1
|
Kim HW, Lee JW, Yoon HS, Park HW, Lee YI, Lee SK, Whang J, Kim JS. Restriction of mitochondrial oxidation of glutamine or fatty acids enhances intracellular growth of Mycobacterium abscessus in macrophages. Virulence 2025; 16:2454323. [PMID: 39828906 PMCID: PMC11749347 DOI: 10.1080/21505594.2025.2454323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
Mycobacterium abscessus (Mab), a nontuberculous mycobacterium, is increasing in prevalence worldwide and causes treatment-refractory pulmonary diseases. However, how Mab rewires macrophage energy metabolism to facilitate its survival is poorly understood. We compared the metabolic profiles of murine bone marrow-derived macrophages (BMDMs) infected with smooth (S)- and rough (R)-type Mab using extracellular flux technology. Mab infection shifted BMDMs towards a more energetic phenotype, marked by increased oxidative phosphorylation (OXPHOS) and glycolysis, with a significantly greater enhancement in OXPHOS. This metabolic adaptation was characterized by enhanced ATP production rates, particularly in cells infected with S-type Mab, highlighting OXPHOS as a key energy source. Notably, Mab infection also modulated mitochondrial substrate preferences, increasing fatty acid oxidation capabilities while revealing significant changes in glutamine dependency and flexibility. R-type Mab infections exhibited a marked decrease in glutamine reliance but enhanced metabolic flexibility and capacity. Furthermore, targeting metabolic pathways related to glutamine and fatty acid oxidation exacerbated Mab growth within macrophages, suggesting these pathways play a protective role against infection. These insights advance our understanding of Mab's impact on host cell metabolism and propose a novel avenue for therapeutic intervention. By manipulating host mitochondrial metabolism, we identify a potential host-directed therapeutic strategy against Mab, offering a promising alternative to conventional treatments beleaguered by drug resistance. This study underscores the importance of exploring metabolic interventions to combat Mab infection, paving the way for innovative approaches in the fight against this formidable pathogen.
Collapse
Affiliation(s)
- Ho Won Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Ji Won Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hoe Sun Yoon
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University Hospital and College of Medicine, Daejeon, South Korea
| | | | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, South Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
- Department of Cell Biology, Konyang University Hospital and College of Medicine, Daejeon, South Korea
| |
Collapse
|
2
|
Kopeć M, Beton-Mysur K, Surmacki J, Brożek-Płuska B. Hypoxic conditions by Raman microspectroscopy - Reprogramming of fatty acids and glucose metabolism during colon cancer progression. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126275. [PMID: 40273771 DOI: 10.1016/j.saa.2025.126275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Cellular respiration is the primary metabolic process for producing the energy (ATP) needed for survival. Disruptions in this process can lead to various diseases, including colon cancer. This paper reviews the current understanding of how excess fatty acids (FAs) and glucose (Glc) alter metabolic pathways. We focused on the impact of unsaturated fatty acids (UFAs) (eicosapentaenoic acid (EPA), linoleic acid (LA)), saturated fatty acid (SFA) (palmitic acid (PA)), and glucose on healthy human colon cells (CCD-18 Co) and cancerous colon cells (Caco-2) using Raman microspectroscopy. Our study examined the metabolic abnormalities in mitochondria and lipid droplets caused by the external intake of FAs and glucose. The results indicate that the peaks at 750 cm-1, 1004 cm-1, 1256 cm-1, 1444 cm-1, and 1656 cm-1 can serve as Raman biomarkers for monitoring metabolic pathways in colon cancer. We proved that oxidative metabolism towards glycolysis allows maintaining redox homeostasis and enables the survival and proliferation of cancer cells in hypoxic conditions. Our findings show that comparing control cells with cells supplemented with UFAs, SFA, and glucose can help detect metabolic abnormalities. Specifically, supplementation with UFAs reduces the intensity of the bands at 750 cm-1 and 1004 cm-1, while SFA and glucose increase their intensity. For the bands at 1256 cm-1, 1444 cm-1, and 1656 cm-1, palmitic acid and glucose decrease the intensity, whereas linoleic acid increases it. This paper introduces new experimental techniques, such as Raman microspectroscopy and imaging, to track and understand the metabolic changes in colon cells caused by FAs and glucose under hypoxic conditions.
Collapse
Affiliation(s)
- Monika Kopeć
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.
| | - Karolina Beton-Mysur
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Beata Brożek-Płuska
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
3
|
Yang Y, Li S, Zhou X, Zhu M, Zhou W, Shi J. Closed fixed-bed bacteria-algae biofilm reactor: A promising solution for phenol containing wastewater treatment and resource transformation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138176. [PMID: 40194331 DOI: 10.1016/j.jhazmat.2025.138176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
This study focuses on treating phenolic wastewater with a novel closed fixed-bed bacteria-algae biofilm reactor (CF-BABR) to enhance resource transformation for phenolic substances. The CF-BABR showed strong impact - load resistance and stable degradation efficiency, fully degrading phenolic compounds at concentrations from 0 to 150 mg/L. From the inflow to the outflow, the effective sequences, abundance, and diversity of bacteria decreased. Chlorobaculum was the dominant bacterium for phenolic pollutant degradation. The abundance of fungi decreased gradually, while their diversity increased. Kalenjinia and Cutaneotrichosporon played a synergistic role in reducing pollutant toxicity. The high - concentration pollutants at the influent led to a higher abundance of microalgal communities, and Scenedesmaceae became the most dominant algal family, which was positively correlated with the degradation of phenolic compounds. Functional gene prediction indicated that the abundance of functional genes in bacteria decreased overall along the wastewater flow. Carbohydrate metabolism and amino acid metabolism were the most active secondary pathways. In fungi, the predicted gene functions had the highest abundance in the upstream region. Metabolic intermediates such as organic acids and derivatives, lipids and lipid - like molecules, and carboxylic acids and derivatives demonstrated the degradation effect of CF-BABR on phenolic compounds.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Siqi Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xin Zhou
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mingyang Zhu
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wenju Zhou
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jingxin Shi
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
4
|
Shi W, Wang Z, Yu Z, Shen Y, Xin W, Chen W. Qingyihuaji formula reprograms metabolism to suppress pancreatic cancer growth and progression through LINC00346-OMA1-ATF4 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119893. [PMID: 40294662 DOI: 10.1016/j.jep.2025.119893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 04/14/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingyihuaji Formula (QYHJ) has been used to treat human pancreatic cancer for many years and are fully documented in the Pharmacopoeia of the People's Republic of China (2020 Edition), however, its pharmacological mechanisms remain largely unknown. AIM OF THE STUDY Here, we aimed to provide evidences for uncovering the underlying molecular mechanisms of QYHJ for pancreatic cancer management. MATERIALS AND METHODS Bioinformatic analysis, quantitative real-time PCR, western blotting, glucose consumption, immunofluorescence and glycolytic activity assay were performed to determine the underlying mechanisms. The effects of QYHJ treatment, overexpression or knockdown of LINC00346 and ATF4 on the cell proliferation, migration, cellular ROS, apoptosis and metabolism were investigated. A xenograft mouse model was further established to evaluate the mechanism in vivo. RESULTS We found that QYHJ inhibits LINC00346-OMA1-ATF4 signal transduction and aerobic glycolysis in pancreatic cancer cells. Overexpression of LINC00346 and ATF4 reversed the inhibition of glycolytic metabolism and growth-suppressive effects after QYHJ treatment in vitro and in vivo. Moreover, there was a significant negative correlation between expression levels of LINC00346-OMA1 with overall survival in patients with pancreatic cancer and a positive correlation between OMA1 and ATF4 levels in human tumors. CONCLUSION Our findings indicate QYHJ shows the ability to suppress pancreatic cancer growth and progression, which is in mediated through antagonization of LINC00346 and activation of OMA1-ATF4. Targeting LINC00346-OMA1-ATF4 signaling may be promising effective therapeutic strategies for pancreatic cancer intervention.
Collapse
Affiliation(s)
- Weidong Shi
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China; Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ziyu Wang
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Zhengyong Yu
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China; College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan, China
| | - Yilan Shen
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China; Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenfeng Xin
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan, China.
| | - Wei Chen
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China.
| |
Collapse
|
5
|
Alassaf M, Madan A, Ranganathan S, Marschall S, Wong JJ, Goldberg ZH, Brent AE, Rajan A. Adipocyte metabolic state regulates glial phagocytic function. Cell Rep 2025; 44:115704. [PMID: 40372917 DOI: 10.1016/j.celrep.2025.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/17/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025] Open
Abstract
Excess dietary sugar profoundly impacts organismal metabolism and health, yet it remains unclear how metabolic adaptations in adipose tissue influence other organs, including the brain. Here, we show that a high-sugar diet (HSD) in Drosophila reduces adipocyte glycolysis and mitochondrial pyruvate uptake, shifting metabolism toward fatty acid oxidation and ketogenesis. These metabolic changes trigger mitochondrial oxidation and elevate antioxidant responses. Adipocyte-specific manipulations of glycolysis, lipid metabolism, or mitochondrial dynamics non-autonomously modulate Draper expression in brain ensheathing glia, key cells responsible for neuronal debris clearance. Adipocyte-derived ApoB-containing lipoproteins maintain basal Draper levels in glia via LpR1, critical for effective glial phagocytic activity. Accordingly, reducing ApoB or LpR1 impairs glial clearance of degenerating neuronal debris after injury. Collectively, our findings demonstrate that dietary sugar-induced shifts in adipocyte metabolism substantially influence brain health by modulating glial phagocytosis, identifying adipocyte-derived ApoB lipoproteins as essential systemic mediators linking metabolic state with neuroprotective functions.
Collapse
Affiliation(s)
- Mroj Alassaf
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aditi Madan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sunidhi Ranganathan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Shannon Marschall
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jordan J Wong
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zachary H Goldberg
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ava E Brent
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Akhila Rajan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Oh S, Sim HB, Kim H, Mun SK, Ji M, Choi B, Kim DY, Kim JJ, Paik MJ. Cellular metabolomics study in colorectal cancer cells and media following treatment with 5-fluorouracil by gas chromatography-tandem mass spectrometry. Metabolomics 2025; 21:62. [PMID: 40335841 DOI: 10.1007/s11306-025-02263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Metabolic reprogramming is a distinctive characteristic of colorectal cancer (CRC) which provides energy and nutrients for rapid proliferation. Although numerous studies have explored the rewired metabolism of CRC, the metabolic alterations occurring in CRC when the cell cycle is arrested by treatment with 5-fluorouracil (5-FU), an anticancer drug that arrests the S phase, remain unclear. METHODS A systematic profiling analysis was conducted as ethoxycarbonyl/methoxime/tert-butyldimethylsilyl derivatives using gas chromatography-tandem mass spectrometry in HT29 cells and media following 5-FU treatment in a concentration- and time-dependent manner. RESULTS In HT29 cells of 24 h after 5-FU treatment (3-100 μM) and 48 h after 5-FU treatment (1-10 μM), six amino acids, including valine, leucine, isoleucine, serine, glycine, and alanine and two organic acids, including pyruvic acid and lactic acid, were significantly increased compared to the DMSO-treated group. However, 48 h after 5-FU treatment (30-100 μM) in HT29 cells, the levels of these metabolites decreased along with an approximately 50% reduction in viability, an increase in the level of reactive oxygen species, induction of cycle arrest in the G1 phase, and the induction of apoptosis. On the other hand, the levels of fatty acids showed a continuous increase in HT29 cells 48 h after 5-FU treatment (1-100 μM). In the media, the decreased availabilities in the cellular uptake of nutrient metabolites, including valine, leucine, isoleucine, serine, and glutamine, were observed at 48 h after 5-FU treatment in a dose-dependent manner. CONCLUSION It is assumed that there is a possible shift in energy dependence from the tricarboxylic acid cycle to fatty acid metabolism. Thus, metabolic profiling analysis revealed altered energy metabolism in CRC cells following 5-FU treatment.
Collapse
Affiliation(s)
- Songjin Oh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Hyun Bo Sim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Hyeongyeong Kim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Seul-Ki Mun
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Moongi Ji
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Byeongchan Choi
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Doo-Young Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
- New Drug Discovery Lab, Hyundai Pharm, Yongin, 17089, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
7
|
Zhang T, Zhou W, Fan T, Yuan Y, Tang X, Zhang Q, Zou J, Li Y. Lactic acid metabolism: gynecological cancer's Achilles' heel. Discov Oncol 2025; 16:657. [PMID: 40314877 PMCID: PMC12048388 DOI: 10.1007/s12672-025-02364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Lactic acid is significantly expressed in many cancers, including gynecological cancer, and has become a key regulator of the proliferation, development, metastasis and invasion of these cancers. In clinical and experimental studies, the level of lactic acid in gynecological cancer is closely related to metastasis and invasion, tumor recurrence and poor prognosis. Lactic acid can regulate the internal metabolic pathway of gynecological cancer cells and drive the autonomous role of non-cancer cells in gynecological cancer. In addition to being used as a source of energy metabolism by gynecological cancer cells, lactic acid can also be transported from cancer cells to neighboring cancer cells, stroma and vascular endothelial cells (ECs) to further guide metabolic reprogramming. Lactic acid is also involved in promoting inflammation and angiogenesis in gynecologic tumors. Therefore, we reviewed the mechanisms and recent advances in the production and transport of lactic acid in gynecological cancer. These advances and evidence suggest that targeted lactic acid metabolism is a promising cancer treatment.
Collapse
Affiliation(s)
- Ting Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Wenchao Zhou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Tingyu Fan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yuwei Yuan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Qunfeng Zhang
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Hengyang Medical School, Cancer Research Institute, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
8
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
9
|
Li X, Wu M, Chen G, Ma W, Chen Y, Ding Y, Dong P, Ding W, Zhang L, Yang L, Gan W, Li D. The Role of HADHB in Mitochondrial Fatty Acid Metabolism During Initiation of Metastasis in ccRCC. Mol Carcinog 2025; 64:923-935. [PMID: 39991877 DOI: 10.1002/mc.23898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/07/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
The initiation and progression of clear cell renal cell carcinoma (ccRCC) are closely linked to significant metabolic alterations. Specifically, lipid metabolism alterations and their association with the high invasiveness in ccRCC require further investigation. After conducting RNA-sequencing (RNA-seq), we discovered that Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta (HADHB) was significantly downregulated in the highly invasive ccRCC cell line. It was found that the expression of HADHB in ccRCC tumor tissues was lower than that in paracancer tissues, which is associated with poor patient prognosis. Subsequently, we confirmed that highly invasive ccRCC exhibited an increased lipid accumulation due to the suppression of mitochondrial fatty acid transport and enhanced conversion of fatty acids to triglycerides within cancer cells. Specifically, the downregulation of HADHB inhibited mitochondrial fatty acid β-oxidation (FAO) in cancer cells, leading to partial impairment of mitochondrial function and decreased ATP production. However, this trade-off involving the reduction of a high-yield ATP production conferred an advantage by reducing reactive oxygen species (ROS) generation within cancer cells, thereby protecting them from oxidative stress and enhancing their invasive potential. Furthermore, the downregulation of HADHB promoted epithelial-mesenchymal transition (EMT) and angiogenesis in cancer cells, accelerating the progression of ccRCC and endowing ccRCC cells with metastatic capabilities.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Mengmeng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Guijuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yi Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yibing Ding
- Translational Medicine Core Facilities, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Luqing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Lei Yang
- Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Department of Oncology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Zhang J, Lin F, Xu Y, Sun J, Zhang L, Chen W. Lactylation and Ischemic Stroke: Research Progress and Potential Relationship. Mol Neurobiol 2025; 62:5359-5376. [PMID: 39541071 DOI: 10.1007/s12035-024-04624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke is caused by interrupted cerebral blood flow and is a leading cause of mortality and disability worldwide. Significant advancements have been achieved in comprehending the pathophysiology of stroke and the fundamental mechanisms responsible for ischemic damage. Lactylation, as a newly discovered post-translational modification, has been reported to participate in several physiological and pathological processes. However, research on lactylation and ischemic stroke is scarce. This review summarized the current function of protein lactylation in other diseases or normal physiological processes and explored their potential link with the pathophysiological process and the reparative mechanism of ischemic stroke. We proposed that neuroinflammation, regulation of metabolism, regulation of messenger RNA translation, angiogenesis, and neurogenesis might be the bridge linking lactylation and ischemic stroke. Our study provided a novel perspective for comprehending the role of protein lactylation in the pathophysiological processes underlying ischemic stroke. Lactylation might be a promising target in drug development of ischemic stroke.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Feng Lin
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Yue Xu
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Jiaxin Sun
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China
| | - Lei Zhang
- Department of Cerebrovascular Disease, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| | - Wenli Chen
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong Province, China.
| |
Collapse
|
11
|
Mirveis Z, Patil N, Byrne HJ. Exploring cellular metabolic kinetics through spectroscopic analysis of extracellular environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126308. [PMID: 40328052 DOI: 10.1016/j.saa.2025.126308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/12/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
Studying the kinetics of metabolic pathways, such as glycolysis and glutaminolysis, is valuable due to their fundamental links to various diseases, including cancer. This study explores the potential of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy for analysing low concentrations of metabolites in extracellular media. It also evaluates the use of the Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) method to data mine the kinetic evolution of the spectroscopic signatures of the glycolysis metabolic pathway and to explore the impact of the presence of glutamine on it. By extracting samples at specific time intervals and drying them on the ATR crystal, ATR-FTIR could effectively measure individual metabolites of glucose, glutamine and lactate at low concentrations, providing clear spectra with strong correlations between peak absorbance and metabolite concentrations. In data mining, MCR-ALS successfully resolved two components, glucose and lactate, from time-series data of cellular glucose metabolism (glycolysis), showing approximately 28 % glucose consumption and 1 mM lactate production at a constant rate of 0.0016 min-1. However, when glutamine was introduced as a third component, the overlap of the peaks of glutamine and lactate limited the method's ability to deconvolute the data, highlighting constraints of MCR-ALS in complex mixtures.
Collapse
Affiliation(s)
- Zohreh Mirveis
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland; School of Physics, Optometric and Clinical Sciences, TU Dublin, City Campus, Grangegorman, Dublin 7, Ireland.
| | - Nitin Patil
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland; School of Physics, Optometric and Clinical Sciences, TU Dublin, City Campus, Grangegorman, Dublin 7, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8, Ireland
| |
Collapse
|
12
|
Wang L, Kong L, Zhang DQ, Ye L, Nao SC, Chan DSH, Li X, Peng Y, Yang L, Wong CY, Wong VKW, Wang W, Chao H, Leung CH. Inhibiting Glycolysis and Disrupting the Mitochondrial HK2-VDAC1 Protein-Protein Interaction Using a Bifunctional Lonidamine-Conjugated Metal Probe for Combating Triple-Negative Breast Cancer. J Am Chem Soc 2025; 147:14824-14836. [PMID: 40251733 DOI: 10.1021/jacs.5c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Triple-negative breast cancer (TNBC) relies primarily on aerobic glycolysis for energy and rapid cancer cell proliferation. Hexokinase 2 (HK2), a key enzyme regulating glycolysis, is overexpressed in TNBC, promoting tumor cell proliferation and apoptosis resistance by interacting with the mitochondrial membrane's voltage-dependent anion channel 1 (VDAC1). However, the development of bioactive molecules for effectively disrupting the HK2-VDAC1 interaction remains challenging. Herein, we have modified londamine (LND) with an iridium(III) complex to create bifunctional far-red probe 1. This complex not only has the ability to distinguish TNBC cells from normal cells by probing HK2 in mitochondria, but also significantly enhances antitumor activity by inhibiting mitochondrial glycolysis and effectively disrupting the HK2-VDAC1 interaction. This led to increased Bax-VDAC1 interaction, opening of the mitochondrial permeability transition pores (MPTPs), and generation of ROS, ultimately leading to mitochondrial dysfunction and enhanced cancer cell apoptosis. Probe 1 also demonstrated stronger antiproliferative activity than LND alone in a TNBC mouse model by targeting the HK2-VDAC1 interaction without causing overt toxicity. This work showcases the potential of probe 1 as an effective therapeutic agent for TNBC by inhibiting the mitochondrial HK2-VDAC1 interaction.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Lingtan Kong
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Ding-Qi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Liuqi Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | | | - Xueying Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yutong Peng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Lijun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
13
|
Tao DL, Chen JM, Wu JP, Zhao SS, Qi BF, Yang X, Fan YY, Song JK, Zhao GH. Neospora caninum hijacks host PFKFB3-driven glycolysis to facilitate intracellular propagation of parasites. Vet Res 2025; 56:94. [PMID: 40307939 PMCID: PMC12042381 DOI: 10.1186/s13567-025-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/13/2025] [Indexed: 05/02/2025] Open
Abstract
Infection with Neospora caninum leads to reproductive failure in ruminants, such as cattle and goats; however, no effective vaccines or treatments are currently available to control this infection. Carefully regulating the glycolysis of host cells is essential for the intracellular survival of pathogens. Nonetheless, the impact of N. caninum infection on host cell glycolysis and the effects and mechanisms of host cell glycolysis on the intracellular survival of this parasite remains unclear. In this study, the analysis of metabolomics and transcriptomics revealed that N. caninum infection increases the expression of glycolysis-related enzymes and lactate production in caprine endometrial epithelial cells (EECs). The study's findings demonstrate that the inhibition of host cell glycolysis using 2-DG or sodium oxamate (an LDH-A inhibitor) inhibits host cell glycolysis and the intracellular propagation of N. caninum tachyzoites. Moreover, the addition of lactate further promotes the replication of N. caninum tachyzoites both in vivo and in vitro. Further investigation found that N. caninum infection induces host cell glycolysis via up-regulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression, while knockdown of PFKFB3 with small-interfering RNA or 3-PO significantly inhibits host cell glycolysis and the propagation of N. caninum tachyzoites both in vivo and in vitro. Additionally, a mechanistic study showed that N. caninum infection activates the JNK signalling pathway and inhibits the ubiquitination degradation of HIF-1α. Chromatin immunoprecipitation and dual-luciferase reporter assays revealed that N. caninum infection induces the expression of HIF-1α, which binds to the promoter region of pfkfb3. Our findings indicate that cellular glycolysis may serve as a potential therapeutic target for neosporosis, offering a novel insight for further investigating the intracellular survival mechanisms of N. caninum.
Collapse
Affiliation(s)
- De-Liang Tao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Jin-Ming Chen
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Jiang-Ping Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Shan-Shan Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Bu-Fan Qi
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Xin Yang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Ying-Ying Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Shaanxi, Yangling, China.
| |
Collapse
|
14
|
Zhong YX, Zhao HB, Lian MH, Shen JM, Li CX, Ma HM, Xu D, Chen GQ, Zhang C. SUMOylated hnRNPM suppresses PFKFB3 phosphorylation to regulate glycolysis and tumorigenesis. Cancer Lett 2025; 616:217573. [PMID: 39983892 DOI: 10.1016/j.canlet.2025.217573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Heterogeneous nuclear ribonucleoprotein M (hnRNPM), a splicing regulatory factor with a majority of studies focused on its RNA-binding properties and effects on splicing outcome, is implicated in the progression of various kinds of human cancers, but its mechanisms remain largely enigmatic. Applying the global SUMOylated proteomic screening in colorectal cancer cells, herein we find that hnRNPM is SUMOylated at lysine 17 and Sentrin-specific protease 1 (SENP1) is essential for its de-SUMOylation. Although hnRNPM SUMOylation does not affect its known pre-mRNA splicing-related effects, more intriguingly, it remarkably influences lactate production. Mechanistically, SUMOylated hnRNPM interacts with 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) to affect its localization and inhibit its phosphorylation, thus suppressing glycolysis. Accordingly, SUMO-deficient hnRNPM promotes colorectal cancer cell proliferation and tumorigenesis in mice. Also, a negative correlation between hnRNPM SUMOylation and SENP1 expression or phosphorylated PFKFB3 levels can be found in CRC patient samples. These findings not only enhance our understanding of the multifaceted roles of hnRNPM in cancer biology but also open new avenues for the development of targeted therapies aimed at modulating hnRNPM SUMOylation.
Collapse
Affiliation(s)
- Ya-Xian Zhong
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Huan-Bin Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Meng-Han Lian
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China
| | - Jia-Ming Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Cheng-Xiao Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Hong-Ming Ma
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China
| | - Dan Xu
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai, 200025, China; School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, 571199, China.
| | - Cheng Zhang
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No. 2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 200127, China; School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
15
|
Zhao C, Zhou H, Wang P, Zhang S, Lin X, Pan Y, Zhu H. Hexokinase 2-driven aerobic glycolysis modulates YAP1 in placental trophoblast development. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167872. [PMID: 40286881 DOI: 10.1016/j.bbadis.2025.167872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/21/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Recurrent pregnancy loss (RPL) is a severe complication, and its risk is heightened by dysregulated trophoblast development. However, the underlying mechanisms remain unclear. Herein, we show that a portion of villous samples from patients with RPL display reduced hexokinase II (HK2) and Yes-associated protein 1 (YAP1) expression compared with healthy controls. Moreover, in human trophoblast stem (TS) cell models, blocking HK2 activities via exposure to 3-bromopyruvate markedly reduced cell proliferation and induced cell cycle arrest by regulating YAP1 phosphorylation and localization. This was partially reversed by the YAP signaling activator TT-10. Moreover, YAP1 contributes to aerobic glycolysis regulation by influencing HK2 activity. Together, these findings demonstrate an interplay between the Hippo/YAP1 pathway and glucose metabolism in placental trophoblast development and highlight an approach for RPL intervention.
Collapse
Affiliation(s)
- Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Peixing Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China.
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China.
| |
Collapse
|
16
|
Lu T, Wang Q, Xin Y, Wu X, Wang Y, Xia Y, Xun L, Liu H. Knockout of the sulfide: quinone oxidoreductase SQR reduces growth of HCT116 tumor xenograft. Redox Biol 2025; 83:103650. [PMID: 40305883 DOI: 10.1016/j.redox.2025.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
Colorectal cancer (CRC) exhibits significant diversity and heterogeneity, posing a requirement for novel therapeutic targets. Polysulfides are associated with CRC progression and immune evasion, but the underlying mechanisms are not fully understood. Sulfide: quinone oxidoreductase (SQR), a mitochondrial flavoprotein, catalyzes hydrogen sulfide (H2S) oxidation and polysulfides production. Herein, we explored its role in CRC pathogenesis and its potential as a therapeutic target. Our findings revealed that SQR knockout disrupted polysulfides homeostasis, diminished mitochondrial function, impaired cell proliferation, and triggered early apoptosis in HCT116 CRC cells. Moreover, the SQR knockout led to markedly reduced tumor sizes in mice models of colon xenografts. Although the transcription of glycolytic genes remained largely unchanged, metabolomic analysis demonstrated a reprogramming of glycolysis at the fructose-1,6-bisphosphate degradation step, catalyzed by aldolase A (ALDOA). Both Western blot analysis and enzymatic assays confirmed the decrease in ALDOA levels and activity. In conclusion, the study establishes the critical role of SQR in mitochondrial function and metabolic regulation in CRC, with its knockout leading to metabolic reprogramming and diminished tumor growth in HCT116 tumor xenografts. These insights lay a foundation for the development of SQR-targeted therapies for CRC.
Collapse
Affiliation(s)
- Ting Lu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, 266071, People's Republic of China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Yuping Xin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Xiaohua Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Yang Wang
- Origin Biotechnology Private Limited, 2 Venture Drive, 608526, Singapore
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China; School of Molecular Biosciences, Washington State University, Pullman, WA, 991647520, USA
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
17
|
Addanki S, Kim L, Stevens A. Understanding and Targeting Metabolic Vulnerabilities in Acute Myeloid Leukemia: An Updated Comprehensive Review. Cancers (Basel) 2025; 17:1355. [PMID: 40282531 PMCID: PMC12025543 DOI: 10.3390/cancers17081355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/05/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Acute Myeloid Leukemia (AML) is characterized by aggressive proliferation and metabolic reprogramming that support its survival and resistance to therapy. This review explores the metabolic distinctions between AML cells and normal hematopoietic stem cells (HSCs), emphasizing the role of altered mitochondrial function, oxidative phosphorylation (OXPHOS), and biosynthetic pathways in leukemic progression. AML cells exhibit distinct metabolic vulnerabilities, including increased mitochondrial biogenesis, reliance on glycolysis and amino acid metabolism, and unique signaling interactions that sustain leukemic stem cells (LSCs). These dependencies provide potential therapeutic targets, as metabolic inhibitors have demonstrated efficacy in disrupting AML cell survival while sparing normal hematopoietic cells. We examine current and emerging metabolic therapies, such as inhibitors targeting glycolysis, amino acid metabolism, and lipid biosynthesis, highlighting their potential in overcoming drug resistance. However, challenges remain in translating these strategies into clinical practice due to AML's heterogeneity and adaptability. Further research into AML's metabolic plasticity and precision medicine approaches is crucial for improving treatment outcomes. Understanding and exploiting AML's metabolic vulnerabilities could pave the way for novel, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Sridevi Addanki
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Alexandra Stevens
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
18
|
Jiang P, Jiang Z, Li S, Li YX, Chen Y, Li X. The suppressive role of GLS in radiosensitivity and irradiation-induced immune response in LUAD: integrating bioinformatics and experimental insights. Front Immunol 2025; 16:1582587. [PMID: 40308578 PMCID: PMC12040943 DOI: 10.3389/fimmu.2025.1582587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Background Radiotherapy elicits immune activation, thereby synergistically enhancing systemic tumor control when combined with immunotherapy. Glutaminase (GLS), a key enzyme for glutamine metabolism, has been found to regulate glutamine availability within tumor microenvironment (TME). However, the precise mechanisms through which GLS modulates radiosensitivity and irradiation-induced immune responses in lung adenocarcinoma (LUAD) and its clinical value remain to be fully elucidated. Methods We employed bulk RNA-seq and single-cell transcriptomics to explore the role of GLS expression in radiosensitivity and immune infiltration. The bioinformatic results were validated by in vitro and in vivo experiments. Co-culture assays and flow cytometry were used to validate the impact of GLS expression on CD8+ T cell activation and cytotoxicity. Moreover, a GLS-DSBr (double strand break repair) prognostic model was developed using machine learning with data from 2,066 LUAD patients. Results In vitro and in vivo experiments demonstrated that GLS silence inhibited DSB repair and promoted ferroptosis, therefore enhancing radiosensitivity. Single-cell and spatial transcriptomics revealed the immunomodulatory effects of GLS expression in the TME. Further, Co-culture assays and flow cytometry experiments indicated that silencing GLS in LUAD cells potentiated the activation and cytotoxicity of CD8+ T cells in the context of radiotherapy. The GLS-DSBr model demonstrated robust predictive performance for overall survival, as well as the efficacy of radiotherapy and immunotherapy in LUAD. The applicability of GLS-DSBr model was further validated through pan-cancer analysis. Conclusion In the contexts of radiotherapy, GLS downregulation exerts dual regulatory effects by modulating ferroptosis and remodeling the immune landscapes, particularly enhancing CD8+ T cell cytotoxicity. Our work suggests that strategies preferentially targeting GLS in tumor cells may represent promising and translatable therapeutic approaches to promote antitumor efficacy of radiotherapy plus immune checkpoint blockade in LUAD patients. Furthermore, the established GLS-DSBr model serves as a robust predictive tool for prognosis and effects of radiotherapy and immunotherapy, which assists personalized treatment optimization in LUAD.
Collapse
Affiliation(s)
- Peicheng Jiang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhifeng Jiang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ye-Xiong Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqiong Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xinyan Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Wang H, Ma X, Sun L, Bi T, Yang W. Applications of innovative synthetic strategies in anticancer drug discovery: The driving force of new chemical reactions. Bioorg Med Chem Lett 2025; 119:130096. [PMID: 39798856 DOI: 10.1016/j.bmcl.2025.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The discovery of novel anticancer agents remains a critical goal in medicinal chemistry, with innovative synthetic methodologies playing a pivotal role in advancing this field. Recent breakthroughs in CH activation reactions, cyclization reactions, multicomponent reactions, cross-coupling reactions, and photo- and electro-catalytic reactions have enabled the efficient synthesis of new molecular scaffolds exhibiting potent biological activities, including anticancer properties. These methodologies have facilitated the functionalization of natural products, the modification of bioactive molecules, and the generation of entirely new compounds, many of which demonstrate strong antitumor activity. This review summarizes the latest synthetic strategies employed over the past five years for discovering anticancer agents, focusing on their influence on drug design. Additionally, the role of new chemical reactions in expanding chemical space and overcoming challenges, such as drug resistance and selectivity, is highlighted, further emphasizing the importance of discovering novel reactions as a key trend in future drug development.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longkang Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tongyu Bi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
20
|
Yan W, Saqirile, Li K, Li K, Wang C. The Role of N6-Methyladenosine in Mitochondrial Dysfunction and Pathology. Int J Mol Sci 2025; 26:3624. [PMID: 40332101 PMCID: PMC12026702 DOI: 10.3390/ijms26083624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Mitochondria are indispensable in cells and play crucial roles in maintaining cellular homeostasis, energy production, and regulating cell death. Mitochondrial dysfunction has various manifestations, causing different diseases by affecting the diverse functions of mitochondria in the body. Previous studies have mainly focused on mitochondrial-related diseases caused by nuclear gene mutations or mitochondrial gene mutations, or mitochondrial dysfunction resulting from epigenetic regulation, such as DNA and histone modification. In recent years, as a popular research area, m6A has been involved in a variety of important processes under physiological and pathological conditions. However, there are few summaries on how RNA methylation, especially m6A RNA methylation, affects mitochondrial function. Additionally, the role of m6A in pathology through influencing mitochondrial function may provide us with a new perspective on disease treatment. In this review, we summarize several manifestations of mitochondrial dysfunction and compile examples from recent years of how m6A affects mitochondrial function and its role in some diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changshan Wang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China; (W.Y.); (S.); (K.L.); (K.L.)
| |
Collapse
|
21
|
Icard P, Alifano M, Simula L. Citrate oscillations during cell cycle are a targetable vulnerability in cancer cells. Biochim Biophys Acta Rev Cancer 2025; 1880:189313. [PMID: 40216092 DOI: 10.1016/j.bbcan.2025.189313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
Cell cycle progression is timely interconnected with oscillations in cellular metabolism. Here, we first describe how these metabolic oscillations allow cycling cells to meet the bioenergetic needs specifically for each phase of the cell cycle. In parallel, we highlight how the cytosolic level of citrate is dynamically regulated during these different phases, being low in G1 phase, increasing in S phase, peaking in G2/M, and decreasing in mitosis. Of note, in cancer cells, a dysregulation of such citrate oscillation can support cell cycle progression by promoting a deregulated Warburg effect (aerobic glycolysis), activating oncogenic signaling pathways (such as PI3K/AKT), and promoting acetyl-CoA production via alternative routes, such as overconsumption of acetate. Then, we review how administration of sodium citrate (at high doses) arrests the cell cycle in G0/G1 or G2/M, inhibits glycolysis and PI3K/AKT, induces apoptosis, and significantly reduces tumor growth in various in vivo models. Last, we reason on the possibility to implement citrate administration to reinforce the effectiveness of cell cycle inhibitors to better cure cancer.
Collapse
Affiliation(s)
- Philippe Icard
- Université de Normandie, UNICAEN, Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Descartes, Paris, France.
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Descartes, Paris, France; Inserm U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Luca Simula
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Paris 75014, France
| |
Collapse
|
22
|
Dong H, Ye C, Ye X, Yan J, Ye G, Shao Y. The biological role and molecular mechanism of transfer RNA-derived small RNAs in tumor metastasis. Front Oncol 2025; 15:1560943. [PMID: 40265011 PMCID: PMC12011605 DOI: 10.3389/fonc.2025.1560943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Tumor metastasis is a significant contributor to increased cancer mortality. Transfer RNA-derived small RNAs (tsRNAs), a class of endogenous non-coding RNA molecules, play crucial functional roles in various physiological processes, including the regulation of transcription and reverse transcription, the modulation of translation processes, the modification of epigenetic inheritance, the regulation of the cell cycle, etc. Dysregulated tsRNAs are closely related to the occurrence and progression of human malignancies. Accumulating evidence indicates that the abnormal expression of tsRNAs is associated with tumor metastasis through a variety of mechanisms. Hence, we summarize the fundamental structure and biological functions of tsRNAs, with a focus on how tsRNAs influence the tumor metastasis process through downstream targets or the regulation of interactions between upstream and downstream molecules, thereby providing a novel perspective for targeted therapy for tumor metastasis.
Collapse
Affiliation(s)
- Haotian Dong
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chengyuan Ye
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiaohan Ye
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
23
|
Larripa K, Rǎdulescu A. A mathematical model of microglia glucose metabolism and lactylation with positive feedback. J Theor Biol 2025; 602-603:112049. [PMID: 39892774 DOI: 10.1016/j.jtbi.2025.112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
In this paper, we present and analyze a model for metabolism and lactylation in a single microglia. The model includes positive feedback from lactylation in the glycolytic pathway, and links metabolism and inflammation. Specific pathways include the transition of glucose to pyruvate to lactate in a microglia, as well as the gradient transport of glucose and lactate into and out of the cell. Additionally, the upregulation of certain pathways by either epigenetic modification or the inflammatory response are included. Bifurcation and sensitivity analyses demonstrate the importance of key parameters and pathways in the model, specifically the role of lactylation. Our model is validated by qualitatively reproducing recent in vitro experiments in which exogenous glucose and lactate are modified.
Collapse
Affiliation(s)
- Kamila Larripa
- Department of Mathematics, Cal Poly Humboldt, 1 Harpst Street, Arcata, 95521, California, United States.
| | - Anca Rǎdulescu
- Department of Mathematics, SUNY New Paltz, 1 Hawk Drive, New Paltz, 12561, NY, United States.
| |
Collapse
|
24
|
Delobelle Q, Inizan TJ, Adjoua O, Lagardère L, Célerse F, Maréchal V, Piquemal J. High-Resolution Molecular-Dynamics Simulations of the Pyruvate Kinase Muscle Isoform 1 and 2 (PKM1/2). Chemistry 2025; 31:e202402534. [PMID: 39614705 PMCID: PMC11973853 DOI: 10.1002/chem.202402534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
Glucose metabolism plays a pivotal role in physiological processes and cancer growth. The final stage of glycolysis, converting phosphoenolpyruvate (PEP) into pyruvate, is catalyzed by the pyruvate kinase (PK) enzyme. Whereas PKM1 is mainly expressed in cells with high energy requirements, PKM2 is preferentially expressed in proliferating cells, including tumor cells. Structural analysis of PKM1 and PKM2 is essential to design new molecules with antitumoral activity. To understand their structural dynamics, we performed extensive high-resolution molecular dynamics (MD) simulations using adaptive sampling techniques coupled to the polarizable AMOEBA force field. Performing more than 6 μs of simulation, we considered all oligomerization states of PKM2 and propose structural insights for PKM1 to further study the PKM2-specific allostery. We focused on key sites including the active site and the natural substrate Fructose Bi-Phosphate (FBP) fixation pocket. Additionally, we present the first MD simulation of biologically active PKM1 and uncover important similarities with its PKM2 counterpart bound to FBP. We also analysed TEPP-46's fixation, a pharmacological activator binding a different pocket, on PKM2 and highlighted the structural differences and similarities compared to PKM2 bound to FBP. Finally, we determined potential new cryptic pockets specific to PKM2 for drug targeting.
Collapse
Affiliation(s)
- Quentin Delobelle
- Centre de Recherche Saint-Antoine – Team “Biologie et Thérapeutique du Cancer”, UMRS 938 INSERMParisFrance
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
| | - Théo Jaffrelot Inizan
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
- University of California BerkeleyBakar Institute of Digital Materials for the PlanetCollege of Computing, Data Science, and SocietyBerkeley94720USA
| | - Olivier Adjoua
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
| | - Louis Lagardère
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
| | - Frédéric Célerse
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
- Sorbonne Université, CNRS, IPCM75005ParisFrance
| | - Vincent Maréchal
- Centre de Recherche Saint-Antoine – Team “Biologie et Thérapeutique du Cancer”, UMRS 938 INSERMParisFrance
| | - Jean‐Philip Piquemal
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, UMR 761675005ParisFrance
| |
Collapse
|
25
|
Xia Y, Chen J, Dong P, Zhang L, Ding Y, Ding W, Han X, Wang X, Li D. Embryonic 6:2 Fluorotelomer Alcohol Exposure Disrupts the Blood‒Brain Barrier by Causing Endothelial‒to‒Mesenchymal Transition in the Male Mice. Mol Neurobiol 2025; 62:4203-4220. [PMID: 39417922 DOI: 10.1007/s12035-024-04540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
6:2 Fluorotelomer alcohol (6:2 FTOH) is a raw material used in the manufacture of short-chain poly- and perfluoroalkyl substances. Our previous study revealed that gestational exposure to 6:2 FTOH can impair blood‒brain barrier (BBB) function in offspring, accompanied by anxiety-like behavior and learning memory deficits. The aim of this study was to further investigate the specific mechanism by which maternal exposure to 6:2 FTOH resulted in impaired BBB function in offspring mice. Pregnant mice were orally administered different doses of 6:2 FTOH (0, 5, 25, and 125 mg/kg/day) from gestation day 8.5 until delivery. These results confirmed that maternal 6:2 FTOH exposure impaired BBB function and disrupted the brain immune microenvironment. Subsequent investigations revealed that endothelial-to-mesenchymal transition (EndMT) in the cerebral microvascular endothelium of offspring may be the mechanism mediating functional disruption of the BBB. Mechanistic studies revealed that exposure to 6:2 FTOH upregulated ETS proto-oncogene 1 (ETS1) expression via the tumor necrosis factor-α/extracellular signal-regulated kinase 1/2 signaling pathway, which mediated disturbances in energy metabolism, leading to impaired actin dynamics and subsequently triggering the EndMT phenotype. This is the first finding indicating that gestational 6:2 FTOH exposure caused functional impairment of the BBB through ETS1-mediated EndMT in cerebral microvascular endothelial cells, potentially providing novel insight into the environmental origins of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yunhui Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Junhan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Luqing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yibing Ding
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
- Translational Medicine Core Facilities, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Weidong Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
26
|
Jiang C, Zhu Y, Zhang J, Chen H, Li W, Xie R, Kong L, Chen L, Chen X, Huang H, Xu S. NR4A1 suppresses breast cancer growth by repressing c-Fos-mediated lipid and redox dyshomeostasis. Exp Mol Med 2025; 57:804-819. [PMID: 40164686 PMCID: PMC12045962 DOI: 10.1038/s12276-025-01430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 04/02/2025] Open
Abstract
The specific function of NR4A1 as a transcriptional regulator in cancer remains unclear. Here we report the biological effect of NR4A1 in suppressing breast cancer (BC) growth. We found that NR4A1 deficiency was correlated with BC progression in the clinic. Genetic deletion of NR4A1 in BC cells significantly promoted cellular proliferation and tumor growth. Moreover, global metabolome screening indicated that the deletion of NR4A1 resulted in tumor lipid remodeling and phospholipid accumulation, which was accompanied by increases in fatty acid and lipid uptake. In addition, NR4A1 knockout induced oxidative stress that aggravated redox balance disruption. Mechanistically, transcriptomic and epigenomic analyses revealed that NR4A1 restrained BC cell proliferation by directly interacting with c-Fos and competitively inhibiting c-Fos binding to the promoter of the target gene PRDX6, which is involved in lipid and redox homeostasis. Notably, we confirmed that the treatment of BC cells with the selective NR4A1 agonist cytosporone B significantly activated the expression of NR4A1, followed by increased interaction between NR4A1 and c-Fos, thereby interfering with c-Fos-mediated transcriptional regulation of BC cell growth. Thus, NR4A1 plays a vital role in reducing the c-Fos-induced activation of downstream signaling cascades in BC, suggesting that agents that activate NR4A1 may be potential therapeutic strategies.
Collapse
Affiliation(s)
- Cen Jiang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junsi Zhang
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huaying Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Weiwei Li
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruiwang Xie
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou, China.
| |
Collapse
|
27
|
Drapela S, Garcia BM, Gomes AP, Correia AL. Metabolic landscape of disseminated cancer dormancy. Trends Cancer 2025; 11:321-333. [PMID: 39510896 PMCID: PMC11981868 DOI: 10.1016/j.trecan.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Cancer dormancy is a phenomenon defined by the entry of cancer cells into a reversible quiescent, nonproliferative state, and represents an essential part of the metastatic cascade responsible for cancer recurrence and mortality. Emerging evidence suggests that metabolic reprogramming plays a pivotal role in enabling entry, maintenance, and exit from dormancy in the face of the different environments of the metastatic cascade. Here, we review the current literature to understand the dynamics of metabolism during dormancy, highlighting its fine-tuning by the host micro- and macroenvironment, and put forward the importance of identifying metabolic vulnerabilities of the dormant state as therapeutic targets to eradicate recurrent disease.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bruna M Garcia
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | | |
Collapse
|
28
|
Zhang S, Wang YS, Li Y, To KI, Zhang ET, Jin YH. Annexin A2 binds the 3'-UTR of H2AX mRNA and regulates histone-H2AX-derived hypoxia-inducible factor 1-alpha activation. Cell Signal 2025; 132:111781. [PMID: 40164417 DOI: 10.1016/j.cellsig.2025.111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Annexin A2 (Anxa2), a multifunctional protein with RNA-binding capabilities, is frequently overexpressed in various tumors, and its expression is highly correlated with malignant progression. In this study, we demonstrate for the first time that Anxa2 was co-expressed with glycolytic genes, suggesting its potential role as a regulator of glycolysis. RNA-protein interaction assay revealed that Anxa2 interacted with 3'-UTR of H2AX mRNA and protected it from miRNA-mediated degradation. Up-regulated Histone-H2AX enhances the expression of glycolytic genes including GLUT1, HK2, PGK1, ENO1, PKM2, GAPDH and LDHA via stabilizing hypoxia-inducible factor 1-alpha (HIF1α), thereby accelerating lactic acid production and secretion. (20S) G-Rh2, a natural compound targeting Anxa2, significantly interfered the Anxa2-H2AX mRNA interaction, and inhibited subsequent glycolysis progression. We propose that Anxa2 acts as a novel regulator in glycolysis via enhancing H2AX expression, and (20S) G-Rh2 may exert its anti-cancer activity by targeting Anxa2-H2AX-HIF1α-glycolysis axis in human hepatoma HepG2 cells.
Collapse
Affiliation(s)
- Shiyin Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yu-Shi Wang
- Department of Criminal Science and Technology, Jilin Police College, Changchun 130117, China
| | - Yang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Kwang-Il To
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - En-Ting Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
29
|
Li J, Chen X, Song S, Jiang W, Geng T, Wang T, Xu Y, Zhu Y, Lu J, Xia Y, Wang R. Hexokinase 2-mediated metabolic stress and inflammation burden of liver macrophages via histone lactylation in MASLD. Cell Rep 2025; 44:115350. [PMID: 40014451 DOI: 10.1016/j.celrep.2025.115350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by metabolic dysfunction and inflammation burden, involving a significant enhancement of cellular glycolytic activity. Here, we elucidate how a positive feedback loop in liver macrophages drives MASLD pathogenesis and demonstrate that disrupting this cycle mitigates metabolic stress and macrophage M1 activation during MASLD. We detect elevated expression of hexokinase 2 (HK2) and H3K18la in liver macrophages from patients with MASLD and MASLD mice. This lactate-dependent histone lactylation promotes glycolysis and liver macrophage M1 polarization by enriching the promoters of glycolytic genes and activating transcription. Ultimately, the HK2/glycolysis/H3K18la positive feedback loop exacerbates the vicious cycle of enhancing metabolic dysregulation and histone lactylation and the inflammatory phenotype of liver macrophages. Myeloid-specific deletion of Hk2 or pharmacological inhibition of the transcription factor HIF-1α significantly disrupts this deleterious cycle. Therefore, our study illustrates that targeting this amplified pathogenic loop may offer a promising therapeutic strategy for MASLD.
Collapse
Affiliation(s)
- Jinyang Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China; Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiancheng Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210029, China
| | - Shiyu Song
- Nanjing Lupine (YuShanDou) Biomedical Research Institute, Nanjing, Jiangsu 210046, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tianjiao Geng
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Tiantian Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Yan Xu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Yongqiang Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China.
| | - Jun Lu
- Department of Intensive Care Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210029, China; NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Rong Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan 410219, China.
| |
Collapse
|
30
|
Mark JR, Tansey MG. Immune cell metabolic dysfunction in Parkinson's disease. Mol Neurodegener 2025; 20:36. [PMID: 40128809 PMCID: PMC11934562 DOI: 10.1186/s13024-025-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Parkinson's disease (PD) is a multi-system disorder characterized histopathologically by degeneration of dopaminergic neurons in the substantia nigra pars compacta. While the etiology of PD remains multifactorial and complex, growing evidence suggests that cellular metabolic dysfunction is a critical driver of neuronal death. Defects in cellular metabolism related to energy production, oxidative stress, metabolic organelle health, and protein homeostasis have been reported in both neurons and immune cells in PD. We propose that these factors act synergistically in immune cells to drive aberrant inflammation in both the CNS and the periphery in PD, contributing to a hostile inflammatory environment which renders certain subsets of neurons vulnerable to degeneration. This review highlights the overlap between established neuronal metabolic deficits in PD with emerging findings in central and peripheral immune cells. By discussing the rapidly expanding literature on immunometabolic dysfunction in PD, we aim to draw attention to potential biomarkers and facilitate future development of immunomodulatory strategies to prevent or delay the progression of PD.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
| |
Collapse
|
31
|
Doyran Ince O, Tekin HC. MagSity platform: a hybrid magnetic levitation-based lensless holographic microscope platform for liquid density and viscosity measurements. LAB ON A CHIP 2025. [PMID: 40125580 DOI: 10.1039/d5lc00144g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The viscosity and density of liquids are the most extensively studied material properties, as their accurate measurement is critical in various industries. Although developments in micro-viscometers have overcome the limitations of traditional bulky methods, more accessible technologies are required. Here, we introduce a novel magnetic levitation-based method to measure the viscosity and density of solutions in a microcapillary channel. This principle exploits microparticles as microsensors to correlate levitation time and height with solutions' viscosity and density, using buoyancy and drag forces. The platform has an integrated lensless holographic microscope, providing a hybrid system for in situ and precise measurements. By utilizing this hybrid technology, portable, rapid and cost-effective measurements can be conducted. This platform enables viscosity and density measurements within 7 minutes, achieving high accuracies of at least 97.7% and 99.9%, respectively, across an operation range of 0.84-5.09 cP and 1.00-1.09 g cm-3. The platform is utilized to clearly distinguish differences in the spent cell culture medium across various cell lines. This method, as presented, can be readily applied to measure a diverse array of liquids in multiple domains, encompassing biotechnology, medicine, and engineering.
Collapse
Affiliation(s)
- Oyku Doyran Ince
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Türkiye.
| | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir 35430, Türkiye.
- METU MEMS Center, Ankara 06520, Türkiye
| |
Collapse
|
32
|
Dittrich A, Andersson SA, Busk M, Hansen K, Foldager CB, Palmfeldt J, Andersen A, Pedersen M, Vendelbo M, Nielsen KL, Lauridsen H. Metabolic changes during cardiac regeneration in the axolotl. Dev Dyn 2025. [PMID: 40119743 DOI: 10.1002/dvdy.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/11/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The axolotl is a prominent model organism of heart regeneration due to its ability to anatomically and functionally repair the heart after an injury that mimics human myocardial infarction. In humans, such an injury leads to permanent scarring. Cardiac regeneration has been linked to metabolism and the oxygenation state, but so far, these factors remain to be detailed in the axolotl model. In this descriptive study, we have investigated metabolic changes that occurred during cardiac regeneration in the axolotl. RESULTS We describe systemic and local cardiac metabolic changes after injury involving an early upregulation of glucose uptake and nucleotide biosynthesis followed by a later increase in acetate uptake. We detect several promising factors and metabolites for future studies and show that, unlike other popular animal models capable of intrinsic regeneration, the axolotl maintains its cardiac regenerative ability under hyperoxic conditions. CONCLUSIONS Axolotls undergo dynamic metabolic changes during the process of heart regeneration and display a robust reparative response to cardiac cryo-injury, which is unaffected by hyperoxia.
Collapse
Affiliation(s)
- Anita Dittrich
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sofie Amalie Andersson
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Morten Busk
- Department of Clinical Medicine, Experimental Clinical Oncology, Aarhus University, Aarhus, Denmark
| | - Kasper Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Casper Bindzus Foldager
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Orthopaedic Research Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Asger Andersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikkel Vendelbo
- Department of Nuclear Medicine and PET-Center, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Lauridsen
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
33
|
Toczylowska B, Kalinowski P, Kacka-Piotrowska A, Duda P, Grąt M, Zieminska E. Metabolic Pattern of Brain Death-NMR-Based Metabolomics of Cerebrospinal Fluid. Int J Mol Sci 2025; 26:2719. [PMID: 40141360 PMCID: PMC11942502 DOI: 10.3390/ijms26062719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/28/2025] Open
Abstract
The aim of this study was to gain insight into the biochemical status of cerebrospinal fluid in the presence of brain death in life-supported patients. The biochemical status was determined via in vitro NMR spectroscopy of cerebrospinal fluid (CSF) obtained by lumbar puncture from 22 patients with confirmed brain death and compared with that of 34 control patients (without neurological diseases). Forty-one NMR signals from raw CSF samples and 20 signals from lipid extracts were analyzed using univariate and multivariate statistical methods. ANOVA revealed significant differences in all analyzed signals. No single biochemical marker was found to predict brain death. The CSF metabolic profiles of patients who died differed significantly from those of patients in the control group. There were many statistically significantly different compounds, including amino acids, ketone bodies, lactate, pyruvate, citrate, guanidinoacetate, choline, and glycerophosphocholine. Analysis of lipids revealed significant differences in cholesterol, estriol, and phosphoethanolamine. Discriminant analysis allows the analysis of metabolic profiles instead of single biomarkers of cerebrospinal fluid compounds. The results of our analysis allowed us to split the groups-the control group, which consisted of patients with a normal biochemical CSF composition, and the brain death group-with confirmed brain death.
Collapse
Affiliation(s)
- Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, 02-109 Warsaw, Poland; (B.T.); (P.D.)
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland; (P.K.); (M.G.)
| | | | - Paulina Duda
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 4 Trojdena Street, 02-109 Warsaw, Poland; (B.T.); (P.D.)
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland; (P.K.); (M.G.)
| | - Elzbieta Zieminska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| |
Collapse
|
34
|
Cazeneuve C, Couret D, Lebeau G, Viranaicken W, Mathieu ME, Chouchou F. Protective Effect of Daily Physical Activity Against COVID-19 in a Young Adult Population on Reunion Island. Med Sci (Basel) 2025; 13:28. [PMID: 40137448 PMCID: PMC11944067 DOI: 10.3390/medsci13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
The global fight against pandemics is a major public health issue. Epidemiological studies showed a reduced risk of the coronavirus disease 2019 (COVID-19) severity with the practice of regular physical activity (PA) in clinical populations. Here, we investigated the effect of PA against COVID-19 in a young general population. Methods: Two hundred ninety volunteers over 18 years old from Reunion Island responded to an online survey concerning sociodemographic, lifestyle and clinical information. Daily PA was studied using the International Physical Activity Questionnaire short version (IPAQ) and classified by overall score and intensities of PA. Results: Among 290 responders [179 women, median age = 27.5 years (interquartile range = 21.3 years)], 141 (48.6%) reported COVID-19 infection. Multivariate logistic analysis adjusted for age, sex, body mass index, chronic disease and alcohol consumption showed that the number of days per week of regular intense PA was independently associated with a low risk of COVID-19 infection [odds ratio (OR) 0.86; 95% confidence interval (CI) 0.24 to 0.99; p = 0.030], while regular moderate PA was not [OR 1.10; 95%CI 0.97 to 1.23; p = 0.137]. Conclusions: In a population of young adults, regular intense PA could offer a protective effect against COVID-19. Additional research is required to confirm this association in various viral infections and elucidate the fundamental mechanisms involved.
Collapse
Affiliation(s)
- Camille Cazeneuve
- Laboratoire d’IngéniéRIe de la Santé, du Sport et de l’Environnement (IRISSE, EA4075), UFR des Sciences de l’Homme et de l’Environnement, Université de La Réunion, 117 rue du General Ailleret, 97430 Le Tampon, La Réunion, France
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), Inserm UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - David Couret
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), Inserm UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - Gregorie Lebeau
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), Inserm UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - Wildriss Viranaicken
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), Inserm UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, La Réunion, France
| | - Marie-Eve Mathieu
- School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Centre de recherche Azrieli, CHU Saint-Justine, Montréal, QC H3T 1C5, Canada
| | - Florian Chouchou
- Laboratoire d’IngéniéRIe de la Santé, du Sport et de l’Environnement (IRISSE, EA4075), UFR des Sciences de l’Homme et de l’Environnement, Université de La Réunion, 117 rue du General Ailleret, 97430 Le Tampon, La Réunion, France
| |
Collapse
|
35
|
Apostolou S, Donega V. Embracing the heterogeneity of neural stem cells in the subventricular zone. Stem Cell Reports 2025:102452. [PMID: 40118056 DOI: 10.1016/j.stemcr.2025.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Neural stem cells (NSCs) of the subventricular zone (SVZ) could be a potential source for brain repair. These are heterogeneous cells with distinct activation states. To identify NSCs in the SVZ, different markers are used, including Gfap, Nestin, and Sox2. A comparison of these different methods to assess if the NSC marker used is selective toward specific NSC states is currently lacking. Here, we integrated six previously published single-cell RNA sequencing datasets from the adult mouse SVZ, where different methods were used to identify NSCs. Our data show that the approach used to isolate NSCs favors certain cell states over others. Our analyses underscore the importance of enriching for the NSC population of interest to increase data granularity. We also observed that cells with lower gene expression can be assigned incorrectly to clusters. We provide a framework for choosing the most optimal approach to enrich for NSC states of interest.
Collapse
Affiliation(s)
- Stefania Apostolou
- Amsterdam UMC location Vrije Universiteit Amsterdam, department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Vanessa Donega
- Amsterdam UMC location Vrije Universiteit Amsterdam, department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands.
| |
Collapse
|
36
|
Duan X, Lv X, Wang X, Zhang Y, Hu Y, Li H, Zhou Y, Jing Y. Impact of immune cell metabolism on membranous nephropathy and prospective therapy. Commun Biol 2025; 8:405. [PMID: 40065158 PMCID: PMC11893770 DOI: 10.1038/s42003-025-07816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Membranous nephropathy (MN) is a primary glomerular disease commonly causing adult nephrotic syndrome. Characterized by thickened glomerular capillary walls due to immune complex deposition, MN is a complex autoimmune disorder. Its pathogenesis involves immune deposit formation, complement activation, and a heightened risk of renal failure. Central to MN is immune system dysfunction, particularly the dysregulation of B and T cell responses. B cells contribute to renal injury through the production of autoantibodies, particularly IgG targeting the phospholipase A2 receptor (PLA2R) on podocytes, while T cells modulate immune responses that influence disease progression. Metabolic reprogramming alters lymphocyte survival, differentiation, proliferation, and function, potentially triggering autoimmune processes. Although the link between immune cell metabolism and MN remains underexplored, this review highlights recent advances in understanding immune metabolism and its role in MN. These insights may provide novel biomarkers and therapeutic strategies for MN treatment.
Collapse
Affiliation(s)
- Xuemei Duan
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xin Lv
- Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xiaocui Wang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yunfei Zhang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ying Hu
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Haonan Li
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yongnian Zhou
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
37
|
Seo R, de Guzman ACV, Park S, Lee JY, Kang SJ. Cancer-intrinsic Cxcl5 orchestrates a global metabolic reprogramming for resistance to oxidative cell death in 3D. Cell Death Differ 2025:10.1038/s41418-025-01466-y. [PMID: 40050422 DOI: 10.1038/s41418-025-01466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/10/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Pancreatic ductal adenocarcinoma is characterized by a three-dimensional (3D) tumor microenvironment devoid of oxygen and nutrients but enriched in extracellular matrix, which acts as a physical and chemical barrier. In 3D, cancer cells reprogram their metabolic pathways in ways that help them survive hostile conditions. However, little is known about the metabolic phenotypes of cancer cells in 3D and the intrinsic cues that modulate them. We found that Cxcl5 deletion restricted pancreatic tumor growth in a 3D spheroid-in-Matrigel culture system without affecting cancer cell growth in 2D culture. Cxcl5 deletion impaired 3D-specific global metabolic reprogramming, resistance to hypoxia-induced cell death, and upregulation of Hif1α and Myc. Overexpression of Hif1α and Myc, however, effectively restored 3D culture-induced metabolic reconfiguration, growth, redox homeostasis, and mitochondrial function in Cxcl5-/- cells, reducing ferroptosis. We also found that pancreatic cancer patients with higher expression of hypoxia and metabolism-related genes whose expression is well-correlated with CXCL5 generally have poorer prognosis. Together, our findings identify an unanticipated role of Cxcl5 in orchestrating the cancer metabolic reprogramming in 3D culture that is required for energy and biomass maintenance and that restricts oxidative cell death. Thus, our results provide a rationale for targeting CXCL5 as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Ramin Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Arvie Camille V de Guzman
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Youn Lee
- Biometrology Group, Division of Biomedical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
38
|
Wen Y, Zhao G, Dai C. Cell-free DNA: plays an essential role in early diagnosis and immunotherapy of pancreatic cancer. Front Immunol 2025; 16:1546332. [PMID: 40124355 PMCID: PMC11925872 DOI: 10.3389/fimmu.2025.1546332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Pancreatic cancer is renowned for its aggressive nature and dismal prognosis, with the majority of patients diagnosed at an advanced stage. The prognosis for patients with pancreatic cancer can be improved by early diagnosis and effective treatment. Circulating cell-free DNA (cfDNA) has emerged as a promising biomarker for the early diagnosis and monitoring of pancreatic cancer. This research presents a review of circulating cell-free DNA essential role in the early diagnosis and immunotherapy of pancreatic cancer. The detection methods of cfDNA, its potential as a diagnostic biomarker, and the latest research progress in cfDNA-based immunotherapy are discussed. The findings suggest that cfDNA plays a vital role in the early detection and personalised treatment of pancreatic cancer, holding great promise for improving patient outcomes.
Collapse
Affiliation(s)
- Yi Wen
- College of Outstanding Clinician, Jiangsu University, Zhenjiang, China
| | - Gengmin Zhao
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chunhua Dai
- Department of Thoracic Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Li X, Zhang W, Fang Y, Sun T, Chen J, Tian R. Large-scale CRISPRi screens link metabolic stress to glioblastoma chemoresistance. J Transl Med 2025; 23:289. [PMID: 40050992 PMCID: PMC11887098 DOI: 10.1186/s12967-025-06261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) patients frequently develop resistance to temozolomide (TMZ), the standard chemotherapy. While targeting cancer metabolism shows promise, the relationship between metabolic perturbation and drug resistance remains poorly understood. METHODS We performed high-throughput CRISPR interference screens in GBM cells to identify genes modulating TMZ sensitivity. Findings were validated using multiple GBM cell lines, patient-derived glioma stem cells, and clinical data. Molecular mechanisms were investigated through transcriptome analysis, metabolic profiling, and functional assays. RESULTS We identified phosphoglycerate kinase 1 (PGK1) as a key determinant of TMZ sensitivity. Paradoxically, while PGK1 inhibition suppressed tumor growth, it enhanced TMZ resistance by inducing metabolic stress. This activated AMPK and HIF-1α pathways, leading to enhanced DNA damage repair through 53BP1. PGK1 expression levels correlated with TMZ sensitivity across multiple GBM models and patient samples. CONCLUSIONS Our study reveals an unexpected link between metabolic stress and chemoresistance, demonstrating how metabolic adaptation can promote therapeutic resistance. These findings caution against single-agent metabolic targeting and suggest PGK1 as a potential biomarker for TMZ response in GBM.
Collapse
Affiliation(s)
- Xing Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
| | - Wansong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
| | - Yitong Fang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
| | - Tianhu Sun
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
| | - Jian Chen
- Research Unit of Medical Neurobiology, Chinese Institute for Brain Research, Beijing, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruilin Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China.
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China.
| |
Collapse
|
40
|
Yu Z, Fu J, Mantareva V, Blažević I, Wu Y, Wen D, Battulga T, Wang Y, Zhang J. The role of tumor-derived exosomal LncRNA in tumor metastasis. Cancer Gene Ther 2025; 32:273-285. [PMID: 40011710 DOI: 10.1038/s41417-024-00852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 02/28/2025]
Abstract
Tumor metastasis regulated by multiple complicated pathways is closely related to variations in the tumor microenvironment. Exosomes can regulate the tumor microenvironment through various mechanisms. Exosomes derived from tumor cells carry a variety of substances, including long non-coding RNAs (lncRNAs), play important roles in intercellular communication and act as critical determinants influencing tumor metastasis. In this review, we elaborate on several pivotal processes through which lncRNAs regulate tumor metastasis, including the regulation of epithelial‒mesenchymal transition, promotion of angiogenesis and lymphangiogenesis, enhancement of the stemness of tumor cells, and evasion of immune clearance. Additionally, we comprehensively summarized a diverse array of potential tumor-derived exosomal lncRNA biomarkers to facilitate accurate diagnosis and prognosis in a clinical setting.
Collapse
Affiliation(s)
- Zhile Yu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Jiali Fu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113, Sofia, Bulgaria
| | - Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Yusong Wu
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Dianchang Wen
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia.
| | - Yuqing Wang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, 510140, PR China.
| | - Jianye Zhang
- The Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510700, PR China.
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511518, PR China.
| |
Collapse
|
41
|
Reddan B, Cummins EP. The regulation of cell metabolism by hypoxia and hypercapnia. J Biol Chem 2025; 301:108252. [PMID: 39914740 PMCID: PMC11923829 DOI: 10.1016/j.jbc.2025.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 03/06/2025] Open
Abstract
Every cell in the body is exposed to a certain level of CO2 and O2. Hypercapnia and hypoxia elicit stress signals to influence cellular metabolism and function. Both conditions exert profound yet distinct effects on metabolic pathways and mitochondrial dynamics, highlighting the need for cells to adapt to changes in the gaseous microenvironment. The interplay between hypercapnia and hypoxia signaling is the key for dictating cellular homeostasis as microenvironmental CO2 and O2 levels are inextricably linked. Hypercapnia, characterized by elevated pCO2, introduces metabolic adaptations within the aerobic metabolism pathways, affecting tricarboxylic acid cycle flux, lipid, and amino acid metabolism, oxidative phosphorylation and the electron transport chain. Hypoxia, defined by reduced oxygen availability, necessitates a shift from oxidative phosphorylation to anaerobic glycolysis to sustain ATP production, a process orchestrated by the stabilization of hypoxia-inducible factor-1α. Given that hypoxia and hypercapnia are present in both physiological and cancerous microenvironments, how might the coexistence of hypercapnia and hypoxia influence metabolic pathways and cellular function in physiological niches and the tumor microenvironment?
Collapse
Affiliation(s)
- Ben Reddan
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Eoin P Cummins
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
42
|
Peinado P, Stazi M, Ballabio C, Margineanu MB, Li Z, Colón CI, Hsieh MS, Pal Choudhuri S, Stastny V, Hamilton S, Le Marois A, Collingridge J, Conrad L, Chen Y, Ng SR, Magendantz M, Bhutkar A, Chen JS, Sahai E, Drapkin BJ, Jacks T, Vander Heiden MG, Kopanitsa MV, Robinson HPC, Li L. Intrinsic electrical activity drives small-cell lung cancer progression. Nature 2025; 639:765-775. [PMID: 39939778 PMCID: PMC11922742 DOI: 10.1038/s41586-024-08575-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/23/2024] [Indexed: 02/14/2025]
Abstract
Elevated or ectopic expression of neuronal receptors promotes tumour progression in many cancer types1,2; neuroendocrine (NE) transformation of adenocarcinomas has also been associated with increased aggressiveness3. Whether the defining neuronal feature, namely electrical excitability, exists in cancer cells and impacts cancer progression remains mostly unexplored. Small-cell lung cancer (SCLC) is an archetypal example of a highly aggressive NE cancer and comprises two major distinct subpopulations: NE cells and non-NE cells4,5. Here we show that NE cells, but not non-NE cells, are excitable, and their action potential firing directly promotes SCLC malignancy. However, the resultant high ATP demand leads to an unusual dependency on oxidative phosphorylation in NE cells. This finding contrasts with the properties of most cancer cells reported in the literature, which are non-excitable and rely heavily on aerobic glycolysis. Additionally, we found that non-NE cells metabolically support NE cells, a process akin to the astrocyte-neuron metabolite shuttle6. Finally, we observed drastic changes in the innervation landscape during SCLC progression, which coincided with increased intratumoural heterogeneity and elevated neuronal features in SCLC cells, suggesting an induction of a tumour-autonomous vicious cycle, driven by cancer cell-intrinsic electrical activity, which confers long-term tumorigenic capability and metastatic potential.
Collapse
Affiliation(s)
- Paola Peinado
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK
| | - Marco Stazi
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK
| | - Claudio Ballabio
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK
| | | | - Zhaoqi Li
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caterina I Colón
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shreoshi Pal Choudhuri
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Victor Stastny
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Seth Hamilton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Alix Le Marois
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, UK
| | - Jodie Collingridge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Linus Conrad
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yinxing Chen
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheng Rong Ng
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret Magendantz
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arjun Bhutkar
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jin-Shing Chen
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, UK
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Tyler Jacks
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maksym V Kopanitsa
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK
- Charles River Discovery Services, Portishead, UK
| | - Hugh P C Robinson
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Leanne Li
- Cancer Neuroscience Laboratory, Francis Crick Institute, London, UK.
- Koch Institute of Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
43
|
Gao H, Sun Z, Hu X, Song W, Liu Y, Zou M, Zhu M, Cheng Z. Identification of glycolysis-related gene signatures for prognosis and therapeutic targeting in idiopathic pulmonary fibrosis. Front Pharmacol 2025; 16:1486357. [PMID: 40093327 PMCID: PMC11906445 DOI: 10.3389/fphar.2025.1486357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Background Glycolysis plays a crucial role in fibrosis, but the specific genes involved in glycolysis in idiopathic pulmonary fibrosis (IPF) are not well understood. Methods Three IPF gene expression datasets were obtained from the Gene Expression Omnibus (GEO), while glycolysis-related genes were retrieved from the Molecular Signatures Database (MsigDB). Differentially expressed glycolysis-related genes (DEGRGs) were identified using the "limma" R package. Diagnostic glycolysis-related genes (GRGs) were selected through least absolute shrinkage and selection operator (LASSO) regression regression and support vector machine-recursive feature elimination (SVM-RFE). A prognostic signature was developed using LASSO regression, and time-dependent receiver operating characteristic (ROC) curves were generated to evaluate predictive performance. Single-cell RNA sequencing (scRNA-seq) data were analyzed to examine GRG expression across various cell types. Immune infiltration analysis, Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA) were performed to elucidate potential molecular mechanisms. A bleomycin (BLM)-induced pulmonary fibrosis mouse model was used for experimental validation via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results 14 GRGs (VCAN, MERTK, FBP2, TPBG, SDC1, AURKA, ARTN, PGP, PLOD2, PKLR, PFKM, DEPDC1, AGRN, CXCR4) were identified as diagnostic markers for IPF, with seven (ARTN, AURKA, DEPDC1, FBP2, MERTK, PFKM, SDC1) forming a prognostic model demonstrating predictive power (AUC: 0.831-0.793). scRNA-seq revealed cell-type-specific GRG expression, particularly in macrophages and fibroblasts. Immune infiltration analysis linked GRGs to imbalanced immune responses. Experimental validation in a bleomycin-induced fibrosis model confirmed the upregulation of GRGs (such as AURKA, CXCR4). Drug prediction identified inhibitors (such as Tozasertib for AURKA, Plerixafor for CXCR4) as potential therapeutic agents. Conclusion This study identifies GRGs as potential prognostic biomarkers for IPF and highlights their role in modulating immune responses within the fibrotic lung microenvironment. Notably, AURKA, MERTK, and CXCR4 were associated with pathways linked to fibrosis progression and represent potential therapeutic targets. Our findings provide insights into metabolic reprogramming in IPF and suggest that targeting glycolysis-related pathways may offer novel pharmacological strategies for antifibrotic therapy.
Collapse
Affiliation(s)
- Han Gao
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhongyi Sun
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xingxing Hu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weiwei Song
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Menglin Zou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Fourth Ward of Medical Care Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Minghui Zhu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China
| |
Collapse
|
44
|
Wang Y, Peng X, Wang X, Chen J, Zheng X, Zhao X, Guo C, Du J. Glycolysis regulates palatal mesenchyme proliferation through Pten-Glut1 axis via Pten classical and non-classical pathways. Cell Biol Toxicol 2025; 41:53. [PMID: 40014184 PMCID: PMC11868302 DOI: 10.1007/s10565-025-10000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Abnormal embryonic development leads to the formation of cleft palate (CP) which is difficult to be detected by genetic screening and needs sequent treatment from infants to adults. There are no interceptive treatment about CP until now. Germline deletion of phosphatase and tensin homolog (Pten) was related to embryonic malformation and regulated tumor cell proliferation through glycolysis. However, the role of Pten in CP and the relationship between CP, Pten, and glycolysis are unknown. In our research, we constructed Pten knockdown models in vitro and in vivo. Our results provided preliminary evidence that blocking Pten by its inhibitor such as VO-OHpic might be an effective interceptive treatment in early period of palate development when pregnant mother expose in harmful environment during the early period of palate development to reducing CP occurring which was related with the crosstalk between Pten, and glycolysis in the process.
Collapse
Affiliation(s)
- Yijia Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No.9 Fanjiacun Road, Beijing, 100070, China
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No.9 Fanjiacun Road, Beijing, 100070, China
| | - Xia Peng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No.9 Fanjiacun Road, Beijing, 100070, China
| | - Xiaotong Wang
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No.9 Fanjiacun Road, Beijing, 100070, China
| | - Jing Chen
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No.9 Fanjiacun Road, Beijing, 100070, China
| | - Xiaoyu Zheng
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No.9 Fanjiacun Road, Beijing, 100070, China
| | - Xige Zhao
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No.9 Fanjiacun Road, Beijing, 100070, China
| | - Cui Guo
- Department of Geriatric Dentistry, Capital Medical University School of Stomatology, Fanjiacun Road No.9, Beijing, 100070, China
| | - Juan Du
- Laboratory of Orofacial Development, Laboratory of Molecular Signaling and Stem Cells Therapy, Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, No.9 Fanjiacun Road, Beijing, 100070, China.
| |
Collapse
|
45
|
Qiao Q, Shen B, Lin K, Zhu D, Hong P, Zhang L, Sun J, Sun S, Gao Y, Zhang S, Wang J, Liu Q. Detecting the physiological and molecular mechanisms by which abscisic acid (ABA) regulates the consistency of sweet cherry fruit maturity. Sci Rep 2025; 15:6311. [PMID: 39984573 PMCID: PMC11845490 DOI: 10.1038/s41598-025-85821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/06/2025] [Indexed: 02/23/2025] Open
Abstract
In the cultivation and production of sweet cherry, the cost of picking fruit is high due to inconsistency in the maturation period, which has affected the development of the cherry industry. In this study, the effects of exogenous abscisic acid (ABA) on the sweet cherry variety 'Luying 3' fruit quality and maturation stage were observed and recorded, and the physiological and molecular mechanisms were explored to systematically analyze the effects of ABA on sweet cherry fruit ripening to promote the development of the cherry industry. Exogenous ABA (400 mg L-1) enhanced the color of 'Luying 3' fruit in the developing stage but had no significant effect on the fruit weight, soluble solid content, titratable acid content, and sugar-acid ratio in the mature stage. The application of ABA significantly promoted the secretion of endogenous ABA, gibberellin (GA) and salicylic acid (SA). A total of 766 differentially expressed genes (DEGs) were obtained between the treatment group and the control group at 47 and 54 d after flowering. The DEGs were significantly enriched in plant hormone signal transduction pathway, MAPK plant signal transduction pathway and glycolysis pathway. Six genes related to the synthesis of endogenous hormones were screened, of which five were upregulated and one was downregulated. Four DEGs related to the sweet cherry fruit metabolic rate were upregulated by ABA, which positively regulated fruit ripening. Eight differentially expressed AP2/ERF transcription factors were identified, of which 5 were upregulated and 3 were downregulated. This study provides a theoretical foundation for the application of ABA in promoting the consistency of cherry fruit maturity.
Collapse
Affiliation(s)
- Qian Qiao
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Bingxue Shen
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, 271000, Shandong, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ke Lin
- Department of Biology Science and Technology, Taishan University, Taian, 271000, Shandong, China
| | - Dongzi Zhu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Po Hong
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Lisi Zhang
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Jiazheng Sun
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Shan Sun
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, 271000, Shandong, China
| | - Yun Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Jiawei Wang
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, 271000, Shandong, China.
| | - Qingzhong Liu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, 271000, Shandong, China.
| |
Collapse
|
46
|
Wang Y, Zhu Z, Deng L, Cheng KK, Guo F, Lin G, Raftery D, Dong J. Multiscale Synergy Networks Offer Insights into Disease and Comorbidity Mechanisms. Anal Chem 2025; 97:3633-3642. [PMID: 39908457 DOI: 10.1021/acs.analchem.4c06133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Complex diseases involve extensive metabolic interactions within intricate biological networks. Consequently, it is advantageous to analyze metabolic phenotype data through metabolite interactions rather than focus on individual metabolites in isolation. In this article, we propose a novel analysis strategy called SynNet, which constructs multiscale synergy networks associated with specific metabolic phenotypes, offering new perspectives on the metabolic response mechanisms of diseases, including the mechanisms underlying disease comorbidity. The SynNet strategy begins with the construction of a metabolite-level synergy network (m-SynNet). This network is based on the definition and identification of significant metabolite pair interactions that distinguish disease phenotypes. Subsequently, a pathway synergy effect is defined by mapping these synergistic metabolite pairs onto the predefined metabolic pathways and performing a hypergeometric test to assess the probability of these pairs affecting a given pathway pair. The resulting significant pathway pairs identified form a pathway-level synergy network (p-SynNet). Both m-SynNet and p-SynNet offer complementary insights into disease mechanisms that go beyond conventional metabolomics analysis. For example, nodes with high connectivity in m-/p-SynNet suggest a strong correlation with the phenotype, while shared pathways across different phenotypes offer clues about the mechanisms of disease comorbidity. We applied the SynNet strategy to two real-world metabolomic data sets of disease comorbidity and identified key pathways associated with disease comorbidity from the p-SynNet. The candidate pathways are supported by the existing literature. Thus, the SynNet strategy may represent an alternative approach for metabolomic data analysis, providing novel insights into disease mechanisms and comorbidity.
Collapse
Affiliation(s)
- Yongpei Wang
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Zeyu Zhu
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Lingli Deng
- Department of Information Engineering, East China University of Technology, Nanchang 330013, China
| | - Kian-Kai Cheng
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
| | - Fanjing Guo
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Genjin Lin
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, Washington 98109, United States
| | - Jiyang Dong
- Department of Electronic Science, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
47
|
Mocholi E, Corrigan E, Chalkiadakis T, Gulersonmez C, Stigter E, Vastert B, van Loosdregt J, Prekovic S, Coffer PJ. Glycolytic reprogramming shapes the histone acetylation profile of activated CD4 + T cells in juvenile idiopathic arthritis. Cell Rep 2025; 44:115287. [PMID: 40009514 DOI: 10.1016/j.celrep.2025.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 11/11/2024] [Accepted: 01/17/2025] [Indexed: 02/28/2025] Open
Abstract
Juvenile idiopathic arthritis (JIA) is an autoimmune disease characterized by accumulation of activated CD4+ T cells in the synovial fluid (SF) of affected joints. JIA CD4+ T cells exhibit a unique inflammation-associated epigenomic signature, but the underlying mechanisms remain unclear. We demonstrate that CD4+ T cells from JIA SF display heightened glycolysis upon activation and JIA-specific H3K27 acetylation, driving transcriptional reprogramming. Pharmacological inhibition of glycolysis altered the expression of genes associated with these acetylated regions. Healthy CD4+ T cells exposed to JIA SF exhibited increased glycolytic activity and transcriptomic changes marked by heightened histone 3 lysine 27 acetylation (H3K27ac) at JIA-specific genes. Elevated H3K27ac was dependent on glycolytic flux, while inhibiting glycolysis or pyruvate dehydrogenase (PDH) impaired transcription of SF-driven genes. These findings demonstrate a key role of glycolysis in JIA-specific gene expression, offering potential therapeutic targets for modulating inflammation in JIA.
Collapse
Affiliation(s)
- Enric Mocholi
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Edward Corrigan
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Theo Chalkiadakis
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Can Gulersonmez
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edwin Stigter
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bas Vastert
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
48
|
Shen J, Yao E, Tian W, He J, Gu Y, Zhao D. Glycolytic pathways: The hidden regulators in Parkinson's disease. Heliyon 2025; 11:e41831. [PMID: 39959499 PMCID: PMC11830313 DOI: 10.1016/j.heliyon.2025.e41831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative condition [1]; however, its association with glycolysis, specifically the activity of genes related to glycolysis, has not yet been explored. We downloaded 3 datasets related to PD from the GEO database and identified the glycolytic genes related to PD. Subsequently, GO and KEGG enrichment analyses were conducted. We constructed a PD diagnosis model using the SVM algorithm for differentially expressed glycolysis-related genes and verified the model with LASSO regression analysis. Next, we constructed a regulatory network of genes that were differentially expressed with respect to glycolysis. Finally, the amount of immune cell infiltration was analyzed in PD samples, and the correlation between differential genes and immune cells was calculated. A total of 64 differentially expressed glycolytic genes associated with PD were screened. Then, a GO analysis was conducted, followed by KEGG and GASE enrichment analyses. Within the established PD diagnostic model, 26 genes that were differentially expressed and linked to glycolysis showed strong statistical significance. After further screening, a diagnostic model for PD including seven key genes was established. Further analysis showed that ABHD5 most strongly correlated with neutrophils (r = 0.507). The key gene SMAD3 was strongly negatively associated with gamma delta T cells (r = -0.488). This research offered a theoretical foundation for the association between glycolysis and PD. Seven glycolytic genes were identified as significantly linked to PD and warrant additional research.
Collapse
Affiliation(s)
- Jing Shen
- Department of Neurology, the First Affiliated Hospital of Shihezi University, China
| | - Ensheng Yao
- Department of Neurology, the First Affiliated Hospital of Shihezi University, China
| | - Weidong Tian
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, China
| | - Jia He
- Department of Preventive Medicine, School of Medical, Shihezi University, China
| | - Yukai Gu
- Department of Preventive Medicine, School of Medical, Shihezi University, China
| | - Dong Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Shihezi University, China
| |
Collapse
|
49
|
Jiang T, Jia T, Yin Y, Li T, Song X, Feng W, Wang S, Ding L, Chen Y, Zhang Q. Cuproptosis-Inducing Functional Nanocomposites for Enhanced and Synergistic Cancer Radiotherapy. ACS NANO 2025; 19:5429-5446. [PMID: 39895200 DOI: 10.1021/acsnano.4c13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Radiotherapy is crucial in local cancer management and needs advancements. Tumor cells elevate intracellular copper levels to promote growth and resist radiation; thus, targeted copper delivery to mitochondria could enhance radiotherapy by inducing cuproptosis in tumor cells. In this study, we engineered a multifunctional nanoliposome complex, termed Lipo-Ele@CuO2, which encapsulates both copper peroxide (CuO2) and the copper chelator elesclomol, which can delivery Cu ions to the mitochondria. The Lipo-Ele@CuO2 complex induces mitochondria-mediated cuproptosis in tumor cells and synergistically enhances the efficacy of radiotherapy. CuO2 acts as a copper donor and exhibits inherent sensitivity to acidic environments. Additionally, it depletes intracellular glutathione, thereby sensitizing cells to cuproptosis. Leveraging its pH-responsive properties in the acidic tumor microenvironment, the Lipo-Ele@CuO2 facilitate the controlled release of elesclomol, efficiently delivering copper ions to mitochondria at tumor sites. The combined in vitro and in vivo studies demonstrate that Lipo-Ele@CuO2-based therapy significantly improves antitumor efficacy and exhibits excellent safety profiles, effectively inducing cuproptosis in tumor cells and boosting the effectiveness of radiotherapy. Furthermore, metabolomic and transcriptomic analyses reveal that this combination therapy precipitates significant alterations in tumor energy metabolism, notably repressing genes related to iron-sulfur cluster assembly and glycolysis, thereby confirming the induction of cuproptosis. This therapeutic strategy provides a viable approach for addressing clinical radiotherapy resistance and demonstrates significant translational potential.
Collapse
Affiliation(s)
- Tiaoyan Jiang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Tianying Jia
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yipengchen Yin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Tianyu Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang 325088, P. R. China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| |
Collapse
|
50
|
Wang Y, Zhao J, Zhao L. L-Lactate Administration Improved Synaptic Plasticity and Cognition in Early 3xTg-AD Mice. Int J Mol Sci 2025; 26:1486. [PMID: 40003952 PMCID: PMC11855780 DOI: 10.3390/ijms26041486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Synaptic plasticity impairment and behavioral deficits constitute classical pathological hallmarks in early-stage Alzheimer's disease (AD). Emerging evidence suggests these synaptic dysfunctions may stem from metabolic dysregulation, particularly impaired aerobic glycolysis. As a key product of astrocyte-mediated aerobic glycolysis, lactate serves dual roles as both an energy substrate and a signaling molecule, playing a critical regulatory role in synaptic plasticity and long-term memory formation. This study investigated whether exogenous L-lactate supplementation could ameliorate synaptic dysfunction and cognitive deficits in early-stage AD models. Our findings reveal significant reductions in hippocampal lactate levels in experimental AD mice. Systemic administration of L-lactate (200 mg/kg) effectively restored physiological lactate concentrations in both hippocampal tissue and cerebrospinal fluid (CSF). Chronic L-lactate treatment significantly improved spatial learning and memory performance in behavioral assessments. Electrophysiological recordings demonstrated that either acute bath application of L-lactate (2 mM) to hippocampal slices or chronic intraperitoneal administration enhanced high-frequency stimulation (HFS)-induced long-term potentiation (LTP) magnitude in 3xTg-AD mice. Ultrastructural analysis revealed that L-lactate treatment enhanced synaptic density and improved morphological features of hippocampal synapses. At the molecular level, L-lactate administration upregulated synaptic marker synaptophysin (SYP) expression while downregulating activity-regulated cytoskeletal-associated protein (ARC) levels in AD mice. These multimodal findings demonstrate that exogenous L-lactate supplementation effectively restores synaptic plasticity and cognitive function in early-stage 3xTg-AD mice through concurrent improvements at behavioral, structural, and molecular levels.
Collapse
Affiliation(s)
- Yaxin Wang
- School of Physical Education, Shanxi University, Taiyuan 030006, China; (Y.W.); (J.Z.)
| | - Jinfeng Zhao
- School of Physical Education, Shanxi University, Taiyuan 030006, China; (Y.W.); (J.Z.)
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|