1
|
Zhou CK, Liu ZZ, Peng ZR, Luo XY, Zhang XM, Zhang JG, Zhang L, Chen W, Yang YJ. M28 family peptidase derived from Peribacillus frigoritolerans initiates trained immunity to prevent MRSA via the complosome-phosphatidylcholine axis. Gut Microbes 2025; 17:2484386. [PMID: 40159598 PMCID: PMC11959922 DOI: 10.1080/19490976.2025.2484386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a major global health threat due to its resistance to conventional antibiotics. The commensal microbiota maintains a symbiotic relationship with the host, playing essential roles in metabolism, energy regulation, immune modulation, and pathogen control. Mammals harbor a wide range of commensal bacteria capable of producing unique metabolites with potential therapeutic properties. This study demonstrated that M28 family peptidase (M28), derived from commensal bacteria Peribacillus frigoritolerans (P. f), provided protective effects against MRSA-induced pneumonia. M28 enhanced the phagocytosis and bactericidal activity of macrophages by inducing trained immunity. RNA sequencing and metabolomic analyses identified the CFB-C3a-C3aR-HIF-1α axis-mediated phosphatidylcholine accumulation as the key mechanism for M28-induced trained immunity. Phosphatidylcholine, like M28, also induced trained immunity. To enhance M28-mediated therapeutic potential, it was encapsulated in liposomes (M28-LNPs), which exhibited superior immune-stimulating properties compared to M28 alone. In vivo experiments revealed that M28-LNPs significantly reduced bacterial loads and lung damage following MRSA infection, which also provided enhanced protection against Klebsiella pneumoniae and Candida albicans. We first confirmed a link between complement activation and trained immunity, offering valuable insights into the treatment and prevention of complement-related autoimmune diseases.
Collapse
Affiliation(s)
- Cheng-Kai Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Zhen-Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Zi-Ran Peng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Xue-Yue Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Xiao-Mei Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Jian-Gang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Liang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Wei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| | - Yong-Jun Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun Jilin, P. R China
| |
Collapse
|
2
|
Jiang D, Lin S, Xie L, Chen M, Shi Y, Chen K, Li X, Wu B, Zhang B. UDP-glycosyltransferase PpUGT74F2 is involved in fruit immunity via modulating salicylic acid metabolism. HORTICULTURE RESEARCH 2025; 12:uhaf049. [PMID: 40265127 PMCID: PMC12010879 DOI: 10.1093/hr/uhaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/06/2025] [Indexed: 04/24/2025]
Abstract
Flesh fruits are essential for human health, but pathogen infection poses a threat to fruit production and postharvest storage. The hormone salicylic acid (SA) and its metabolites, such as sugar conjugates and methyl salicylate (MeSA), play a crucial role in regulating plant immune responses. However, the UDP-glycosyltransferases (UGTs) responsible for modulating SA metabolism in fruit have yet to be identified, and further investigation is needed to elucidate its involvement in fruit immune response. Here, we identified PpUGT74F2 as an enzyme with the highest transcription level in peach fruit, responsible for catalyzing the biosynthesis of SA glucoside (SAG), but not for MeSAG formation in fruit. Furthermore, infection of peach fruit with Monilinia fructicola, which causes brown rot disease, led to reduced expression of PpUGT74F2, resulting in a significant decrease in SAG content and an increase in MeSA levels. Transgenic tomatoes expressing heterologous PpUGT74F2 increased susceptibility to gray mold. Interestingly, overexpressing PpUGT74F2 did not affect SA levels but dramatically reduced MeSA levels in response to pathogen infection, accompanied by significantly reduced expression of pathogen-related (PR) genes in transgenic tomatoes. This study highlights that PpUGT74F2 acts as a negative regulatory factor for fruit immunity through a distinct mechanism not previously reported in plants.
Collapse
Affiliation(s)
- Dan Jiang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Siyin Lin
- Hainan Institute of Zhejiang University, Zhenzhou Road, Sanya, Hainan 572000, China
| | - Linfeng Xie
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Miaojing Chen
- Melting Peach Research Institute of Fenghua District, 37 Gongyuan Road, Xikou Town, Fenghua district, Ningbo 315502, China
| | - Yanna Shi
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kunsong Chen
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xian Li
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Boping Wu
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, 666 Wushu Street, Linan district, Hangzhou 311300, China
| | - Bo Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Zhenzhou Road, Sanya, Hainan 572000, China
| |
Collapse
|
3
|
Wang M, Yuan Y, Zhao Y, Hu Z, Zhang S, Luo J, Jiang CZ, Zhang Y, Sun D. PhWRKY30 activates salicylic acid biosynthesis to positively regulate antiviral defense response in petunia. HORTICULTURE RESEARCH 2025; 12:uhaf013. [PMID: 40190442 PMCID: PMC11966387 DOI: 10.1093/hr/uhaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 04/09/2025]
Abstract
Petunia (Petunia hybrida) plants are highly threatened by a diversity of viruses, causing substantial damage to ornamental quality and seed yield. However, the regulatory mechanism of virus resistance in petunia is largely unknown. Here, we revealed that a member of petunia WRKY transcription factors, PhWRKY30, was dramatically up-regulated following Tobacco rattle virus (TRV) infection. Down-regulation of PhWRKY30 through TRV-based virus-induced gene silencing increased green fluorescent protein (GFP)-marked TRV RNA accumulation and exacerbated the symptomatic severity. In comparison with wild-type (WT) plants, PhWRKY30-RNAi transgenic petunia plants exhibited a compromised resistance to TRV infection, whereas an enhanced resistance was observed in PhWRKY30-overexpressing (OE) transgenic plants. PhWRKY30 affected salicylic acid (SA) production and expression of arogenate dehydratase 1 (PhADT1), phenylalanine ammonia-lyase 1 (PhPAL1), PhPAL2b, nonexpressor of pathogenesis-related proteins 1 (PhNPR1), and PhPR1 in SA biosynthesis and signaling pathway. SA treatment restored the reduced TRV resistance to WT levels in PhWRKY30-RNAi plants, and application of SA biosynthesis inhibitor 2-aminoindan-2-phosphonic acid inhibited promoted resistance in PhWRKY30-OE plants. The protein-DNA binding assays showed that PhWRKY30 specifically bound to the promoter of PhPAL2b. RNAi silencing and overexpression of PhPAL2b led to decreased and increased TRV resistance, respectively. The transcription of a number of reactive oxygen species- and RNA silencing-associated genes was changed in PhWRKY30 and PhPAL2b transgenic lines. PhWRKY30 and PhPAL2b were further characterized to be involved in the resistance to Tobacco mosaic virus (TMV) invasion. Our findings demonstrate that PhWRKY30 positively regulates antiviral defense against TRV and TMV infections by modulating SA content.
Collapse
Affiliation(s)
- Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yike Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuo Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shasha Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Yao X, Sui X, Zhang Y. Amino Acid Metabolism and Transporters in Plant-Pathogen Interactions: Mechanisms and Implications. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40304541 DOI: 10.1111/pce.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
In the intricate landscape of plant-pathogen interactions, amino acids and their dedicated transporters emerge as pivotal players underpinning immune signalling and metabolic reprogramming. Amino acid metabolism serves as a linchpin in orchestrating systemic defence responses, with transporter-mediated amino acid homoeostasis intricately intertwined with immune pathways. This review synthesizes the dual roles of amino acids, including glutamate, proline, γ-aminobutyric acid, β-aminobutyric acid and pipecolic acid, as metabolic intermediates and signalling molecules that modulate defence responses. Complementing this metabolic framework, amino acid transporters, including LHT1 and members of the AAP and UMAMIT family, participate in plant defence against pathogens or provide nutrients to pathogens by regulating the transmembrane transport of amino acids. Their disease resistance or susceptibility functions are closely related to plant tissue-specificity and substrate-specificity. Additionally, this review explores the potential coordinated regulation between amino acid and sugar transporters in the context of plant-pathogen interactions. Looking ahead, future research should focus on resolving transporter mechanisms in resistance, dissecting regulatory hubs linking metabolism and transport, mapping nutrient fluxes at the host-pathogen interface and exploring the subcellular localization and transport direction of transporters to inform precision crop protection strategies.
Collapse
Affiliation(s)
- Xuehui Yao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Wang X, Zhang X, Liu Y, Ru L, Yan G, Xu Y, Yu Y, Zhu Z, He Y. miR398-SlCSD1 module participates in the SA-H 2O 2 amplifying feedback loop in Solanum lycopersicum. J Adv Res 2025:S2090-1232(25)00279-6. [PMID: 40274227 DOI: 10.1016/j.jare.2025.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
INTRODUCTION Salicylic acid (SA) is essential for immune response signal transduction in higher plants, with its signaling thought to be enhanced through interactions with reactive oxygen species (ROS). However, the exact mechanisms behind this SA self-amplifying signaling are still not well understood. OBJECTIVES In this study, we report the involvement of the miR398b-SlCSD1 module in the SA-H2O2 amplifying feedback loop in tomato (Solanum lycopersicum). METHODS Experiments were conducted using various concentrations of SA to assess its impact on ROS metabolism and the expression of SlCSD1 and sly-miR398. CRISPR/Cas9 was employed to knock out sly-miR398 and SlCSD1. Bioinformatics analyses, dual-luciferase reporter assays (Dual-Luc), and electrophoretic mobility shift assays (EMSA) were used to identify SA-responsive transcription factors and validate their regulation of sly-miR398b. The role of miR398 in endogenous SA synthesis was examined using overexpression and knockout tomato lines. RESULTS Low SA concentrations stimulated H2O2 accumulation, increased superoxide dismutase (SOD) activity, and suppressed sly-miR398 expression, effects absent in NahG plants with reduced SA levels. Knockout of SlCSD1 via CRISPR/Cas9 partially inhibited SA-induced H2O2 accumulation, confirming SlCSD1's role in SA-dependent H2O2 signaling. Furthermore, Dual-Luc and EMSA results revealed that TGACG-sequence-specific binding protein 2 (TGA2) mediated the regulation of miR398-SlCSD1 module by SA in tomato. Additionally, overexpression and mutation of sly-miR398b promoted SA synthesis via the phenylalanine ammonia-lyase (PAL) and isochorismate synthase (ICS) pathways, highlighting its regulatory role in SA biosynthesis. CONCLUSION Taken together, our results shed light on the involvement of the miR398-SlCSD1 module in the SA-H2O2 amplifying feedback loop, providing new insights into SA signaling in tomato. These findings contribute to understanding SA-ROS interactions and offer a potential strategy for enhancing stress tolerance in crops by targeting microRNA-regulated pathways.
Collapse
Affiliation(s)
- Xiujuan Wang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300 Zhejiang, China
| | - Xinshan Zhang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300 Zhejiang, China
| | - Yuanyuan Liu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300 Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou 311300 Zhejiang, China
| | - Lei Ru
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300 Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou 311300 Zhejiang, China
| | - Guochao Yan
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300 Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou 311300 Zhejiang, China
| | - Yunmin Xu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300 Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou 311300 Zhejiang, China
| | - Youjian Yu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300 Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou 311300 Zhejiang, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300 Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou 311300 Zhejiang, China.
| | - Yong He
- College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300 Zhejiang, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Hangzhou 311300 Zhejiang, China.
| |
Collapse
|
6
|
Kumari M, Sharma P, Singh A. Pipecolic acid: A positive regulator of systemic acquired resistance and plant immunity. Biochim Biophys Acta Gen Subj 2025; 1869:130808. [PMID: 40252741 DOI: 10.1016/j.bbagen.2025.130808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Pipecolic acid (Pip) is a naturally occurring non-protein amino acid, that builds up in plants in response to pathogen infection. Pip is upregulated in autophagy mutants, indicating its role as a crucial regulator of plant immunity by upregulating systemic acquired resistance (SAR). This broad-spectrum defense mechanism protects uninfected parts of the plant during subsequent pathogen attacks. Pip has been identified as a SAR chemical signal and acts before the NO-ROS-AzA-G3P. The biosynthesis of Pip begins with lysine by the activity of ALD1 and SARD4 in a sequential manner; ALD1, a lysine aminotransferase, catabolizes lysine to Δ 1-piperidine-2-carboxylic acid, which is further modified to Pip by the activity of ornithine cyclodeaminase activity of SARD4. Additionally, FMO 1, a flavin monooxygenase, catalyzes the synthesis of N-hydroxy-pipecolic acid (NHP, the final, SAR-inducing defense hormone) from Pip. Pip and its active form accumulate at the infection site in the phloem and are transported to distal parts of the plant via symplast to trigger SAR. This review focuses on the roles of Pip and NHP in regulating SAR and how they interact with other defense signals like salicylic acid (SA) to modulate plant immunity.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Prashansa Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, New Delhi, India.
| |
Collapse
|
7
|
Song L, Yang T, Abubakar YS, Han Y, Zhang R, Li Y, Ye W, Lu GD. OsMbl1 Counteracts OsGdsl1-Mediated Rice Blast Susceptibility by Inhibiting Its Lipase Activity. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40230242 DOI: 10.1111/pce.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025]
Abstract
Plant lectins have a significant impact on the defense against pathogens and insect attacks. The jacalin-related lectin OsMbl1 from rice (Oryza sativa L.) has been reported to play a crucial role in pattern-triggered immunity (PTI). However, the underlying mechanism remains unclear. In this study, we identified a GDSL-like lipase, OsGdsl1, that interacts with OsMbl1 both in vitro and in vivo. The OsGdsl1 protein, which has lipase activity, is localized in the lipid bodies and apoplast. The expression of OsGDSL1 is modulated upon exposure to Magnaporthe oryzae (M. oryzae) or plant hormones. Deletion of the OsGDSL1 gene not only improved the resistance of rice to M. oryzae, but also led to an increased ROS burst after chitin treatments. The expression of some pathogenesis-related (PR) genes was upregulated in the mutants. We also found that OsMbl1 inhibited the lipase activity of OsGdsl1 during infection with M. oryzae. Overall, our results suggest that OsGdsl1 negatively regulates rice immunity to M. oryzae infection by downregulating ROS bursts and PR gene expressions, while its lipase activity, which is inhibited by OsMbl1, contributes to the enhancement of rice innate immunity during M. oryzae infection.
Collapse
Affiliation(s)
- Linlin Song
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- China National Engineering Research Center of JUNCAO Technology, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture & Forestry University, Fuzhou, Fujian, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yijuan Han
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Ruina Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenyu Ye
- China National Engineering Research Center of JUNCAO Technology, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture & Forestry University, Fuzhou, Fujian, China
| | - Guo-Dong Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Min WK, Kwak JS, Kwon DH, Kim S, Park SW, Ahn J, Cho S, Kim M, Lee SJ, Song JT, Kim Y, Seo HS. Retromer protein VPS29 plays a crucial and positive role in the sumoylation system mediated by E3 SUMO ligase SIZ1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70166. [PMID: 40286281 PMCID: PMC12033008 DOI: 10.1111/tpj.70166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Vacuolar protein sorting 29 (VPS29) functions in retrograde protein transport as a component of the retromer complex. However, the role of VPS29 in the regulation of post-translational modifications, such as sumoylation and ubiquitination, has not been elucidated. In this study, we demonstrate that VPS29 positively regulates SIZ/PIAS-type E3 SUMO (Small ubiquitin-related modifier) ligase-mediated sumoylation systems. In Arabidopsis, vps29-3 mutants display upregulated salicylic acid (SA) signaling pathways and reactive oxygen species accumulation, similar to those observed in siz1 mutants. Arabidopsis VPS29 (AtVPS29) directly interacts with the Arabidopsis E3 SUMO ligase SIZ1 (AtSIZ1) and localizes not only to the cytoplasm but also to the nucleus. The loss of AtVPS29 leads to a depletion of AtSIZ1, whereas the E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1), an upstream regulator of AtSIZ1, accumulates in vps29-3 mutants. Conversely, overexpression of AtVPS29 results in the accumulation of AtSIZ1 and the depletion of COP1 in transgenic Arabidopsis. Similarly, in human cells, silencing of hVPS29 leads to the depletion of the E3 SUMO ligase, PIAS1, and the accumulation of huCOP1. Under heat stress conditions, the levels of SUMO-conjugates are significantly lower in Arabidopsis vps29-3 mutants, indicating a regulatory role of AtVPS29 on AtSIZ1 activity. Moreover, AtVPS29 inhibits ubiquitination pathway-dependent degradation of AtSIZ1. Notably, AtSIZ1 forms a complex with AtVPS29 and trimeric retromer proteins. Taken together, our results indicate that VPS29 plays an essential role in signal transduction by regulating SIZ/PIAS-type E3 ligase-dependent sumoylation in both plants and animals.
Collapse
Affiliation(s)
- Wang Ki Min
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jun Soo Kwak
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Dae Hwan Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Sung‐Il Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Sang Woo Park
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jiyoung Ahn
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Soobin Cho
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Myung‐Jin Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Seung Ju Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| | - Jong Tae Song
- Department of Applied BiosciencesKyungpook National UniversityDaegu41566Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity CenterSookmyung Women's UniversitySeoul04310Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoul08826Korea
| |
Collapse
|
9
|
Pereira JP, Bevilacqua I, Santos RB, Varotto S, Chitarra W, Nerva L, Figueiredo A. Epigenetic regulation and beyond in grapevine-pathogen interactions: a biotechnological perspective. PHYSIOLOGIA PLANTARUM 2025; 177:e70216. [PMID: 40234103 PMCID: PMC11999821 DOI: 10.1111/ppl.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/12/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
As one of the most important crop plants worldwide, understanding the mechanisms underlying grapevine response to pathogen attacks is key to achieving a productive and sustainable viticulture. Recently, epigenetic regulation in plant immunity has gained significant traction in the scientific community, not only for its role in gene expression regulation but also for its heritability, giving it enormous biotechnological potential. Epigenetic marks have been shown to be dynamically modulated in key genomic regions upon infection, with some being maintained after such, being responsible for priming defense genes. In grapevine, however, knowledge of epigenetic mechanisms is still limited, especially regarding biotic stress responses, representing a glaring gap in knowledge in this important crop plant. Here, we report and integrate current knowledge on grapevine epigenetic regulation as well as non-epigenetic non-coding RNAs in the response to biotic stress. We also explore how epigenetic marks may be useful in grapevine breeding for resistance, considering different approaches, from uncovering and exploiting natural variation to inducing it through different means.
Collapse
Affiliation(s)
- João Proença Pereira
- Grapevine Pathogen Systems LabBioISI – Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of LisbonLisboaPortugal
| | - Ivan Bevilacqua
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE)University of PadovaLegnaro(PD)Italy
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA‐VE)Conegliano(TV)Italy
| | - Rita B. Santos
- Grapevine Pathogen Systems LabBioISI – Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of LisbonLisboaPortugal
- Plant Biology Department, Faculty of SciencesBioISI, University of LisbonLisboaPortugal
| | - Serena Varotto
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE)University of PadovaLegnaro(PD)Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA‐VE)Conegliano(TV)Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA‐VE)Conegliano(TV)Italy
| | - Andreia Figueiredo
- Grapevine Pathogen Systems LabBioISI – Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of LisbonLisboaPortugal
- Plant Biology Department, Faculty of SciencesBioISI, University of LisbonLisboaPortugal
| |
Collapse
|
10
|
Guo X, Su J, Xue H, Sun Y, Lian M, Ma J, Lei T, He Y, Li Q, Chen S, Yao L. Genome-wide identification and expression analyses of ABSCISIC ACID-INSENSITIVE 5 (ABI5) genes in Citrus sinensis reveal CsABI5-5 confers dual resistance to Huanglongbing and citrus canker. Int J Biol Macromol 2025:141611. [PMID: 40024407 DOI: 10.1016/j.ijbiomac.2025.141611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Huanglongbing (HLB) and citrus canker are two major destructive bacterial diseases in the citrus industry caused by Candidatus Liberibacter asiaticus (CLas) and Xanthomonas citri subsp. Citri (Xcc), respectively. ABI5 transcription factors are crucial for plant growth and development as well as for responses to various abiotic and biotic stresses, including viruses and fungi. This study aimed to identify and characterize ABI5 genes in the Citrus sinensis genome and investigate their functions in response to CLas and Xcc infections. We identified five putative CsABI5 genes on three citrus chromosomes, named CsABI5-1 to CsABI5-5, which share high identity with Arabidopsis ABI5 subfamily proteins and function in the nucleus. The expression of CsABI5s was differentially altered in citrus leaves under HLB and citrus canker stress, as well as in response to exogenous phytohormones. Notably, CsABI5-5 was upregulated by abscisic acid (ABA), salicylic acid (SA), and ethylene, whereas it was downregulated by methyl jasmonate, CLas, and Xcc. Overexpression of CsABI5-5 inhibited the propagation of CLas in citrus hairy roots and reduced leaf susceptibility to Xcc. This resistance was associated with increased levels of SA, jasmonaic acid, callose, and reactive oxygen species, along with decreased ABA, compared to non-transgenic samples. This study highlights the critical role of CsABI5-5 in regulating plant resistance to biotic stresses and demonstrates its potential utility as a powerful gene for biotechnology-assisted plant breeding aimed at improving citrus resistance to bacterial diseases.
Collapse
Affiliation(s)
- Xingru Guo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Juan Su
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Hao Xue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Yijia Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Mengyao Lian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Juanjuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Tiangang Lei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Yongrui He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Qiang Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China
| | - Shanchun Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| | - Lixiao Yao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China; National Citrus Engineering Research Center, Beibei, Chongqing 400712, China; National Citrus Improvement Center, Beibei, Chongqing 400712, China.
| |
Collapse
|
11
|
Jiang X, Yang Y, Li Y, Wang Y, Rodamilans B, Ji W, Wu X, García JA, Wu X, Cheng X. Plant viruses convergently target NPR1 with various strategies to suppress salicylic acid-mediated antiviral immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39981868 DOI: 10.1111/jipb.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 02/22/2025]
Abstract
NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1), the receptor for salicylic acid (SA), plays a central role in the SA-mediated basal antiviral responses. Recent studies have shown that two different plant RNA viruses encode proteins that suppress such antiviral responses by inhibiting its SUMOylation and inducing its degradation, respectively. However, it is unclear whether targeting NPR1 is a general phenomenon in viruses and whether viruses have novel strategies to inhibit NPR1. In the present study, we report that two different positive-sense single-stranded RNA (+ssRNA) viruses, namely, alfalfa mosaic virus (AMV) and potato virus X (PVX); one negative-sense single-stranded RNA (-ssRNA) virus (calla lily chlorotic spot virus, CCSV); and one single-stranded DNA virus (beet severe curly-top virus, BSCTV) that also encode one or more proteins that interact with NPR1. In addition, we found that the AMV-encoded coat protein (CP) can induce NPR1 degradation by recruiting S-phase kinase-associated protein 1 (Skp1), a key component of the Skp1/cullin1/F-box (SCF) E3 ligase. In contrast, the BSCTV-encoded V2 protein inhibits NPR1 function, probably by affecting its nucleocytoplasmic distribution via the nuclear export factor ALY. Taken together, these data suggest that NPR1 is one of the central hubs in the molecular arms race between plants and viruses and that different viruses have independently evolved different strategies to target NPR1 and disrupt its function.
Collapse
Affiliation(s)
- Xue Jiang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Yingshuai Yang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Yong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yongzhi Wang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Weiqin Ji
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoxia Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Xiaoyun Wu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
12
|
Peng J, Yu Y, Fang X. Stress sensing and response through biomolecular condensates in plants. PLANT COMMUNICATIONS 2025; 6:101225. [PMID: 39702967 PMCID: PMC11897469 DOI: 10.1016/j.xplc.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Plants have developed intricate mechanisms for rapid and efficient stress perception and adaptation in response to environmental stressors. Recent research highlights the emerging role of biomolecular condensates in modulating plant stress perception and response. These condensates function through numerous mechanisms to regulate cellular processes such as transcription, translation, RNA metabolism, and signaling pathways under stress conditions. In this review, we provide an overview of current knowledge on stress-responsive biomolecular condensates in plants, including well-defined condensates such as stress granules, processing bodies, and the nucleolus, as well as more recently discovered plant-specific condensates. By briefly referring to findings from yeast and animal studies, we discuss mechanisms by which plant condensates perceive stress signals and elicit cellular responses. Finally, we provide insights for future investigations on stress-responsive condensates in plants. Understanding how condensates act as stress sensors and regulators will pave the way for potential applications in improving plant resilience through targeted genetic or biotechnological interventions.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yidan Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Scholz P, Doner NM, Gutbrod K, Herrfurth C, Niemeyer PW, Lim MSS, Blersch KF, Schmitt K, Valerius O, Shanklin J, Feussner I, Dörmann P, Braus GH, Mullen RT, Ischebeck T. Plasticity of the Arabidopsis leaf lipidome and proteome in response to pathogen infection and heat stress. PLANT PHYSIOLOGY 2025; 197:kiae274. [PMID: 38781317 PMCID: PMC11823117 DOI: 10.1093/plphys/kiae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Plants must cope with a variety of stressors during their life cycle, and the adaptive responses to these environmental cues involve all cellular organelles. Among them, comparatively little is known about the contribution of cytosolic lipid droplets (LDs) and their core set of neutral lipids and associated surface proteins to the rewiring of cellular processes in response to stress. Here, we analyzed the changes that occur in the lipidome and proteome of Arabidopsis (Arabidopsis thaliana) leaves after pathogen infection with Botrytis cinerea or Pseudomonas syringae, or after heat stress. Analyses were carried out in wild-type plants and the oil-rich double mutant trigalactosyldiacylglycerol1-1 sugar dependent 1-4 (tgd1-1 sdp1-4) that allowed for an allied study of the LD proteome in stressed leaves. Using liquid chromatography-tandem mass spectrometry-based methods, we showed that a hyperaccumulation of the primary LD core lipid TAG is a general response to stress and that acyl chain and sterol composition are remodeled during cellular adaptation. Likewise, comparative analysis of the LD protein composition in stress-treated leaves highlighted the plasticity of the LD proteome as part of the general stress response. We further identified at least two additional LD-associated proteins, whose localization to LDs in leaves was confirmed by confocal microscopy of fluorescent protein fusions. Taken together, these results highlight LDs as dynamic contributors to the cellular adaptation processes that underlie how plants respond to environmental stress.
Collapse
Affiliation(s)
- Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Katharina Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn 53115, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Philipp W Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
| | - Magdiel S S Lim
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| | - Katharina F Blersch
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn 53115, Germany
| | - Gerhard H Braus
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
- Institute for Microbiology and Genetics, Service Unit LCMS Protein Analytics Department for Molecular Microbiology and Genetics, University of Goettingen, Goettingen 37077, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster 48143, Germany
| |
Collapse
|
14
|
Zhu F, Li K, Cao M, Zhang Q, Zhou Y, Chen H, AlKhazindar M, Ji Z. NbNAC1 enhances plant immunity against TMV by regulating isochorismate synthase 1 expression and the SA pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17242. [PMID: 39968571 DOI: 10.1111/tpj.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Salicylic acid (SA) plays important roles in plant local and systemic resistance. Isochorismate synthase 1 (ICS1) is a key enzyme in SA synthesis. Pathogens infection triggered the ICS1 expression and induced SA production. However, the molecular regulation mechanism of ICS1 against virus infection remains unclear. Here, we employed molecular genetics and physiobiochemical approaches to confirm a transcription factor NbNAC1 from Nicotiana benthamiana is a positive regulator of resistance against tobacco mosaic virus (TMV). The pathways NbNAC1 and NbICS1 can be triggered by TMV infection. Silencing NbNAC1 accelerated TMV-induced oxidative damage and increased reactive oxygen species (ROS) production. It also weakened both local and systemic resistance against TMV and decreased the expression of NbICS1, SA signaling gene NbNPR1, and SA defense-related genes. The effects of NbNAC1-silencing were restored by overexpression of NbICS1 or foliar SA applications. Overexpressing NbNAC1 prevented oxidative damage and reduced the production of ROS, enhanced plant resistance against viral pathogen, and activated NbICS1 expression, and SA downstream signaling and defense-related genes. NbNAC1 localized in nuclear and emerged the ability of transcriptional regulation. ChIP and EMSA results indicated that NbNAC1 directly binds to a fragment containing GAAATT motif of NbICS1 promoter. Luciferase reporter assays confirmed that NbNAC1 activates NbICS1 expression. Taken together, our results demonstrate that NbNAC1 plays a critical role in plant immunity through activation of SA production.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kainan Li
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Mengyao Cao
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiping Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yangkai Zhou
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huan Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Zhaolin Ji
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
15
|
Ikram AU, Khan MSS, Islam F, Ahmed S, Ling T, Feng F, Sun Z, Chen H, Chen J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412223. [PMID: 39691979 PMCID: PMC11792000 DOI: 10.1002/advs.202412223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | | | - Faisal Islam
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Sulaiman Ahmed
- International Genome CenterJiangsu UniversityZhenjiang212013China
| | - Tengfang Ling
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)Yuseong‐guDaejeon34141Republic of Korea
| | - Feng Feng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOK74078USA
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and BiologyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jian Chen
- International Genome CenterJiangsu UniversityZhenjiang212013China
| |
Collapse
|
16
|
Khalilzadeh M, Aldrich DJ, Maree HJ, Levy A. Complex interplay: The interactions between citrus tristeza virus and its host. Virology 2025; 603:110388. [PMID: 39787773 DOI: 10.1016/j.virol.2024.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Citrus tristeza virus (CTV) is one of the largest and most economically important RNA viruses infecting plants. CTV's interactions with various citrus hosts can result in three diseases: quick decline, stem pitting, or seedling yellows. Studying CTV poses several challenges owing to its significant genetic diversity and the highly specific occurrence of disease symptoms when different genotypes infect different citrus hosts. Considerable progress has been made to functionally characterize the virus-host interactions involved in the induction of CTV's three diseases, revealing that the four CTV ORFs (p33, p18, p13 and p23) play significant roles in determining the pathogenicity of CTV infections. These ORFs are unique to CTV and are not conserved among other members of the family Closteroviridae. This minireview aims to capture the complexity of the factors that have been shown to be involved in CTV disease induction and highlights recent work that provides novel insights into this pathosystem.
Collapse
Affiliation(s)
- Maryam Khalilzadeh
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
| | - Dirk Jacobus Aldrich
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Hans Jacob Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Citrus Research International, PO Box 2201, Matieland, 7602, South Africa
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA; Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
17
|
Xie Y, Cao C, Huang D, Gong Y, Wang B. Effects of microbial biocontrol agents on tea plantation microecology and tea plant metabolism: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1492424. [PMID: 39902199 PMCID: PMC11788416 DOI: 10.3389/fpls.2024.1492424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/26/2024] [Indexed: 02/05/2025]
Abstract
The quality of fresh tea leaves is crucial to the final product, and maintaining microbial stability in tea plantations is essential for optimal plant growth. Unique microbial communities play a critical role in shaping tea flavor and enhancing plant resilience against biotic stressors. Tea production is frequently challenged by pests and diseases, which can compromise both yield and quality. While biotic stress generally has detrimental effects on plants, it also activates defense metabolic pathways, leading to shifts in microbial communities. Microbial biocontrol agents (MBCAs), including entomopathogenic and antagonistic microorganisms, present a promising alternative to synthetic pesticides for mitigating these stresses. In addition to controlling pests and diseases, MBCAs can influence the composition of tea plant microbial communities, potentially enhancing plant health and resilience. However, despite significant advances in laboratory research, the field-level impacts of MBCAs on tea plant microecology remain insufficiently explored. This review provides insights into the interactions among tea plants, insects, and microorganisms, offering strategies to improve pest and disease management in tea plantations.
Collapse
Affiliation(s)
- Yixin Xie
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Daye Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Beibei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
18
|
Mutchler AL, Haynes AP, Saleem M, Jamison S, Khan MM, Ertuglu L, Kirabo A. Epigenetic Regulation of Innate and Adaptive Immune Cells in Salt-Sensitive Hypertension. Circ Res 2025; 136:232-254. [PMID: 39819017 PMCID: PMC11750173 DOI: 10.1161/circresaha.124.325439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Access to excess dietary sodium has heightened the risk of cardiovascular diseases, particularly affecting individuals with salt sensitivity of blood pressure. Our research indicates that innate antigen-presenting immune cells contribute to rapid blood pressure increases in response to excess sodium intake. Emerging evidence suggests that epigenetic reprogramming, with subsequent transcriptional and metabolic changes, of innate immune cells allows these cells to have a sustained response to repetitive stimuli. Epigenetic mechanisms also steer T-cell differentiation in response to innate immune signaling. Immune cells respond to environmental and nutritional cues, such as salt, promoting epigenetic regulation changes. This article aims to identify and discuss the role of epigenetic mechanisms in the immune system contributing to salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ashley L. Mutchler
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Saleem
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mohd Mabood Khan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lale Ertuglu
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
19
|
Chen Q, Yan F, Liu J, Xie Z, Jiang J, Liang J, Chen J, Wang H, Liu J. Citrus transcription factor CsERF1 is involved in the response to citrus tristeza disease. FRONTIERS IN PLANT SCIENCE 2025; 15:1528348. [PMID: 39877743 PMCID: PMC11772405 DOI: 10.3389/fpls.2024.1528348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Introduction Citrus tristeza virus (CTV) is a threat to the citrus production and causes severe economic losses to the citrus industry. Ethylene response factors (ERFs) play important roles in plant growth and stress responses. Although ERF genes have been widely studied in model plants, little is known about their role in biological stress responses in fruit trees, such as citrus. CsERF1 belongs to the citrus AP2/ERF transcription factor family. Methods To determine the role of CsERF1 on CTV resistance in citrus and the effects of the exongenous hormone application on CsERF1 in citrus, the expression of related genes was quantitatively analyzed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) in this study. Results The expression profile showed that the expression level of CsERF1 in roots was significantly lower under CTV infection than in healthy plants, while the expression level in stems was significantly increased. CsERF1 responded to exogenous salicylic acid (SA) and methyl jasmonate (MeJA) treatments. The CTV titer in RNAi-CsERF1 transgenic sweet orange plants significantly increased. Furthermore, CsERF1-overexpressing and RNAi-CsERF1 transgenic sweet orange plants exhibited differential expression of genes involved in jasmonic acid (JA) and SA signaling. Discussion These results suggest that CsERF1 mediates CTV resistance by regulating the JA and SA signaling pathways. The results of this study provide new clues as to the citrus defence response against CTV. It is of great significance to create citrus germplasm resources resistant to recession disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinxiang Liu
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University/Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Riseh RS, Fathi F, Vazvani MG, Tarkka MT. Plant Colonization by Biocontrol Bacteria and Improved Plant Health: A Review. FRONT BIOSCI-LANDMRK 2025; 30:23223. [PMID: 39862070 DOI: 10.31083/fbl23223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 01/27/2025]
Abstract
The use of biological control agents is one of the best strategies available to combat the plant diseases in an ecofriendly manner. Biocontrol bacteria capable of providing beneficial effect in crop plant growth and health, have been developed for several decades. It highlights the need for a deeper understanding of the colonization mechanisms employed by biocontrol bacteria to enhance their efficacy in plant pathogen control. The present review deals with the in-depth understanding of steps involved in host colonization by biocontrol bacteria. The colonization process starts from the root zone, where biocontrol bacteria establish initial interactions with the plant's root system. Moving beyond the roots, biocontrol bacteria migrate and colonize other plant organs, including stems, leaves, and even flowers. Also, the present review attempts to explore the mechanisms facilitating bacterial movement within the plant such as migrating through interconnected spaces such as vessels or in the apoplast, and applying quorum sensing or extracellular enzymes during colonization and what is needed to establish a long-term association within a plant. The impacts on microbial community dynamics, nutrient cycling, and overall plant health are discussed, emphasizing the intricate relationships between biocontrol bacteria and the plant's microbiome and the benefits to the plant's above-ground parts, the biocontrol 40 bacteria confer. By unraveling these mechanisms, researchers can develop targeted strategies for enhancing the colonization efficiency and overall effectiveness of biocontrol bacteria, leading to more sustainability and resilience.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agricultural Sciences, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Mika Tapio Tarkka
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv), 04103 Leipzig, Germany
| |
Collapse
|
21
|
Dai W, Pan M, Peng L, Zhang D, Ma Y, Wang M, Wang N. Integrated Transcriptome and Metabolome Analysis Reveals Insights into Flavone and Flavonol Biosynthesis in Salicylic Acid-Induced Citrus Huanglongbing Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:919-937. [PMID: 39723904 DOI: 10.1021/acs.jafc.4c08160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Salicylic acid (SA) exhibits positive effects against Citrus Huanglongbing (HLB), but how SA affects citrus resistance to HLB is currently unknown. This study conducted integrated transcriptome and metabolome analyses on SA-treated Citrus sinensis (HLB-sensitive) and Poncirus trifoliata (HLB-tolerant). The results indicated that the syntheses of flavones and flavonols were induced by SA, while the expression levels of associated genes and the contents of corresponding metabolites varied significantly between the two species after SA treatment or HLB infection. These differences may underpin the enhanced HLB management through SA treatment and the inherent HLB tolerance of P. trifoliata. Furthermore, two insertions of miniature inverted-repeat transposable element (MITE) were identified within the promoter of PtrF3'H in P. trifoliata, whereas none were found in the promoter of CsF3'H in C. sinensis. These MITE insertions notably enhanced the promoter activity of PtrF3'H in an SA-dependent manner. Our findings deepen the understanding of the correlation between SA response and HLB tolerance in Citrus.
Collapse
Affiliation(s)
- Wenshan Dai
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou 341000, China
| | - Mengni Pan
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Liqin Peng
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Di Zhang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Yue Ma
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Min Wang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou 341000, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, Florida 32611, United States
| |
Collapse
|
22
|
Wang H, Tariq L, Yan Y, Bi Y, Song F. NAC transcription factors transcriptionally fine-tune signal homeostasis in plant systemic acquired resistance. PHYSIOLOGIA PLANTARUM 2025; 177:e70123. [PMID: 39956755 DOI: 10.1111/ppl.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
Small signalling molecules, such as salicylic acid (SA) and N-hydroxypipecolic acid (NHP), act synergistically to activate systemic acquired resistance (SAR), a major form of plant inducible immunity. The transcriptional regulation of SA biosynthesis controlled by different transcription factors (TFs) has been well documented in SAR. Several TFs, e.g., SARD1, CBP60g and WRKY33, positively regulate NHP biosynthesis; however, direct negative modulators have remained elusive. Recently, Cai et al. (2024) identified a NAC triad composed of NAC-type TFs, NAC90, NAC36, and NAC61, that negatively regulates NHP and SA biosynthesis. NAC90 and NAC36 act as negative regulators of plant immunity by repressing transcription of ALD1, FMO1, and ICS1, the major NHP and SA biosynthetic genes, via direct binding to their promoters. These TFs, along with another NAC TF, NAC61, form heterodimers, further enhancing their repressive effects on NHP and SA biosynthesis. These findings establish the NAC90-NAC61-NAC36 triad as a negative regulator of NHP and SA levels. In this viewpoint article, we present our perspectives on further investigations to gain comprehensive insight into transcriptional regulation of SAR signal homeostasis.
Collapse
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Leeza Tariq
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yan Bi
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Wang K, Li C, Cao S, Lei C, Ji N, Zou Y, Tan M, Wang J, Zheng Y, Gao H. VOZ-dependent priming of salicylic acid-dependent defense against Rhizopus stolonifer by β-aminobutyric acid requires the TCP protein TCP2 in peach fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17176. [PMID: 39621553 DOI: 10.1111/tpj.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/02/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Vascular plant one-zinc finger (VOZ) transcription factors (TFs) play crucial roles in plant immunity. Nevertheless, how VOZs modulate defense signaling in response to elicitor-induced resistance is not fully understood. Here, the defense elicitor β-aminobutyric acid (BABA) resulted in the visible suppression of Rhizopus rot disease of peach fruit caused by Rhizopus stolonifer. Defense priming by BABA was notably associated with increased levels of salicylic acid (SA) and SA-dependent gene expression. Data-independent acquisition proteomic analysis revealed that two VOZ proteins (PpVOZ1 and PpVOZ2) were substantially upregulated in BABA-induced resistance (BABA-IR). Furthermore, the interaction of PpVOZ1 and PpVOZ2 and their potential target of the TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP)-family protein PpTCP2 screened from protein-protein interaction networks was confirmed by yeast two-hybrid (Y2H), luciferase complementation imaging and glutathione S-transferase pull-down assays. Furthermore, subcellular localization, yeast one-hybrid, electrophoretic mobility shift assay and dual-luciferase reporter assays demonstrated that nuclear localization of both PpVOZ1 and PpVOZ2 was critical for their contribution to BABA-IR, as these proteins potentiated the PpTCP2-mediated transcriptional activation of isochorismate synthase genes (ICS1/2). The overexpression of both PpVOZ1 and PpVOZ2 could activate the transcription of SA-dependent genes and provide disease resistance in transgenic Arabidopsis. In contrast, the ppvoz1cas9 and ppvoz2cas9 loss-of-function mutations and the voz1cas9 voz2cas9 double mutation attenuated BABA-IR against R. stolonifer. Therefore, the three identified positive TFs, PpVOZ1, PpVOZ2, and PpTCP2, synergistically contribute to the BABA-activated priming of systemic acquired resistance in postharvest peach fruit by a VOZ-TCP-ICS regulatory module.
Collapse
Affiliation(s)
- Kaituo Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, P.R. China
| | - Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, Zhejiang, P.R. China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Yanyu Zou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Meilin Tan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Jinsong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404000, P.R. China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Haiyan Gao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, P.R. China
| |
Collapse
|
24
|
Xin K, Wu Y, Ikram AU, Jing Y, Liu S, Zhang Y, Chen J. Salicylic acid cooperates with different small molecules to control biotic and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154406. [PMID: 39700900 DOI: 10.1016/j.jplph.2024.154406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Salicylic acid (SA) is a phytohormone that plays a critical role in plant growth, development, and response to unfavorable conditions. Over the past three decades, researches on SA have deeply elucidated the mechanism of its function in plants tolerance to infection by biotrophic and hemibiotrophic pathogens. Recent studies have found that SA also plays an important role in regulating plants response to abiotic stress. It is emerging as a strong tool for alleviating adverse effects of biotic and abiotic stresses in crop plants. During SA-mediated stress responses, many small molecules participate in the SA modification or signaling, which play important regulatory roles. The cooperations of small molecules in SA pathway remain least discussed, especially in terms of SA-induced abiotic stress tolerance. This review provides an overview of the recent studies about SA and its relationship with different small molecules and highlights the critical functions of small molecules in SA-mediated plant stress responses.
Collapse
Affiliation(s)
- Kexing Xin
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yining Wu
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yanping Jing
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Shan Liu
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Yawen Zhang
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
25
|
Sun J, Lu L, Liu J, Cui Y, Liu H, Zhang Y, Zheng Z, Yang W. Metabolomics and WGCNA Analyses Reveal the Underlying Mechanisms of Resistance to Botrytis cinerea in Hazelnut. Genes (Basel) 2024; 16:2. [PMID: 39858549 PMCID: PMC11765503 DOI: 10.3390/genes16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Hazelnut (Corylus), a significant woody oil tree species in economic forests, faces production constraints due to biotic stresses, with Hazelnut Husk Brown Rot, caused by the pathogenic necrotrophic fungus Botrytis cinerea (B. cinerea), being the most severe. To date, limited information is available regarding the resistance of hazelnuts to B. cinerea. To better understand the mechanisms of resistance to B. cinerea. in hazelnut, we conducted metabolomics and WGCNA analyses of a B. cinerea-resistant Ping'ou hybrid hazelnut variety (Dawei; DW) and a susceptible variety (Qiuxiang; QX). METHODS In this study, metabolomics and weighted gene co-expression network analysis (WGCNA, weighted correlation network analysis) were applied to elucidate the resistance mechanisms underlying different hazelnut varieties to B. cinerea. Our study focused on the metabolome profiles of DW and QX plants after 72 h of B. cinerea infection. RESULTS Venn analysis of QX_0 vs. DW_0 and QX_72 vs. DW_72 revealed 120 differential accumulation metabolites (DAMs) that were upregulated. Among these metabolites, the concentrations of flavonoids and phenolic acids in DW were significantly higher than those in QX, respectively, suggesting that the elevated levels of these compounds contribute substantially to the resistance of hazelnut against B. cinerea. 3,4-hydroxyphenyllactic acid and phloretin were significantly more abundant in accumulation in DW than in QX after infection by B. cinerea. CONCLUSIONS This study provides that the elevated levels of these compounds (flavonoids and phenolic acids) contribute substantially to the resistance of hazelnut against B. cinerea. Furthermore, 3,4-hydroxyphenyllactic acid and phloretin were identified as pivotal metabolites in modulating the resistance of hazelnut to B. cinerea. Through WGCNA analyses, we identified four transcription factors (WRKY19, HSFC1, ERF071, and RAP2-1) that are most likely to regulate the synthesis of 3,4-dihydroxyphenyllactic acid and phloretin. This study provides crucial insights for further investigation into the regulatory network of metabolites associated with hazelnut resistance to B. cinerea.
Collapse
Affiliation(s)
- Jun Sun
- Liaoning Institute of Economic Forestry, Dalian 116031, China; (L.L.); (J.L.); (Y.C.); (H.L.); (Y.Z.); (Z.Z.); (W.Y.)
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Foret J, Kim JG, Sattely ES, Mudgett MB. Transcriptome analysis reveals role of transcription factor WRKY70 in early N-hydroxy-pipecolic acid signaling. PLANT PHYSIOLOGY 2024; 197:kiae544. [PMID: 39404105 DOI: 10.1093/plphys/kiae544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/31/2024] [Indexed: 12/24/2024]
Abstract
N-Hydroxy-pipecolic acid (NHP) is a mobile metabolite essential for inducing and amplifying systemic acquired resistance (SAR) following a pathogen attack. Early phases of NHP signaling leading to immunity have remained elusive. Here, we report the early transcriptional changes mediated by NHP and the role salicylic acid (SA) plays during this response in Arabidopsis (Arabidopsis thaliana). We show that distinct waves of expression within minutes to hours of NHP treatment include increased expression of WRKY transcription factor genes as the primary transcriptional response, followed by the induction of WRKY-regulated defense genes as the secondary response. Most genes induced by NHP within minutes were SA dependent, whereas those induced within hours were SA independent. These data suggest that NHP induces the primary transcriptional response under basal levels of SA and that new SA biosynthesis via ISOCHORISMATE SYNTHASE 1/SA-INDUCTION DEFICIENT 2 is dispensable for inducing the secondary transcriptional response. We demonstrate that WRKY70 is required for the induced expression of a set of genes defining some of the secondary transcriptional response, SAR protection, and NHP-dependent enhancement of reactive oxygen species production in response to flagellin treatment. Our study highlights the key genes and pathways defining early NHP responses and the role of WRKY70 in regulating NHP-dependent transcription.
Collapse
Affiliation(s)
- Jessica Foret
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
27
|
Hirose S, Horiyama S, Morikami A, Fujiwara K, Tsukagoshi H. Eugenol and basil essential oil as priming agents for enhancing Arabidopsis immune response. Biosci Biotechnol Biochem 2024; 89:41-50. [PMID: 39500548 DOI: 10.1093/bbb/zbae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/28/2024] [Indexed: 12/24/2024]
Abstract
Plants, as sessile organisms, must adapt to environmental changes and defend themselves against biotic stress, including pathogen attack. Their immune responses entail recognition of pathogen patterns, activation of defense mechanisms, and accumulation of various antimicrobial compounds. Eugenol, abundant in basil, has antibacterial properties and enhances plant resistance to viruses. However, its priming effects on biotrophic pathogens remain unclear. Thus, we investigated whether eugenol and basil essential oils could prime Arabidopsis thaliana immunity against the hemi-biotroph Pseudomonas syringae pv. maculicola (Psm) MAFF302723. Our study revealed that both eugenol and basil essential oils functioned as priming agents, mitigating disease symptoms upon Psm infection. This priming effect occurred via NPR1-dependent but salicylic acid-independent signaling. Moreover, our gene expression analysis suggested that priming might influence jasmonic acid/ethylene signaling. These findings underscore the potential of employing natural compounds such as basil essential oil to bolster plant immune responses in sustainable agricultural practices.
Collapse
Affiliation(s)
- Shogo Hirose
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, Japan
| | - Soyoka Horiyama
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, Japan
| | | | - Kazuki Fujiwara
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, Japan
| | | |
Collapse
|
28
|
Wang X, Yu W, Yuan Q, Chen X, He Y, Zhou J, Xun Q, Wang G, Li J, Meng X. The pathogen-induced peptide CEP14 is perceived by the receptor-like kinase CEPR2 to promote systemic disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae549. [PMID: 39412292 DOI: 10.1093/plphys/kiae549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/19/2024] [Indexed: 12/24/2024]
Abstract
Secreted plant peptides that trigger cellular signaling are crucial for plant growth, development, and adaptive responses to environmental stresses. In Arabidopsis (Arabidopsis thaliana), the C-TERMINALLY ENCODED PEPTIDE (CEP) family is a class of secreted signaling peptides that is phylogenetically divided into 2 groups: group I (CEP1-CEP12) and group II (CEP13-CEP15). Several group I CEP peptides regulate root architecture and nitrogen starvation responses, whereas the biological activity and roles of group II CEPs remain unknown. Here, we report that a group II CEP peptide, CEP14, functions as a pathogen-induced elicitor of Arabidopsis immunity. In response to infection by the bacterial pathogen Pseudomonas syringae, CEP14 expression was highly induced via the salicylic acid pathway in Arabidopsis leaves and roots. In the absence of a pathogen attack, treatment of Arabidopsis plants with synthetic CEP14 peptides was sufficient to trigger immune responses. Genetic and biochemical analyses demonstrated that the receptor-like kinase CEP RECEPTOR 2 (CEPR2) perceives CEP14 to trigger plant immunity. The SOMATIC EMBRYOGENESIS RECEPTOR KINASES (SERKs) BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SERK4 also participated in CEP14 perception by forming CEP14-induced complexes with CEPR2. Overexpression of CEP14 largely enhanced Arabidopsis resistance to P. syringae, while CEP14 or CEPR2 mutation significantly attenuated Arabidopsis systemic resistance to P. syringae. Taken together, our data reveal that the pathogen-induced CEP14 peptide, which is perceived by the CEPR2-BAK1/SERK4 receptor complexes, acts as an endogenous elicitor to promote systemic disease resistance in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenlong Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qin Yuan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xinyu Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jinggeng Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qingqing Xun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guodong Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
29
|
Cui W, Xiao K, Yang F, Qiao K, Xu X, Gu S, Guo J, Song Z, Pan H, Wang F, Zhang Y, Liu J. A Virulence Factor from Sclerotinia sclerotiorum Targets the Host Chloroplast Proteins to Promote Infection. PLANTS (BASEL, SWITZERLAND) 2024; 13:3430. [PMID: 39683223 DOI: 10.3390/plants13233430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Chloroplasts are not only places for photosynthesis, but also participate in plant immunity and are important targets of pathogens. Pathogens secrete chloroplast-targeted proteins (CTPs) that disrupt host immunity and promote infection. Sclerotinia sclerotiorum (Lib.) de Bary is a phytopathogenic fungus with a broad host range. However, little is known about the pathogenic mechanisms underlying this wide host range. In this study, we investigated the role of Chloroplast-Targeted Protein 1 (SsCTP1) secreted by S. sclerotiorum in pathogenesis, which inhibits plant immunity and promotes pathogen infections. SsCTP1 was highly up-regulated during the early stages of S. sclerotiorum infection in various hosts, and its transient expression in Nicotiana benthamiana revealed that it was predominantly localized within chloroplasts. Mutants with SsCTP1 deletion exhibited a similar growth rate and colony morphology to the wild type, but significantly reduced pathogenicity in various hosts. Moreover, SsCTP1 inhibited chitin-induced callose deposition and defense gene expression, and enhanced sensitivity to S. sclerotiorum in N. benthamiana. Similarly, transgenic Arabidopsis thaliana overexpressing SsCTP1 displayed an increased susceptibility to S. sclerotiorum. Furthermore, two host proteins that interact with SsCTP1, Coproporphyrinogen-III oxidase (GmCPX), and shikimate kinase 2 (GmSKL2) were identified by screening the soybean cDNA library, and these interactions were confirmed in vivo. Importantly, the silencing of NbCPX by virus-induced gene silencing enhanced N. benthamiana resistance to S. sclerotiorum. Our results indicate that SsCTP1 is an important pathogenic factor that contributes to the wide host range of S. sclerotiorum and may inhibit plant immunity by targeting the chloroplast proteins GmCPX and GmSKL2, which are ubiquitous in host plants.
Collapse
Affiliation(s)
- Wenjing Cui
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Feng Yang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Kaibin Qiao
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Xun Xu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Songyang Gu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Jinxin Guo
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Zhuojian Song
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Fengting Wang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
30
|
Li K, Li C, Wang D, Liu F, Fu ZQ. H 2O 2 sulfenylates CHE to activate systemic salicylic acid synthesis and ignite systemic acquired resistance. MOLECULAR PLANT 2024; 17:1794-1796. [PMID: 39420559 DOI: 10.1016/j.molp.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Kaihuai Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Cheng Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy and Center for Crop Genome Engineering, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
31
|
Ding LN, Hu YH, Li T, Li M, Li YT, Wu YZ, Cao J, Tan XL. A GDSL motif-containing lipase modulates Sclerotinia sclerotiorum resistance in Brassica napus. PLANT PHYSIOLOGY 2024; 196:2973-2988. [PMID: 39321167 PMCID: PMC11638095 DOI: 10.1093/plphys/kiae500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum (Lib.) De Bary is a devastating disease infecting hundreds of plant species. It also restricts the yield, quality, and safe production of rapeseed (Brassica napus) worldwide. However, the lack of resistance sources and genes to S. sclerotiorum has greatly restricted rapeseed SSR-resistance breeding. In this study, a previously identified GDSL motif-containing lipase gene, B. napus GDSL LIPASE-LIKE 1 (BnaC07.GLIP1), encoding a protein localized to the intercellular space, was characterized as functioning in plant immunity to S. sclerotiorum. The BnaC07.GLIP1 promoter is S. sclerotiorum-inducible and the expression of BnaC07.GLIP1 is substantially enhanced after S. sclerotiorum infection. Arabidopsis (Arabidopsis thaliana) heterologously expressing and rapeseed lines overexpressing BnaC07.GLIP1 showed enhanced resistance to S. sclerotiorum, whereas RNAi suppression and CRISPR/Cas9 knockout B. napus lines were hyper-susceptible to S. sclerotiorum. Moreover, BnaC07.GLIP1 affected the lipid composition and induced the production of phospholipid molecules, such as phosphatidylethanolamine, phosphatidylcholine, and phosphatidic acid, which were correlated with decreased levels of reactive oxygen species (ROS) and enhanced expression of defense-related genes. A B. napus bZIP44 transcription factor specifically binds the CGTCA motif of the BnaC07.GLIP1 promoter to positively regulate its expression. BnbZIP44 responded to S. sclerotiorum infection, and its heterologous expression inhibited ROS accumulation, thereby enhancing S. sclerotiorum resistance in Arabidopsis. Thus, BnaC07.GLIP1 functions downstream of BnbZIP44 and is involved in S. sclerotiorum resistance by modulating the production of phospholipid molecules and ROS homeostasis in B. napus, providing insights into the potential roles and functional mechanisms of BnaC07.GLIP1 in plant immunity and for improving rapeseed SSR disease-resistance breeding.
Collapse
Affiliation(s)
- Li-Na Ding
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ying-Hui Hu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Teng Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ming Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yue-Tao Li
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yuan-Zhen Wu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jun Cao
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
32
|
Jian Y, Liu Z, He P, Shan L. An emerging connected view: Phytocytokines in regulating stomatal, apoplastic, and vascular immunity. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102623. [PMID: 39236593 DOI: 10.1016/j.pbi.2024.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024]
Abstract
Foliar pathogens exploit natural openings, such as stomata and hydathodes, to invade plants, multiply in the apoplast, and potentially spread through the vasculature. To counteract these threats, plants dynamically regulate stomatal movement and apoplastic water potential, influencing hydathode guttation and water transport. This review highlights recent advances in understanding how phytocytokines, plant small peptides with immunomodulatory functions, regulate these processes to limit pathogen entry and proliferation. Additionally, we discuss the coordinated actions of stomatal movement, hydathode guttation, and the vascular system in restricting pathogen entry, multiplication, and dissemination. We also explore future perspectives and key questions arising from these findings, aiming to advance our knowledge of plant immunity and improve disease resistance strategies.
Collapse
Affiliation(s)
- Yunqing Jian
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Mahmoud LM, Killiny N, Dutt M. Identification of CAP genes in finger lime (Citrus australasica) and their role in plant responses to abiotic and biotic stress. Sci Rep 2024; 14:29557. [PMID: 39632943 PMCID: PMC11618332 DOI: 10.1038/s41598-024-80868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
The study focuses on the in silico analysis of cysteine-rich secretory proteins and PR1-like (CAP) genes in finger lime (Citrus australasica), a citrus species known for its tolerance to Huanglongbing (HLB). We identified several PR1-like genes, all belonging to the CRISP family within the CAP superfamily. Of them, CaCAP2 transcript levels increased by over 300-fold in the finger lime compared to 'Valencia' sweet orange upon infection with 'Candidatus Liberibacter asiaticus' (CaLas). Localization studies using an EGFP fusion showed that the CAP2 protein is predominantly located in the nucleus, extracellular and plasma membrane. The study also examined CAP2 transcript levels in response to cold, drought stress, and salicylic acid application. Despite environmental stress causing apparent damage, CAP genes seem to play a significant role in managing both biotic and abiotic stresses. Analysis of CAP2 gene promoters from finger lime and sweet orange revealed 95.33% sequence identity, with variations in transcription factor-binding sites and cis-acting elements such as Stress Response Element (STRE: AGGGG), which might influence the differential expression of CAP2 between the two species. Additionally, expressing the finger lime-derived CaCAP2 gene in transgenic Nicotiana tabacum induced a strong defense response against Pseudomonas syringae pv. Tabaci., underscoring the CAP gene's crucial role in plant defense mechanisms against bacterial pathogens.
Collapse
Affiliation(s)
- Lamiaa M Mahmoud
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, USA
| | - Manjul Dutt
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
34
|
Chen Y, Han Y, Huang W, Zhang Y, Chen X, Li D, Hong Y, Gao H, Zhang K, Zhang Y, Sun T. LAZARUS 1 functions as a positive regulator of plant immunity and systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1490466. [PMID: 39634069 PMCID: PMC11614604 DOI: 10.3389/fpls.2024.1490466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Systemic acquired resistance (SAR) is activated by local infection and confers enhanced resistance against subsequent pathogen invasion. Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two key signaling molecules in SAR and their levels accumulate during SAR activation. Two members of plant-specific Calmodulin-Binding Protein 60 (CBP60) transcription factor family, CBP60g and SARD1, regulate the expression of biosynthetic genes of SA and NHP. CBP60g and SARD1 function as master regulators of plant immunity and their expression levels are tightly controlled. Although there are numerous reports on regulation of their expression, the specific mechanisms by which SARD1 and CBP60g respond to pathogen infection are not yet fully understood. This study identifies and characterizes the role of the LAZARUS 1 (LAZ1) and its homolog LAZ1H1 in plant immunity. A forward genetic screen was conducted in the sard1-1 mutant background to identify mutants with enhanced SAR-deficient phenotypes (sard mutants), leading to the discovery of sard6-1, which maps to the LAZ1 gene. LAZ1 and its homolog LAZ1H1 were found to be positive regulators of SAR through regulating the expression of CBP60g and SARD1 as well as biosynthetic genes of SA and NHP. Furthermore, Overexpression of LAZ1, LAZ1H1 and its homologs from Nicotiana benthamiana and potato enhanced resistance in N. benthamiana against Phytophthora pathogens. These findings indicate that LAZ1 and LAZ1H1 are evolutionarily conserved proteins that play critical roles in plant immunity.
Collapse
Affiliation(s)
- Yue Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yue Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Weijie Huang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xiaoli Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dongyue Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Hong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huhu Gao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
35
|
Barrett DP, Subbaraj AK, Pakeman RJ, Peterson P, McCormick AC. Metabolomics reveals altered biochemical phenotype of an invasive plant with potential to impair its biocontrol agent's establishment and effectiveness. Sci Rep 2024; 14:27150. [PMID: 39511211 PMCID: PMC11543852 DOI: 10.1038/s41598-024-76228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
A plausible, but largely unexplored reason for many weed biocontrol agents failing to establish or being ineffective, could involve abiotically induced changes to an invasive plants' biochemical phenotype and consequent enhanced herbivore resistance. Considerable literature demonstrates that chemically altered plant phenotypes can impair insect life history performance. Heather beetle, (Lochmaea suturalis), introduced to control invasive heather (Calluna vulgaris) in New Zealand (NZ) was difficult to establish and displays variable effectiveness. Using UHPLC-MS non-targeted metabolomics, we analysed primary and secondary metabolites of C. vulgaris from its native range (Scotland) and it's introduced range (NZ), between which, differences in soil nutrients and ultraviolet light exist. We also explored secondary metabolite variation between sites within each range. New Zealand samples had the highest number of amplified metabolites, most notably defensive phenylpropanoids, supporting the concept of abiotically induced upregulation of key biosynthetic pathways. Analysis of secondary metabolite variation within each range revealed differences between sites but found little correlation of phenylpropanoid levels being influenced by variable soil nutrients. These results validate questions about the possibility of abiotically altered biochemical phenotypes in invasive plants, influencing weed biocontrol agent establishment and effectiveness, and show the potential for metabolomics in assisting future, or retrospectively analysing biological control programmes.
Collapse
Affiliation(s)
- D Paul Barrett
- School of Natural Sciences, Massey University, PB 11 222, Palmerston North, 4410, New Zealand.
| | - Arvind K Subbaraj
- AgResearch Ltd., Tuhiraki, 19 Ellesmere Junction Road, Lincoln, 7608, New Zealand
| | - Robin J Pakeman
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Paul Peterson
- Manaaki Whenua - Landcare Research, PB 11 052, Palmerston North, 4442, New Zealand
| | - Andrea Clavijo McCormick
- School of Agriculture and Environment, Massey University, PB 11 222, Palmerston North, 4410, New Zealand
| |
Collapse
|
36
|
Komarova T, Shipounova I, Kalinina N, Taliansky M. Application of Chitosan and Its Derivatives Against Plant Viruses. Polymers (Basel) 2024; 16:3122. [PMID: 39599213 PMCID: PMC11598201 DOI: 10.3390/polym16223122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Chitosan is a natural biopolymer that is industrially produced from chitin via deacetylation. Due to its unique properties and a plethora of biological activities, chitosan has found application in diverse areas from biomedicine to agriculture and the food sector. Chitosan is regarded as a biosafe, biodegradable, and biocompatible compound that was demonstrated to stimulate plant growth and to induce a general plant defense response, enhancing plant resistance to various pathogens, including bacteria, fungi, nematodes, and viruses. Here, we focus on chitosan application as an antiviral agent for plant protection. We review both the pioneer studies and recent research that report the effect of plant treatment with chitosan and its derivatives on viral infection. Special attention is paid to aspects that affect the biological activity of chitosan: polymer length and, correspondingly, its molecular weight; concentration; deacetylation degree and charge; application protocol; and experimental set-up. Thus, we compare the reported effects of various forms and derivatives of chitosan as well as chitosan-based nanomaterials, focusing on the putative mechanisms underlying chitosan-induced plant resistance to plant viruses.
Collapse
Affiliation(s)
- Tatiana Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Irina Shipounova
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Natalia Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.K.); (M.T.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
37
|
Huang J, Qi G, Li M, Yu Y, Zhang E, Liu Y. Transcription-Aided Selection (TAS) for Crop Disease Resistance: Strategy and Evidence. Int J Mol Sci 2024; 25:11879. [PMID: 39595949 PMCID: PMC11593552 DOI: 10.3390/ijms252211879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
A transcription-aided selection (TAS) strategy is proposed in this paper, which utilizes the positive regulatory roles of genes involved in the plant immunity pathways to screen crops with high disease resistance. Increased evidence has demonstrated that upon pathogen attack, the expression of diverse genes involved in salicylic acid (SA)-mediated SAR are differentially expressed and transcriptionally regulated. The paper discusses the molecular mechanisms of the SA signaling pathway, which plays a central role in plant immunity, and identifies differentially expressed genes (DEGs) that could be targeted for transcriptional detection. We have conducted a series of experiments to test the TAS strategy and found that the level of GmSAGT1 expression is highly correlated with soybean downy mildew (SDM) resistance with a correlation coefficient R2 = 0.7981. Using RT-PCR, we screened 2501 soybean germplasms and selected 26 collections with higher levels of both GmSAGT1 and GmPR1 (Pathogenesis-related proteins1) gene expression. Twenty-three out of the twenty-six lines were inoculated with Peronospora manshurica (Pm) in a greenhouse. Eight showed HR (highly resistant), four were R (resistant), five were MR (moderately resistant), three were S (susceptible), and three were HS (highly susceptible). The correlation coefficient R2 between the TAS result and Pm inoculation results was 0.7035, indicating a satisfactory consistency. The authors anticipate that TAS provides an effective strategy for screening crops with broad-spectrum and long-lasting resistance.
Collapse
Affiliation(s)
- Jiu Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Guangxun Qi
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Mei Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Yue Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Erte Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| | - Yuhui Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.H.); (M.L.); (Y.Y.); (E.Z.)
| |
Collapse
|
38
|
Jiang Y, Zhang XY, Li S, Xie YC, Luo XM, Yang Y, Pu Z, Zhang L, Lu JB, Huang HJ, Zhang CX, He SY. Rapid intracellular acidification is a plant defense response countered by the brown planthopper. Curr Biol 2024; 34:5017-5027.e4. [PMID: 39406243 DOI: 10.1016/j.cub.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The brown planthopper (BPH) is the most destructive insect pest in rice. Through a stylet, BPH secretes a plethora of salivary proteins into rice phloem cells as a crucial step of infestation. However, how various salivary proteins function in rice cells to promote insect infestation is poorly understood. Among them, one of the salivary proteins is predicted to be a carbonic anhydrase (Nilaparvata lugens carbonic anhydrase [NlCA]). The survival rate of the NlCA-RNA interference (RNAi) BPH insects was extremely low on rice, indicating a vital role of this salivary protein in BPH infestation. We generated NlCA transgenic rice plants and found that NlCA expressed in rice plants could restore the ability of NlCA-RNAi BPH to survive on rice. Next, we produced rice plants expressing the ratiometric pH sensor pHusion and found that NlCA-RNAi BPH induced rapid intracellular acidification of rice cells during feeding. Further analysis revealed that both NlCA-RNAi BPH feeding and artificial lowering of intracellular pH activated plant defense responses and that NlCA-mediated intracellular pH stabilization is linked to diminished defense responses, including reduced callose deposition at the phloem sieve plates and suppressed defense gene expression. Given the importance of pH homeostasis across the kingdoms of life, discovery of NlCA-mediated intracellular pH modulation uncovered a new dimension in the interaction between plants and piercing/sucking insect pests. The crucial role of NlCA for BPH infestation of rice suggests that NlCA is a promising target for chemical or trans-kingdom RNAi-based inactivation for BPH control strategies in plants.
Collapse
Affiliation(s)
- Yanjuan Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China.
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyan Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Li Zhang
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Sheng Yang He
- DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
39
|
Mamun MA, Lee BR, Park SH, Muchlas M, Bae DW, Kim TH. Interactive regulation of immune-related resistance genes with salicylic acid and jasmonic acid signaling in systemic acquired resistance in the Xanthomonas-Brassica pathosystem. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154323. [PMID: 39106735 DOI: 10.1016/j.jplph.2024.154323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Pathogen-responsive immune-related genes (resistance genes [R-genes]) and hormones are crucial mediators of systemic acquired resistance (SAR). However, their integrated functions in regulating SAR signaling components in local and distal leaves remain largely unknown. To characterize SAR in the Xanthomonas campestris pv. campestris (Xcc)-Brassica napus pathosystem, the responses of R-genes, (leaf and phloem) hormone levels, H2O2 levels, and Ca2+ signaling-related genes were assessed in local and distal leaves of plants exposed to four Xcc-treatments: Non-inoculation (control), only secondary Xcc-inoculation in distal leaves (C-Xcc), only primary Xcc-inoculation in local leaves (Xcc), and both primary and secondary Xcc-inoculation (X-Xcc). The primary Xcc-inoculation provoked disease symptoms as evidenced by enlarged destructive necrosis in the local leaves of Xcc and X-Xcc plants 7 days post-inoculation. Comparing visual symptoms in distal leaves 5 days post-secondary inoculation, yellowish necrotic lesions were clearly observed in non Xcc-primed plants (C-Xcc), whereas no visual symptom was developed in Xcc-primed plants (X-Xcc), demonstrating SAR. Pathogen resistance in X-Xcc plants was characterized by distinct upregulations in expression of the PAMP-triggered immunity (PTI)-related kinase-encoding gene, BIK1, the (CC-NB-LRR-type) R-gene, ZAR1, and its signaling-related gene, NDR1, with a concurrent enhancement of the kinase-encoding gene, MAPK6, and a depression of the (TIR-NB-LRR-type) R-gene, TAO1, and its signaling-related gene, SGT1, in distal leaves. Further, in X-Xcc plants, higher salicylic acid (SA) and jasmonic acid (JA) levels, both in phloem and distal leaves, were accompanied by enhanced expressions of the SA-signaling gene, NPR3, the JA-signaling genes, LOX2 and PDF1.2, and the Ca2+-signaling genes, CAS and CBP60g. However, in distal leaves of C-Xcc plants, an increase in SA level resulted in an antagonistic depression of JA, which enhanced only SA-dependent signaling, EDS1 and NPR1. These results demonstrate that primary Xcc-inoculation in local leaves induces resistance to subsequent pathogen attack by upregulating BIK1-ZAR1-mediated synergistic interactions with SA and JA signaling as a crucial component of SAR.
Collapse
Affiliation(s)
- Md Al Mamun
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Hyun Park
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Muchamad Muchlas
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Won Bae
- Core-Facility Center for High-Tech Materials Analysis, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
40
|
Wu X, Wang L, Xing Q, Zhao Y, Qi H. CmPIF8-CmERF27-CmACS10-mediated ethylene biosynthesis modulates red light-induced powdery mildew resistance in oriental melon. PLANT, CELL & ENVIRONMENT 2024; 47:4135-4150. [PMID: 38923433 DOI: 10.1111/pce.15015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Powdery mildew is a serious fungal disease in protected melon cultivation that affects the growth, development and production of melon plants. Previous studies have shown that red light can improve oriental melon seedlings resistance to powdery mildew. Here, after inoculation with Podosphaera xanthii, an obligate fungal pathogen eliciting powdery mildew, we found that red light pretreatment increased ethylene production and this improved the resistance of melon seedlings to powdery mildew, and the ethylene biosynthesis gene CmACS10 played an important role in this process. By analysing the CmACS10 promoter, screening yeast one-hybrid library, it was found that CmERF27 positively regulated the expression of CmACS10, increased powdery mildew resistance and interacted with PHYTOCHROME INTERACTING FACTOR8 (CmPIF8) at the protein level to participate in the regulation of ethylene biosynthesis to respond to the red light-induced resistance to P. xanthii, Furthermore, CmPIF8 also directly targeted the promoter of CmACS10, negatively participated in this process. In summary, this study revealed the specific mechanism by which the CmPIF8-CmERF27-CmACS10 module regulates red light-induced ethylene biosynthesis to resist P. xanthii infection, elucidate the interaction between light and plant hormones under biological stress, provide a reference and genetic resources for breeding of disease-resistant melon plants.
Collapse
Affiliation(s)
- Xutong Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Lixia Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Qiaojuan Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yaping Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| |
Collapse
|
41
|
Sukaoun K, Tsuchiya T, Uchiyama H. Pathogen challenge in Arabidopsis cotyledons induces enhanced disease resistance at newly formed rosette leaves via sustained upregulation of WRKY70. Genes Cells 2024. [PMID: 39467643 DOI: 10.1111/gtc.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Pathogenic microorganisms often target seedlings shortly after germination. If plants exhibit resistance or resilience to pathogens, those exposed to pathogen challenge may grow further and form new unchallenged leaves. The purpose of this study was to examine disease resistance in the newly formed leaves of plants subjected to pathogen challenge. We used Arabidopsis thaliana and the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) as the model pathosystem. We found that Arabidopsis seedlings primarily challenged with the avirulent isolate Hpa exhibited enhanced disease resistance against the virulent isolate Hpa in newly formed rosette leaves (NFRLs). Our observations indicated that the transcript levels of the transcription factor gene WRKY70, which is essential for full resistance to the virulent isolate HpaNoco2, were elevated and maintained at high levels in the NFRLs. In contrast, the transcript levels of the salicylic acid marker gene PR1 and systemic acquired resistance-related genes did not exhibit sustained elevation. The maintenance of increased transcript levels of WRKY70 operated independently of non-expressor of pathogenesis-related gene 1. These findings suggest that prolonged upregulation of WRKY70 represents a defensive state synchronized with plant development to ensure survival against subsequent infections.
Collapse
Affiliation(s)
- Kanoknipa Sukaoun
- Applied Life Sciences, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Tokuji Tsuchiya
- Applied Life Sciences, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Hiroshi Uchiyama
- Applied Life Sciences, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
42
|
Dong L, Chen S, Shang L, Du M, Mo K, Pang S, Zheng L, Xu L, Lei T, He Y, Zou X. Overexpressing CsSABP2 enhances tolerance to Huanglongbing and citrus canker in C. sinensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1472155. [PMID: 39439518 PMCID: PMC11493644 DOI: 10.3389/fpls.2024.1472155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Huanglongbing (HLB) and citrus canker, arising from Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. Citri (Xcc), respectively, have been imposing tremendous losses to the global citrus industry. Systemic acquired resistance (SAR) has been shown to be crucial for priming defense against pathogen in citrus. Salicylic acid (SA) binding protein 2 (SABP2), which is responsible for converting methyl salicylate (MeSA) to SA, is essential for full SAR establishment. Here, we characterized the functions of four citrus SABP2 genes (CsSABP2-1, CsSABP2-1V18A , CsSABP2-2 and CsSABP2-3) against HLB and citrus canker. In vitro enzymatic assay revealed that all four proteins had MeSA esterase activities, and CsSABP2-1 and CsSABP2-1V18A has the strongest activity. Their activities were inhibited by SA except for CsSABP2-1V18A. Four genes controlled by a strong promoter 35S were induced into Wanjincheng orange (Citrus sinensis Osbeck) to generate transgenic plants overexpressing CsSABP2. Overexpressing CsSABP2 increased SA and MeSA content and CsSABP2-1V18A had the strongest action on SA. Resistance evaluation demonstrated that only CsSABP2-1V18A had significantly enhanced tolerance to HLB, although all four CsSABP2s had increased tolerance to citrus canker. The data suggested the amino acid Val-18 in the active site of CsSABP2 plays a key role in protein function. Our study emphasized that balancing the levels of SA and MeSA is crucial for regulating SAR and conferring broad-spectrum resistance to HLB and citrus canker. This finding offers valuable insights for enhancing resistance through SAR engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiuping Zou
- Citrus Research Institute, Southwest University/National Citrus Engineering Research Center, Chongqing, China
| |
Collapse
|
43
|
Su Z, Niu C, Zhou S, Xu G, Zhu P, Fu Q, Zhang Y, Ming Z. Structural basis of chorismate isomerization by Arabidopsis ISOCHORISMATE SYNTHASE1. PLANT PHYSIOLOGY 2024; 196:773-787. [PMID: 38701037 DOI: 10.1093/plphys/kiae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Salicylic acid (SA) plays a crucial role in plant defense against biotrophic and semibiotrophic pathogens. In Arabidopsis (Arabidopsis thaliana), isochorismate synthase 1 (AtICS1) is a key enzyme for the pathogen-induced biosynthesis of SA via catalytic conversion of chorismate into isochorismate, an essential precursor for SA synthesis. Despite the extensive knowledge of ICS1-related menaquinone, siderophore, and tryptophan (MST) enzymes in bacteria, the structural mechanisms for substrate binding and catalysis in plant isochorismate synthase (ICS) enzymes are unknown. This study reveals that plant ICS enzymes catalyze the isomerization of chorismate through a magnesium-dependent mechanism, with AtICS1 exhibiting the most substantial catalytic activity. Additionally, we present high-resolution crystal structures of apo AtICS1 and its complex with chorismate, offering detailed insights into the mechanisms of substrate recognition and catalysis. Importantly, our investigation indicates the existence of a potential substrate entrance channel and a gating mechanism regulating substrate into the catalytic site. Structural comparisons of AtICS1 with MST enzymes suggest a shared structural framework with conserved gating and catalytic mechanisms. This work provides valuable insights into the structural and regulatory mechanisms governing substrate delivery and catalysis in AtICS1, as well as other plant ICS enzymes.
Collapse
Affiliation(s)
- Zihui Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Chengqun Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Sicong Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Guolyu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
44
|
Atem JEC, Gan L, Yu W, Huang F, Wang Y, Baloch A, Nwafor CC, Barrie AU, Chen P, Zhang C. Bioinformatics and functional analysis of EDS1 genes in Brassica napus in response to Plasmodiophora brassicae infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112175. [PMID: 38986913 DOI: 10.1016/j.plantsci.2024.112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Enhanced Disease Susceptibility 1 (EDS1) is a key regulator of plant-pathogen-associated molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) responses. In the Brassica napus genome, we identified six novel EDS1 genes, among which four were responsive to clubroot infection, a major rapeseed disease resistant to chemical control. Developing resistant cultivars is a potent and economically viable strategy to control clubroot infection. Bioinformatics analysis revealed conserved domains and structural uniformity in Bna-EDS1 homologs. Bna-EDS1 promoters harbored elements associated with diverse phytohormones and stress responses, highlighting their crucial roles in plant defense. A functional analysis was performed with Bna-EDS1 overexpression and RNAi transgenic lines. Bna-EDS1 overexpression boosted resistance to clubroot and upregulated defense-associated genes (PR1, PR2, ICS1, and CBP60), while Bna-EDS1 RNAi increased plant susceptibility, indicating suppression of the defense signaling pathway downstream of NBS-LRRs. RNA-Seq analysis identified key transcripts associated with clubroot resistance, including phenylpropanoid biosynthesis. Activation of SA regulator NPR1, defense signaling markers PR1 and PR2, and upregulation of MYC-TFs suggested that EDS1-mediated clubroot resistance potentially involves the SA pathway. Our findings underscore the pivotal role of Bna-EDS1-dependent mechanisms in resistance of B. napus to clubroot disease, and provide valuable insights for fortifying resistance against Plasmodiophora brassicae infection in rapeseed.
Collapse
Affiliation(s)
- Jalal Eldeen Chol Atem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Longcai Gan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Wenlin Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Fan Huang
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE68588, USA; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Yanyan Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Amanullah Baloch
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chinedu Charles Nwafor
- Guangdong Ocean University, Zhanjiang 524088, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Alpha Umaru Barrie
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria
| | - Chunyu Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Crop Science, Faculty of Agriculture, University of Benin, Benin City, Nigeria.
| |
Collapse
|
45
|
Cao L, Karapetyan S, Yoo H, Chen T, Mwimba M, Zhang X, Dong X. H 2O 2 sulfenylates CHE, linking local infection to the establishment of systemic acquired resistance. Science 2024; 385:1211-1217. [PMID: 39265009 PMCID: PMC11586058 DOI: 10.1126/science.adj7249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/16/2024] [Accepted: 07/05/2024] [Indexed: 09/14/2024]
Abstract
In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For many years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been debated. We found that in Arabidopsis thaliana, after a local infection, the conserved cysteine residue of the transcription factor CCA1 HIKING EXPEDITION (CHE) undergoes sulfenylation in systemic tissues, which enhances its binding to the promoter of the SA-synthesis gene ISOCHORISMATE SYNTHASE1 (ICS1) and increases SA production. Furthermore, hydrogen peroxide (H2O2) produced through NADPH oxidases is the mobile signal that sulfenylates CHE in a concentration-dependent manner. Accumulation of SA and the previously reported signal molecules, such as N-hydroxypipecolic acid (NHP), then form a signal amplification loop to establish SAR.
Collapse
Affiliation(s)
- Lijun Cao
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Sargis Karapetyan
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Heejin Yoo
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Tianyuan Chen
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Musoki Mwimba
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xing Zhang
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Xinnian Dong
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
46
|
Sunani SK, Koti PS, Sunitha NC, Choudhary M, Jeevan B, Anilkumar C, Raghu S, Gadratagi BG, Bag MK, Acharya LK, Ram D, Bashyal BM, Das Mohapatra S. Ustilaginoidea virens, an emerging pathogen of rice: the dynamic interplay between the pathogen virulence strategies and host defense. PLANTA 2024; 260:92. [PMID: 39261328 DOI: 10.1007/s00425-024-04523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
MAIN CONCLUSION The Ustilaginoidea virens -rice pathosystem has been used as a model for flower-infecting fungal pathogens. The molecular biology of the interactions between U. virens and rice, with an emphasis on the attempt to get a deeper comprehension of the false smut fungus's genomes, proteome, host range, and pathogen biology, has been investigated. Meta-QTL analysis was performed to identify potential QTL hotspots for use in marker-assisted breeding. The Rice False Smut (RFS) caused by the fungus Ustilaginoidea virens currently threatens rice cultivators across the globe. RFS infects rice panicles, causing a significant reduction in grain yield. U. virens can also parasitize other hosts though they play only a minor role in its life cycle. Furthermore, because it produces mycotoxins in edible rice grains, it puts both humans and animals at risk of health problems. Although fungicides are used to control the disease, some fungicides have enabled the pathogen to develop resistance, making its management challenging. Several QTLs have been reported but stable gene(s) that confer RFS resistance have not been discovered yet. This review offers a comprehensive overview of the pathogen, its virulence mechanisms, the genome and proteome of U. virens, and its molecular interactions with rice. In addition, information has been compiled on reported resistance QTLs, facilitating the development of a consensus genetic map using meta-QTL analysis for identifying potential QTL hotspots. Finally, this review highlights current developments and trends in U. virens-rice pathosystem research while identifying opportunities for future investigations.
Collapse
Affiliation(s)
- Sunil Kumar Sunani
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
- ICAR-Indian Institute of Pulse Research (RS), Bhubaneswar, Odisha, India
| | - Prasanna S Koti
- University of Agricultural Sciences, GKVK, Bangalore, Karnataka, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
- ICAR-National Centre for Integrated Pest Management, New Delhi, India
| | - B Jeevan
- Department of Plant Pathology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India.
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA.
| | - S Raghu
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Manas Kumar Bag
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Dama Ram
- Department of Plant Pathology, Agriculture University, Jodhpur, Rajasthan, India
| | | | | |
Collapse
|
47
|
Songsaeng A, Boonchuen P, Nareephot P, Piromyou P, Wongdee J, Greetatorn T, Inthaisong S, Tantasawat PA, Teamtisong K, Tittabutr P, Sato S, Boonkerd N, Songwattana P, Teaumroong N. Enhancing Resistance to Cercospora Leaf Spot in Mung Bean (Vigna radiata L.) through Bradyrhizobium sp. DOA9 Priming: Molecular Insights and Bio-Priming Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:2495. [PMID: 39273979 PMCID: PMC11396852 DOI: 10.3390/plants13172495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mung bean (Vigna radiata L.), a vital legume in Asia with significant nutritional benefits, is highly susceptible to Cercospora leaf spot (CLS) caused by Cercospora canescens, leading to significant yield losses. As an alternative to chemical fungicides, bio-priming with rhizobacteria can enhance plant resistance. This study explores the potential of Bradyrhizobium sp. strain DOA9 to augment resistance in mung bean against CLS via root priming. The results reveal that short (3 days) and double (17 and 3 days) priming with DOA9 before fungal infection considerably reduces lesion size on infected leaves by activating defense-related genes, including Pti1, Pti6, EDS1, NDR1, PR-1, PR-2, Prx, and CHS, or by suppressing the inhibition of PR-5 and enhancing peroxidase (POD) activity in leaves. Interestingly, the Type 3 secretion system (T3SS) of DOA9 may play a role in establishing resistance in V. radiata CN72. These findings suggest that DOA9 primes V. radiata CN72's defense mechanisms, offering an effective bio-priming strategy to alleviate CLS. Hence, our insights propose the potential use of DOA9 as a bio-priming agent to manage CLS in V. radiata CN72, providing a sustainable alternative to chemical fungicide applications.
Collapse
Affiliation(s)
- Apisit Songsaeng
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Phongkeat Nareephot
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Teerana Greetatorn
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sukanya Inthaisong
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Piyada Alisha Tantasawat
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kamonluck Teamtisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
48
|
Zhang D, Yang X, Wen Z, Li Z, Zhang X, Zhong C, She J, Zhang Q, Zhang H, Li W, Zhao X, Xu M, Su Z, Li D, Dinesh-Kumar SP, Zhang Y. Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity. MOLECULAR PLANT 2024; 17:1369-1391. [PMID: 39066482 DOI: 10.1016/j.molp.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Suppressor of G2 allele of skp1 (SGT1) is a highly conserved eukaryotic protein that plays a vital role in growth, development, and immunity in both animals and plants. Although some SGT1 interactors have been identified, the molecular regulatory network of SGT1 remains unclear. SGT1 serves as a co-chaperone to stabilize protein complexes such as the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, thereby positively regulating plant immunity. SGT1 has also been found to be associated with the SKP1-Cullin-F-box (SCF) E3 ubiquitin ligase complex. However, whether SGT1 targets immune repressors to coordinate plant immune activation remains elusive. In this study, we constructed a toolbox for TurboID- and split-TurboID-based proximity labeling (PL) assays in Nicotiana benthamiana and used the PL toolbox to explore the SGT1 interactome during pre- and post-immune activation. The comprehensive SGT1 interactome network we identified highlights a dynamic shift from proteins associated with plant development to those linked with plant immune responses. We found that SGT1 interacts with Necrotic Spotted Lesion 1 (NSL1), which negatively regulates salicylic acid-mediated defense by interfering with the nucleocytoplasmic trafficking of non-expressor of pathogenesis-related genes 1 (NPR1) during N NLR-mediated response to tobacco mosaic virus. SGT1 promotes the SCF-dependent degradation of NSL1 to facilitate immune activation, while salicylate-induced protein kinase-mediated phosphorylation of SGT1 further potentiates this process. Besides N NLR, NSL1 also functions in several other NLR-mediated immunity. Collectively, our study unveils the regulatory landscape of SGT1 and reveals a novel SGT1-NSL1 signaling module that orchestrates plant innate immunity.
Collapse
Affiliation(s)
- Dingliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xinxin Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiyan Wen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenchen Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiajie She
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianshen Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenli Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA.
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
49
|
Zribi I, Ghorbel M, Jrad O, Masmoudi K, Brini F. The wheat pathogenesis-related protein (TdPR1.2) enhanced tolerance to abiotic and biotic stresses in transgenic Arabidopsis plants. PROTOPLASMA 2024; 261:1035-1049. [PMID: 38687397 DOI: 10.1007/s00709-024-01955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
In plants, the pathogenesis-related (PR) proteins have been identified as important regulators of biotic and abiotic stresses. PR proteins branch out into 19 different classes (PR1-PR19). Basically, all PR proteins display a well-established method of action, with the notable exception of PR1, which is a member of a large superfamily of proteins with a common CAP domain. We have previously isolated and characterized the first PR1 from durum wheat, called TdPR-1.2. In the current research work, TdPR1.2 gene was used to highlight its functional activities under various abiotic (sodium chloride (100 mM NaCl) and oxidative stresses (3 mM H2O2), hormonal salicylic acid (SA), abscisic acid (ABA) and jasmonic acid (JA), and abiotic stresses (Botrytis cinerea and Alternaria solani). Enhancement survival index was detected in Arabidopsis transgenic plants expressing TdPR1.2 gene. Moreover, quantitative real-time reverse transcription PCR (qRT-PCR) analysis demonstrated induction of antioxidant enzymes such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). It equally revealed a decrease of malondialdehyde (MDA) as well as hydrogen peroxide (H2O2) levels in transgenic Arabidopsis plants compared to control lines, confirming the role of TdPR1.2 in terms of alleviating biotic and abiotic stresses in transgenic Arabidopsis plants. Eventually, RT-qPCR results showed a higher expression of biotic stress-related genes (PR1 and PDF1.2) in addition to a downregulation of the wound-related gene (LOX3 and VSP2) in transgenic lines treated with jasmonic acid (JA). Notably, these findings provide evidence for the outstanding functions of PR1.2 from durum wheat which can be further invested to boost tolerance in crop plants to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Ikram Zribi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, BP "1177" 3018, Sfax, Tunisia
| | - Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, 81451, Ha'il City, Saudi Arabia
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, BP "1177" 3018, Sfax, Tunisia
| | - Khaled Masmoudi
- College of Food and Agriculture, Arid Land Department, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, BP "1177" 3018, Sfax, Tunisia.
| |
Collapse
|
50
|
Shi Q, Fu J, Zhou Y, Ji Y, Zhao Z, Yang Y, Xiao Y, Qian X, Xu Y. Fluorinated plant activators induced dual-pathway signal transduction and long-lasting ROS burst in chloroplast. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106071. [PMID: 39277416 DOI: 10.1016/j.pestbp.2024.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
Synthetic plant activators represent a promising novel class of green pesticides that can triggering endogenous plant immunity against pathogen invasion. In our previous study, we developed a series of fluorinated compounds capable of eliciting disease resistance in plants; however, the underlying regulatory mechanisms remained unclear. In this study, we systematically investigated the mechanism of plant immune activation using four synthetic plant activators in Arabidopsis thaliana (A. thaliana), including two fluorine-substituted and two non‑fluorine-substituted molecules. Our findings revealed that the fluorinated compounds exhibited superior disease resistance activity compared to the non-fluorinated molecules. Gene expression analysis in systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related pathways demonstrated that fluorine substitution effectively regulated both SAR- and ISR-pathway activation, highlighting the distinct roles of fluorine in modulating the plant immune system. Notably, the prolonged ROS burst was observed in chloroplasts following treatment with all four plant activators, contrasting with the transient ROS burst induced by natural elicitors. These results provide insights into the unique mechanisms underlying synthetic plant activator-induced plant immunity. Furthermore, comprehensive proteomic analysis revealed a robust immune response mediated by fluorine-substituted plant activators. These findings offer novel insights into the role of fluorine substitution in SAR- and ISR-associated immune signaling pathways and their distinct impact on ROS production within chloroplasts.
Collapse
Affiliation(s)
- Qinjie Shi
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jianmian Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yiqing Zhou
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuanyuan Ji
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|