorescent protein (eGFP) and phosphinothricin resistance (bar) genes, respectively. The optimal transformation conditions included a conidial concentration of 10⁵ conidia/mL, an A. tumefaciens (strain AGL-1) concentration of OD660 = 0.6, and a 3-day co-cultivation period with 200 μM acetosyringone, resulting in an average of 121 ± 5.07 transformants. Successful integration was confirmed by green fluorescence in the transformants. Furthermore, the ribotoxin gene hirsutellin A (HtA), specific to the genus Hirsutella, was successfully overexpressed using this system. Insect bioassays demonstrated that the gpdA promoter effectively drives HtA expression in H. satumaensis. The transformation system exhibited stable gene integration, strong fluorescence, and bioactivity. This study establishes the first genetic transformation protocol for H. satumaensis, providing a valuable tool for exploring insect-pathogen interactions and the functional roles of key genes in this entomopathogenic fungus.
Collapse
Affiliation(s)
- Yongli Feng
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China.
| | - Jiaojiao Qu
- College of Tea Sciences, Guizhou University, Guizhou Key Laboratory of Agricultural Microbiology, Guiyang, China.
| | - Xiao Zou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China.
| | - Wei Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China.
| | - Yeming Zhou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Conformational stability of ageritin, a metal binding ribotoxin-like protein of fungal origin. Int J Biol Macromol 2022; 221:1012-1021. [PMID: 36113585 DOI: 10.1016/j.ijbiomac.2022.09.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
Ageritin is a ribotoxin-like protein of biotechnological interest, belonging to a family of ribonucleases from edible mushrooms. Its enzymatic activity is explicated through the hydrolysis of a single phosphodiester bond, located in the sarcin/ricin loop of ribosomes. Unlike other ribotoxins, ageritin activity requires divalent cations (Zn2+). Here we investigated the conformational stability of ageritin in the pH range 4.0-7.4, using calorimetric and spectroscopic techniques. We observed a high protein thermal stability at all pHs with a denaturation temperature of 78 °C. At pH 5.0 we calculated a value of 36 kJ mol-1 for the unfolding Gibbs energy at 25 °C. We also analysed the thermodynamic and catalytic behaviour of S-pyridylethylated form, obtained by alkylating the single Cys18 residue, which is predicted to bind Zn2+. We show that this form possesses the same activity and structure of ageritin, but lower stability. In fact, the corresponding values of 52 °C and 14 kJ mol-1 were found. Conservation of activity is consistent with the location of alkylation site on the opposite site of the catalytic site cleft. Inasmuch as Cys18 is part of a structurally stabilizing zinc-binding site, disrupted by cysteine alkylation, our results point to an important role of metal ions in ageritin stability.
Collapse
|
3
|
Lampitella E, Landi N, Oliva R, Gaglione R, Bosso A, De Lise F, Ragucci S, Arciello A, Petraccone L, Pizzo E, Del Vecchio P, Di Maro A. Toxicity and membrane perturbation properties of the ribotoxin-like protein Ageritin. J Biochem 2021; 170:473-482. [PMID: 33993266 DOI: 10.1093/jb/mvab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/11/2021] [Indexed: 01/31/2023] Open
Abstract
Ageritin is the prototype of a new ribotoxin-like protein family, which has been recently identified also in basidiomycetes. The protein exhibits specific RNase activity through the cleavage of a single phosphodiester bond located at sarcin/ricin loop of the large rRNA, thus inhibiting protein biosynthesis at early stages. Conversely to other ribotoxins, its activity requires the presence of divalent cations. In the present study, we report the activity of Ageritin on both prokaryotic and eukaryotic cells showing that the protein has a prominent effect on cancer cells viability and no effects on eukaryotic and bacterial cells. In order to rationalize these findings, the ability of the protein to interact with various liposomes mimicking normal, cancer and bacterial cell membranes was explored. The collected results indicate that Ageritin can interact with DPPC/DPPS/Chol vesicles, used as a model of cancer cell membranes, and with DPPC/DPPG vesicles, used as a model of bacterial cell membranes, suggesting a selective interaction with anionic lipids. However, a different perturbation of the two model membranes, mediated by cholesterol redistribution, was observed and this might be at the basis of Ageritin selective toxicity towards cancer cells.
Collapse
Affiliation(s)
- Erosantonio Lampitella
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy.,Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy.,Istituto Nazionale di Biostrutture e Biosistemi (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, Via Cintia, I-80126, Napoli, Italy
| | - Federica De Lise
- Department of Biology, University of Naples Federico II, Via Cintia, I-80126, Napoli, Italy
| | - Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy.,Istituto Nazionale di Biostrutture e Biosistemi (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, Via Cintia, I-80126, Napoli, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples 'Federico II', Via Cintia, 80126, Napoli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania 'Luigi Vanvitelli', Via Vivaldi 43, 81100, Caserta, Italy
| |
Collapse
|
4
|
Davies G, Singh O, Prattes J, Hoenigl M, Sheppard PW, Thornton CR. Aspergillus fumigatus and Its Allergenic Ribotoxin Asp f I: Old Enemies but New Opportunities for Urine-Based Detection of Invasive Pulmonary Aspergillosis Using Lateral-Flow Technology. J Fungi (Basel) 2020; 7:19. [PMID: 33396482 PMCID: PMC7823411 DOI: 10.3390/jof7010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) caused by Aspergillus fumigatus is a life-threatening lung disease of immunocompromised patients. Diagnosis currently relies on non-specific chest CT, culture of the fungus from invasive lung biopsy, and detection of the cell wall carbohydrate galactomannan (GM) in serum or in BAL fluids recovered during invasive bronchoscopy. Urine provides an ideal bodily fluid for the non-invasive detection of pathogen biomarkers, with current urine-based immunodiagnostics for IPA focused on GM. Surrogate protein biomarkers might serve to improve disease detection. Here, we report the development of a monoclonal antibody (mAb), PD7, which is specific to A. fumigatus and related species in the section Fumigati, and which binds to its 18 kDa ribotoxin Asp f I. Using PD7, we show that the protein is secreted during hyphal development, and so represents an ideal candidate for detecting invasive growth. We have developed a lateral-flow device (Afu-LFD®) incorporating the mAb which has a limit of detection of ~15 ng Asp f I/mL urine. Preliminary evidence of the test's diagnostic potential is demonstrated with urine from a patient with acute lymphoid leukaemia with probable IPA. The Afu-LFD® therefore provides a potential novel opportunity for non-invasive urine-based detection of IPA caused by A. fumigatus.
Collapse
Affiliation(s)
- Genna Davies
- ISCA Diagnostics Ltd., Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK;
- Biosciences and MRC Centre for Medical Mycology, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK;
| | - Oski Singh
- Biosciences and MRC Centre for Medical Mycology, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK;
| | - Juergen Prattes
- Department of Internal Medicine, Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, A-8036 Graz, Austria; (J.P.); (M.H.)
| | - Martin Hoenigl
- Department of Internal Medicine, Section of Infectious Diseases and Tropical Medicine, Medical University of Graz, A-8036 Graz, Austria; (J.P.); (M.H.)
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, CA 92093, USA
| | - Paul W. Sheppard
- Vacye Associates, Lowerdown Cottage, Lowerdown, Bovey Tracey TQ13 9LF, UK;
| | - Christopher R. Thornton
- ISCA Diagnostics Ltd., Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK;
- Biosciences and MRC Centre for Medical Mycology, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK;
| |
Collapse
|
5
|
Li H, Xia Y. High cell density fed-batch production of insecticidal recombinant ribotoxin hirsutellin A from Pichia pastoris. Microb Cell Fact 2018; 17:145. [PMID: 30342541 PMCID: PMC6195745 DOI: 10.1186/s12934-018-0992-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The fungal ribotoxin hirsutellin A (HtA) exhibits strong insecticidal activity; however, efficient systems for expressing recombinant HtA (rHtA) are lacking. Here, we established an efficient heterologous expression system to produce large amounts of rHtA. RESULTS Recombinant Pichia pastoris transformants with high levels of secretory rHtA were screened, and in a fed-batch reactor, rHtA was secreted at levels up to 80 mg/l following methanol induction, which was more than sixfold higher than that in shake flasks. Approximately 7 mg of highly pure rHtA was obtained from 300 ml of fed-batch culture supernatant by Ni+-nitriloacetic acid affinity chromatography and CM Sepharose ion-exchange chromatography. Mass spectrometry results revealed rHtA as a native N-terminal non-glycosylated monomeric protein with a molecular weight of 15.3 kDa. Purified rHtA exhibited excellent thermal and protease stability and dose-dependent cytotoxicity to Sf9 insect cells and insecticidal activity against Galleria mellonella larvae. CONCLUSIONS This is the first report of rHtA expression in P. pastoris. The rHtA was expressed at a high level under high-cell-density fed-batch fermentation and was efficiently purified using a two-step purification method. Purified rHtA exhibited thermal and protease stability, as well as appropriate bioactivities. Our results indicate that fed-batch production by P. pastoris is an efficient method to produce functional rHtA.
Collapse
Affiliation(s)
- Hongbo Li
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, China
| | - Yuxian Xia
- Postdoctoral Mobile Station of Biology, Genetic Engineering Research Center, College of Life Sciences, Chongqing University, Chongqing, 400030, China.
- Genetic Engineering Research Center, College of Life Sciences, Chongqing University, No. 55 South Road of University Town, Shapingba District, Chongqing, 401331, China.
| |
Collapse
|
6
|
Hirsutellin A: A Paradigmatic Example of the Insecticidal Function of Fungal Ribotoxins. INSECTS 2013; 4:339-56. [PMID: 26462423 PMCID: PMC4553468 DOI: 10.3390/insects4030339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/17/2022]
Abstract
The fungal pathogen Hirsutella thompsonii produces an insecticidal protein named hirsutellin A (HtA), which has been described to be toxic to several species of mites, insect larvae, and cells. On the other hand, on the basis of an extensive biochemical and structural characterization, HtA has been considered to be a member of the ribotoxins family. Ribotoxins are fungal extracellular ribonucleases, which inactivate ribosomes by specifically cleaving a single phosphodiester bond located at the large rRNA. Although ribotoxins were brought to light in the 1960s as antitumor agents, their biological function has remained elusive. Thus, the consideration of hirsutellin A, an insecticidal protein, as a singular ribotoxin recalled the idea of the biological activity of these toxins as insecticidal agents. Further studies have demonstrated that the most representative member of the ribotoxin family, α-sarcin, also shows strong toxic action against insect cells. The determination of high resolution structures, the characterization of a large number of mutants, and the toxicity assays against different cell lines have been the tools used for the study of the mechanism of action of ribotoxins at the molecular level. The aim of this review is to serve as a compilation of the facts that allow identification of HtA as a paradigmatic example of the insecticidal function of fungal ribotoxins.
Collapse
|
7
|
Pichinuk E, Broday L, Wreschner DH. Endogenous RNA cleavages at the ribosomal SRL site likely reflect miRNA (miR) mediated translational suppression. Biochem Biophys Res Commun 2011; 414:706-11. [PMID: 22001924 DOI: 10.1016/j.bbrc.2011.09.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
Abstract
We previously suggested a mechanism whereby the RNA induced silencing complex (RISC) brings about a specific cleavage at the sarcin-ricin loop (SRL) of 28S ribosomal RNA thereby eliciting translational suppression. Here we experimentally show that endogenous cleavages take place at the SRL site, in both mammalian cells and in Caenorhabditis elegans. Furthermore we demonstrate that bulged and looped-out residues present in the imperfect miRNA-[mRNA target site] duplexes, are complementary to the SRL site. These results support, and are compatible with, our described mechanism whereby microRNAs mediate cleavage of the highly conserved 28S rRNA sarcin/ricin loop leading to translational suppression.
Collapse
Affiliation(s)
- Edward Pichinuk
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
8
|
Álvarez-García E, Diago-Navarro E, Herrero-Galán E, García-Ortega L, López-Villarejo J, Olmo N, Díaz-Orejas R, Gavilanes JG, Martínez-del-Pozo Á. The ribonucleolytic activity of the ribotoxin α-sarcin is not essential for in vitro protein biosynthesis inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1377-82. [DOI: 10.1016/j.bbapap.2011.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/21/2011] [Accepted: 06/29/2011] [Indexed: 11/16/2022]
|
9
|
Zhabokritsky A, Kutky M, Burns LA, Karran RA, Hudak KA. RNA toxins: mediators of stress adaptation and pathogen defense. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:890-903. [PMID: 21809449 DOI: 10.1002/wrna.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RNA toxins are a group of enzymes primarily synthesized by bacteria, fungi, and plants that either cleave or depurinate RNA molecules. These proteins may be divided according to their RNA substrates: ribotoxins are nucleases that cleave ribosomal RNA (rRNA), ribosome inactivating proteins are glycosidases that remove a base from rRNA, messenger RNA (mRNA) interferases are nucleases that cleave mRNAs, and anticodon nucleases cleave transfer RNAs (tRNAs). These modifications to the RNAs may substantially alter gene expression and translation rates. Given that some of these enzymes cause cell death, it has been suggested that they function mainly in defense, either to kill competing cells or to elicit suicide and thereby limit pathogen spread from infected cells. Although good correlations have been drawn between their enzymatic functions and toxicity, recent work has shown that some RNA toxins cause apoptosis in the absence of damage to RNA and that defense against pathogens can be achieved without host cell death. Moreover, a decrease in cellular translation rate, insufficient to cause cell death, allows some organisms to adapt to stress and environmental change. Although ascribing effects observed in vitro to the roles of these toxins in nature has been challenging, recent results have expanded our understanding of their modes of action, and emphasized the importance of these toxins in development, adaptation to stress and defense against pathogens.
Collapse
|
10
|
What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol 2010; 27:155-82. [PMID: 20974273 DOI: 10.1016/j.riam.2010.10.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/21/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic pathogen that causes 90% of invasive aspergillosis (IA) due to Aspergillus genus, with a 50-95% mortality rate. It has been postulated that certain virulence factors are characteristic of A. fumigatus, but the "non-classical" virulence factors seem to be highly variable. Overall, published studies have demonstrated that the virulence of this fungus is multifactorial, associated with its structure, its capacity for growth and adaptation to stress conditions, its mechanisms for evading the immune system and its ability to cause damage to the host. In this review we intend to give a general overview of the genes and molecules involved in the development of IA. The thermotolerance section focuses on five genes related with the capacity of the fungus to grow at temperatures above 30°C (thtA, cgrA, afpmt1, kre2/afmnt1, and hsp1/asp f 12). The following sections discuss molecules and genes related to interaction with the host and with the immune responses. These sections include β-glucan, α-glucan, chitin, galactomannan, galactomannoproteins (afmp1/asp f 17 and afmp2), hydrophobins (rodA/hyp1 and rodB), DHN-melanin, their respective synthases (fks1, rho1-4, ags1-3, chsA-G, och1-4, mnn9, van1, anp1, glfA, pksP/alb1, arp1, arp2, abr1, abr2, and ayg1), and modifying enzymes (gel1-7, bgt1, eng1, ecm33, afpigA, afpmt1-2, afpmt4, kre2/afmnt1, afmnt2-3, afcwh41 and pmi); several enzymes related to oxidative stress protection such as catalases (catA, cat1/catB, cat2/katG, catC, and catE), superoxide dismutases (sod1, sod2, sod3/asp f 6, and sod4), fatty acid oxygenases (ppoA-C), glutathione tranferases (gstA-E), and others (afyap1, skn7, and pes1); and efflux transporters (mdr1-4, atrF, abcA-E, and msfA-E). In addition, this review considers toxins and related genes, such as a diffusible toxic substance from conidia, gliotoxin (gliP and gliZ), mitogillin (res/mitF/asp f 1), hemolysin (aspHS), festuclavine and fumigaclavine A-C, fumitremorgin A-C, verruculogen, fumagillin, helvolic acid, aflatoxin B1 and G1, and laeA. Two sections cover genes and molecules related with nutrient uptake, signaling and metabolic regulations involved in virulence, including enzymes, such as serine proteases (alp/asp f 13, alp2, and asp f 18), metalloproteases (mep/asp f 5, mepB, and mep20), aspartic proteases (pep/asp f 10, pep2, and ctsD), dipeptidylpeptidases (dppIV and dppV), and phospholipases (plb1-3 and phospholipase C); siderophores and iron acquisition (sidA-G, sreA, ftrA, fetC, mirB-C, and amcA); zinc acquisition (zrfA-H, zafA, and pacC); amino acid biosynthesis, nitrogen uptake, and cross-pathways control (areA, rhbA, mcsA, lysF, cpcA/gcn4p, and cpcC/gcn2p); general biosynthetic pathway (pyrG, hcsA, and pabaA), trehalose biosynthesis (tpsA and tpsB), and other regulation pathways such as those of the MAP kinases (sakA/hogA, mpkA-C, ste7, pbs2, mkk2, steC/ste11, bck1, ssk2, and sho1), G-proteins (gpaA, sfaD, and cpgA), cAMP-PKA signaling (acyA, gpaB, pkaC1, and pkaR), His kinases (fos1 and tcsB), Ca(2+) signaling (calA/cnaA, crzA, gprC and gprD), and Ras family (rasA, rasB, and rhbA), and others (ace2, medA, and srbA). Finally, we also comment on the effect of A. fumigatus allergens (Asp f 1-Asp f 34) on IA. The data gathered generate a complex puzzle, the pieces representing virulence factors or the different activities of the fungus, and these need to be arranged to obtain a comprehensive vision of the virulence of A. fumigatus. The most recent gene expression studies using DNA-microarrays may be help us to understand this complex virulence, and to detect targets to develop rapid diagnostic methods and new antifungal agents.
Collapse
|
11
|
Thornton CR. Detection of Invasive Aspergillosis. ADVANCES IN APPLIED MICROBIOLOGY 2010; 70:187-216. [DOI: 10.1016/s0065-2164(10)70006-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Immune responses of human immature dendritic cells can be modulated by the recombinant Aspergillus fumigatus antigen Aspf1. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1485-92. [PMID: 19675222 DOI: 10.1128/cvi.00175-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Invasive aspergillosis is a significant cause of morbidity and mortality in patients after stem cell transplantation, in solid organ transplant recipients, and in patients with hematological malignancies. The interactions between human immature dendritic cells (iDCs) and Aspergillus fumigatus antigens are widely uncharacterized. We analyzed the immune response of iDCs to different recombinant A. fumigatus antigens (Aspf1 and Crf1). One of these antigens, the 18-kDa RNase Aspf1, triggered the increased level of expression of genes encoding proinflammatory cytokines and chemokines, and augmented the activation of NFkappaB and the apoptosis of iDCs. Furthermore, by fluorescence microscopy, we could demonstrate that in the first 3 h a major portion of Aspf1 accumulates on the cell surface. Finally, we could show an increased segregation of cytokines and chemokines after the stimulation of iDCs by an Aspf1 deletion mutant strain of A. fumigatus.
Collapse
|
13
|
Herrero-Galán E, Lacadena J, Martínez del Pozo A, Boucias DG, Olmo N, Oñaderra M, Gavilanes JG. The insecticidal protein hirsutellin A from the mite fungal pathogen Hirsutella thompsonii is a ribotoxin. Proteins 2008; 72:217-28. [PMID: 18214983 DOI: 10.1002/prot.21910] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mite fungal pathogen Hirsutella thompsonii produces a single polypeptide chain, insecticidal protein named hirsutellin A (HtA) that is composed of 130 amino acid residues. This protein has been purified from its natural source and produced as a recombinant protein in Escherichia coli. Spectroscopic analysis has determined that the two protein forms are indistinguishable. HtA specifically inactivates ribosomes and produces the alpha-fragment characteristic of ribotoxin activity on rRNA. Behaving as a cyclizing ribonuclease, HtA specifically cleaves oligonucleotides that mimick the sarcin/ricin loop of the ribosome, as well as selected polynucleotides and dinucleosides. HtA interacts with phospholipid membranes as do other ribotoxins. As a consequence of its ribonuclease activity and its ability to interact with cell membranes, HtA exhibits cytotoxic activity on human tumor cells. On the basis of these results, HtA is considered to be a member of the ribotoxin group of proteins, although it is significantly smaller (130 aa) than all known ribotoxins that are composed of 149/150 amino acids. Ribotoxins are members of a larger family of fungal ribonucleases whose members of smaller size (100/110 aa) are not cytotoxic. Thus, the characterization of the fungal ribotoxin HtA represents an important milestone in the study of the diversity and the function of fungal ribonucleases.
Collapse
Affiliation(s)
- Elías Herrero-Galán
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Varga J, Samson RA. Ribotoxin genes in isolates of Aspergillus section Clavati. Antonie van Leeuwenhoek 2008; 94:481-5. [PMID: 18600469 PMCID: PMC2519116 DOI: 10.1007/s10482-008-9266-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 06/20/2008] [Indexed: 11/27/2022]
Abstract
Ribotoxins are ribosome inactivator proteins with high specificity against the sarcin/ricin domain of the 28S ribosomal RNA. We examined the presence of ribotoxin genes in isolates of species recently assigned to Aspergillus section Clavati using specific primer pairs. All species assigned to this section have been found to carry ribotoxin genes. Phylogenetic analysis of the sequences of the amplified gene fragments allowed us to classify the genes to different groups including the α-sarcin, gigantin, c-sarcin and mitogillin/restrictocin families. Two species, A. longivesica and N. acanthosporus produced ribotoxins which were only distantly related to gigantins and c-sarcins, respectively. Comparison of the protein sequences of the genes to known ribotoxin sequences revealed that all of them carry the presumed catalytic residues of ribotoxins, the cystein residues, and also the two Trp residues of α-sarcin conserved in all ribotoxins known so far. These data indicate that these genes probably encode active ribotoxins. Further studies are in progress to examine the secretion and activities of these new ribotoxins.
Collapse
Affiliation(s)
- János Varga
- CBS Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, The Netherlands.
| | | |
Collapse
|
15
|
Lacadena J, Alvarez-García E, Carreras-Sangrà N, Herrero-Galán E, Alegre-Cebollada J, García-Ortega L, Oñaderra M, Gavilanes JG, Martínez del Pozo A. Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiol Rev 2007; 31:212-37. [PMID: 17253975 DOI: 10.1111/j.1574-6976.2006.00063.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RNase T1 is the best known representative of a large family of ribonucleolytic proteins secreted by fungi, mostly Aspergillus and Penicillium species. Ribotoxins stand out among them by their cytotoxic character. They exert their toxic action by first entering the cells and then cleaving a single phosphodiester bond located within a universally conserved sequence of the large rRNA gene, known as the sarcin-ricin loop. This cleavage leads to inhibition of protein biosynthesis, followed by cellular death by apoptosis. Although no protein receptor has been found for ribotoxins, they preferentially kill cells showing altered membrane permeability, such as those that are infected with virus or transformed. Many steps of the cytotoxic process have been elucidated at the molecular level by means of a variety of methodological approaches and the construction and purification of different mutant versions of these ribotoxins. Ribotoxins have been used for the construction of immunotoxins, because of their cytotoxicity. Besides this activity, Aspf1, a ribotoxin produced by Aspergillus fumigatus, has been shown to be one of the major allergens involved in allergic aspergillosis-related pathologies. Protein engineering and peptide synthesis have been used in order to understand the basis of these pathogenic mechanisms as well as to produce hypoallergenic proteins with potential diagnostic and immunotherapeutic applications.
Collapse
Affiliation(s)
- Javier Lacadena
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moreno AB, Martínez Del Pozo A, San Segundo B. Biotechnologically relevant enzymes and proteins. Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Appl Microbiol Biotechnol 2006; 72:883-95. [PMID: 16557374 DOI: 10.1007/s00253-006-0362-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 01/25/2006] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
The mold Aspergillus giganteus produces a basic, low molecular weight protein showing antifungal properties against economically important plant pathogens, the AFP (Antifungal Protein). In this study, we investigated the mechanisms by which AFP exerts its antifungal activity against Magnaporthe grisea. M. grisea is the causal agent of rice blast, one of the most devastating diseases of cultivated rice worldwide. AFP was purified from the extracellular medium of A. giganteus cultures. The AFP protein was found to induce membrane permeabilization in M. grisea cells. Electron microscopy studies revealed severe cellular degradation and damage of plasma membranes in AFP-treated fungal cells. AFP however failed to induce membrane permeabilization on rice or human HeLa cells. Furthermore, AFP enters the fungal cell and targets to the nucleus, as revealed by co-localization experiments of Alexa-labeled AFP with the SYTOX Green dye. Finally, AFP binds to nucleic acids, including M. grisea DNA. Our results suggest that the combination of fungal cell permeabilization, cell-penetrating ability and nucleic acid-binding activity of AFP determines its potent antifungal activity against M. grisea. These results are discussed in relation to the potential of the AFP protein to enhance crop protection against fungal diseases.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Laboratorio de Genética Molecular Vegetal, Consorcio CSIC-IRTA, Departamento de Genética Molecular, Instituto de Biología Molecular de Barcelona, CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | | | | |
Collapse
|
17
|
Crameri R, Limacher A, Weichel M, Glaser AG, Zeller S, Rhyner C. Structural aspects and clinical relevance of Aspergillus fumigatus antigens/allergens. Med Mycol 2006; 44:S261-S267. [PMID: 30408912 DOI: 10.1080/13693780600789160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Robotics-based high throughput screening of Aspergillus fumigatus cDNA libraries displayed on phage surfaces revealed at last 81 different structures able to bind IgE from serum of patients sensitized to this fungus. Among these, species-specific as well as phylogenetically highly conserved structures and such with unknown function have been detected. A subset of cDNAs have been used to produce and characterize the corresponding recombinant allergens which have proven to be useful diagnostic reagents allowing specific detection of A. fumigatus sensitization and differential diagnosis of allergic bronchopulmonary aspergillosis. Phylogenetically highly conserved structures like manganese-dependent superoxide dismutase, P2 acidic ribosomal protein, cyclophilins and thioredoxins induce, beyond sensitization, IgE antibodies able to cross-react with the corresponding homologous self antigens. These reactions, likely to contribute to the exacerbation and perpetuation of allergic bronchopulmonary aspergillosis, can be traced back to shared conformational B-cell epitopes build up from conserved amino acid residues scattered over the surface of the molecules as shown by detailed analyses of the crystal structures.
Collapse
Affiliation(s)
- R Crameri
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - A Limacher
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - M Weichel
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - A G Glaser
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - S Zeller
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - C Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| |
Collapse
|
18
|
Clemons KV, Stevens DA. The contribution of animal models of aspergillosis to understanding pathogenesis, therapy and virulence. Med Mycol 2005; 43 Suppl 1:S101-10. [PMID: 16110800 DOI: 10.1080/13693780500051919] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Animal models of aspergillosis have been used extensively to study various aspects of pathogenesis, innate and acquired host-response, disease transmission and therapy. Several different animal models of aspergillosis have been developed. Because aspergillosis is an important pulmonary disease in birds, avian models have been used successfully to study preventative vaccines. Studies done to emulate human disease have relied on models using common laboratory animal species. Guinea pig models have primarily been used in therapy studies of invasive pulmonary aspergillosis (IPA). Rabbits have been used to study IPA and systemic disease, as well as fungal keratitis. Rodent, particularly mouse, models of aspergillosis predominate as the choice for most investigators. The availability of genetically defined strains of mice, immunological reagents, cost and ease of handling are factors. Both normal and immunosuppressed animals are used routinely. These models have been used to determine efficacy of experimental therapeutics, comparative virulence of different isolates of Aspergillus, genes involved in virulence, and susceptibility to infection with Aspergillus. Mice with genetic immunological deficiency and cytokine gene-specific knockout mice facilitate studies of the roles cells, and cytokines and chemokines, play in host-resistance to Aspergillus. Overall, these models have been critical to the advancement of therapy, and our current understanding of pathogenesis and host-resistance.
Collapse
Affiliation(s)
- K V Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA.
| | | |
Collapse
|
19
|
Rementeria A, López-Molina N, Ludwig A, Vivanco AB, Bikandi J, Pontón J, Garaizar J. Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 2005; 22:1-23. [PMID: 15813678 DOI: 10.1016/s1130-1406(05)70001-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aspergillus fumigatus causes a wide range of diseases that include mycotoxicosis, allergic reactions and systemic diseases (invasive aspergillosis) with high mortality rates. Pathogenicity depends on immune status of patients and fungal strain. There is no unique essential virulence factor for development of this fungus in the patient and its virulence appears to be under polygenetic control. The group of molecules and genes associated with the virulence of this fungus includes many cell wall components, such as beta-(1-3)-glucan, galactomannan, galactomannanproteins (Afmp1 and Afmp2), and the chitin synthetases (Chs; chsE and chsG), as well as others. Some genes and molecules have been implicated in evasion from the immune response, such as the rodlets layer (rodA/hyp1 gene) and the conidial melanin-DHN (pksP/alb1 gene). The detoxifying systems for Reactive Oxygen Species (ROS) by catalases (Cat1p and Cat2p) and superoxide dismutases (MnSOD and Cu, ZnSOD), had also been pointed out as essential for virulence. In addition, this fungus produces toxins (14 kDa diffusible substance from conidia, fumigaclavin C, aurasperon C, gliotoxin, helvolic acid, fumagilin, Asp-hemolysin, and ribotoxin Asp fI/mitogilin F/restrictocin), allergens (Asp f1 to Asp f23), and enzymatic proteins as alkaline serin proteases (Alp and Alp2), metalloproteases (Mep), aspartic proteases (Pep and Pep2), dipeptidyl-peptidases (DppIV and DppV), phospholipase C and phospholipase B (Plb1 and Plb2). These toxic substances and enzymes seems to be additive and/or synergistic, decreasing the survival rates of the infected animals due to their direct action on cells or supporting microbial invasion during infection. Adaptation ability to different trophic situations is an essential attribute of most pathogens. To maintain its virulence attributes A. fumigatus requires iron obtaining by hydroxamate type siderophores (ornitin monooxigenase/SidA), phosphorous obtaining (fos1, fos2, and fos3), signal transductional falls that regulate morphogenesis and/or usage of nutrients as nitrogen (rasA, rasB, rhbA), mitogen activated kinases (sakA codified MAP-kinase), AMPc-Pka signal transductional route, as well as others. In addition, they seem to be essential in this field the amino acid biosynthesis (cpcA and homoaconitase/lysF), the activation and expression of some genes at 37 degrees C (Hsp1/Asp f12, cgrA), some molecules and genes that maintain cellular viability (smcA, Prp8, anexins), etc. Conversely, knowledge about relationship between pathogen and immune response of the host has been improved, opening new research possibilities. The involvement of non-professional cells (endothelial, and tracheal and alveolar epithelial cells) and professional cells (natural killer or NK, and dendritic cells) in infection has been also observed. Pathogen Associated Molecular Patterns (PAMP) and Patterns Recognizing Receptors (PRR; as Toll like receptors TLR-2 and TLR-4) could influence inflammatory response and dominant cytokine profile, and consequently Th response to infec tion. Superficial components of fungus and host cell surface receptors driving these phenomena are still unknown, although some molecules already associated with its virulence could also be involved. Sequencing of A. fumigatus genome and study of gene expression during their infective process by using DNA microarray and biochips, promises to improve the knowledge of virulence of this fungus.
Collapse
Affiliation(s)
- Aitor Rementeria
- Departamento Inmunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Spain.
| | | | | | | | | | | | | |
Collapse
|
20
|
García-Mayoral MF, García-Ortega L, Lillo MP, Santoro J, Martínez del Pozo A, Gavilanes JG, Rico M, Bruix M. NMR structure of the noncytotoxic alpha-sarcin mutant Delta(7-22): the importance of the native conformation of peripheral loops for activity. Protein Sci 2004; 13:1000-11. [PMID: 15044731 PMCID: PMC2280062 DOI: 10.1110/ps.03532204] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The deletion mutant Delta(7-22) of alpha-sarcin, unlike its wild-type protein counterpart, lacks the specific ability to degrade rRNA in intact ribosomes and exhibits an increased unspecific ribonuclease activity and decreased interaction with lipid vesicles. In trying to shed light on these differences, we report here on the three-dimensional structure of the Delta(7-22) alpha-sarcin mutant using NMR methods. We also evaluated its dynamic properties on the basis of theoretical models and measured its correlation time (6.2 nsec) by time-resolved fluorescence anisotropy. The global fold characteristic of ribotoxins is preserved in the mutant. The most significant differences with respect to the alpha-sarcin structure are concentrated in (1) loop 2, (2) loop 3, which adopts a new orientation, and (3) loop 5, which shows multiple conformations and an altered dynamics. The interactions between loop 5 and the N-terminal hairpin are lost in the mutant, producing increased solvent accessibility of the active-site residues. The degree of solvent exposure of the catalytic His 137 is similar to that shown by His 92 in RNase T1. Additionally, the calculated order parameters of residues belonging to loop 5 in the mutant correspond to an internal dynamic behavior more similar to RNase T1 than alpha-sarcin. On the other hand, changes in the relative orientation of loop 3 move the lysine-rich region 111-114, crucial for substrate recognition, away from the active site. All of the structural and dynamic data presented here reveal that the mutant is a hybrid of ribotoxins and noncytotoxic ribonucleases, consistent with its biological properties.
Collapse
Affiliation(s)
- Ma Flor García-Mayoral
- Departamento de Espectroscopía y Estructura Molecular, Instituto de Química Física Rocasolano, Serrano 119, CSIC, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Masip M, García-Ortega L, Olmo N, García-Mayoral MF, Pérez-Cañadillas JM, Bruix M, Oñaderra M, Martínez del Pozo A, Gavilanes JG. Leucine 145 of the ribotoxin alpha-sarcin plays a key role for determining the specificity of the ribosome-inactivating activity of the protein. Protein Sci 2003; 12:161-9. [PMID: 12493839 PMCID: PMC2312396 DOI: 10.1110/ps.0225903] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Revised: 10/04/2002] [Accepted: 10/04/2002] [Indexed: 10/27/2022]
Abstract
Secreted fungal RNases, represented by RNase T1, constitute a family of structurally related proteins that includes ribotoxins such as alpha-sarcin. The active site residues of RNase T1 are conserved in all fungal RNases, except for Phe 100 that is not present in the ribotoxins, in which Leu 145 occupies the equivalent position. The mutant Leu145Phe of alpha-sarcin has been recombinantly produced and characterized by spectroscopic methods (circular dichroism, fluorescence spectroscopy, and NMR). These analyses have revealed that the mutant protein retained the overall conformation of the wild-type alpha-sarcin. According to the analyses performed, Leu 145 was shown to be essential to preserve the electrostatic environment of the active site that is required to maintain the anomalous low pKa value reported for the catalytic His 137 of alpha-sarcin. Enzymatic characterization of the mutant protein has revealed that Leu 145 is crucial for the specific activity of alpha-sarcin on ribosomes.
Collapse
Affiliation(s)
- Manuel Masip
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen DT, Lin A. Domain swapping in ribonuclease T1 allows the acquisition of double-stranded activity. Protein Eng Des Sel 2002; 15:997-1003. [PMID: 12601139 DOI: 10.1093/protein/15.12.997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A mutant of ribonuclease T1 (RNase T1), denoted RNase Talpha, that is designed to recognize double-stranded ribonucleic acid was created. RNase Talpha carries the structure of RNase T1 except for a part of its loop L3 domain, which has been swapped for a corresponding domain from alpha-sarcin. The RNase Talpha maintains the pleated beta-sheet structure and retains the guanyl-specific ribonuclease activity of the wild-type RNase T1. A steady-state kinetic study on the RNase Talpha-catalyzed transesterification of GpU dinucleoside phosphates reveals a slightly reduced K(m) value of 6.94 x 10(-7) M. When the stranded specificity is examined, RNase Talpha catalyzes the hydrolysis of guanine base not only of single-stranded but also, as by design, of double-stranded RNA. The change of stranded specificity suggests the feasibility of using domain swapping to make a substrate-specific ribonuclease. This study suggests that the loop L3 in RNase T1 can be used as a 'cassette player' for inserting a functional domain to make ribonuclease of various specificities.
Collapse
Affiliation(s)
- Dow-Tien Chen
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
| | | |
Collapse
|
23
|
Garcia-Ortega L, Masip M, Mancheño JM, Oñaderra M, Lizarbe MA, García-Mayoral MF, Bruix M, Martínez del Pozo A, Gavilanes JG. Deletion of the NH2-terminal beta-hairpin of the ribotoxin alpha-sarcin produces a nontoxic but active ribonuclease. J Biol Chem 2002; 277:18632-9. [PMID: 11897788 DOI: 10.1074/jbc.m200922200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribotoxins are a family of highly specific fungal ribonucleases that inactivate the ribosomes by hydrolysis of a single phosphodiester bond of the 28 S rRNA. alpha-Sarcin, the best characterized member of this family, is a potent cytotoxin that promotes apoptosis of human tumor cells after internalization via endocytosis. This latter ability is related to its interaction with phospholipid bilayers. These proteins share a common structural core with nontoxic ribonucleases of the RNase T1 family. However, significant structural differences between these two groups of proteins are related to the presence of a long amino-terminal beta-hairpin in ribotoxins and to the different length of their unstructured loops. The amino-terminal deletion mutant Delta(7-22) of alpha-sarcin has been produced in Escherichia coli and purified to homogeneity. It retains the same conformation as the wild-type protein as ascertained by complete spectroscopic characterization based on circular dichroism, fluorescence, and NMR techniques. This mutant exhibits ribonuclease activity against naked rRNA and synthetic substrates but lacks the specific ability of the wild-type protein to degrade rRNA in intact ribosomes. The results indicate that alpha-sarcin interacts with the ribosome at two regions, i.e. the well known sarcin-ricin loop of the rRNA and a different region recognized by the beta-hairpin of the protein. In addition, this latter protein portion is involved in interaction with cell membranes. The mutant displays decreased interaction with lipid vesicles and shows behavior compatible with the absence of one vesicle-interacting region. In agreement with this conclusion, the deletion mutant exhibits a very low cytotoxicity on human rhabdomyosarcoma cells.
Collapse
Affiliation(s)
- Lucia Garcia-Ortega
- Departamento de Bioquimica y Biologia Molecular I, Universidad Complutense, Madrid 28040, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Martínez-Ruiz A, García-Ortega L, Kao R, Lacadena J, Oñaderra M, Mancheño JM, Davies J, Martínez del Pozo A, Gavilanes JG. RNase U2 and alpha-sarcin: a study of relationships. Methods Enzymol 2002; 341:335-51. [PMID: 11582789 DOI: 10.1016/s0076-6879(01)41162-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A Martínez-Ruiz
- Centro de Investigaciones Biologicas-CSIC, E-28006 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kao R, Martínez-Ruiz A, Martínez del Pozo A, Crameri R, Davies J. Mitogillin and related fungal ribotoxins. Methods Enzymol 2002; 341:324-35. [PMID: 11582788 DOI: 10.1016/s0076-6879(01)41161-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- R Kao
- HKU-Pasteur Research Center, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
26
|
García-Ortega L, Lacadena J, Mancheño JM, Oñaderra M, Kao R, Davies J, Olmo N, Gavilanes JG. Involvement of the amino-terminal beta-hairpin of the Aspergillus ribotoxins on the interaction with membranes and nonspecific ribonuclease activity. Protein Sci 2001; 10:1658-68. [PMID: 11468362 PMCID: PMC2374091 DOI: 10.1110/ps.9601] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Ribotoxins are a family of potent cytotoxic proteins from Aspergillus whose members display a high sequence identity (85% for about 150 amino acid residues). The three-dimensional structures of two of these proteins, alpha-sarcin and restrictocin, are known. They interact with phospholipid bilayers, according to their ability to enter cells, and cleave a specific phosphodiester bond in the large subunit of ribosome thus inhibiting protein biosynthesis. Two nonconservative sequence changes between these proteins are located at the amino-terminal beta-hairpin of alpha-sarcin, a characteristic structure that is absent in other nontoxic structurally related microbial RNases. These two residues of alpha-sarcin, Lys 11 and Thr 20, have been substituted with the equivalent amino acids in restrictocin. The single mutants (K11L and T20D) and the corresponding K11L/T20D double mutant have been produced in Escherichia coli and purified to homogeneity. The spectroscopic characterization of the purified proteins reveals that the overall native structure is preserved. The ribonuclease and lipid-perturbing activities of the three mutants and restrictocin have been evaluated and compared with those of alpha-sarcin. These proteins exhibit the same ability to specifically inactivate ribosomes, although they show different activity against nonspecific substrate analogs such as poly(A). The mutant variant K11L and restrictocin display a lower phospholipid-interacting ability correlated with a decreased cytotoxicity. The results obtained are interpreted in terms of the involvement of the amino-terminal beta-hairpin in the interaction with both membranes and polyadenylic acid.
Collapse
Affiliation(s)
- L García-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nielsen K, Boston RS. RIBOSOME-INACTIVATING PROTEINS: A Plant Perspective. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:785-816. [PMID: 11337416 DOI: 10.1146/annurev.arplant.52.1.785] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate the universally conserved alpha-sarcin loop of large rRNAs. This depurination inactivates the ribosome, thereby blocking its further participation in protein synthesis. RIPs are widely distributed among different plant genera and within a variety of different tissues. Recent work has shown that enzymatic activity of at least some RIPs is not limited to site-specific action on the large rRNAs of ribosomes but extends to depurination and even nucleic acid scission of other targets. Characterization of the physiological effects of RIPs on mammalian cells has implicated apoptotic pathways. For plants, RIPs have been linked to defense by antiviral, antifungal, and insecticidal properties demonstrated in vitro and in transgenic plants. How these effects are brought about, however, remains unresolved. At the least, these results, together with others summarized here, point to a complex biological role. With genetic, genomic, molecular, and structural tools now available for integrating different experimental approaches, we should further our understanding of these multifunctional proteins and their physiological functions in plants.
Collapse
Affiliation(s)
- Kirsten Nielsen
- Department of Botany, North Carolina State University, Raleigh, North Carolina 27695-7612; e-mail: ;
| | | |
Collapse
|
28
|
Weig M, Frosch M, Tintelnot K, Haas A, Gross U, Linsmeier B, Heesemann J. Use of recombinant mitogillin for improved serodiagnosis of Aspergillus fumigatus-associated diseases. J Clin Microbiol 2001; 39:1721-30. [PMID: 11325981 PMCID: PMC88016 DOI: 10.1128/jcm.39.5.1721-1730.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During human infection, Aspergillus fumigatus secretes a 18-kDa protein that can be detected as an immunodominant antigen in the urine of infected patients. Recently, this protein was shown to be mitogillin, a ribotoxin that cleaves a single phosphodiester bond of the 29S rRNA of eukaryotic ribosomes. We proved the immunogenic capacity of mitogillin in a rabbit animal model, indicating its usefulness as an antigen for serological diagnosis of invasive aspergillosis. The mitogillin gene from A. fumigatus was transferred from plasmid pMIT+ to expression vector pQE30 and expressed in Escherichia coli as a fusion protein. Purified recombinant mitogillin was recognized by serum immunoglobulin G (IgG) of polyclonal rabbit sera that were obtained by immunization with purified native mitogillin. Consequently, we developed an enzyme-linked immunosorbent assay for detection of IgG, IgM, and IgA antibodies to recombinant mitogillin. In serum samples of patients suffering from aspergilloma (AO; n = 32), invasive pulmonary aspergillosis (IPA; n = 42), or invasive disseminated aspergillosis (IDA; n = 40), a good correlation of production of IgG antibody against mitogillin and clinical disease was observed (for patients with AO, 100% [32 of 32] were positive; for patients with IPA, 64% [31 of 42] were positive; for patients with IDA, 60% [24 of 40] were positive). In contrast, positive titers for serum IgG and IgM antibodies against mitogillin were found in only 1.3% of the serum samples of healthy volunteers and positive titers for IgA antibody were found in only 1.0% of the serum samples of healthy volunteers (n = 307; specificity = 95.4%). These results indicate that recombinant mitogillin expressed in E. coli can be used for improvement of the serodiagnosis of A. fumigatus-associated diseases.
Collapse
Affiliation(s)
- M Weig
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
29
|
de Antonio C, Martínez del Pozo A, Mancheño JM, Oñaderra M, Lacadena J, Martínez-Ruiz A, Pérez-Cañadillas JM, Bruix M, Gavilanes JG. Assignment of the contribution of the tryptophan residues to the spectroscopic and functional properties of the ribotoxin alpha-sarcin. Proteins 2000; 41:350-61. [PMID: 11025546 DOI: 10.1002/1097-0134(20001115)41:3<350::aid-prot70>3.0.co;2-v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
alpha-Sarcin, a potent cytotoxic protein from Aspergillus giganteus, contains two tryptophan residues at positions 4 and 51. Two single, W4F and W51F, and the double mutant, W4/51F, have been produced and purified to homogeneity. These two residues are neither required for the highly specific ribonucleolytic activity of the protein on the ribosomes (production of the so called alpha-fragment) nor for its interaction with lipid membranes (aggregation and fusion of vesicles), although the mutant forms involving Trp-51 show a decreased ribonuclease activity. Proton NMR data reveal that no significant changes in the global structure of the enzyme occur upon replacement of Trp-51 by Phe. Substitution of each Trp residue results in a 4 degrees C drop in the thermal denaturation midpoint, and the double mutant's midpoint is 9 degrees C lower. Trp-51 is responsible for most of the near-UV circular dichroism of the protein and also contributes to the overall ellipticity of the protein in the peptide bond region. Trp-51 does not show fluorescence emission. The membrane-bound proteins undergo a thermal denaturation at a lower temperature than the corresponding free forms. The interaction of the protein with phospholipid bilayers promotes a large increase of the quantum yield of Trp-51 and its fluorescence emission is quenched by anthracene incorporated into the hydrophobic region of such bilayers. This indicates that the region around this residue is located in the hydrophobic core of the bilayer following protein-vesicle interaction.
Collapse
Affiliation(s)
- C de Antonio
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hwu L, Huang K, Chen D, Lin A. The action mode of the ribosome-inactivating protein alpha-sarcin. J Biomed Sci 2000; 7:420-8. [PMID: 10971140 DOI: 10.1007/bf02255817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Based on the tertiary structure of the ribosome-inactivating protein alpha-sarcin, domains that are responsible for hydrolyzing ribosomes and naked RNA have been dissected. In this study, we found that the head-to-tail interaction between the first amino beta-strand and the last carboxyl beta-strand is not involved in catalyzing the hydrolysis of ribosomes or ribonucleic acids. Instead, a four-strand pleated beta-sheet is indispensable for catalyzing both substrates, suggesting that alpha-sarcin and ribonuclease T1 (RNase T1) share a similar catalytic center. The integrity of an amino beta-hairpin and that of the loop L3 in alpha-sarcin are crucial for recognizing and hydrolyzing ribosomes in vitro and in vivo. However, a mutant protein without the beta-hairpin structure, or with a disrupted loop L3, is still capable of digesting ribonucleic acids. The functional involvement of the beta-hairpin and the loop L3 in the sarcin stem/loop RNA of ribosomes is demonstrated by a docking model, suggesting that the two structures are in essence naturally designed to distinguish ribosome-inactivating proteins from RNase T1 to inactivate ribosomes.
Collapse
Affiliation(s)
- L Hwu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
31
|
Martínez-Ruiz A, García-Ortega L, Kao R, Oñaderra M, Mancheño JM, Davies J, Martínez del Pozo A, Gavilanes JG. Ribonuclease U2: cloning, production in Pichia pastoris and affinity chromatography purification of the active recombinant protein. FEMS Microbiol Lett 2000; 189:165-9. [PMID: 10930732 DOI: 10.1111/j.1574-6968.2000.tb09224.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
RNase U2 is an endoribonuclease secreted by the fungus Ustilago sphaerogena. Its genomic DNA (rnu2), containing an intron of 116 bp, has been isolated and cloned. The corresponding cDNA has also been synthesized. The recombinant RNase U2 was successfully produced in Pichia pastoris, fused to the yeast alkaline phosphatase signal peptide. The recombinant RNase U2, purified by affinity chromatography, contains three extra amino acids at its amino-terminal end and retains the enzymatic and spectroscopic properties of the natural fungal protein.
Collapse
Affiliation(s)
- A Martínez-Ruiz
- Departmento de Bioquimica y Biologia Molecular I, Facultad de Quimica, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
García-Ortega L, Lacadena J, Lacadena V, Masip M, De Antonio C, Martínez-Ruiz A, Martínez Del Pozo A. The solubility of the ribotoxin alpha-sarcin, produced as a recombinant protein in Escherichia coli, is increased in the presence of thioredoxin. Lett Appl Microbiol 2000; 30:298-302. [PMID: 10792650 DOI: 10.1046/j.1472-765x.2000.00714.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The yield of purified recombinant alpha-sarcin increases approximately three- to fourfold when this toxin is co-expressed in Escherichia coli with thioredoxin. This increased production is attributed to the existence, in the presence of thioredoxin, of a reducing environment which allows rearrangement of incorrect disulphide bonds to produce the soluble native conformation. The protein thus produced retains the structural, spectroscopic and enzymatic features of the natural fungal alpha-sarcin.
Collapse
Affiliation(s)
- L García-Ortega
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Nayak SK, Batra JK. Localization of the catalytic activity in restrictocin molecule by deletion mutagenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1777-83. [PMID: 10712610 DOI: 10.1046/j.1432-1327.2000.01176.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Restrictocin, produced by the fungus Aspergillus restrictus, is a highly specific ribonucleolytic toxin which cleaves a single phosphodiester bond between G4325 and A4326 in the 28S rRNA. It is a nonglycosylated, single-chain, basic protein of 149 amino acids. The putative catalytic site of restrictocin includes Tyr47, His49, Glu95, Arg120 and His136. To map the catalytic activity in the restrictocin molecule, and to study the role of N- and C-terminus in its activity, we have systematically deleted amino-acid residues from both the termini. Three N-terminal deletions removing 8, 15 and 30 amino acids, and three C-terminal deletions lacking 4, 6, and 11 amino acids were constructed. The deletion mutants were expressed in Escherichia coli, purified to homogeneity and functionally characterized. Removal of eight N-terminal or four C-terminal amino acids rendered restrictocin partially inactive, whereas any further deletions from either end resulted in the complete inactivation of the toxin. The study demonstrates that intact N- and C-termini are required for the optimum functional activity of restrictocin.
Collapse
Affiliation(s)
- S K Nayak
- Immunochemistry Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
34
|
Kao R, Davies J. Single amino acid substitutions affecting the specificity of the fungal ribotoxin mitogillin. FEBS Lett 2000; 466:87-90. [PMID: 10648818 DOI: 10.1016/s0014-5793(99)01753-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mitogillin and related fungal ribotoxins are small basic ribonucleolytic proteins that inhibit protein synthesis by specifically hydrolyzing a single phosphodiester bond in the universally conserved alpha-sarcin/ricin loop (SRL) of large subunit ribosomal RNAs. It was previously shown that mitogillin is a natural derivative of a T1/U2-like ribonuclease with inserted domains that are involved in target selection and specificity. Site-directed mutagenesis was used to substitute single amino acids in the previously identified functional domains Ala1-Tyr24 (B1-L1-B2 domain) and Lys106-Lys113 (L4 region). Examination of the activities of the mutants in the digestion of polyinosinic acid (a ribonuclease substrate) and specific cleavage of the SRL shows that Asn7Ala and Lys111Gln substitutions lead to altered ribonuclease activity and diminished substrate specificity consistent with the proposed functions of these domains.
Collapse
Affiliation(s)
- R Kao
- Department of Microbiology and Immunology, The University of British Columbia, 6174 University Blvd., Vancouver, B.C., Canada.
| | | |
Collapse
|
35
|
Lacadena J, Martínez del Pozo A, Martínez-Ruiz A, Pérez-Cañadillas JM, Bruix M, Mancheño JM, Oñaderra M, Gavilanes JG. Role of histidine-50, glutamic acid-96, and histidine-137 in the ribonucleolytic mechanism of the ribotoxin alpha-sarcin. Proteins 1999; 37:474-84. [PMID: 10591106 DOI: 10.1002/(sici)1097-0134(19991115)37:3<474::aid-prot14>3.0.co;2-n] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
alpha-Sarcin is a ribotoxin secreted by the mold Aspergillus giganteus that degrades the ribosomal RNA by acting as a cyclizing ribonuclease. Three residues potentially involved in the mechanism of catalysis--histidine-50, glutamic acid-96, and histidine-137--were changed to glutamine. Three different single mutation variants (H50Q, E96Q, H137Q) as well as a double variant (H50/137Q) and a triple variant (H50/137Q/E96Q) were prepared and isolated to homogeneity. These variants were spectroscopically (circular dichroism, fluorescence emission, and proton nuclear magnetic resonance) characterized. According to these results, the three-dimensional structure of these variants of alpha-sarcin was preserved; only very minor local changes were detected. All the variants were inactive when assayed against either intact ribosomes or poly(A). The effect of pH on the ribonucleolytic activity of alpha-sarcin was evaluated against the ApA dinucleotide. This assay revealed that only the H50Q variant still retained its ability to cleave a phosphodiester bond, but it did so to a lesser extent than did wild-type alpha-sarcin. The results obtained are interpreted in terms of His137 and Glu96 as essential residues for the catalytic activity of alpha-sarcin (His137 as the general acid and Glu96 as the general base) and His50 stabilizing the transition state of the reaction catalyzed by alpha-sarcin.
Collapse
Affiliation(s)
- J Lacadena
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Martínez-Ruiz A, Kao R, Davies J, Martínez del Pozo A. Ribotoxins are a more widespread group of proteins within the filamentous fungi than previously believed. Toxicon 1999; 37:1549-63. [PMID: 10482390 DOI: 10.1016/s0041-0101(99)00103-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alpha-sarcin, restrictocin and mitogillin are the best known members of the family of fungal ribotoxins. In recent years, new members of this family have been discovered and characterised. In this work, we study the occurrence of ribotoxins among different species of fungi. The presence of ribotoxins has been identified in some new species by means of genetic studies, as well as expression and activity assays. The ribotoxin genes have been partially sequenced, and demonstrate a high degree of similarity. These studies demonstrate that these toxins are more widespread than previously considered. This is surprising, considering the ribotoxins are such specific and potent toxins, of unknown biological function. These studies confirm the hypothesis that these proteins are naturally engineered toxins derived from ribonucleases of broad substrate specificity.
Collapse
Affiliation(s)
- A Martínez-Ruiz
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Kao R, Davies J. Molecular dissection of mitogillin reveals that the fungal ribotoxins are a family of natural genetically engineered ribonucleases. J Biol Chem 1999; 274:12576-82. [PMID: 10212236 DOI: 10.1074/jbc.274.18.12576] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogillin and the related fungal ribotoxins are highly specific ribonucleases which inactivate the ribosome enzymatically by cleaving the 23-28 S RNA of the large ribosomal subunit at a single phosphodiester bond. The site of cleavage occurs between G4325 and A4326 (rat ribosome numbering) which are present in one of the most conserved sequences (the alpha-sarcin loop) among the large subunit ribosomal RNAs of all living species. Amino acid sequence comparison of ribotoxins and guanyl/purine ribonucleases have identified domains or residues likely involved in ribonucleolytic activity or cleavage specificity. Fifteen deletion mutants (each 4 to 8 amino acid deletions) in motifs of mitogillin showing little amino acid sequence homology with guanyl/purine ribonucleases were constructed by site-directed mutagenesis. Analyses of the purified mutant proteins identified those regions in fungal ribotoxins contributing to ribosome targeting and modulating the catalytic activity of the toxin; some of the identified motifs are homologous to sequences in ribosomal proteins and elongation factors. This mutational study of mitogillin together with the recently published x-ray structure of restrictocin (a close relative of mitogillin) supports the hypothesis that the specific cleavage properties of ribotoxins are the result of natural genetic engineering in which the ribosomal targeting elements of ribosome-associated proteins were inserted into nonessential regions of T1-like ribonucleases.
Collapse
Affiliation(s)
- R Kao
- Department of Microbiology and Immunology, The University of British Columbia, 6174 University Blvd., Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
38
|
Fetrow JS, Skolnick J. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases. J Mol Biol 1998; 281:949-68. [PMID: 9719646 DOI: 10.1006/jmbi.1998.1993] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The practical exploitation of the vast numbers of sequences in the genome sequence databases is crucially dependent on the ability to identify the function of each sequence. Unfortunately, current methods, including global sequence alignment and local sequence motif identification, are limited by the extent of sequence similarity between sequences of unknown and known function; these methods increasingly fail as the sequence identity diverges into and beyond the twilight zone of sequence identity. To address this problem, a novel method for identification of protein function based directly on the sequence-to-structure-to-function paradigm is described. Descriptors of protein active sites, termed "fuzzy functional forms" or FFFs, are created based on the geometry and conformation of the active site. By way of illustration, the active sites responsible for the disulfide oxidoreductase activity of the glutaredoxin/thioredoxin family and the RNA hydrolytic activity of the T1 ribonuclease family are presented. First, the FFFs are shown to correctly identify their corresponding active sites in a library of exact protein models produced by crystallography or NMR spectroscopy, most of which lack the specified activity. Next, these FFFs are used to screen for active sites in low-to-moderate resolution models produced by ab initio folding or threading prediction algorithms. Again, the FFFs can specifically identify the functional sites of these proteins from their predicted structures. The results demonstrate that low-to-moderate resolution models as produced by state-of-the-art tertiary structure prediction algorithms are sufficient to identify protein active sites. Prediction of a novel function for the gamma subunit of a yeast glycosyl transferase and prediction of the function of two hypothetical yeast proteins whose models were produced via threading are presented. This work suggests a means for the large-scale functional screening of genomic sequence databases based on the prediction of structure from sequence, then on the identification of functional active sites in the predicted structure.
Collapse
Affiliation(s)
- J S Fetrow
- Center for Biochemistry and Biophysics, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | | |
Collapse
|
39
|
Abstract
Fungal ribotoxins, such as mitogillin and the related Aspergillus toxins restrictocin and alpha-sarcin, are highly specific ribonucleases, which inactivate the ribosome enzymatically by cleaving the eukaryotic 28S RNA of the large ribosomal subunit at a single phosphodiester bond. The site of cleavage occurs between G4325 and A4326, which are present in a 14-base sequence (the alpha-sarcin loop) conserved among the large subunit rRNAs of all living species. The amino acid residues involved in the cytotoxic activities of mitogillin were investigated by introducing point mutations using hydroxylamine into a recombinant Met-mature mitogillin (mitogillin with a Met codon at the N-terminus and no leader sequence) gene constructed from an Aspergillus fumigatus cDNA clone. These constructs were cloned into a yeast expression vector under the control of the GAL1 promoter and transformed into Saccharomyces cerevisiae. Upon induction of mitogillin expression, surviving transformants revealed that substitutions of certain amino acid residues on mitogillin abolished its cytotoxicity. Non-toxic mutant genes were cloned into an Escherichia coli expression vector, the proteins overexpressed and purified to homogeneity and their activities examined by in vitro ribonucleolytic assays. These studies identified the His-49Tyr, Glu-95Lys, Arg-120Lys and His-136Tyr mutations to have a profound impact on the ribonucleolytic activities of mitogillin. We conclude that these residues are key components of the active site contributing to the catalytic activities of mitogillin.
Collapse
Affiliation(s)
- R Kao
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
40
|
Oñaderra M, Mancheño JM, Lacadena J, de los Rios V, Martínez del Pozo A, Gavilanes JG. Oligomerization of the cytotoxin alpha-sarcin associated with phospholipid membranes. Mol Membr Biol 1998; 15:141-4. [PMID: 9859111 DOI: 10.3109/09687689809074525] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
alpha-Sarcin is a cytotoxic protein that specifically inactivates ribosomes. The protein translocates across phospholipid membranes. Oligomerization of the protein occurs upon interaction with membranes. Chemically cross-linked protein oligomers have been obtained by treatment of protein-vesicle complexes with the membrane impermeant reagent bis-(sulfosuccinimidyl) suberate. These structures are only obtained in the presence of acidic lipid vesicles composed of either natural or synthetic phospholipids. Such oligomers are not produced in concentrated protein solutions in the absence of vesicles. The formation of the chemically stabilized oligomers is saturated at the same lipid to protein molar ratio as all the perturbations caused by alpha-sarcin on lipid vesicles. Results are discussed in terms of the involvement of oligomer formation on protein translocation across membranes.
Collapse
Affiliation(s)
- M Oñaderra
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
41
|
Mancheño JM, Martínez del Pozo A, Albar JP, Oñaderra M, Gavilanes JG. A peptide of nine amino acid residues from alpha-sarcin cytotoxin is a membrane-perturbing structure. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 51:142-8. [PMID: 9580217 DOI: 10.1111/j.1399-3011.1998.tb00632.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A water-soluble synthetic peptide with only nine amino acid residues, comprising the 131-139 sequence region of the cytotoxic protein alpha-sarcin (secreted by the mold Aspergillus giganteus), interacts with large unilamellar vesicles composed of acid phospholipids. It promotes lipid mixing between bilayers and leakage of vesicle aqueous contents, and it also abolishes the phospholipid phase transition. Other larger peptides containing such an amino acid sequence also produce these effects. These peptides acquire alpha-helical conformation in the presence of trifluoroethanol, but display beta-strand conformation in the presence of sodium dodecyl sulfate. The interaction of these peptides with the lipid vesicles also results in beta-structure. The obtained data are discussed in terms of the involvement of the 131-139 stretch of alpha-sarcin in its interaction with lipid membranes.
Collapse
Affiliation(s)
- J M Mancheño
- Departamento de Bioquímica y Biología Molecular, Facultad de Química, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Campos-Olivas R, Bruix M, Santoro J, Martínez del Pozo A, Lacadena J, Gavilanes JG, Rico M. Structural basis for the catalytic mechanism and substrate specificity of the ribonuclease alpha-sarcin. FEBS Lett 1996; 399:163-5. [PMID: 8980143 DOI: 10.1016/s0014-5793(96)01320-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
alpha-Sarcin is a ribosome-inactivating protein which selectively cleaves a single phosphodiester bond in a universally conserved sequence of the major rRNA. The solution structure of a-sarcin has been determined on the basis of 1898 distance and angular experimental constraints from NMR spectroscopy. It reveals a catalytic mechanism analogous to that of the T1 family of ribonucleases while its exquisite specificity resides in the contacts provided by its distinctive loops.
Collapse
Affiliation(s)
- R Campos-Olivas
- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|