1
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
2
|
Trastus LA, d'Adda di Fagagna F. The complex interplay between aging and cancer. NATURE AGING 2025; 5:350-365. [PMID: 40038418 DOI: 10.1038/s43587-025-00827-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025]
Abstract
Cancer is an age-related disease, but the interplay between cancer and aging is complex and their shared molecular drivers are deeply intertwined. This Review provides an overview of how different biological pathways affect cancer and aging, leveraging evidence mainly derived from animal studies. We discuss how genome maintenance and accumulation of DNA mutations affect tumorigenesis and tissue homeostasis during aging. We describe how age-related telomere dysfunction and cellular senescence intricately modulate tumor development through mechanisms involving genomic instability and inflammation. We examine how an aged immune system and chronic inflammation shape tumor immunosurveillance, fueling DNA damage and cellular senescence. Finally, as animal models are important to untangling the relative contributions of these aging-modulated pathways to cancer progression and to test interventions, we discuss some of the limitations of physiological and accelerated aging models, aiming to improve experimental designs and enhance translation.
Collapse
Affiliation(s)
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS-the AIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
3
|
Azzalin CM. TERRA and the alternative lengthening of telomeres: a dangerous affair. FEBS Lett 2025; 599:157-165. [PMID: 38445359 PMCID: PMC11771730 DOI: 10.1002/1873-3468.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Eukaryotic telomeres are transcribed into the long noncoding RNA TERRA. A fraction of TERRA remains associated with telomeres by forming RNA:DNA hybrids dubbed telR-loops. TERRA and telR-loops are essential to promote telomere elongation in human cancer cells that maintain telomeres through a homology-directed repair pathway known as alternative lengthening of telomeres or ALT. However, TERRA and telR-loops compromise telomere integrity and cell viability if their levels are not finely tuned. The study of telomere transcription in ALT cells will enormously expand our understanding of the ALT mechanism and of how genome integrity is maintained. Moreover, telomere transcription, TERRA and telR-loops are likely to become exceptionally suited targets for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Claus M. Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM)Faculdade de Medicina da Universidade de LisboaPortugal
| |
Collapse
|
4
|
Niewisch MR, Kim J, Giri N, Lunger JC, McReynolds LJ, Savage SA. Genotype and Associated Cancer Risk in Individuals With Telomere Biology Disorders. JAMA Netw Open 2024; 7:e2450111. [PMID: 39661387 PMCID: PMC11635530 DOI: 10.1001/jamanetworkopen.2024.50111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Importance Telomere biology disorders (TBDs) are inherited cancer-prone bone marrow failure syndromes with differences in morbidity and mortality based on mode of inheritance. Objective To quantify cancer risks in TBDs by genetic subgroups. Design, Setting, and Participants This longitudinal cohort study of TBDs assessed cancer occurrences from 2002 through 2022. Participants were individuals with a TBD-associated pathogenic germline variant recruited across institutions by self-referral. Data were collected and analyzed through June 30, 2022. Exposures The exposure was TBD genotypes, with subgroups defined by inheritance pattern (autosomal-dominant [AD-non-TINF2] vs autosomal-recessive/X-linked [AR/XLR] vs AD-TINF2). Main Outcomes and Measures The main outcome was cancer; secondary outcomes included death, or organ transplant. Cumulative cancer incidence was determined considering death or transplant as competing events. Observed:expected (O:E) ratios of cancer before and after any organ transplant were calculated using the National Cancer Institute's Surveillance, Epidemiology, and End Results Program. Results Among 230 individuals with TBD (135 [58.7%] male; median [range] age at last follow-up, 34.6 [1.4-82.2] years) included, the risk of cancer was 3-fold higher than the general population (O:E, 3.35 [95% CI, 2.32-4.68]). The highest risk was observed in individuals with AR/XLR (O:E, 19.16 [95% CI, 9.19-35.24]) with a significantly younger cancer onset than in individuals with AD-non-TINF2 (median [range] age, 36.7 [25.2-53.6] years vs 44.5 [32.2-67.5] years; P = .01). The risk of solid tumors was highest in individuals with AR/XLR (O:E = 23.97 [95% CI, 10.96-45.50]), predominantly head and neck squamous cell carcinomas (O:E, 276.00 [95% CI, 75.20-706.67]). Hematologic malignant neoplasm risk was highest in individuals with AD-non-TINF2 (O:E, 9.41 [95% CI, 4.30-17.86]). Solid tumor cumulative incidence increased to 12% for individuals with AR/XLR by age 45 years and to 13% for individuals with AD-non-TINF2 by age 70 years. The cumulative incidence of hematologic malignant neoplasms leveled off at 2% by age 30 years and 19% by age 70 years in individuals with AR/XLR and AD-non-TINF2, respectively. Individuals with AD-TINF2 showed the highest cumulative incidence for transplant or death (49% by age 15 years). Following transplant, individuals with AR/XLR (O:E, 136.11 [95% CI, 54.72-280.44) or AD-TINF2 (O:E, 81.07 [95% CI, 16.72-236.92]) had the highest cancer risk, predominantly young-onset head and neck squamous cell carcinomas (median [range] age, 32.2 [10.5-35.5] years). Conclusions and Relevance This cohort study of individuals with TBDs found an increased cancer risk compared with the general population, with the earliest age at onset for individuals with AR/XLR inheritance. Cancer risks increased after organ transplant across all subgroups. These differences in TBD-associated cancer risks by mode of inheritance suggest cancer screening could be tailored by genotype, but additional research is warranted.
Collapse
Affiliation(s)
- Marena R. Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Judith C. Lunger
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Salgado S, Abreu PL, Moleirinho B, Guedes DS, Larcombe L, Azzalin CM. Human PC4 supports telomere stability and viability in cells utilizing the alternative lengthening of telomeres mechanism. EMBO Rep 2024; 25:5294-5315. [PMID: 39468351 PMCID: PMC11624207 DOI: 10.1038/s44319-024-00295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Cancer cells with an activated Alternative Lengthening of Telomeres (ALT) mechanism elongate telomeres via homology-directed repair. Sustained telomeric replication stress is an essential trigger of ALT activity; however, it can lead to cell death if not properly restricted. By analyzing publicly available data from genome-wide CRISPR KO screenings, we have identified the multifunctional protein PC4 as a novel factor essential for ALT cell viability. Depletion of PC4 results in rapid ALT cell death, while telomerase-positive cells show minimal effects. PC4 depletion induces replication stress and telomere fragility primarily in ALT cells, and increases ALT activity. PC4 binds to telomeric DNA in cells, and its binding can be enhanced by telomeric replication stress. Finally, a mutant PC4 with partly impaired single stranded DNA binding activity is capable to localize to telomeres and suppress ALT activity and telomeric replication stress. We propose that PC4 supports ALT cell viability, at least partly, by averting telomere dysfunction. Further studies of PC4 interactions at ALT telomeres may hold promise for innovative therapies to eradicate ALT cancers.
Collapse
Affiliation(s)
- Sara Salgado
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Patricia L Abreu
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Beatriz Moleirinho
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Daniela S Guedes
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal
| | - Lee Larcombe
- Apexomic, Stevenage Bioscience Catalyst, Hertfordshire, SG1 2FX, UK
- TessellateBio Ltd, Stevenage Bioscience Catalyst, Hertfordshire, SG1 2FX, UK
| | - Claus M Azzalin
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035, Lisbon, Portugal.
- Faculty of Medicine, University of Lisbon, 1649-028, Lisbon, Portugal.
| |
Collapse
|
6
|
Zhai T, Zilli Vieira CL, Vokonas P, Baccarelli AA, Nagel ZD, Schwartz J, Koutrakis P. Annual space weather fluctuations and telomere length dynamics in a longitudinal cohort of older men: the Normative Aging Study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:1072-1080. [PMID: 38066331 DOI: 10.1038/s41370-023-00616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2024]
Abstract
BACKGROUND Space weather has been associated with increased risk of cardiovascular diseases in space and flight crew. However, limited research has focused on the ground population, particularly among the elderly who are vulnerable to aging-related diseases. OBJECTIVE We evaluated the association between space weather alterations and biological aging using leukocyte telomere length as a biomarker in healthy elderly men. METHODS We used data from the Normative Aging Study, a longitudinal cohort of healthy elderly men in Massachusetts, USA. Leukocyte telomere length and health information were measured at in-person examinations approximately every three years, contributing to a total of 1,850 visits from 791 participants. Regional space weather information was collected daily, including cosmic ray-induced ionization, neutrons, sunspot number, interplanetary magnetic field, and Kp-index as our exposure of interest. We used mixed-effects models with a random intercept per individual to evaluate the associations between annual averages of space weather indicators and relative telomere length while accounting for participant demographics, environmental parameters, and secular trends. RESULTS The mean age at baseline was 72.36 years. A one-year increment in age is associated with a 1.21% reduction in leukocyte telomere length. In the fully adjusted model accounting for individual and environmental factors, an interquartile range (IQR) increase of annual cosmic ray induced ionization (110.0 ion pairs cm-3 sec-1) was associated with a 17.64% (95%CI: -27.73%, -7.55%) decrease in leukocyte telomere length, equivalent to 15-years age increment. Solar and geomagnetic activities were associated with increased leukocyte telomere length, but the association became absent after adjusting for cosmic ray indicators. IMPACT Galactic cosmic rays may accelerate the aging process in populations on the Earth, despite the protection by the Earth's atmosphere and magnetic field. This research enhances our understanding of how changes in space weather can impact health, highlights potential risks from space to Earth's inhabitants, and helps inform health strategies for vulnerable populations.
Collapse
Affiliation(s)
- Ting Zhai
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Carolina L Zilli Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University Chobanian and Avadisian School of Medicine, Boston, MA, 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Zheng YL, Wu X, Williams M, Verhulst S, Lin J, Takahashi Y, Ma JX, Wang Y. High-throughput single telomere analysis using DNA microarray and fluorescent in situ hybridization. Nucleic Acids Res 2024; 52:e96. [PMID: 39291738 PMCID: PMC11514468 DOI: 10.1093/nar/gkae812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
The human telomere system is highly dynamic. Both short and long leucocyte average telomere lengths (aTL) are associated with an increased risk of cancer and early death, illustrating the complex relationship between TL and human health and the importance of assessing TL distributions with single TL analysis. A DNA microarray and telomere fluorescent in situ hybridization (DNA-array-FISH) approach was developed to measure the base-pair (bp) lengths of single telomeres. On average 32000 telomeres were measured per DNA sample with one microarray chip assaying 96 test DNA samples. Various telomere parameters, i.e. aTL and the frequency of short/long telomeres, were computed to delineate TL distribution. The intra-assay and inter-assay coefficient of variations of aTL ranged from 1.37% to 3.98%. The correlation coefficient (r) of aTL in repeated measurements ranged from 0.91 to 1.00, demonstrating high measurement precision. aTLs measured by DNA-array-FISH predicted aTLs measured by terminal restriction fragment (TRF) analysis with r ranging 0.87-0.99. A new accurate and high-throughput method has been developed to measure the bp lengths of single telomeres. The large number of single TL data provides an opportunity for an in-depth analysis of telomere dynamics and the complex relationship between telomere and age-related diseases.
Collapse
Affiliation(s)
- Yun-Ling Zheng
- Cancer Prevention and Control Program, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Xingjia Wu
- Cancer Prevention and Control Program, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Madeline Williams
- Cancer Prevention and Control Program, Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yusuke Takahashi
- Department of Biochemistry, Wake Forest School of Medicine, NC 27157, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest School of Medicine, NC 27157, USA
| | - Ying Wang
- TelohealthDx, LLC, Clarksburg, MD 20871, USA
| |
Collapse
|
8
|
Smoom R, May CL, Lichtental D, Skordalakes E, Kaestner KH, Tzfati Y. Separation of telomere protection from length regulation by two different point mutations at amino acid 492 of RTEL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582005. [PMID: 38464183 PMCID: PMC10925190 DOI: 10.1101/2024.02.26.582005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
RTEL1 is an essential DNA helicase that plays multiple roles in genome stability and telomere length regulation. A variant of RTEL1 with a lysine at position 492 is associated with short telomeres in Mus spretus , while a conserved methionine at this position is found in M. musculus , which has ultra-long telomeres. In humans, a missense mutation at this position ( Rtel1 M492I ) causes a fatal telomere biology disease termed Hoyeraal-Hreidarsson syndrome (HHS). Introducing the Rtel1 M492K mutation into M. musculus shortened the telomeres of the resulting strain, termed 'Telomouse', to the length of human telomeres. Here, we report on a mouse strain carrying the Rtel1 M492I mutation, termed 'HHS mouse'. The HHS mouse telomeres are not as short as those of Telomice but nevertheless they display higher levels of telomeric DNA damage, fragility and recombination, associated with anaphase bridges and micronuclei. These observations indicate that the two mutations separate critical functions of RTEL1: M492K mainly reduces the telomere length setpoint, while M492I predominantly disrupts telomere protection. The two mouse models enable dissecting the mechanistic roles of RTEL1 and the different contributions of short telomeres and DNA damage to telomere biology diseases, genomic instability, cancer, and aging.
Collapse
|
9
|
Schmidt TT, Tyer C, Rughani P, Haggblom C, Jones JR, Dai X, Frazer KA, Gage FH, Juul S, Hickey S, Karlseder J. High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer. Nat Commun 2024; 15:5149. [PMID: 38890299 PMCID: PMC11189484 DOI: 10.1038/s41467-024-48917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Telomeres are the protective nucleoprotein structures at the end of linear eukaryotic chromosomes. Telomeres' repetitive nature and length have traditionally challenged the precise assessment of the composition and length of individual human telomeres. Here, we present Telo-seq to resolve bulk, chromosome arm-specific and allele-specific human telomere lengths using Oxford Nanopore Technologies' native long-read sequencing. Telo-seq resolves telomere shortening in five population doubling increments and reveals intrasample, chromosome arm-specific, allele-specific telomere length heterogeneity. Telo-seq can reliably discriminate between telomerase- and ALT-positive cancer cell lines. Thus, Telo-seq is a tool to study telomere biology during development, aging, and cancer at unprecedented resolution.
Collapse
Affiliation(s)
| | - Carly Tyer
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | | | - Candy Haggblom
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jeffrey R Jones
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Xiaoguang Dai
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | - Kelly A Frazer
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, 92093-0761, USA
| | - Fred H Gage
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sissel Juul
- Oxford Nanopore Technologies, Inc., New York, NY, USA
| | - Scott Hickey
- Oxford Nanopore Technologies, Inc., New York, NY, USA.
| | - Jan Karlseder
- Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
Teplitz GM, Pasquier E, Bonnell E, De Laurentiis E, Bartle L, Lucier JF, Sholes S, Greider CW, Wellinger RJ. A mechanism for telomere-specific telomere length regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598646. [PMID: 38915611 PMCID: PMC11195199 DOI: 10.1101/2024.06.12.598646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Telomeric DNA, composed of short, direct repeats, is of crucial importance for chromosome stability. Due to intrinsic problems with replicating this DNA, the repeat tracts shorten at each cell division. Once repeat tracts become critically short, a telomeric stress signal induces cellular senescence and division arrest, which eventually may lead to devastating age-related degenerative diseases associated with dysfunctional telomers. Conversely, maintenance of telomere length by telomerase upregulation is a hallmark of cancer. Therefore, telomere length is a critical determinant of telomere function. How telomere length is established and molecular mechanisms for telomere-specific length regulation remained unknown. Here we show that subtelomeric chromatin is a determinant for how telomere equilibrium set-length is established in cis. The results demonstrate that telomerase recruitment mediated by the telomere-associated Sir4 protein is modulated on chromosome 3L in a telomere-specific way. Increased Sir4 abundance on subtelomeric heterochromatin of this specific telomere leads to telomere lengthening of only that telomere in cis, but not at other telomeres. Therefore, this work describes a mechanism for a how telomere-specific repeat tract length can be established. Further, our results will force the evaluation of telomere length away from a generalized view to a more telomere-specific consideration.
Collapse
Affiliation(s)
- Gabriela M. Teplitz
- Department of Microbiology and Infectiology, Faculty of Medicine and Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Emeline Pasquier
- Department of Microbiology and Infectiology, Faculty of Medicine and Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Current Address: CNRS-UMR9019, Gustave Roussy Institute, Villejuif, France
| | - Erin Bonnell
- Department of Microbiology and Infectiology, Faculty of Medicine and Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Evelina De Laurentiis
- Department of Microbiology and Infectiology, Faculty of Medicine and Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Louise Bartle
- Department of Microbiology and Infectiology, Faculty of Medicine and Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Current Address: School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, Australia
| | - Jean-François Lucier
- Department of Biology, Faculty of Sciences, Université de Sherbrooke, Sherbrooke Canada
| | - Samantha Sholes
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, USA
- Current Address: Merck & Co., 770 Sumneytown Pike, West Point, USA
| | - Carol W. Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, USA
| | - Raymund J. Wellinger
- Department of Microbiology and Infectiology, Faculty of Medicine and Sciences, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
11
|
Tufail M, Huang YQ, Hu JJ, Liang J, He CY, Wan WD, Jiang CH, Wu H, Li N. Cellular Aging and Senescence in Cancer: A Holistic Review of Cellular Fate Determinants. Aging Dis 2024:AD.2024.0421. [PMID: 38913050 DOI: 10.14336/ad.2024.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
This comprehensive review navigates the complex relationship between cellular aging, senescence, and cancer, unraveling the determinants of cellular fate. Beginning with an overview of cellular aging's significance in cancer, the review explores processes, changes, and molecular pathways influencing senescence. The review explores senescence as a dual mechanism in cancer, acting as a suppressor and contributor, focusing on its impact on therapy response. This review highlights opportunities for cancer therapies that target cellular senescence. The review further examines the senescence-associated secretory phenotype and strategies to modulate cellular aging to influence tumor behavior. Additionally, the review highlights the mechanisms of senescence escape in aging and cancer cells, emphasizing their impact on cancer prognosis and resistance to therapy. The article addresses current advances, unexplored aspects, and future perspectives in understanding cellular aging and senescence in cancer.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Waitkus MS, Erman EN, Reitman ZJ, Ashley DM. Mechanisms of telomere maintenance and associated therapeutic vulnerabilities in malignant gliomas. Neuro Oncol 2024; 26:1012-1024. [PMID: 38285162 PMCID: PMC11145458 DOI: 10.1093/neuonc/noae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/30/2024] Open
Abstract
A majority of cancers (~85%) activate the enzyme telomerase to maintain telomere length over multiple rounds of cellular division. Telomerase-negative cancers activate a distinct, telomerase-independent mechanism of telomere maintenance termed alternative lengthening of telomeres (ALT). ALT uses homologous recombination to maintain telomere length and exhibits features of break-induced DNA replication. In malignant gliomas, the activation of either telomerase or ALT is nearly ubiquitous in pediatric and adult tumors, and the frequency with which these distinct telomere maintenance mechanisms (TMMs) is activated varies according to genetically defined glioma subtypes. In this review, we summarize the current state of the field of TMMs and their relevance to glioma biology and therapy. We review the genetic alterations and molecular mechanisms leading to telomerase activation or ALT induction in pediatric and adult gliomas. With this background, we review emerging evidence on strategies for targeting TMMs for glioma therapy. Finally, we comment on critical gaps and issues for moving the field forward to translate our improved understanding of glioma telomere maintenance into better therapeutic strategies for patients.
Collapse
Affiliation(s)
- Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Elise N Erman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary J Reitman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
LaBella KA, Hsu WH, Li J, Qi Y, Liu Y, Liu J, Wu CC, Liu Y, Song Z, Lin Y, Blecher JM, Jiang S, Shang X, Han J, Spring DJ, Zhang J, Xia Y, DePinho RA. Telomere dysfunction alters intestinal stem cell dynamics to promote cancer. Dev Cell 2024; 59:1475-1486.e5. [PMID: 38574731 PMCID: PMC11379129 DOI: 10.1016/j.devcel.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Telomere dynamics are linked to aging hallmarks, and age-associated telomere loss fuels the development of epithelial cancers. In Apc-mutant mice, the onset of DNA damage associated with telomere dysfunction has been shown to accelerate adenoma initiation via unknown mechanisms. Here, we observed that Apc-mutant mice engineered to experience telomere dysfunction show accelerated adenoma formation resulting from augmented cell competition and clonal expansion. Mechanistically, telomere dysfunction induces the repression of EZH2, resulting in the derepression of Wnt antagonists, which causes the differentiation of adjacent stem cells and a relative growth advantage to Apc-deficient telomere dysfunctional cells. Correspondingly, in this mouse model, GSK3β inhibition countered the actions of Wnt antagonists on intestinal stem cells, resulting in impaired adenoma formation of telomere dysfunctional Apc-mutant cells. Thus, telomere dysfunction contributes to cancer initiation through altered stem cell dynamics, identifying an interception strategy for human APC-mutant cancers with shortened telomeres.
Collapse
Affiliation(s)
- Kyle A LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yutao Qi
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yonghong Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jingjing Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan M Blecher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jincheng Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Xia
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Mason CE, Sierra MA, Feng HJ, Bailey SM. Telomeres and aging: on and off the planet! Biogerontology 2024; 25:313-327. [PMID: 38581556 PMCID: PMC10998805 DOI: 10.1007/s10522-024-10098-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 04/08/2024]
Abstract
Improving human healthspan in our rapidly aging population has never been more imperative. Telomeres, protective "caps" at the ends of linear chromosomes, are essential for maintaining genome stability of eukaryotic genomes. Due to their physical location and the "end-replication problem" first envisioned by Dr. Alexey Olovnikov, telomeres shorten with cell division, the implications of which are remarkably profound. Telomeres are hallmarks and molecular drivers of aging, as well as fundamental integrating components of the cumulative effects of genetic, lifestyle, and environmental factors that erode telomere length over time. Ongoing telomere attrition and the resulting limit to replicative potential imposed by cellular senescence serves a powerful tumor suppressor function, and also underlies aging and a spectrum of age-related degenerative pathologies, including reduced fertility, dementias, cardiovascular disease and cancer. However, very little data exists regarding the extraordinary stressors and exposures associated with long-duration space exploration and eventual habitation of other planets, nor how such missions will influence telomeres, reproduction, health, disease risk, and aging. Here, we briefly review our current understanding, which has advanced significantly in recent years as a result of the NASA Twins Study, the most comprehensive evaluation of human health effects associated with spaceflight ever conducted. Thus, the Twins Study is at the forefront of personalized space medicine approaches for astronauts and sets the stage for subsequent missions. We also extrapolate from current understanding to future missions, highlighting potential biological and biochemical strategies that may enable human survival, and consider the prospect of longevity in the extreme environment of space.
Collapse
Affiliation(s)
- Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Maria A Sierra
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine and WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY, USA
| | - Henry J Feng
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
15
|
Savage SA. Telomere length and cancer risk: finding Goldilocks. Biogerontology 2024; 25:265-278. [PMID: 38109000 DOI: 10.1007/s10522-023-10080-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Telomeres are the nucleoprotein complex at chromosome ends essential in genomic stability. Baseline telomere length (TL) is determined by rare and common germline genetic variants but shortens with age and is susceptible to certain environmental exposures. Cellular senescence or apoptosis are normally triggered when telomeres reach a critically short length, but cancer cells overcome these protective mechanisms and continue to divide despite chromosomal instability. Rare germline variants in telomere maintenance genes cause exceedingly short telomeres for age (< 1st percentile) and the telomere biology disorders, which are associated with elevated risks of bone marrow failure, myelodysplastic syndrome, acute myeloid leukemia, and squamous cell carcinoma of the head/neck and anogenital regions. Long telomeres due to rare germline variants in the same or different telomere maintenance genes are associated with elevated risks of other cancers, such as chronic lymphocytic leukemia or sarcoma. Early epidemiology studies of TL in the general population lacked reproducibility but new methods, including creation of a TL polygenic score using common variants, have found longer telomeres associated with excess risks of renal cell carcinoma, glioma, lung cancer, and others. It has become clear that when it comes to TL and cancer etiology, not too short, not too long, but "just right" telomeres are important in minimizing cancer risk.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, 6E456, Bethesda, MD, 20892-6772, USA.
| |
Collapse
|
16
|
Sakamoto Y, Shiraishi K, Kodama S. Enhanced induction of abnormal telomere FISH signals in response to oxidative DNA damage. JOURNAL OF RADIATION RESEARCH 2024; 65:187-193. [PMID: 38171574 PMCID: PMC10959432 DOI: 10.1093/jrr/rrad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Indexed: 01/05/2024]
Abstract
Telomere dysfunction induces chromosomal instability, which is a driving force in the development of cancers. To examine X-irradiation's effect on telomere integrity, we investigated X-ray-induced abnormalities in telomere signals detected by fluorescence in situ hybridization (telomere FISH) in mouse embryo fibroblast cells. The abnormalities were categorized as either extra telomere signals (ETSs) or loss of telomere signals (LTSs). The results indicated that low doses (0.3-0.5 Gy) of X-rays significantly induced ETS but not LTS and that ETS induction was saturated at doses above 0.5 Gy. In addition, treatment with hydrogen peroxide also induced ETS but not LTS. To clarify the involvement of radicals in inducing ETS, we examined the effect of ascorbic acid (AsA) on telomere FISH signals and found that pre-treatment with AsA (5 mM, 2 h), but not post-treatment, significantly suppressed the induction of ETS by X-irradiation. Importantly, neither pre- nor post-treatment with AsA affected X-ray-induced chromosome aberrations. These results suggest that oxidative DNA damage induced by radicals is involved in the induction of ETS. Furthermore, combined treatment with aphidicolin, a DNA replication inhibitor, elevated the induction of ETS by X-irradiation. This observation suggests that DNA replication stress, potentially triggered by oxidative DNA lesions within telomeres, may contribute to the induction of ETS resulting from X-irradiation. Based on these results, we propose that ETS is a sensitive biological marker of oxidative DNA damage in telomere structures.
Collapse
Affiliation(s)
- Yoshimi Sakamoto
- Radiation Biology Group, Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kazunori Shiraishi
- Radiation Biology Group, Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Seiji Kodama
- Radiation Biology Group, Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
17
|
Jeremian R, Malinowski A, Lytvyn Y, Georgakopoulos JR, Muntyanu A, Mufti A, Lefrançois P, Yeung J, Litvinov I. Skin photoageing following sun exposure is associated with decreased epigenetic and biologic age, and correlates with basal cell carcinoma phenotype. Br J Dermatol 2024; 190:590-592. [PMID: 38133632 PMCID: PMC10941323 DOI: 10.1093/bjd/ljad527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 12/23/2023]
Abstract
This study investigated epigenetic changes, specifically epigenetic ageing, in an adult cohort of healthy individuals using five validated epigenetic clock algorithms and a DNA methylation-based estimator of telomere length. Our study demonstrated significant biologic/epigenetic age dysregulation in sun-exposed vs. sun-protected dermal and epidermal skin, with a strong correlation to the validated Helfrich skin photoageing scale, occurring in patterns that overlap with those seen in basal cell carcinoma. This work highlights the power of novel epigenetic analyses in studying photoageing and skin cancer predisposition.
Collapse
Affiliation(s)
- Richie Jeremian
- Faculty of Medicine and Health Sciences
- Research Institute of the McGill University Health Centre, Montréal, QC
| | | | - Yuliya Lytvyn
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON
| | | | - Anastasiya Muntyanu
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON
| | - Asfandyar Mufti
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON
| | - Philippe Lefrançois
- Division of Dermatology, Department of Medicine, McGill University, Montréal, QC
- Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
| | - Jensen Yeung
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON
| | - Ivan V Litvinov
- Research Institute of the McGill University Health Centre, Montréal, QC
- Division of Dermatology, Department of Medicine, McGill University, Montréal, QC
| |
Collapse
|
18
|
Fang T, Zhang Z, Ren K, Zou L. Genetically determined telomere length as a risk factor for hematological malignancies: evidence from Mendelian randomization analysis. Aging (Albany NY) 2024; 16:4684-4698. [PMID: 38451181 PMCID: PMC10968690 DOI: 10.18632/aging.205625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Over the past years, the exact correlation between telomere length and hematological malignancies was still not fully understood. METHODS We performed a two-sample Mendelian randomization study to investigate the causal relationship between telomere length and hematological malignancies. We selected genetic instruments associated with telomere length. The genetic associations for lymphoid and hematopoietic malignant neoplasms were obtained from the most recent publicly accessible FinnGen study R9 data. Inverse variant weighted (IVW) analysis was adopted as the primary method, and we also performed the weighted-median method and the MR-Egger, and MRPRESSO methods as sensitive analysis. RESULTS Significant associations have been observed between telomere length and primary lymphoid (IVW: OR = 1.52, P = 2.11 × 10-6), Hodgkin lymphoma (IVW: OR = 1.64, P = 0.014), non-Hodgkin lymphoma (IVW: OR = 1.70, P = 0.002), B-cell lymphoma (IVW: OR = 1.57, P = 0.015), non-follicular lymphoma (IVW: OR = 1.58, P = 1.7 × 10-3), mantle cell lymphoma (IVW: OR = 3.13, P = 0.003), lymphoid leukemia (IVW: OR = 2.56, P = 5.92E-09), acute lymphocytic leukemia (IVW: OR = 2.65, P = 0.021) and chronic lymphocytic leukemia (IVW: OR = 2.80, P = 8.21 × 10-6), along with multiple myeloma (IVW: OR = 1.85, P = 0.016). CONCLUSION This MR study found a significant association between telomere length and a wide range of hematopoietic malignancies. But no substantial impact of lymphoma and hematopoietic malignancies on telomere length has been detected.
Collapse
Affiliation(s)
- Tian Fang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihao Zhang
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kexing Ren
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Liqun Zou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Nassour J, Przetocka S, Karlseder J. Telomeres as hotspots for innate immunity and inflammation. DNA Repair (Amst) 2024; 133:103591. [PMID: 37951043 PMCID: PMC10842095 DOI: 10.1016/j.dnarep.2023.103591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Aging is marked by the gradual accumulation of deleterious changes that disrupt organ function, creating an altered physiological state that is permissive for the onset of prevalent human diseases. While the exact mechanisms governing aging remain a subject of ongoing research, there are several cellular and molecular hallmarks that contribute to this biological process. This review focuses on two factors, namely telomere dysfunction and inflammation, which have emerged as crucial contributors to the aging process. We aim to discuss the mechanistic connections between these two distinct hallmarks and provide compelling evidence highlighting the loss of telomere protection as a driver of pro-inflammatory states associated with aging. By reevaluating the interplay between telomeres, innate immunity, and inflammation, we present novel perspectives on the etiology of aging and its associated diseases.
Collapse
Affiliation(s)
- Joe Nassour
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, 12801 E. 17th Ave, Aurora, CO 80045, USA; The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sara Przetocka
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Smoom R, May CL, Ortiz V, Tigue M, Kolev HM, Rowe M, Reizel Y, Morgan A, Egyes N, Lichtental D, Skordalakes E, Kaestner KH, Tzfati Y. Telomouse-a mouse model with human-length telomeres generated by a single amino acid change in RTEL1. Nat Commun 2023; 14:6708. [PMID: 37872177 PMCID: PMC10593777 DOI: 10.1038/s41467-023-42534-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/14/2023] [Indexed: 10/25/2023] Open
Abstract
Telomeres, the ends of eukaryotic chromosomes, protect genome integrity and enable cell proliferation. Maintaining optimal telomere length in the germline and throughout life limits the risk of cancer and enables healthy aging. Telomeres in the house mouse, Mus musculus, are about five times longer than human telomeres, limiting the use of this common laboratory animal for studying the contribution of telomere biology to aging and cancer. We identified a key amino acid variation in the helicase RTEL1, naturally occurring in the short-telomere mouse species M. spretus. Introducing this variation into M. musculus is sufficient to reduce the telomere length set point in the germline and generate mice with human-length telomeres. While these mice are fertile and appear healthy, the regenerative capacity of their colonic epithelium is compromised. The engineered Telomouse reported here demonstrates a dominant role of RTEL1 in telomere length regulation and provides a unique model for aging and cancer.
Collapse
Affiliation(s)
- Riham Smoom
- Department of Genetics, The Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Catherine Lee May
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivian Ortiz
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark Tigue
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hannah M Kolev
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Melissa Rowe
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yitzhak Reizel
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Faculty of Biotechnology and Food Engineering, Technion, Haifa, 3200003, Israel
| | - Ashleigh Morgan
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nachshon Egyes
- Department of Genetics, The Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dan Lichtental
- Department of Genetics, The Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Emmanuel Skordalakes
- Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St, Richmond, VA, 23298, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
21
|
Sameni S, Viswanathan R, Ng GYQ, Martinez-Lopez W, Hande MP. Telomerase Inhibition by MST-312 Sensitizes Breast Cancer Cells to the Anti-cancer Properties of Plumbagin. Genome Integr 2023; 14:e20230002. [PMID: 38765717 PMCID: PMC11102071 DOI: 10.14293/genint.14.1.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Breast cancer is the most common cause of malignancy and the second most common cause of death due to cancer in women. This heterogeneous disease is currently broadly classified as estrogen receptor (ER), progesterone receptor (PR) positive luminal tumors, human epidermal growth factor receptor 2 (HER2) amplified tumors and triple-negative breast cancers (TNBC). Phytochemicals are proven to be promising anti-cancer chemotherapeutics agents with minimal cytotoxic effects on normal cells. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) is a phytochemical derived from the roots of Plumbago zeylanica and it is known to possess anti-cancer properties similar to other compounds of naphthoquinones. In about 90% of cancer cells, the telomerase enzyme activity is revived to add telomeric repeats to evade apoptosis. In this study, a combinatorial approach of combining the anti-cancer compound plumbagin to induce genotoxicity and a potent telomerase inhibitor, MST-312 (synthetic derivative of tea catechins), was used to determine the combinational treatment-induced lethality in breast cancer cells such as MDA-MB-231 (TNBC) and MCF-7 (lumina) cells. MDA-MB-231 cells were responsive to combination treatment in both short-term (48 h) and long-term treatment (14 days) in a synergistic manner, whereas in MCF-7, the combination treatment was more effective in the long-term regimen. Furthermore, the cytotoxic effects of the plumbagin and MST-312 combination treatment were not recoverable after the short-term treatment. In conclusion, a combination treatment of MST-312 and plumbagin is proven to be more effective than a single plumbagin compound treatment in inducing DNA damage and telomere dysfunction leading to greater genome instability, cell cycle arrest and eventually cell death in cancer cells.
Collapse
Affiliation(s)
- Safoura Sameni
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ramya Viswanathan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Yong-Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wilner Martinez-Lopez
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Associate Unit on Genomic Stability, Faculty of Medicine, University of the Republic (UdelaR), Montevideo, Uruguay
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
22
|
Maelfait J, Rehwinkel J. The Z-nucleic acid sensor ZBP1 in health and disease. J Exp Med 2023; 220:e20221156. [PMID: 37450010 PMCID: PMC10347765 DOI: 10.1084/jem.20221156] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Nucleic acid sensing is a central process in the immune system, with far-reaching roles in antiviral defense, autoinflammation, and cancer. Z-DNA binding protein 1 (ZBP1) is a sensor for double-stranded DNA and RNA helices in the unusual left-handed Z conformation termed Z-DNA and Z-RNA. Recent research established ZBP1 as a key upstream regulator of cell death and proinflammatory signaling. Recognition of Z-DNA/RNA by ZBP1 promotes host resistance to viral infection but can also drive detrimental autoinflammation. Additionally, ZBP1 has interesting roles in cancer and other disease settings and is emerging as an attractive target for therapy.
Collapse
Affiliation(s)
- Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Bloom SI, Liu Y, Tucker JR, Islam MT, Machin DR, Abdeahad H, Thomas TG, Bramwell RC, Lesniewski LA, Donato AJ. Endothelial cell telomere dysfunction induces senescence and results in vascular and metabolic impairments. Aging Cell 2023; 22:e13875. [PMID: 37259606 PMCID: PMC10410008 DOI: 10.1111/acel.13875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
In advanced age, increases in oxidative stress and inflammation impair endothelial function, which contributes to the development of cardiovascular disease (CVD). One plausible source of this oxidative stress and inflammation is an increase in the abundance of senescent endothelial cells. Cellular senescence is a cell cycle arrest that occurs in response to various damaging stimuli. In the present study, we tested the hypothesis that advanced age results in endothelial cell telomere dysfunction that induces senescence. In both human and mouse endothelial cells, advanced age resulted in an increased abundance of dysfunctional telomeres, characterized by activation of DNA damage signaling at telomeric DNA. To test whether this results in senescence, we selectively reduced the telomere shelterin protein telomere repeat binding factor 2 (Trf2) from endothelial cells of young mice. Trf2 reduction increased endothelial cell telomere dysfunction and resulted in cellular senescence. Furthermore, induction of endothelial cell telomere dysfunction increased inflammatory signaling and oxidative stress, resulting in impairments in endothelial function. Finally, we demonstrate that endothelial cell telomere dysfunction-induced senescence impairs glucose tolerance. This likely occurs through increases in inflammatory signaling in the liver and adipose tissue, as well as reductions in microvascular density and vasodilation to metabolic stimuli. Cumulatively, the findings of the present study identify age-related telomere dysfunction as a mechanism that leads to endothelial cell senescence. Furthermore, these data provide compelling evidence that senescent endothelial cells contribute to age-related increases in oxidative stress and inflammation that impair arterial and metabolic function.
Collapse
Affiliation(s)
- Samuel I. Bloom
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Yu Liu
- Department of GeriatricsTongji HospitalWuhanChina
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Jordan R. Tucker
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Md Torikul Islam
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Daniel R. Machin
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyFlorida State UniversityTallahasseeFloridaUSA
| | - Hossein Abdeahad
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Tyler G. Thomas
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - R. Colton Bramwell
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Lisa A. Lesniewski
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Geriatric Research, Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Anthony J. Donato
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
- Division of Geriatrics, Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Geriatric Research, Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
- Department of BiochemistryThe University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
24
|
Bloom SI, Tuday E, Islam T, Gogulamudi VR, Lesniewski LA, Donato AJ. Senolytics Reduce Endothelial Cell DNA Damage and Telomere Dysfunction Despite Reductions in Telomere Length. AGING BIOLOGY 2023; 1:e20230007. [PMID: 40109908 PMCID: PMC11922086 DOI: 10.59368/agingbio.20230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Aging results in cellular damage that can induce cell cycle arrest known as cellular senescence. Endothelial cells are one of the first cell types to become senescent in advancing age and contribute to age-related cardiovascular diseases. Drugs known as senolytics reduce endothelial cell senescence in cell culture. From a translational perspective, a key question is whether this occurs in vivo and if remaining cells appear healthier and display fewer hallmarks of cellular aging. In this study, we treated old mice with the senolytic cocktail dasatinib and quercetin (D+Q) or a vehicle control. In 24-month-old mice, D+Q treatment reduced p21 gene expression in carotid artery endothelial cells, indicative of reductions in senescence. In lung endothelial cells, we examined DNA damage, telomere dysfunction (DNA damage signaling at telomeres), and telomere length, which are hallmarks of aging associated with senescence and other deleterious effects on cellular function. D+Q treatment resulted in fewer endothelial cells with DNA damage and dysfunctional telomeres. Surprisingly, D+Q reduced endothelial cell telomere length, yet this did not result in critically short telomeres and thus telomere dysfunction. Mice have longer telomeres than humans; therefore, future studies on the effect of senolytics on telomere length are warranted. Collectively, this study provides important evidence on the effect of senolytics, including that they clear senescent endothelial cells in vivo, which reduces DNA damage and telomere dysfunction. These data indicate that the clearing of senescent endothelial cells in old age leaves behind a population of cells that exhibit fewer hallmarks of vascular aging.
Collapse
Affiliation(s)
- Samuel I Bloom
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT, USA
| | - Eric Tuday
- Department of Internal Medicine, Division of Cardiology, The University of Utah, Salt Lake City, UT, USA
- Veteran's Affairs Medical Center-Salt Lake City, Geriatric, Research, Education, and Clinical Center, Salt Lake City, UT, USA
| | - Torikul Islam
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT, USA
| | - Venkateswara R Gogulamudi
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT, USA
- Veteran's Affairs Medical Center-Salt Lake City, Geriatric, Research, Education, and Clinical Center, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, UT, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, USA
| | - Anthony J Donato
- Department of Nutrition and Integrative Physiology, The University of Utah, Salt Lake City, UT, USA
- Veteran's Affairs Medical Center-Salt Lake City, Geriatric, Research, Education, and Clinical Center, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Geriatrics, The University of Utah, Salt Lake City, UT, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
25
|
Wang H, Ma T, Zhang X, Chen W, Lan Y, Kuang G, Hsu SJ, He Z, Chen Y, Stewart J, Bhattacharjee A, Luo Z, Price C, Feng X. CTC1 OB-B interaction with TPP1 terminates telomerase and prevents telomere overextension. Nucleic Acids Res 2023; 51:4914-4928. [PMID: 37021555 PMCID: PMC10250220 DOI: 10.1093/nar/gkad237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
CST (CTC1-STN1-TEN1) is a telomere associated complex that binds ssDNA and is required for multiple steps in telomere replication, including termination of G-strand extension by telomerase and synthesis of the complementary C-strand. CST contains seven OB-folds which appear to mediate CST function by modulating CST binding to ssDNA and the ability of CST to recruit or engage partner proteins. However, the mechanism whereby CST achieves its various functions remains unclear. To address the mechanism, we generated a series of CTC1 mutants and studied their effect on CST binding to ssDNA and their ability to rescue CST function in CTC1-/- cells. We identified the OB-B domain as a key determinant of telomerase termination but not C-strand synthesis. CTC1-ΔB expression rescued C-strand fill-in, prevented telomeric DNA damage signaling and growth arrest. However, it caused progressive telomere elongation and the accumulation of telomerase at telomeres, indicating an inability to limit telomerase action. The CTC1-ΔB mutation greatly reduced CST-TPP1 interaction but only modestly affected ssDNA binding. OB-B point mutations also weakened TPP1 association, with the deficiency in TPP1 interaction tracking with an inability to limit telomerase action. Overall, our results indicate that CTC1-TPP1 interaction plays a key role in telomerase termination.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tengfei Ma
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaotong Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yina Lan
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guotao Kuang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shih-Jui Hsu
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jason Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | - Zhenhua Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Carolyn Price
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Xuyang Feng
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Krivega M, Zimmer J, Slezko A, Frank-Herrmann P, Rehnitz J, Hohenfellner M, Bettendorf M, Luzarowski M, Strowitzki T. Genomic instability in individuals with sex determination defects and germ cell cancer. Cell Death Discov 2023; 9:173. [PMID: 37217472 PMCID: PMC10202957 DOI: 10.1038/s41420-023-01470-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
The ability to transmit genetic information through generations depends on the preservation of genome integrity. Genetic abnormalities affect cell differentiation, causing tissue specification defects and cancer. We addressed genomic instability in individuals with Differences of Sex Development (DSD), characterized by gonadal dysgenesis, infertility, high susceptibility for different types of cancer, especially Germ Cell Tumors (GCT), and in men with testicular GCTs. Whole proteome analysis of leukocytes, supported by specific gene expression assessment, and dysgenic gonads characterization, uncovered DNA damage phenotypes with altered innate immune response and autophagy. Further examination of DNA damage response revealed a reliance on deltaTP53, which was compromised by mutations in the transactivation domain in DSD-individuals with GCT. Accordingly, drug-induced rescue of DNA damage was achieved by autophagy inhibition but not by stabilization of TP53 in DSD-individuals' blood in vitro. This study elucidates possibilities for prophylactic treatments of DSD-individuals, as well as new diagnostic approaches of GCT.
Collapse
Affiliation(s)
- Maria Krivega
- Research Group of Gonadal Differentiation and Embryonic Development, Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Jutta Zimmer
- Research Group of Gonadal Differentiation and Embryonic Development, Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Anna Slezko
- Research Group of Gonadal Differentiation and Embryonic Development, Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Petra Frank-Herrmann
- Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Julia Rehnitz
- Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Markus Bettendorf
- Division of Pediatric Endocrinology, Children's Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry & Proteomics, ZMBH, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thomas Strowitzki
- Department of Gynecological Endocrinology & Fertility Disorders, Women Hospital, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
27
|
Robertson CM, Xue Y, Chowdhury S, Maringele L. A CDK-Dependent Phosphorylation of a Novel Domain of Rif1 Regulates its Function during Telomere Damage and Other Types of Stress. Mol Cell Biol 2023; 43:185-199. [PMID: 37140180 PMCID: PMC10184589 DOI: 10.1080/10985549.2023.2193768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Rif1 mediates telomere length, DNA replication, and DNA damage responses in budding yeast. Previous work identified several posttranslational modifications of Rif1, however none of these was shown to mediate the molecular or cellular responses to DNA damage, including telomere damage. We searched for such modifications using immunoblotting methods and the cdc13-1 and tlc1Δ models of telomere damage. We found that Rif1 is phosphorylated during telomere damage, and that serines 57 and 110 within a novel phospho-gate domain (PGD) of Rif1 are important for this modification, in cdc13-1 cells. The phosphorylation of Rif1 appeared to inhibit its accumulation on damaged chromosomes and the proliferation of cells with telomere damage. Moreover, we found that checkpoint kinases were upstream of this Rif1 phosphorylation and that the Cdk1 activity was essential for maintaining it. Apart from telomere damage, S57 and S110 were essential for Rif1 phosphorylation during the treatment of cells with genotoxic agents or during mitotic stress. We propose a speculative "Pliers" model to explain the role of the PGD phosphorylation during telomere and other types of damage.
Collapse
Affiliation(s)
- Cameron M Robertson
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yuan Xue
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Shobir Chowdhury
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Maringele
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
28
|
Moreno SP, Fusté JM, Kaiser M, Li JSZ, Nassour J, Haggblom C, Denchi EL, Karlseder J. TZAP overexpression induces telomere dysfunction and ALT-like activity in ATRX/DAXX-deficient cells. iScience 2023; 26:106405. [PMID: 37013192 PMCID: PMC10066556 DOI: 10.1016/j.isci.2023.106405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The appropriate regulation of telomere length homeostasis is crucial for the maintenance of genome integrity. The telomere-binding protein TZAP has been suggested to regulate telomere length by promoting t-circle and c-circle excisions through telomere trimming, yet the molecular mechanisms by which TZAP functions at telomeres are not understood. Using a system based on TZAP overexpression, we show that efficient TZAP recruitment to telomeres occurs in the context of open telomeric chromatin caused by loss of ATRX/DAXX independently of H3.3 deposition. Moreover, our data indicate that TZAP binding to telomeres induces telomere dysfunction and ALT-like activity, resulting in the generation of t-circles and c-circles in a Bloom-Topoisomerase IIIα-RMI1-RMI2 (BTR)-dependent manner.
Collapse
Affiliation(s)
- Sara Priego Moreno
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| | - Javier Miralles Fusté
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| | - Melanie Kaiser
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| | - Julia Su Zhou Li
- The Ludwig Institute for Cancer Research, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joe Nassour
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| | - Candy Haggblom
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| | - Eros Lazzerini Denchi
- Laboratory for Genome Integrity, National Cancer Institute, Building 37, Room 2144B, Bethesda, MD 20892, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, Molecular and Cell Biology Department, 10010 N. Torrey pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
29
|
Tawfik HO, El-Hamaky AA, El-Bastawissy EA, Shcherbakov KA, Veselovsky AV, Gladilina YA, Zhdanov DD, El-Hamamsy MH. New Genetic Bomb Trigger: Design, Synthesis, Molecular Dynamics Simulation, and Biological Evaluation of Novel BIBR1532-Related Analogs Targeting Telomerase against Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2022; 15:ph15040481. [PMID: 35455478 PMCID: PMC9025901 DOI: 10.3390/ph15040481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Telomeres serve a critical function in cell replication and proliferation at every stage of the cell cycle. Telomerase is a ribonucleoprotein, responsible for maintaining the telomere length and chromosomal integrity of frequently dividing cells. Although it is silenced in most human somatic cells, telomere restoration occurs in cancer cells because of telomerase activation or alternative telomere lengthening. The telomerase enzyme is a universal anticancer target that is expressed in 85–95% of cancers. BIBR1532 is a selective non-nucleoside potent telomerase inhibitor that acts by direct noncompetitive inhibition. Relying on its structural features, three different series were designed, and 30 novel compounds were synthesized and biologically evaluated as telomerase inhibitors using a telomeric repeat amplification protocol (TRAP) assay. Target compounds 29a, 36b, and 39b reported the greatest inhibitory effect on telomerase enzyme with IC50 values of 1.7, 0.3, and 2.0 μM, respectively, while BIBR1532 displayed IC50 = 0.2 μM. Compounds 29a, 36b, and 39b were subsequently tested using a living-cell TRAP assay and were able to penetrate the cell membrane and inhibit telomerase inside living cancer cells. Compound 36b was tested for cytotoxicity against 60 cancer cell lines using the NCI (USA) procedure, and the % growth was minimally impacted, indicating telomerase enzyme selectivity. To investigate the interaction of compound 36b with the telomerase allosteric binding site, molecular docking and molecular dynamics simulations were used.
Collapse
Affiliation(s)
- Haytham O. Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.A.E.-H.); (E.A.E.-B.); (M.H.E.-H.)
- Correspondence: (H.O.T.); (D.D.Z.)
| | - Anwar A. El-Hamaky
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.A.E.-H.); (E.A.E.-B.); (M.H.E.-H.)
| | - Eman A. El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.A.E.-H.); (E.A.E.-B.); (M.H.E.-H.)
| | - Kirill A. Shcherbakov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (K.A.S.); (A.V.V.); (Y.A.G.)
| | - Alexander V. Veselovsky
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (K.A.S.); (A.V.V.); (Y.A.G.)
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (K.A.S.); (A.V.V.); (Y.A.G.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10/8, 119121 Moscow, Russia; (K.A.S.); (A.V.V.); (Y.A.G.)
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Correspondence: (H.O.T.); (D.D.Z.)
| | - Mervat H. El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; (A.A.E.-H.); (E.A.E.-B.); (M.H.E.-H.)
| |
Collapse
|
30
|
Telomeric Repeat-Containing RNA (TERRA): A Review of the Literature and First Assessment in Cutaneous T-Cell Lymphomas. Genes (Basel) 2022; 13:genes13030539. [PMID: 35328092 PMCID: PMC8953746 DOI: 10.3390/genes13030539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
Telomeric Repeat-containing RNA (TERRA) are long non-coding RNAs transcribed from telomeric DNA sequences from multiple chromosome ends. Major research efforts have been made to understand TERRA roles and functions in several physiological and pathological processes. We summarize herein available data regarding TERRA’s roles in human cells and we report the first investigation in cutaneous T-cells lymphomas (CTCL) using real-time PCR. Among the TERRA analysed, our data suggest a particular role for TERRA 16p downregulation and TERRA 11q upregulation in CTCL lymphomagenesis.
Collapse
|
31
|
Lansdorp PM. Telomeres, aging, and cancer: the big picture. Blood 2022; 139:813-821. [PMID: 35142846 PMCID: PMC8832478 DOI: 10.1182/blood.2021014299] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The role of telomeres in human health and disease is yet to be fully understood. The limitations of mouse models for the study of human telomere biology and difficulties in accurately measuring the length of telomere repeats in chromosomes and cells have diverted attention from many important and relevant observations. The goal of this perspective is to summarize some of these observations and to discuss the antagonistic role of telomere loss in aging and cancer in the context of developmental biology, cell turnover, and evolution. It is proposed that both damage to DNA and replicative loss of telomeric DNA contribute to aging in humans, with the differences in leukocyte telomere length between humans being linked to the risk of developing specific diseases. These ideas are captured in the Telomere Erosion in Disposable Soma theory of aging proposed herein.
Collapse
Affiliation(s)
- Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada; and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Rachakonda S, Hoheisel JD, Kumar R. Occurrence, functionality and abundance of the TERT promoter mutations. Int J Cancer 2021; 149:1852-1862. [PMID: 34313327 DOI: 10.1002/ijc.33750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Telomere shortening at chromosomal ends due to the constraints of the DNA replication process acts as a tumor suppressor by restricting the replicative potential in primary cells. Cancers evade that limitation primarily through the reactivation of telomerase via different mechanisms. Mutations within the promoter of the telomerase reverse transcriptase (TERT) gene represent a definite mechanism for the ribonucleic enzyme regeneration predominantly in cancers that arise from tissues with low rates of self-renewal. The promoter mutations cause a moderate increase in TERT transcription and consequent telomerase upregulation to the levels sufficient to delay replicative senescence but not prevent bulk telomere shortening and genomic instability. Since the discovery, a staggering number of studies have resolved the discrete aspects, effects and clinical relevance of the TERT promoter mutations. The promoter mutations link transcription of TERT with oncogenic pathways, associate with markers of poor outcome and define patients with reduced survivals in several cancers. In this review, we discuss the occurrence and impact of the promoter mutations and highlight the mechanism of TERT activation. We further deliberate on the foundational question of the abundance of the TERT promoter mutations and a general dearth of functional mutations within noncoding sequences, as evident from pan-cancer analysis of the whole-genomes. We posit that the favorable genomic constellation within the TERT promoter may be less than a common occurrence in other noncoding functional elements. Besides, the evolutionary constraints limit the functional fraction within the human genome, hence the lack of abundant mutations outside the coding sequences.
Collapse
Affiliation(s)
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|