1
|
Pop M, Todor-Boer O, Botiz I. Visualization of Single Polymer Chains with Atomic Force Microscopy: A Review. Polymers (Basel) 2025; 17:1397. [PMID: 40430693 PMCID: PMC12115100 DOI: 10.3390/polym17101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/14/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Single-chain atomic force microscopy has emerged as a powerful and highly specialized technique, enabling the direct observation and analysis of various isolated polymer chains at the nano and micro scales. This work reviews the most relevant experimental cases utilizing this technique, aiming to shine light on the understanding of the physical appearance of freshly synthesized polymer chains, reveal unique chain conformations and related transitions, decipher the processes of polymer crystallization and self-assembly, study the mechanisms of polymer adsorption and desorption, observe the formation of single-chain nanoparticles, and explore many other related phenomena.
Collapse
Affiliation(s)
- Maria Pop
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania;
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Otto Todor-Boer
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development of Optoelectronics Bucharest INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania;
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Haider T, Akram W, Joshi R, Vishwakarma M, Saraf S, Soni V, Garud N. Unlocking the secrets: Structure-function dynamics of plant proteins. Colloids Surf B Biointerfaces 2025; 254:114791. [PMID: 40383024 DOI: 10.1016/j.colsurfb.2025.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/20/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
Plant-based proteins are becoming essential resources for sustainable food systems, pharmaceutical innovations, and functional materials. This review examines the complex structure-function relationships of plant proteins, emphasising their crucial role in defining functional properties and applications. The primary structure, consisting of amino acid sequences, along with secondary, tertiary, and quaternary structures, profoundly affects protein behaviour. External factors such as pH, ionic strength, temperature, and processing techniques like extrusion and enzymatic modification can influence protein structure, consequently modifying their functional properties. Consider rewording to "Advanced processing techniques, such as high-pressure and non-thermal methods, effectively refine protein structures while preserving their functionality.Computational modelling, employing molecular dynamics and artificial intelligence, is proposed as a revolutionary instrument for forecasting and enhancing structure-function relationships. An emerging application of plant proteins is targeted drug delivery, whose structural characteristics facilitate accurate encapsulation and release of therapeutic agents. Case studies highlight the importance of protein surface characteristics in attaining precise cellular or tissue targeting, especially for conditions related to cancer and inflammation. This review concludes by highlighting strategic avenues for harnessing the complete potential of plant proteins, placing them at the cutting edge of innovation in food science, biotechnology, and drug delivery.
Collapse
Affiliation(s)
- Tanweer Haider
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Wasim Akram
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474005, India.
| | - Ramakant Joshi
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474005, India
| | - Monika Vishwakarma
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, Madhya Pradesh 474005, India; Department of Pharmaceutical Sciences, Doctor Harisingh Gour Vishwavidyalaya, Sagar 470003, India
| | - Shivani Saraf
- Babulal Tarabai Institute of Pharmaceutical Science, Sagar, Madhya Pradesh, 470228 India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Doctor Harisingh Gour Vishwavidyalaya, Sagar 470003, India
| | - Navneet Garud
- School of studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh 474001, India
| |
Collapse
|
3
|
Galmozzi CV, Tippmann F, Wruck F, Auburger JJ, Kats I, Guennigmann M, Till K, O Brien EP, Tans SJ, Kramer G, Bukau B. Proteome-wide determinants of co-translational chaperone binding in bacteria. Nat Commun 2025; 16:4361. [PMID: 40348781 PMCID: PMC12065913 DOI: 10.1038/s41467-025-59067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
Chaperones are essential to the co-translational folding of most proteins. However, the principles of co-translational chaperone interaction throughout the proteome are poorly understood, as current methods are restricted to few substrates and cannot capture nascent protein folding or chaperone binding sites, precluding a comprehensive understanding of productive and erroneous protein biosynthesis. Here, by integrating genome-wide selective ribosome profiling, single-molecule tools, and computational predictions using AlphaFold we show that the binding of the main E. coli chaperones involved in co-translational folding, Trigger Factor (TF) and DnaK correlates with "unsatisfied residues" exposed on nascent partial folds - residues that have begun to form tertiary structure but cannot yet form all native contacts due to ongoing translation. This general principle allows us to predict their co-translational binding across the proteome based on sequence only, which we verify experimentally. The results show that TF and DnaK stably bind partially folded rather than unfolded conformers. They also indicate a synergistic action of TF guiding intra-domain folding and DnaK preventing premature inter-domain contacts, and reveal robustness in the larger chaperone network (TF, DnaK, GroEL). Given the complexity of translation, folding, and chaperone functions, our predictions based on general chaperone binding rules indicate an unexpected underlying simplicity.
Collapse
Affiliation(s)
- Carla Verónica Galmozzi
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Frank Tippmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Josef Johannes Auburger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ilia Kats
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manuel Guennigmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Edward P O Brien
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, PA, USA
| | - Sander J Tans
- AMOLF, Amsterdam, The Netherlands.
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
4
|
Zhang H, Cañari-Chumpitaz C, Alexander L, Zhang H, Fan C, Bustamante C. DNA origami-enhanced force spectroscopy and AlphaFold structural analyses reveal the folding landscape of calcium-binding proteins. SCIENCE ADVANCES 2025; 11:eadv1962. [PMID: 40305599 PMCID: PMC12042886 DOI: 10.1126/sciadv.adv1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025]
Abstract
Understanding the intricate folding process of proteins and characterizing the intermediates they populate en route to their native state remain challenging despite the remarkable accuracy achieved through in silico approaches for predicting native protein structures. Here, we replaced the conventional flexible double-stranded DNA handle force transducers with solid DNA-origami bundles to conduct single-molecule folding force-spectroscopy studies on calerythrin, a compact multidomain calcium-binding globular protein. The resulting origami-enhanced data revealed a previously "hidden" folding intermediate and the hierarchical nature of the protein's folding pathway. A systematic comparison of the AlphaFold-predicted conformational ensemble of structures of the native state and folding intermediates across various calcium-binding proteins provides a structural rationalization for the folding behavior of this protein family. The integration of DNA origami-enhanced single-molecule experiments with in silico approaches, and structural analysis presented here, constitutes a comprehensive method to uncover the rules underlying the formation of intermediates within protein folding landscapes.
Collapse
Affiliation(s)
- Honglu Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Jason L. Choy Laboratory for Single Molecule Biophysics. Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cristhian Cañari-Chumpitaz
- Jason L. Choy Laboratory for Single Molecule Biophysics. Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Lisa Alexander
- Jason L. Choy Laboratory for Single Molecule Biophysics. Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Metagenomi Inc., Discovery, Emeryville, CA 94608, USA
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Carlos Bustamante
- Jason L. Choy Laboratory for Single Molecule Biophysics. Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Xu H, Zhang H, Li T, Duan X. Recent advances in microscale techniques for red blood cells manipulation. BIOMICROFLUIDICS 2025; 19:031501. [PMID: 40375901 PMCID: PMC12077923 DOI: 10.1063/5.0267049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/17/2025] [Indexed: 05/18/2025]
Abstract
Manipulation of red blood cells (RBCs) in microscale has proven to play a pivotal role in various applications, such as disease diagnosis and drug delivery. Over the past decades, the capabilities of microscale manipulation techniques have evolved from simple particle manipulation to cells and organisms, with numerous microfluidic-based research tools being developed for RBC manipulation. This review first introduces the reported microscale manipulation techniques and their principles, including passive microfluidic methods based on microstructures and hydrodynamics, as well as active methods such as acoustic, optical, and electrical techniques. It then focuses on the application scenarios of these micro-scale manipulation methods for RBC manipulation, including the investigation of RBC mechanical properties, the preparation of RBC carriers, the control of RBC rotation, and RBC lysis. Finally, the future prospects of microscale techniques in RBC manipulation are discussed. This review offers a comprehensive comparison of various techniques, aiming to provide researchers from different fields with a broad perspective and to guide the continued development of microscale manipulation methods for RBC applications. It seeks to help researchers from diverse backgrounds stay informed about the latest trends and advancements in the field.
Collapse
Affiliation(s)
- Huihui Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Huijing Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Tants JN, Walbrun A, Kollwitz L, Friedrich K, Rief M, Schlundt A. Roquin exhibits opposing effects on RNA stem-loop stability through its two ROQ domain binding sites. Proc Natl Acad Sci U S A 2025; 122:e2424434122. [PMID: 40203046 PMCID: PMC12012478 DOI: 10.1073/pnas.2424434122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
The interaction of mRNA and regulatory proteins is critical for posttranscriptional control. For proper function, these interactions, as well as the involved protein and RNA structures, are highly dynamic, and thus, mechanistic insights from structural biology are challenging to obtain. In this study, we employ a multifaceted approach combining single-molecule force spectroscopy (SMFS) with NMR spectroscopy to analyze the concerted interaction of the two RNA-binding interfaces (A-site and B-site) of the immunoregulatory protein Roquin's ROQ domain with the 3' untranslated region (UTR) of the Ox40 mRNA. This 3'UTR contains two specific hairpin structures termed constitutive and alternative decay elements (CDE, ADE), which mediate mRNA degradation through Roquin binding. Our single-molecule experiments reveal that the CDE folds cooperatively, while ADE folding involves at least three on-pathway and three off-pathway intermediates. Using an integrated microfluidics setup, we extract binding kinetics to Roquin in real time. Supported by NMR data, we find opposing effects of the two Roquin subdomains on distinct regions of the ADE: While the A-site interacts strongly with the folded apical stem-loop, we find that the B-site has a distinct destabilizing effect on the central stem of the ADE owed to single-strand RNA binding. We propose that RNA-motif nature and Roquin A- and B-sites jointly steer mRNA decay with context-encoded specificity, and we suggest plasticity of stem structures as key determinant for Roquin-RNA complex formation. The unique combination of NMR and SMFS uncovers a mechanism of a dual-function RNA-binding domain, offering a model for target RNA recognition by Roquin.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt60438, Germany
| | - Andreas Walbrun
- School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies, Technical University of Munich, Garching85748, Germany
| | - Lucas Kollwitz
- School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies, Technical University of Munich, Garching85748, Germany
| | - Katharina Friedrich
- Institute for Molecular Biosciences and Biomolecular Resonance Center, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt60438, Germany
| | - Matthias Rief
- School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies, Technical University of Munich, Garching85748, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt60438, Germany
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald17489, Germany
| |
Collapse
|
7
|
Halma MTJ, Kumar S, van Eck J, Abeln S, Gates A, Wuite GJL. FAIR data for optical tweezers experiments. Biophys J 2025; 124:1255-1272. [PMID: 40083158 PMCID: PMC12044397 DOI: 10.1016/j.bpj.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/11/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
The single-molecule biophysics community has delivered significant impacts to our understanding of fundamental biological processes, yet the field is also siloed and has fragmented data structures, which impede data sharing and limit the ability to conduct comprehensive meta-analyses. To advance the field of optical tweezers in single-molecule biophysics, it is important that the field adopts open and collaborative data sharing that facilitate meta-analyses that combine diverse resources and supports more advanced analyses, akin to those seen in projects such as the Protein Data Bank and the 1000 Genomes Project. Here, we assess the state of data findability, accessibility, interoperability, and reusability (the FAIR principles) within the single-molecule optical tweezers field. By combining a qualitative review with quantitative tools from bibliometrics, our analysis suggests that the field has significant room for improvement in terms of FAIR adherence. Finally, we discuss the potential of compulsory data deposition and a minimal set of metadata standards to ensure reproducibility and interoperability between systems. While implementing these measures may not be straightforward, they are key steps that will enhance the integration of optical tweezers biophysics with the broader biomedical literature.
Collapse
Affiliation(s)
- Matthew T J Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, North Holland, the Netherlands; Lumicks B.V., Amsterdam, North Holland, the Netherlands
| | - Sowmiyaa Kumar
- Department of Computer Science, Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Jan van Eck
- Department of Computer Science, Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Sanne Abeln
- Department of Computer Science, Vrije Universiteit, Amsterdam, North Holland, the Netherlands
| | - Alexander Gates
- School of Data Science, University of Virginia, Charlottesville, Virginia.
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, North Holland, the Netherlands; Lumicks B.V., Amsterdam, North Holland, the Netherlands.
| |
Collapse
|
8
|
Paris LR, Green AW, Prell JS. Computed Vibrational Heat Capacities for Gas-Phase Biomolecular Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:862-872. [PMID: 40050111 DOI: 10.1021/jasms.5c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Collision induced dissociation (CID) and collision induced unfolding (CIU) experiments are important tools for determining the structures of and differences between biomolecular complexes with mass spectrometry. However, quantitative comparison of CID/CIU data acquired on different platforms or even using different regions of the same instrument can be very challenging due to differences in gas identity and pressure, electric fields, and other experimental parameters. In principle, these can be reconciled by a detailed understanding of how ions heat, cool, and dissociate or unfold in time as a function of these parameters. Fundamental information needed to model these processes for different ion types and masses is their heat capacity as a function of the internal (i.e., vibrational) temperature. Here, we use quantum computational theory to predict average heat capacities as a function of temperature for a variety of model biomolecule types from 100 to 3000 K. On a degree-of-freedom basis, these values are remarkably invariant within each biomolecule type and can be used to estimate heat capacities of much larger biomolecular ions. We also explore effects of ion heating, cooling, and internal energy distribution as a function of time using a home-built program (IonSPA). We observe that these internal energy distributions can be nearly Boltzmann for larger ions (greater than a few kDa) through most of the CID/CIU kinetic window after a brief (few-μs) induction period. These results should be useful in reconciling CID/CIU results across different instrument platforms and under different experimental conditions, as well as in designing instrumentation and experiments to control CID/CIU behavior.
Collapse
Affiliation(s)
- Lawren R Paris
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Austin W Green
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, 1252 University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
9
|
Wilson CAM, Corrêa CG. On the free energy of protein folding in optical tweezers experiments. Biophys Rev 2025; 17:231-245. [PMID: 40376413 PMCID: PMC12075763 DOI: 10.1007/s12551-025-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/24/2025] [Indexed: 05/18/2025] Open
Abstract
Free energy is a critical parameter in understanding the equilibrium in chemical reactions. It enables us to determine the equilibrium proportion between the different species in the reaction and to predict in which direction the reaction will proceed if a change is performed in the system. Historically, to calculate this value, bulk experiments were performed where a parameter was altered at a gradual rate to change the population until a new equilibrium was established. In protein folding studies, it is common to vary the temperature or chaotropic agents in order to change the population and then to extrapolate to physiological conditions. Such experiments were time-consuming due to the necessity of ensuring equilibrium and reversibility. Techniques of single-molecule manipulation, such as optical/magnetic tweezers and atomic force microscopy, permit the direct measurement of the work performed by a protein undergoing unfolding/refolding at particular forces. Also, with the development of non-equilibrium free energy theorems (Jarzynski equality, Crooks fluctuation theorem, Bennett acceptance ratio, and overlapping method), it is possible to obtain free energy values in experiments far from equilibrium. This review compares different methodologies and their application in optical tweezers. Interestingly, in many proteins, discrepancies in free energy values obtained through different methods suggest additional complexities in the folding pathway, possibly involving intermediate states such as the molten globule. Further studies are needed to confirm their presence and significance. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-025-01310-0.
Collapse
Affiliation(s)
- Christian A. M. Wilson
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Camila G. Corrêa
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Science, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
Tuna Y, Al-Hiyasat A, Kashkanova AD, Dechant A, Lutz E, Sandoghdar V. Electrostatic All-Passive Force Clamping of Charged Nanoparticles. ACS NANO 2025; 19:10173-10179. [PMID: 40036500 PMCID: PMC11924585 DOI: 10.1021/acsnano.4c17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In the past decades, many techniques have been explored for trapping microscopic and nanoscopic objects, but the investigation of nano-objects under arbitrary forces and conditions remains nontrivial. One fundamental case concerns the motion of a particle under a constant force, known as force clamping. Here, we employ metallic nanoribbons embedded in a glass substrate in a capacitor configuration to generate a constant electric field on a charged nanoparticle in a water-filled glass nanochannel. We estimate the force fields from Brownian trajectories over several micrometers and confirm the constant behavior of the forces both numerically and experimentally. Furthermore, we manipulate the diffusion and relaxation times of the nanoparticles by tuning the charge density on the electrode. Our highly compact and controllable setting allows for the trapping and force-clamping of charged nanoparticles in a solution, providing a platform for investigating nanoscopic diffusion phenomena.
Collapse
Affiliation(s)
- Yazgan Tuna
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Department of Physics, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Amer Al-Hiyasat
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna D Kashkanova
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Andreas Dechant
- Department of Physics #1, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, 70569 Stuttgart, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Department of Physics, Friedrich-Alexander University, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054 Erlangen, Germany
| |
Collapse
|
11
|
Garbuzynskiy SO, Marchenkov VV, Marchenko NY, Semisotnov GV, Finkelstein AV. How proteins manage to fold and how chaperones manage to assist the folding. Phys Life Rev 2025; 52:66-79. [PMID: 39709754 DOI: 10.1016/j.plrev.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature. We discuss the famous Levinthal's paradox of protein folding and its solution, theoretical models of protein folding and unfolding, and the dependence of the rates of these processes on the protein chain length. Special attention is paid to relatively small, single-domain, and water-soluble globular proteins whose structure and folding are much better studied and understood than those of large proteins, especially membrane or fibrous proteins. Lastly, we describe the chaperone-assisted protein folding with an emphasis on the chaperones' ability to prevent proteins from their irreversible aggregation. Since the possible assistance mechanisms connected with chaperones are still debatable, experimental data useful in selecting the most likely mechanisms of chaperone-assisted protein folding are presented.
Collapse
Affiliation(s)
- Sergiy O Garbuzynskiy
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Victor V Marchenkov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Natalia Y Marchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Gennady V Semisotnov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Alexei V Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| |
Collapse
|
12
|
Lentzsch AM, Lee JH, Shan SO. Mechanistic Insights into Protein Biogenesis and Maturation on the Ribosome. J Mol Biol 2025:169056. [PMID: 40024436 DOI: 10.1016/j.jmb.2025.169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The ribosome is a major cellular machine that converts genetic information into biological function. Emerging data show that the ribosome is not only a protein synthesis machine, but also participates in the maturation of the nascent protein into properly folded and active molecules. The ribosome surface near the opening of the polypeptide exit tunnel can interact directly with the newly synthesized proteins and, more importantly, provides a platform where numerous protein biogenesis factors assemble, gain access to the nascent chain, and direct them into diverse biogenesis pathways. In this article, we review the current understanding of cotranslational protein maturation pathways, with an emphasis on systems in which biochemical studies provided a high-resolution molecular understanding and yielded generalizable mechanistic principles.
Collapse
Affiliation(s)
- Alfred M Lentzsch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jae Ho Lee
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
13
|
Yadav DS, Savopol T. Optical tweezers in biomedical research - progress and techniques. J Med Life 2024; 17:978-993. [PMID: 39781305 PMCID: PMC11705474 DOI: 10.25122/jml-2024-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 01/12/2025] Open
Abstract
Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences. The applications of optical tweezers in biomedicine are vast, ranging from the investigation of cellular mechanical properties, such as cell stretching, membrane elasticity, and stiffness, to single-molecule studies encompassing DNA and protein mechanics, protein-DNA interactions, molecular motor functions, and pathogen-host interactions. Advancement of optical tweezers in this field includes their integration with holography, fluorescence microscopy, microfluidics, and enhancements in force sensitivity and positional accuracy. These tools have profoundly impacted the study of cellular mechanics, drug discovery processes, and disease diagnostics, providing unparalleled insights into the biophysical mechanisms underlying health and pathology.
Collapse
Key Words
- AFM, Atomic Force Microscopy
- CCD, Charge-Coupled Device
- DNA stretching
- E. Coli, Escherichia coli
- HOT, Holographic Optical Tweezers
- IVF, In-Vitro Fertilization
- ODS, Optical DNA Supercoiling
- RBC, Red Blood Cells
- RNAP, RNA Polymerase
- SLM, Spatial Light Modulator
- cell manipulation
- cell stretching
- dsDNA, Double-Stranded DNA
- elastic properties of cells
- membrane tethering
- optical tweezers
- single molecule studies
Collapse
Affiliation(s)
- Dharm Singh Yadav
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
14
|
Khan D, Vinayak AA, Sitron CS, Brandman O. Mechanochemical forces regulate the composition and fate of stalled nascent chains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606406. [PMID: 39131335 PMCID: PMC11312545 DOI: 10.1101/2024.08.02.606406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The ribosome-associated quality control (RQC) pathway resolves stalled ribosomes. As part of RQC, stalled nascent polypeptide chains (NCs) are appended with CArboxy-Terminal amino acids (CAT tails) in an mRNA-free, non-canonical elongation process. CAT tail composition includes Ala, Thr, and potentially other residues. The relationship between CAT tail composition and function has remained unknown. Using biochemical approaches in yeast, we discovered that mechanochemical forces on the NC regulate CAT tailing. We propose CAT tailing initially operates in an "extrusion mode" that increases NC lysine accessibility for on-ribosome ubiquitination. Thr in CAT tails enhances NC extrusion by preventing formation of polyalanine, which can form α-helices that lower extrusion efficiency and disrupt termination of CAT tailing. After NC ubiquitylation, pulling forces on the NC switch CAT tailing to an Ala-only "release mode" which facilitates nascent chain release from large ribosomal subunits and NC degradation. Failure to switch from extrusion to release mode leads to accumulation of NCs on large ribosomal subunits and proteotoxic aggregation of Thr-rich CAT tails.
Collapse
Affiliation(s)
- Danish Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ananya A Vinayak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cole S Sitron
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Onn Brandman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
15
|
Rojewski A, Schweiger M, Sgouralis I, Comstock M, Pressé S. An accurate probabilistic step finder for time-series analysis. Biophys J 2024; 123:2749-2764. [PMID: 38204166 PMCID: PMC11393690 DOI: 10.1016/j.bpj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Noisy time-series data-from various experiments, including Förster resonance energy transfer, patch clamp, and force spectroscopy, among others-are commonly analyzed with either hidden Markov models or step-finding algorithms, both of which detect discrete transitions. Hidden Markov models, including their extensions to infinite state spaces, inherently assume exponential-or technically geometric-holding time distributions, biasing step locations toward steps with geometric holding times, especially in sparse and/or noisy data. In contrast, existing step-finding algorithms, while free of this restraint, often rely on ad hoc metrics to penalize steps recovered in time traces (by using various information criteria) and otherwise rely on approximate greedy algorithms to identify putative global optima. Here, instead, we devise a robust and general probabilistic (Bayesian) step-finding tool that neither relies on ad hoc metrics to penalize step numbers nor assumes geometric holding times in each state. As the number of steps themselves in a time-series are a priori unknown, we treat these within a Bayesian nonparametric (BNP) paradigm. We find that the method developed, BNP Step (BNP-Step), accurately determines the number and location of transitions between discrete states without any assumed kinetic model and learns the emission distribution characteristic of each state. In doing so, we verify that BNP-Step can analyze sparser data sets containing higher noise and more closely spaced states than otherwise resolved by current state-of-the-art methods. What is more, BNP-Step rigorously propagates measurement uncertainty into uncertainty over state transition locations, numbers, and emission levels as characterized by the posterior. We demonstrate the performance of BNP-Step on both synthetic data as well as data drawn from force spectroscopy experiments.
Collapse
Affiliation(s)
- Alex Rojewski
- Department of Physics, Arizona State University, Tempe, Arizona; Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Max Schweiger
- Department of Physics, Arizona State University, Tempe, Arizona; Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, Knoxville, Tennessee
| | - Matthew Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona; Center for Biological Physics, Arizona State University, Tempe, Arizona; School of Molecular Sciences, Arizona State University, Tempe, Arizona.
| |
Collapse
|
16
|
Zhang S, Fang M, He J, Ma L, Miao X, Li P, Yu S, Cai W. How specific ion effects influence the mechanical behaviors of amide macromolecules? A cross-scale study. RSC Adv 2024; 14:25507-25515. [PMID: 39139238 PMCID: PMC11321207 DOI: 10.1039/d4ra04360j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The mechanisms of specific ion effects on the properties of amide macromolecules is essential to understanding the evolution of life. Because most biological macromolecules contain both complex hydrophilic and hydrophobic structures, it is challenging to accurately identify the contributions of molecular structure to macroscopic behaviors. Herein, we investigated the influence of specific ion effects on the mechanical behaviors of poly(N-isopropylacrylamide) and neutral polyacrylamide (i.e., PNIPAM and NPAM), through a cross-scale study that includes single-molecule force spectroscopy, molecular dynamics simulation and macro mechanical method. The results indicate that the molecular conformation can be markedly influenced by the hydrophilicity (or hydrophobicity) of both macromolecule chain and ions. An extended chain conformation can be obtained when the side groups and ions are relatively hydrophilic, which can also increase the elasticity of a macromolecule chain and film materials. The relatively hydrophobic components promote the collapse of macromolecule chains and reduce the molecular elasticity. It is believed that the hydrogen bonding intensity between a macromolecule chain and aquated ions controls the chain conformation and the elasticity of molecules and films. This study is not only helpful for understanding the self-assembly mechanism of organisms but also provides a way to associate the molecular properties with the macroscopic performance of materials.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Mengjia Fang
- School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
| | - Junjun He
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Lina Ma
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University Hangzhou 310024 Zhejiang Province China
| | - Peichuang Li
- Heze Branch, Qilu University of Technology (Shandong Academy of Sciences) Heze 274000 China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute Renhuai 564502 China
| | - Wanhao Cai
- School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
| |
Collapse
|
17
|
Konyshev IV, Byvalov AA. The bacterial flagellum as an object for optical trapping. Biophys Rev 2024; 16:403-415. [PMID: 39309130 PMCID: PMC11415335 DOI: 10.1007/s12551-024-01212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
This letter considers the possibility of using the optical trap to study the structure and function of the microbial flagellum. The structure of the flagellum of a typical gram-negative bacterium is described in brief. A standard mathematical model based on the principle of superposition is used to describe the movement of an ellipsoidal microbial cell in a liquid medium. The basic principles of optical trapping based on the combined action of the light pressure and the gradient force are briefly clarified. Several problems related to thermal damage of living microscopic objects when the latter gets to the focus of a laser beam are shortly discussed. It is shown that the probability of cell damage depends nonlinearly on the wavelength of laser radiation. Finally, the model systems that would make it possible to study flagella of the free bacteria and the ones anchored or tethered on the surface of a solid material are discussed in detail.
Collapse
Affiliation(s)
- Ilya V. Konyshev
- Institute of Physiology of the Federal Research Centre, Komi Science Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, 167982 Russia
- Vyatka State University, Kirov, 610000 Russia
| | - Andrey A. Byvalov
- Institute of Physiology of the Federal Research Centre, Komi Science Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, 167982 Russia
- Vyatka State University, Kirov, 610000 Russia
| |
Collapse
|
18
|
Mukadum F, Ccoa WJP, Hocky GM. Molecular simulation approaches to probing the effects of mechanical forces in the actin cytoskeleton. Cytoskeleton (Hoboken) 2024; 81:318-327. [PMID: 38334204 PMCID: PMC11310368 DOI: 10.1002/cm.21837] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
In this article we give our perspective on the successes and promise of various molecular and coarse-grained simulation approaches to probing the effect of mechanical forces in the actin cytoskeleton.
Collapse
Affiliation(s)
- Fatemah Mukadum
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | - Glen M. Hocky
- Department of Chemistry, New York University, New York, NY 10003, USA
- Simons Center for Computational Physical Chemistry, New York, NY 10003, USA
| |
Collapse
|
19
|
Komar AA, Samatova E, Rodnina MV. Translation Rates and Protein Folding. J Mol Biol 2024; 436:168384. [PMID: 38065274 DOI: 10.1016/j.jmb.2023.168384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
The mRNA coding sequence defines not only the amino acid sequence of the protein, but also the speed at which the ribosomes move along the mRNA while making the protein. The non-uniform local kinetics - denoted as translational rhythm - is similar among mRNAs coding for related protein folds. Deviations from this conserved rhythm can result in protein misfolding. In this review we summarize the experimental evidence demonstrating how local translation rates affect cotranslational protein folding, with the focus on the synonymous codons and patches of charged residues in the nascent peptide as best-studied examples. Alterations in nascent protein conformations due to disturbed translational rhythm can persist off the ribosome, as demonstrated by the effects of synonymous codon variants of several disease-related proteins. Charged amino acid patches in nascent chains also modulate translation and cotranslational protein folding, and can abrogate translation when placed at the N-terminus of the nascent peptide. During cotranslational folding, incomplete nascent chains navigate through a unique conformational landscape in which earlier intermediate states become inaccessible as the nascent peptide grows. Precisely tuned local translation rates, as well as interactions with the ribosome, guide the folding pathway towards the native structure, whereas deviations from the natural translation rhythm may favor pathways leading to trapped misfolded states. Deciphering the 'folding code' of the mRNA will contribute to understanding the diseases caused by protein misfolding and to rational protein design.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; Department of Biochemistry and Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Ekaterina Samatova
- Max Planck Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Max Planck Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany.
| |
Collapse
|
20
|
Li P, Li H. A Handle-Free, All-Protein-Based Optical Tweezers Method to Probe Protein Folding-Unfolding Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13721-13727. [PMID: 38899455 DOI: 10.1021/acs.langmuir.4c01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Optical tweezers (OT) have evolved into powerful single molecule force spectroscopy tools to investigate protein folding-unfolding dynamics. To stretch a protein of interest using OT, the protein must be flanked with two double stranded DNA (dsDNA) handles. However, coupling dsDNA handles to the protein is often of low yield, representing a bottleneck in OT experiments. Here, we report a handle-free, all-protein-based OT method for investigating protein folding/unfolding dynamics. In this new method, we employed disordered elastin-like polypeptides (ELPs) as a molecular linker and the mechanically stable cohesin-dockerin (Coh-Doc) pair as the prey-bait system to enable the efficient capture and stretching of individual protein molecules. This novel approach was validated by using model proteins NuG2 and RTX-v, yielding experimental results comparable to those obtained by using the dsDNA handle approach. This new method provides a streamlined and efficient OT approach to investigate the folding-unfolding dynamics of proteins at the single molecule level, thus expanding the toolbox of OT-based single molecule force spectroscopy.
Collapse
Affiliation(s)
- Peiyun Li
- Department of ChemistryUniversity of British ColumbiaVancouver, BC V6T 1Z1, Canada
| | - Hongbin Li
- Department of ChemistryUniversity of British ColumbiaVancouver, BC V6T 1Z1, Canada
| |
Collapse
|
21
|
Yang D, Zhang J, Zhang P, Liang H, Ma J, Li J, Wang XH. Optical trapping and manipulating with a transmissive and polarization-insensitive metalens. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2781-2789. [PMID: 39635250 PMCID: PMC11501135 DOI: 10.1515/nanoph-2023-0850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/24/2024] [Indexed: 12/07/2024]
Abstract
Trapping and manipulating micro-objects and achieving high-precision measurements of tiny forces and displacements are of paramount importance in both physical and biological research. While conventional optical tweezers rely on tightly focused beams generated by bulky microscope systems, the emergence of flat lenses, particularly metalenses, has revolutionized miniature optical tweezers applications. In contrast to traditional objectives, the metalenses can be seamlessly integrated into sample chambers, facilitating flat-optics-based light manipulation. In this study, we propose an experimentally realized transmissive and polarization-insensitive water-immersion metalens, constructed using adaptive nano-antennas. This metalens boasts an ultra-high numerical aperture of 1.28 and achieves a remarkable focusing efficiency of approximately 50 % at a wavelength of 532 nm. Employing this metalens, we successfully demonstrate stable optical trapping, achieving lateral trapping stiffness exceeding 500 pN/(μm W). This stiffness magnitude aligns with that of conventional objectives and surpasses the performance of previously reported flat lenses. Furthermore, our bead steering experiment showcases a lateral manipulation range exceeding 2 μm, including a region of around 0.5 μm exhibiting minimal changes in stiffness for smoothly optical manipulation. We believe that this metalens paves the way for flat-optics-based optical tweezers, simplifying and enhancing optical trapping and manipulation processes, attributing ease of use, reliability, high performance, and compatibility with prevalent optical tweezers applications, including single-molecule and single-cell experiments.
Collapse
Affiliation(s)
- Dongni Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou510275, China
| | - Jianchao Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou510275, China
- Hisense Laser Display Co., Ltd.,Qingdao, China
| | - Pengshuai Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou510275, China
| | - Haowen Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou510275, China
| | - Jie Ma
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou510275, China
| | - Juntao Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou510275, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen-Hong Kong International Science and Technology Park, No.3 Binglang Road, Futian District, Shenzhen, China
| | - Xue-Hua Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou510275, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen-Hong Kong International Science and Technology Park, No.3 Binglang Road, Futian District, Shenzhen, China
| |
Collapse
|
22
|
Rajasekaran N, Kaiser CM. Navigating the complexities of multi-domain protein folding. Curr Opin Struct Biol 2024; 86:102790. [PMID: 38432063 DOI: 10.1016/j.sbi.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
Proteome complexity has expanded tremendously over evolutionary time, enabling biological diversification. Much of this complexity is achieved by combining a limited set of structural units into long polypeptides. This widely used evolutionary strategy poses challenges for folding of the resulting multi-domain proteins. As a consequence, their folding differs from that of small single-domain proteins, which generally fold quickly and reversibly. Co-translational processes and chaperone interactions are important aspects of multi-domain protein folding. In this review, we discuss some of the recent experimental progress toward understanding these processes.
Collapse
Affiliation(s)
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
23
|
Liu W, Gao T, Li N, Shao S, Liu B. Vesicle fusion and release in neurons under dynamic mechanical equilibrium. iScience 2024; 27:109793. [PMID: 38736547 PMCID: PMC11088343 DOI: 10.1016/j.isci.2024.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Vesicular fusion plays a pivotal role in cellular processes, involving stages like vesicle trafficking, fusion pore formation, content release, and membrane integration or separation. This dynamic process is regulated by a complex interplay of protein assemblies, osmotic forces, and membrane tension, which together maintain a mechanical equilibrium within the cell. Changes in cellular mechanics or external pressures prompt adjustments in this equilibrium, highlighting the system's adaptability. This review delves into the synergy between intracellular proteins, structural components, and external forces in facilitating vesicular fusion and release. It also explores how cells respond to mechanical stress, maintaining equilibrium and offering insights into vesicle fusion mechanisms and the development of neurological disorders.
Collapse
Affiliation(s)
- Wenhao Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Tianyu Gao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Faculty of Medicine, Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Huang Y, Chen T, Chen X, Chen X, Zhang J, Liu S, Lu M, Chen C, Ding X, Yang C, Huang R, Song Y. Decoding Biomechanical Cues Based on DNA Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310330. [PMID: 38185740 DOI: 10.1002/smll.202310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaodie Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ximing Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Menghao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chong Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangyu Ding
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruiyun Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
25
|
van der Sleen L, Stevens JA, Marrink SJ, Poolman B, Tych K. Probing the stability and interdomain interactions in the ABC transporter OpuA using single-molecule optical tweezers. Cell Rep 2024; 43:114110. [PMID: 38607912 DOI: 10.1016/j.celrep.2024.114110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Transmembrane transporter proteins are essential for maintaining cellular homeostasis and, as such, are key drug targets. Many transmembrane transporter proteins are known to undergo large structural rearrangements during their functional cycles. Despite the wealth of detailed structural and functional data available for these systems, our understanding of their dynamics and, consequently, how they function is generally limited. We introduce an innovative approach that enables us to directly measure the dynamics and stability of interdomain interactions of transmembrane proteins using optical tweezers. Focusing on the osmoregulatory ATP-binding cassette transporter OpuA from Lactococcus lactis, we examine the mechanical properties and potential interactions of its substrate-binding domains. Our measurements are performed in lipid nanodiscs, providing a native-mimicking environment for the transmembrane protein. The technique provides high spatial and temporal resolution and allows us to study the functionally relevant motions and interdomain interactions of individual transmembrane transporter proteins in real time in a lipid bilayer.
Collapse
Affiliation(s)
- Lyan van der Sleen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Jan A Stevens
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Siewert J Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Kasia Tych
- Chemical Biology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
26
|
Liu Z, van Veen E, Sánchez H, Solano B, Palmero Moya FJ, McCluskey KA, Ramírez Montero D, van Laar T, Dekker NH. A Biophysics Toolbox for Reliable Data Acquisition and Processing in Integrated Force-Confocal Fluorescence Microscopy. ACS PHOTONICS 2024; 11:1592-1603. [PMID: 38645993 PMCID: PMC11027178 DOI: 10.1021/acsphotonics.3c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 04/23/2024]
Abstract
Integrated single-molecule force-fluorescence spectroscopy setups allow for simultaneous fluorescence imaging and mechanical force manipulation and measurements on individual molecules, providing comprehensive dynamic and spatiotemporal information. Dual-beam optical tweezers (OT) combined with a confocal scanning microscope form a force-fluorescence spectroscopy apparatus broadly used to investigate various biological processes, in particular, protein:DNA interactions. Such experiments typically involve imaging of fluorescently labeled proteins bound to DNA and force spectroscopy measurements of trapped individual DNA molecules. Here, we present a versatile state-of-the-art toolbox including the preparation of protein:DNA complex samples, design of a microfluidic flow cell incorporated with OT, automation of OT-confocal scanning measurements, and the development and implementation of a streamlined data analysis package for force and fluorescence spectroscopy data processing. Its components can be adapted to any commercialized or home-built dual-beam OT setup equipped with a confocal scanning microscope, which will facilitate single-molecule force-fluorescence spectroscopy studies on a large variety of biological systems.
Collapse
Affiliation(s)
- Zhaowei Liu
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Edo van Veen
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Humberto Sánchez
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Belén Solano
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Francisco J. Palmero Moya
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Kaley A. McCluskey
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Daniel Ramírez Montero
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Theo van Laar
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Nynke H. Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, U.K.
- Kavli
Institute of Nanoscience Discovery, University
of Oxford, Dorothy Crowfoot
Hodgkin Building, Oxford OX1 3QU, U.K.
| |
Collapse
|
27
|
Bashir S, Aiman A, Chaudhary AA, Khan N, Ahanger IA, Sami N, Almugri EA, Ali MA, Khan SUD, Shahid M, Basir SF, Hassan MI, Islam A. Probing protein aggregation through spectroscopic insights and multimodal approaches: A comprehensive review for counteracting neurodegenerative disorders. Heliyon 2024; 10:e27949. [PMID: 38689955 PMCID: PMC11059433 DOI: 10.1016/j.heliyon.2024.e27949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Aberrant accumulation of protein misfolding can cause aggregation and fibrillation and is one of the primary characteristic features of neurodegenerative diseases. Because they are disordered, misfolded, and aggregated proteins pose a significant setback in drug designing. The structural study of intermediate steps in these kinds of aggregated proteins will allow us to determine the conformational changes as well as the probable pathways encompassing various neurodegenerative disorders. The analysis of protein aggregates involved in neurodegenerative diseases relies on a diverse toolkit of biophysical techniques, encompassing both morphological and non-morphological methods. Additionally, Thioflavin T (ThT) assays and Circular Dichroism (CD) spectroscopy facilitate investigations into aggregation kinetics and secondary structure alterations. The collective application of these biophysical techniques empowers researchers to comprehensively unravel the intricate nature of protein aggregates associated with neurodegeneration. Furthermore, the topics covered in this review have summed up a handful of well-established techniques used for the structural analysis of protein aggregation. This multifaceted approach advances our fundamental understanding of the underlying mechanisms driving neurodegenerative diseases and informs potential therapeutic strategies.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ayesha Aiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nashrah Khan
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Eman Abdullah Almugri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A.M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic Universi-ty (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
28
|
Tapia-Rojo R, Alonso-Caballero A, Badilla CL, Fernandez JM. Identical sequences, different behaviors: Protein diversity captured at the single-molecule level. Biophys J 2024; 123:814-823. [PMID: 38409780 PMCID: PMC10995423 DOI: 10.1016/j.bpj.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
The classical "one sequence, one structure, one function" paradigm has shaped much of our intuition of how proteins work inside the cell. Partially due to the insight provided by bulk biochemical assays, individual biomolecules are often assumed to behave as identical entities, and their characterization relies on ensemble averages that flatten any conformational diversity into a unique phenotype. While the emergence of single-molecule techniques opened the gates to interrogating individual molecules, technical shortcomings typically limit the duration of these measurements, which precludes a complete characterization of an individual protein and, hence, capturing the heterogeneity among molecular populations. Here, we introduce an ultrastable magnetic tweezers design, which enables us to measure the folding dynamics of a single protein during several uninterrupted days with high temporal and spatial resolution. Thanks to this instrumental development, we fully characterize the nanomechanics of two proteins with a very distinct force response, the talin R3IVVI domain and protein L. Days-long recordings on the same protein individual accumulate thousands of folding transitions with submicrosecond resolution, allowing us to reconstruct their free energy landscapes and describe how they evolve with force. By mapping the nanomechanical identity of many different protein individuals, we directly capture their molecular diversity as a quantifiable dispersion on their force response and folding kinetics. By significantly expanding the measurable timescales, our instrumental development offers a tool for profiling individual molecules, opening the gates to directly characterizing biomolecular heterogeneity.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, New York, New York.
| | | | - Carmen L Badilla
- Department of Biological Sciences, Columbia University, New York, New York
| | - Julio M Fernandez
- Department of Biological Sciences, Columbia University, New York, New York
| |
Collapse
|
29
|
Roterman I, Stapor K, Konieczny L. Model of the external force field for the protein folding process-the role of prefoldin. Front Chem 2024; 12:1342434. [PMID: 38595701 PMCID: PMC11002104 DOI: 10.3389/fchem.2024.1342434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction: The protein folding process is very sensitive to environmental conditions. Many possibilities in the form of numerous pathways for this process can-if an incorrect one is chosen-lead to the creation of forms described as misfolded. The aqueous environment is the natural one for the protein folding process. Nonetheless, other factors such as the cell membrane and the presence of specific molecules (chaperones) affect this process, ensuring the correct expected structural form to guarantee biological activity. All these factors can be considered components of the external force field for this process. Methods: The fuzzy oil drop-modified (FOD-M) model makes possible the quantitative evaluation of the modification of the external field, treating the aqueous environment as a reference. The FOD-M model (tested on membrane proteins) includes the component modifying the water environment, allowing the assessment of the external force field generated by prefoldin. Results: In this work, prefoldin was treated as the provider of a specific external force field for actin and tubulin. The discussed model can be applied to any folding process simulation, taking into account the changed external conditions. Hence, it can help simulate the in silico protein folding process under defined external conditions determined by the respective external force field. In this work, the structures of prefoldin and protein folded with the participation of prefoldin were analyzed. Discussion: Thus, the role of prefoldin can be treated as a provider of an external field comparable to other environmental factors affecting the protein folding process.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University–Medical College, Krakow, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University–Medical College, Krakow, Poland
| |
Collapse
|
30
|
Halma MTJ, Xu L. Life under tension: the relevance of force on biological polymers. BIOPHYSICS REPORTS 2024; 10:48-56. [PMID: 38737478 PMCID: PMC11079598 DOI: 10.52601/bpr.2023.230019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 05/14/2024] Open
Abstract
Optical tweezers have elucidated numerous biological processes, particularly by enabling the precise manipulation and measurement of tension. One question concerns the biological relevance of these experiments and the generalizability of these experiments to wider biological systems. Here, we categorize the applicability of the information garnered from optical tweezers in two distinct categories: the direct relevance of tension in biological systems, and what experiments under tension can tell us about biological systems, while these systems do not reach the same tension as the experiment, still, these artificial experimental systems reveal insights into the operations of biological machines and life processes.
Collapse
Affiliation(s)
- Matthew T. J. Halma
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
- LUMICKS B. V., 1081 HV, Amsterdam, the Netherlands
| | - Longfu Xu
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Tapia-Rojo R. Construction and operation of high-resolution magnetic tape head tweezers for measuring single-protein dynamics under force. Methods Enzymol 2024; 694:83-107. [PMID: 38492959 DOI: 10.1016/bs.mie.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Mechanical forces are critical to protein function across many biological contexts-from bacterial adhesion to muscle mechanics and mechanotransduction processes. Hence, understanding how mechanical forces govern protein activity has developed into a central scientific question. In this context, single-molecule magnetic tweezers has recently emerged as a valuable experimental tool, offering the capability to measure single proteins over physiologically relevant forces and timescales. In this chapter, we present a detailed protocol for the assembly and operation of our magnetic tape head tweezers instrument, specifically tailored to investigate protein dynamics. Our instrument boasts a simplified microscope design and incorporates a magnetic tape head as the force-generating apparatus, facilitating precise force control and enhancing its temporal stability, enabling the study of single protein mechanics over extended timescales spanning several hours or even days. Moreover, its straightforward and cost-effective design ensures its accessibility to the wider scientific community. We anticipate that this technique will attract widespread interest within the growing field of mechanobiology and expect that this chapter will provide facilitated accessibility to this technology.
Collapse
|
32
|
Paralı U, Üstün K, Giden İH. Enhancement of optical levitation with hyperbolic metamaterials. Sci Rep 2024; 14:1734. [PMID: 38242942 PMCID: PMC10799002 DOI: 10.1038/s41598-024-51284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
The tightly focused laser beam in an optical trap has become a useful tool for many recent research areas. The momentum change in the photon-stream path of incident laser beam induces radiation force that enables trapping and manipulating mesoscopic micron-sized objects. In this study, we report the first analytical demonstration of optical trapping and levitation with radiation pressure on a transparent micron-sized spherical object made of hyperbolic metamaterial (HMM). The optical radial and axial forces acting on dielectric and HMM spherical particles are calculated using ray-optics approximation, assuming an optical levitation trapping setup. We compared the net force acting on the two objects, finding that the net radiation force exerted towards HMM particle is enhanced in the axial direction: The optical force enhancement in the HMM particle is more than ~ 8 times stronger compared to the induced force on the conventional dielectric particle with the corresponding material parameters. Besides, a better performance in the radial stabilization is observed for the HMM particle in comparison with the dielectric case, at which some oscillations and unstable saturation locations for the radial stabilization is monitored for TEM00 beam incidence. Furthermore, "zero-force" paths where radial stabilization of the HMM particle exists are also obtained for both TEM00 and [Formula: see text] laser beam incidences. Such phenomenon does not occur for particles of only dielectric and only metal material, which can be considered as another superiority of the proposed HMM particle.
Collapse
Affiliation(s)
- Ufuk Paralı
- ASELSAN Inc., Mehmet Akif Ersoy Mah. İstiklal Marşı Cad. No:16, 06200, Yenimahalle-Ankara, Turkey.
| | - Kadir Üstün
- ASELSAN Inc., Mehmet Akif Ersoy Mah. İstiklal Marşı Cad. No:16, 06200, Yenimahalle-Ankara, Turkey
| | - İbrahim Halil Giden
- ASELSAN Inc., Mehmet Akif Ersoy Mah. İstiklal Marşı Cad. No:16, 06200, Yenimahalle-Ankara, Turkey
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Gazi University, 06570, Ankara, Turkey
| |
Collapse
|
33
|
Mistry AC, Chowdhury D, Chakraborty S, Haldar S. Elucidating the novel mechanisms of molecular chaperones by single-molecule technologies. Trends Biochem Sci 2024; 49:38-51. [PMID: 37980187 DOI: 10.1016/j.tibs.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Molecular chaperones play central roles in sustaining protein homeostasis and preventing protein aggregation. Most studies of these systems have been performed in bulk, providing averaged measurements, though recent single-molecule approaches have provided an in-depth understanding of the molecular mechanisms of their activities and structural rearrangements during substrate recognition. Chaperone activities have been observed to be substrate specific, with some associated with ATP-dependent structural dynamics and others via interactions with co-chaperones. This Review aims to describe the novel mechanisms of molecular chaperones as revealed by single-molecule approaches, and to provide insights into their functioning and its implications for protein homeostasis and human diseases.
Collapse
Affiliation(s)
- Ayush Chandrakant Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India; Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India; Department of Chemistry, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
34
|
Simon DJ, Thalheim T, Cichos F. Accumulation and Stretching of DNA Molecules in Temperature-Induced Concentration Gradients. J Phys Chem B 2023; 127:10861-10870. [PMID: 38064590 DOI: 10.1021/acs.jpcb.3c06405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Temperature fields provide a noninvasive approach for manipulating individual macromolecules in solution. Utilizing thermophoresis and other secondary effects resulting from the inhomogeneous distribution of crowding agents, one may gain valuable insights into the interactions of molecular mixtures. In this report, we examine the steady-state concentration distribution and dynamics of DNA molecules in a poly(ethylene glycol) (PEG)/water solution when exposed to localized temperature gradients generated by optical heating of a thin chrome layer at a liquid-solid boundary. This allowed us to experimentally investigate the interplay between DNA thermophoresis and PEG-induced entropic depletion effects. Our quantitative analysis demonstrates that the depletion effects dominate over DNA thermophoresis, causing the DNA polymers to migrate toward the heat source. Additionally, we explore the transient stretching of individual DNA molecules in thermally induced PEG gradients and estimate the contributing forces.
Collapse
Affiliation(s)
- David J Simon
- Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| | - Tobias Thalheim
- Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| | - Frank Cichos
- Molecular Nanophotonics Group, Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Gaspar-Morales EA, Waterston A, Sadqi M, Diaz-Parga P, Smith AM, Gopinath A, Andresen Eguiluz RC, de Alba E. Natural and Engineered Isoforms of the Inflammasome Adaptor ASC Form Noncovalent, pH-Responsive Hydrogels. Biomacromolecules 2023; 24:5563-5577. [PMID: 37930828 DOI: 10.1021/acs.biomac.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
The protein ASC polymerizes into intricate filament networks to assemble the inflammasome, a filamentous multiprotein complex that triggers the inflammatory response. ASC carries two Death Domains integrally involved in protein self-association for filament assembly. We have leveraged this behavior to create noncovalent, pH-responsive hydrogels of full-length, folded ASC by carefully controlling the pH as a critical factor in the polymerization process. We show that natural variants of ASC (ASC isoforms) involved in inflammasome regulation also undergo hydrogelation. To further demonstrate this general capability, we engineered proteins inspired by the ASC structure that also form hydrogels. We analyzed the structural network of the natural and engineered protein hydrogels using transmission and scanning electron microscopy and studied their viscoelastic behavior using shear rheology. Our results reveal one of the very few examples of hydrogels created by the self-assembly of globular proteins and domains in their native conformation and show that Death Domains can be used alone or as building blocks to engineer bioinspired hydrogels.
Collapse
|
36
|
Buche MR, Rimsza JM. Modeling single-molecule stretching experiments using statistical thermodynamics. Phys Rev E 2023; 108:064503. [PMID: 38243517 DOI: 10.1103/physreve.108.064503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Single-molecule stretching experiments are widely utilized within the fields of physics and chemistry to characterize the mechanics of individual bonds or molecules, as well as chemical reactions. Analytic relations describing these experiments are valuable, and these relations can be obtained through the statistical thermodynamics of idealized model systems representing the experiments. Since the specific thermodynamic ensembles manifested by the experiments affect the outcome, primarily for small molecules, the stretching device must be included in the idealized model system. Though the model for the stretched molecule might be exactly solvable, including the device in the model often prevents analytic solutions. In the limit of large or small device stiffness, the isometric or isotensional ensembles can provide effective approximations, but the device effects are missing. Here a dual set of asymptotically correct statistical thermodynamic theories are applied to develop accurate approximations for the full model system that includes both the molecule and the device. The asymptotic theories are first demonstrated to be accurate using the freely jointed chain model and then using molecular dynamics calculations of a single polyethylene chain.
Collapse
Affiliation(s)
- Michael R Buche
- Computational Solid Mechanics and Structural Dynamics, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jessica M Rimsza
- Geochemistry, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| |
Collapse
|
37
|
Zou Z, Liang J, Jia Q, Bai D, Xie W, Wu W, Tan C, Ma J. A versatile and high-throughput flow-cell system combined with fluorescence imaging for simultaneous single-molecule force measurement and visualization. NANOSCALE 2023; 15:17443-17454. [PMID: 37859523 DOI: 10.1039/d3nr03214k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A flow-cell offers many advantages for single-molecule studies. But, its merit as a quantitative single-molecule tool has long been underestimated. In this work, we developed a gas-pumped fully calibrated flow-cell system combined with fluorescence imaging for simultaneous single-molecule force measurement and visualization. Such a flow-cell system has considered the hydrodynamic drags on biomolecules and hence can apply and measure force up to more than 100 pN in sub-pN precision with an ultra-high force stability (force drift <0.01 pN in 10 minutes) and tuning accuracy (∼0.04 pN). Meanwhile, it also allows acquiring force signals and fluorescence images at the same time, parallelly tracking hundreds of protein motors in real time as well as monitoring the conformational changes of biomolecules under a well-controlled force, as demonstrated by a series of single-molecule experiments in this work, including the studies of DNA overstretching dynamics, transcription under force and DNA folding/unfolding dynamics. Interesting findings, such as the very tight association of single-stranded binding (SSB) proteins with ssDNA and the reversed transcription, have also been made. These results together lay down an essential foundation for a flow-cell to be used as a versatile, quantitative and high-throughput tool for single-molecule manipulation and visualization.
Collapse
Affiliation(s)
- Zhenyu Zou
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jialun Liang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Qian Jia
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, P.R. China
| | - Di Bai
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, P.R. China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, P.R. China
| | - Wenqiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475001, P.R. China
| | - Chuang Tan
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jie Ma
- School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
38
|
Zhou L, Ren L, Bai Z, Xia Q, Wang Y, Peng H, Yan Q, Shi J, Li B, Guo L, Wang L. DNA Framework Programmed Conformational Reconstruction of Antibody Complementary Determining Region. JACS AU 2023; 3:2709-2714. [PMID: 37885585 PMCID: PMC10598557 DOI: 10.1021/jacsau.3c00492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The conformation of complementary determining region (CDR) is crucial in dictating its specificity and affinity for binding with an antigen, making it a focal point in artificial antibody engineering. Although desirable, programmable scaffolds that can regulate the conformation of individual CDRs with nanometer precision are still lacking. Here, we devise a strategy to program the CDR conformation by anchoring both ends of a free CDR loop to specific sites of a DNA framework structure. This method allows us to define the span of a single CDR loop with an ∼2 nm resolution. Using this approach, we create a series of DNA framework based artificial antibodies (DNFbodies) with varied CDR loop spans, leading to different antibody-antigen binding affinities. We find that an optimized single CDR loop (∼2.3 nm span) exhibits ∼3-fold improved affinity relative to natural antibodies, confirming the critical role of the CDR conformation. This study may inspire the rational design of artificial antibodies.
Collapse
Affiliation(s)
- Liqi Zhou
- National
Laboratory of Solid State Microstructures, Jiangsu Key Laboratory
of Artificial Functional Materials, College of Engineering and Applied
Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Lei Ren
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Zhiang Bai
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Qinglin Xia
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Yue Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Hongzhen Peng
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Qinglong Yan
- Xiangfu
Laboratory, Jiashan 314102, People’s Republic
of China
| | - Jiye Shi
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Bin Li
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, People’s
Republic of China
| | - Linjie Guo
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
| | - Lihua Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, People’s Republic
of China
- CAS
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
- The
Interdisciplinary Research Center, Shanghai Synchrotron Radiation
Facility, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, People’s
Republic of China
| |
Collapse
|
39
|
Rojewski A, Schweiger M, Sgouralis I, Comstock M, Pressé S. An accurate probabilistic step finder for time-series analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558535. [PMID: 37786687 PMCID: PMC10541599 DOI: 10.1101/2023.09.19.558535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Noisy time-series data is commonly collected from sources including Förster Resonance Energy Transfer experiments, patch clamp and force spectroscopy setups, among many others. Two of the most common paradigms for the detection of discrete transitions in such time-series data include: hidden Markov models (HMMs) and step-finding algorithms. HMMs, including their extensions to infinite state-spaces, inherently assume in analysis that holding times in discrete states visited are geometrically-or, loosely speaking in common language, exponentially-distributed. Thus the determination of step locations, especially in sparse and noisy data, is biased by HMMs toward identifying steps resulting in geometric holding times. In contrast, existing step-finding algorithms, while free of this restraint, often rely on ad hoc metrics to penalize steps recovered in time traces (by using various information criteria) and otherwise rely on approximate greedy algorithms to identify putative global optima. Here, instead, we devise a robust and general probabilistic (Bayesian) step-finding tool that neither relies on ad hoc metrics to penalize step numbers nor assumes geometric holding times in each state. As the number of steps themselves in a time-series are, a priori unknown, we treat these within a Bayesian nonparametric (BNP) paradigm. We find that the method developed, Bayesian Nonparametric Step (BNP-Step), accurately determines the number and location of transitions between discrete states without any assumed kinetic model and learns the emission distribution characteristic of each state. In doing so, we verify that BNP-Step can analyze sparser data sets containing higher noise and more closely-spaced states than otherwise resolved by current state-of-the-art methods. What is more, BNP-Step rigorously propagates measurement uncertainty into uncertainty over state transition locations, numbers, and emission levels as characterized by the posterior. We demonstrate the performance of BNP-Step on both synthetic data as well as data drawn from force spectroscopy experiments.
Collapse
Affiliation(s)
- Alex Rojewski
- Department of Physics, Arizona State University, Tempe, Arizona
- Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Maxwell Schweiger
- Department of Physics, Arizona State University, Tempe, Arizona
- Center for Biological Physics, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, Knoxville, Tennessee
| | - Matthew Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan
| | - Steve Pressé
- Department of Physics, Arizona State University, Tempe, Arizona
- Center for Biological Physics, Arizona State University, Tempe, Arizona
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
40
|
Vergara R, Berrocal T, Juárez Mejía EI, Romero-Romero S, Velázquez-López I, Pulido NO, López Sanchez HA, Silva DA, Costas M, Rodríguez-Romero A, Rodríguez-Sotres R, Sosa-Peinado A, Fernández-Velasco DA. Thermodynamic and kinetic analysis of the LAO binding protein and its isolated domains reveal non-additivity in stability, folding and function. FEBS J 2023; 290:4496-4512. [PMID: 37178351 DOI: 10.1111/febs.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 05/15/2023]
Abstract
Substrate-binding proteins (SBPs) are used by organisms from the three domains of life for transport and signalling. SBPs are composed of two domains that collectively trap ligands with high affinity and selectivity. To explore the role of the domains and the integrity of the hinge region between them in the function and conformation of SBPs, here, we describe the ligand binding, conformational stability and folding kinetics of the Lysine Arginine Ornithine (LAO) binding protein from Salmonella thiphimurium and constructs corresponding to its two independent domains. LAO is a class II SBP formed by a continuous and a discontinuous domain. Contrary to the expected behaviour based on their connectivity, the discontinuous domain shows a stable native-like structure that binds l-arginine with moderate affinity, whereas the continuous domain is barely stable and shows no detectable ligand binding. Regarding folding kinetics, studies of the entire protein revealed the presence of at least two intermediates. While the unfolding and refolding of the continuous domain exhibited only a single intermediate and simpler and faster kinetics than LAO, the folding mechanism of the discontinuous domain was complex and involved multiple intermediates. These findings suggest that in the complete protein the continuous domain nucleates folding and that its presence funnels the folding of the discontinuous domain avoiding nonproductive interactions. The strong dependence of the function, stability and folding pathway of the lobes on their covalent association is most likely the result of the coevolution of both domains as a single unit.
Collapse
Affiliation(s)
- Renan Vergara
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Tania Berrocal
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Eva Isela Juárez Mejía
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Department of Biochemistry, University of Bayreuth, Germany
| | - Isabel Velázquez-López
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Nancy O Pulido
- Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Haven A López Sanchez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniel-Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Rogelio Rodríguez-Sotres
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Sosa-Peinado
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
41
|
Xu Z, Li Q, Huang Y, Guo K, Xue B, Cao Y, Li Y. Blocking Nonspecific Interactions Using Y-Shape Poly(ethylene glycol). Int J Mol Sci 2023; 24:12414. [PMID: 37569789 PMCID: PMC10419274 DOI: 10.3390/ijms241512414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Nonspecific interactions play a significant role in physiological activities, surface chemical modification, and artificial adhesives. However, nonspecificity sometimes causes sticky problems, including surface fouling, decreased target specificity, and artifacts in single-molecule measurements. Adjusting the liquid pH, using protein-blocking additives, adding nonionic surfactants, or increasing the salt concentration are common methods to minimize nonspecific binding to achieve high-quality data. Here, we report that grafting heteromorphic polyethylene glycol (Y-shape PEG) with two inert terminates could noticeably decrease nonspecific binding. As a proof-of-concept, we performed single-molecule force spectroscopy and fluorescence staining imaging experiments to verify the feasibility of Y-shape PEG in blocking nonspecific interactions. Our results indicate that Y-shape PEG could serve as a prominent and efficient candidate to minimize nonspecificity for scientific and biomedical applications.
Collapse
Affiliation(s)
- Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (Z.X.); (Q.L.); (Y.H.); (K.G.); (B.X.)
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Qingtai Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (Z.X.); (Q.L.); (Y.H.); (K.G.); (B.X.)
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (Z.X.); (Q.L.); (Y.H.); (K.G.); (B.X.)
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Kaiqiang Guo
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (Z.X.); (Q.L.); (Y.H.); (K.G.); (B.X.)
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (Z.X.); (Q.L.); (Y.H.); (K.G.); (B.X.)
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (Z.X.); (Q.L.); (Y.H.); (K.G.); (B.X.)
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China; (Z.X.); (Q.L.); (Y.H.); (K.G.); (B.X.)
- Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
42
|
Hong C, Yang S, Ndukaife JC. Exosomes trapping, manipulation and size-based separation using opto-thermo-electrohydrodynamic tweezers. NANOSCALE ADVANCES 2023; 5:2973-2978. [PMID: 37260502 PMCID: PMC10228344 DOI: 10.1039/d3na00101f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
Owing to the heterogeneity of exosomes in size and biomolecular composition, there is a need for new approaches for trapping, manipulating, and sorting of single exosomes in solution. Due to their small size ranging from 30 nm to 150 nm and their relatively low refractive index, their stable trapping using optical tweezers has been met with challenges. Trapping exosomes in an optical trap requires nearly 100 mW of input power, which predisposes them to photo-induced damage and membrane rupture at the laser focus. Here, we report a high stability opto-thermo-electrohydrodynamic tweezer for the stable stand-off trapping of single exosomes based on a concentric nanohole array (CNA) using laser illumination and an a.c. field. The CNA system generates two regions of electrohydrodynamic potentials several microns away from the laser focus where single exosomes are trapped. We demonstrate the rapid trapping within seconds, and selective dynamic manipulation of exosomes based on size using only 4.2 mW of input laser power. The proposed platform opens up a promising approach for stabilizing single exosomes in solution and controlling their distribution based on size without the risk of photo-induced damage.
Collapse
Affiliation(s)
- Chuchuan Hong
- Electrical and Computer Engineering Department, Vanderbilt University Nashville TN 37212 USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University Nashville TN 37212 USA
| | - Sen Yang
- Electrical and Computer Engineering Department, Vanderbilt University Nashville TN 37212 USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University Nashville TN 37212 USA
| | - Justus C Ndukaife
- Electrical and Computer Engineering Department, Vanderbilt University Nashville TN 37212 USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University Nashville TN 37212 USA
- Interdisciplinary Material Science, Vanderbilt University Nashville TN 37212 USA
| |
Collapse
|
43
|
Xiao J, Plaskocinski T, Biabanifard M, Persheyev S, Di Falco A. On-Chip Optical Trapping with High NA Metasurfaces. ACS PHOTONICS 2023; 10:1341-1348. [PMID: 37215320 PMCID: PMC10197168 DOI: 10.1021/acsphotonics.2c01986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 05/24/2023]
Abstract
Optical trapping of small particles typically requires the use of high NA microscope objectives. Photonic metasurfaces are an attractive alternative to create strongly focused beams for optical trapping applications in an integrated platform. Here, we report on the design, fabrication, and characterization of optical metasurfaces with a numerical aperture up to 1.2 and trapping stiffness greater than 400 pN/μm/W. We demonstrate that these metasurfaces perform as well as microscope objectives with the same numerical aperture. We systematically analyze the impact of the metasurface dimension on the trapping performance and show efficient trapping with metasurfaces with an area as small as 0.001 mm2. Finally, we demonstrate the versatility of the platform by designing metasurfaces able to create multisite optical tweezers for the trapping of extended objects.
Collapse
|
44
|
Islam F, Purkait D, Mishra PP. Insights into the Dynamics and Helicase Activity of RecD2 of Deinococcus radiodurans during DNA Repair: A Single-Molecule Perspective. J Phys Chem B 2023; 127:4351-4363. [PMID: 37163679 DOI: 10.1021/acs.jpcb.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
While the double helix is the most stable conformation of DNA inside cells, its transient unwinding and subsequent partial separation of the two complementary strands yields an intermediate single-stranded DNA (ssDNA). The ssDNA is involved in all major DNA transactions such as replication, transcription, recombination, and repair. The process of DNA unwinding and translocation is shouldered by helicases that transduce the chemical energy derived from nucleotide triphosphate (NTP) hydrolysis to mechanical energy and utilize it to destabilize hydrogen bonds between complementary base pairs. Consequently, a comprehensive understanding of the molecular mechanisms of these enzymes is essential. In the last few decades, a combination of single-molecule techniques (force-based manipulation and visualization) have been employed to study helicase action. These approaches have allowed researchers to study the single helicase-DNA complex in real-time and the free energy landscape of their interaction together with the detection of conformational intermediates and molecular heterogeneity during the course of helicase action. Furthermore, the unique ability of these techniques to resolve helicase motion at nanometer and millisecond spatial and temporal resolutions, respectively, provided surprising insights into their mechanism of action. This perspective outlines the contribution of single-molecule methods in deciphering molecular details of helicase activities. It also exemplifies how each technique was or can be used to study the helicase action of RecD2 in recombination DNA repair.
Collapse
Affiliation(s)
- Farhana Islam
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Debayan Purkait
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
45
|
Gokulu IS, Banta S. Biotechnology applications of proteins functionalized with DNA oligonucleotides. Trends Biotechnol 2023; 41:575-585. [PMID: 36115723 DOI: 10.1016/j.tibtech.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
The functionalization of proteins with DNA through the formation of covalent bonds enables a wide range of biotechnology advancements. For example, single-molecule analytical methods rely on bioconjugated DNA as elastic biolinkers for protein immobilization. Labeling proteins with DNA enables facile protein identification, as well as spatial and temporal organization and control of protein within DNA-protein networks. Bioconjugation reactions can target native, engineered, and non-canonical amino acids (NCAAs) within proteins. In addition, further protein engineering via the incorporation of peptide tags and self-labeling proteins can also be used for conjugation reactions. The selection of techniques will depend on application requirements such as yield, selectivity, conjugation position, potential for steric hindrance, cost, commercial availability, and potential impact on protein function.
Collapse
Affiliation(s)
- Ipek Simay Gokulu
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
| |
Collapse
|
46
|
Magazzù A, Marcuello C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:963. [PMID: 36985857 PMCID: PMC10053849 DOI: 10.3390/nano13060963] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 05/17/2023]
Abstract
Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics. Moreover, cellular transduction processes which are involved in health and disease conditions are significantly affected by exogenous biomechanical actions. In this framework, atomic force microscopy (AFM) and optical tweezers (OT) can play an important role to determine the biomechanical parameters of the investigated systems at the single-molecule level. This review aims to fully comprehend the interplay between mechanical forces and soft matter systems. In particular, we outline the capabilities of AFM and OT compared to other classical bulk techniques to determine nanomechanical parameters such as Young's modulus. We also provide some recent examples of nanomechanical measurements performed using AFM and OT in hydrogels, biopolymers and cellular systems, among others. We expect the present manuscript will aid potential readers and stakeholders to fully understand the potential applications of AFM and OT to soft matter systems.
Collapse
Affiliation(s)
- Alessandro Magazzù
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, 98158 Mesina, Italy
- NLHT-Lab, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
47
|
Lee M, Hugonnet H, Lee MJ, Cho Y, Park Y. Optical trapping with holographically structured light for single-cell studies. BIOPHYSICS REVIEWS 2023; 4:011302. [PMID: 38505814 PMCID: PMC10903426 DOI: 10.1063/5.0111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/25/2022] [Indexed: 03/21/2024]
Abstract
A groundbreaking work in 1970 by Arthur Ashkin paved the way for developing various optical trapping techniques. Optical tweezers have become an established method for the manipulation of biological objects, due to their noninvasiveness and precise controllability. Recent innovations are accelerating and now enable single-cell manipulation through holographic light structuring. In this review, we provide an overview of recent advances in optical tweezer techniques for studies at the individual cell level. Our review focuses on holographic optical tweezers that utilize active spatial light modulators to noninvasively manipulate live cells. The versatility of the technology has led to valuable integrations with microscopy, microfluidics, and biotechnological techniques for various single-cell studies. We aim to recapitulate the basic principles of holographic optical tweezers, highlight trends in their biophysical applications, and discuss challenges and future prospects.
Collapse
|
48
|
Basics of Optical Force. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2023. [DOI: 10.1016/j.jphotochemrev.2023.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
49
|
Mukherjee S, Mepperi J, Sahu P, Barman DK, Kotamarthi HC. Single-Molecule Optical Tweezers As a Tool for Delineating the Mechanisms of Protein-Processing Mechanoenzymes. ACS OMEGA 2023; 8:87-97. [PMID: 36643560 PMCID: PMC9835622 DOI: 10.1021/acsomega.2c06044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Mechanoenzymes convert chemical energy from the hydrolysis of nucleotide triphosphates to mechanical energy for carrying out cellular functions ranging from DNA unwinding to protein degradation. Protein-processing mechanoenzymes either remodel the protein structures or translocate them across cellular compartments in an energy-dependent manner. Optical-tweezer-based single-molecule force spectroscopy assays have divulged information on details of chemo-mechanical coupling, directed motion, as well as mechanical forces these enzymes are capable of generating. In this review, we introduce the working principles of optical tweezers as a single-molecule force spectroscopy tool and assays developed to decipher the properties such as unfolding kinetics, translocation velocities, and step sizes by protein remodeling mechanoenzymes. We focus on molecular motors involved in protein degradation and disaggregation, i.e., ClpXP, ClpAP, and ClpB, and insights provided by single-molecule assays on kinetics and stepping dynamics during protein unfolding and translocation. Cellular activities such as protein synthesis, folding, and translocation across membranes are also energy dependent, and the recent single-molecule studies decoding the role of mechanical forces on these processes have been discussed.
Collapse
|
50
|
He H, Wu C, Saqib M, Hao R. Single-molecule fluorescence methods for protein biomarker analysis. Anal Bioanal Chem 2023:10.1007/s00216-022-04502-9. [PMID: 36609860 DOI: 10.1007/s00216-022-04502-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
Proteins have been considered key building blocks of life. In particular, the protein content of an organism and a cell offers significant information for the in-depth understanding of the disease and biological processes. Single-molecule protein detection/sequencing tools will revolutionize clinical (proteomics) research, offering ultrasensitivity for low-abundance biomarker (protein) detection, which is important for the realization of early-stage disease diagnosis and single-cell proteomics. This improved detection/measurement capability delivers new sets of techniques to explore new frontiers and address important challenges in various interdisciplinary areas including nanostructured materials, molecular medicine, molecular biology, and chemistry. Importantly, fluorescence-based methods have emerged as indispensable tools for single protein detection/sequencing studies, providing a higher signal-to-noise ratio (SNR). Improvements in fluorescent dyes/probes and detector capabilities coupled with advanced (image) analysis strategies have fueled current developments for single protein biomarker detections. For example, in comparison to conventional ELISA (i.e., based on ensembled measurements), single-molecule fluorescence detection is more sensitive, faster, and more accurate with reduced background, high-throughput, and so on. In comparison to MS sequencing, fluorescence-based single-molecule protein sequencing can achieve the sequencing of peptides themselves with higher sensitivity. This review summarizes various typical single-molecule detection technologies including their methodology (modes of operation), detection limits, advantages and drawbacks, and current challenges with recent examples. We describe the fluorescence-based single-molecule protein sequencing/detection based on five kinds of technologies such as fluorosequencing, N-terminal amino acid binder, nanopore light sensing, and DNA nanotechnology. Finally, we present our perspective for developing high-performance fluorescence-based sequencing/detection techniques.
Collapse
Affiliation(s)
- Haihan He
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuhong Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Muhammad Saqib
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China.,Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China. .,Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|