1
|
Zanco B, Morimoto J, Cockerell F, Mirth C, Sgrò CM. Nutritional optima for life-history traits vary with temperature and across locally-adapted populations. JOURNAL OF INSECT PHYSIOLOGY 2025; 163:104815. [PMID: 40334813 DOI: 10.1016/j.jinsphys.2025.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
As the climate changes, populations must overcome more frequent and more extreme exposure to a wide range of stressors. However, our knowledge of how locally-adapted populations respond to combinations of stressors remains incomplete. Recent studies show that elevated temperatures can interact with nutrition to accentuate the negative effects of a poor diet, suggesting higher costs of nutritional stress when individuals experience temperatures outside of their locally-adapted conditions. This can translate into reduced nutrient optima under thermal stress in life-history trait landscapes, a hypothesis that remains to be tested. Here, we used the Geometric Framework for Nutrition to test this hypothesis using two locally-adapted populations of Drosophila melanogaster from opposing ends of a well-characterised adaptive gradient along the east coast of Australia (tropical vs. temperate). We found that the negative effects of nutritional stress were significantly greater in the tropical population under warmer temperatures. In contrast, the temperate population was able to utilise a broader nutritional space to maintain high viability and a large wing size across the range of fluctuating temperatures. Our findings reveal the ways in which local adaptation impacts how populations navigate and explore the nutritional space in response to increasingly stressful thermal conditions. These data suggest that certain populations may be better able to cope with increasingly stressful and variable environments, while others may be more vulnerable to local extinctions.
Collapse
Affiliation(s)
- Brooke Zanco
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Division of Biosciences, University College London, London, UK.
| | - Juliano Morimoto
- Institute of Mathematics, School of Natural and Computer Sciences, University of Aberdeen, Farser Noble Building, Aberdeen, AB24 3UE Scotland, UK; Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba 82590-300, Brazil
| | - Fiona Cockerell
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Christen Mirth
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Kennedy TE, Sing SE, Peterson RKD. Critical thermal limits of the seasonal migrant, Euxoa auxiliaris (Lepidoptera: Noctuidae). ENVIRONMENTAL ENTOMOLOGY 2025; 54:331-340. [PMID: 39999005 PMCID: PMC12005950 DOI: 10.1093/ee/nvaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
The larval stage of the army cutworm, Euxoa auxiliaris (Grote), is an agricultural pest in the Great Plains region of North America. Adult migration to alpine aggregation sites to escape extreme summer temperatures and depleted food resources provides a critical food resource for the grizzly bear, Ursus arctos horribilis (Linnaeus, Carnivora: Ursidae), in the Rocky Mountains. However, little is understood about the ecological consequences of the thermal tolerance of adult E. auxiliaris. Therefore, we investigated thermal tolerance of lab-reared and wild-caught individuals by assessing their critical thermal limits (CTLmax and CTLmin). Using a ramping tolerance assay, we began at 25 °C and adjusted the temperature at a rate of 0.3 °C/min until individuals lost control of their righting response. Adult moths had a CTLmax (lab-reared: 44.13 °C, wild-caught moths: 43.28 °C) typical for a temperate lepidopteran species. However, their CTLmin (lab-reared: -2.24 °C, wild-caught: -1.9 °C) reflects an extraordinary ability to remain active and feed when ambient temperatures are low. These findings provide insights into the thermal ecology of E. auxiliaris which are essential for predicting the range distribution of the species, and, consequently, the continued availability of this key food source for Rocky Mountain grizzly bears. As climate change continues to affect ambient temperatures, these results underscore the importance of studying thermal tolerance to anticipate ecological shifts and ensure the conservation of both E. auxiliaris and the grizzly bears that depend on them.
Collapse
Affiliation(s)
- Taylor E Kennedy
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Sharlene E Sing
- USDA, Forest Service, Rocky Mountain Research Station, Bozeman, MT, USA
| | - Robert K D Peterson
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT, USA
| |
Collapse
|
3
|
Shocket MS, Bernhardt JR, Miazgowicz KL, Orakzai A, Savage VM, Hall RJ, Ryan SJ, Murdock CC. Mean daily temperatures predict the thermal limits of malaria transmission better than hourly rate summation. Nat Commun 2025; 16:3441. [PMID: 40216754 PMCID: PMC11992237 DOI: 10.1038/s41467-025-58612-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Temperature shapes the geographic distribution, seasonality, and magnitude of mosquito-borne disease outbreaks. Models predicting transmission often use mosquito and pathogen thermal responses measured at constant temperatures. However, mosquitoes live in fluctuating temperatures. Rate summation--non-linear averaging of trait values measured at constant temperatures-is commonly used to infer performance in fluctuating environments, but its accuracy is rarely validated. We measured three traits that impact transmission-bite rate, survival, fecundity-in a malaria mosquito (Anopheles stephensi) across three diurnal temperature ranges (0, 9, and 12 °C). We compared transmission thermal suitability models with temperature-trait relationships observed under constant temperatures, fluctuating temperatures, and those predicted by rate summation. We mapped results across An. stephenesi's native Asian and invasive African ranges. We found: 1) daily temperature fluctuation trait values substantially differ from both constant temperature experiments and rate summation; 2) rate summation partially captured decreases in performance near thermal optima, yet incorrectly predicted increases near thermal limits; and 3) while thermal suitability across constant temperatures did not perfectly capture fluctuating environments, it was better than rate summation for estimating and mapping thermal limits. Our study provides insight into methods for predicting mosquito-borne disease risk and emphasizes the need to improve understanding of organismal performance under fluctuating conditions.
Collapse
Affiliation(s)
- Marta S Shocket
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
- Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
- Department of Ecology and Evolutionary Biology and Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Joey R Bernhardt
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Kerri L Miazgowicz
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Alyzeh Orakzai
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Van M Savage
- Department of Ecology and Evolutionary Biology and Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Richard J Hall
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Sadie J Ryan
- Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Courtney C Murdock
- Odum School of Ecology, University of Georgia, Athens, GA, USA.
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA.
- Cornell University, Ithaca, NY, USA.
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Diaz F, Matzkin LM. The Transcriptional Landscape of Adaptive Thermal Plasticity Within and Across Generations: The Role of Gene Expression and Alternative Splicing. Mol Ecol 2025; 34:e17715. [PMID: 40066715 DOI: 10.1111/mec.17715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 02/02/2025] [Accepted: 02/20/2025] [Indexed: 03/26/2025]
Abstract
There is increasing evidence for the co-occurrence of adaptive within-generation (WGP) and transgenerational (TGP) plasticity and the ecological scenarios driving both types of plasticity. However, some aspects of their transcriptional mechanisms, such as the role of alternative splicing and the consequences of parental acclimation across life stages, have remained elusive. We explore these fundamental questions by considering the desert endemic Drosophila mojavensis for which prior evidence indicates adaptive thermal acclimation within and across generations. We implement a full factorial design to estimate genome-wide patterns of differential gene expression (DE) and alternative splicing (AS) in response to acclimation treatments performed in the parental and offspring generations, as well as considering larval and adult stages. Our results demonstrate that mechanisms of alternative splicing represent a substantial difference between WGP and TGP. These mechanisms contribute substantially to transcriptional plasticity within generations but not across generations. We found a great number of genes associated with transcriptional TGP, which is exclusive to larval stages and not adult samples. Finally, we provide evidence demonstrating opposing transcriptional trajectories in differential gene expression between WGP and TGP. Thus, parental acclimation appears to up-regulate genes that are down-regulated during offspring acclimation. This pattern suggests a possible hypothesis for the mechanisms explaining the compensatory effect of parental acclimation in the offspring generation.
Collapse
Affiliation(s)
- Fernando Diaz
- Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, Texas, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Chakraborty A, Sgrò CM, Mirth CK. Untangling plastic responses to combined thermal and dietary stress in insects. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101328. [PMID: 39743206 DOI: 10.1016/j.cois.2024.101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Animals are exposed to changes in their environmental conditions daily. Such changes will become increasingly more erratic and unpredictable with ongoing climate change. Responses to changing environments are influenced by the genetic architecture of the traits under selection and modified by a range of physiological, developmental, and behavioural changes resulting from phenotypic plasticity. Furthermore, the interactions between multiple environmental stressors to which organisms are exposed can generate unexpected phenotypic responses. Understanding how genetic and plastic variation contributes to the response to combined environmental stress will be key to predicting how animals will cope with climate change and ultimately will define their ability to persist. Here, we review the approaches used to explore how animals respond to combined stressors, specifically nutrition and temperature, the physiological mechanisms that underlie such plastic responses, and how genetic variation alters this plasticity.
Collapse
Affiliation(s)
- Avishikta Chakraborty
- University College London, London, United Kingdom; Monash University, Clayton, Melbourne, Australia
| | - Carla M Sgrò
- Monash University, Clayton, Melbourne, Australia
| | | |
Collapse
|
6
|
Botsch JC, Daniels JD, Roeder KA. Effects of short-term heat stress on the thermal tolerance of western corn rootworm (Coleoptera: Chrysomelidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2025; 25:21. [PMID: 40278043 PMCID: PMC12023148 DOI: 10.1093/jisesa/ieaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
Insect responses to warming temperatures are determined partly by their physiology, which is influenced by genetic factors and plasticity induced by past temperature exposure. The effect that prior high temperature exposure has on insect thermal tolerance is complex and depends on the degree of heat stress experienced; high heat exposure may allow for individuals to tolerate higher temperatures through hardening or may reduce an individual's capacity to withstand higher temperatures through accumulated heat stress. In this study, we assessed how short exposures to high temperatures and a laboratory colony's geographical origin affected the critical thermal maximum (CTmax) of western corn rootworm (Diabrotica virgifera virgifera LeConte), an economically important pest. Despite a wide latitudinal range of source populations, western corn rootworm colonies did not differ in their CTmax. Regardless of colony origin, we found that exposing western corn rootworm to higher temperatures resulted in lower CTmax, which suggests that heat stress accumulated. This study highlights how western corn rootworm experiences heat stress at temperatures near the temperatures they experience in the field, which may have important and currently unknown implications for its behavior.
Collapse
Affiliation(s)
- Jamieson C Botsch
- Department of Biology, Austin Peay State University, Clarksville, TN, USA
- Oak Ridge Associated Universities, Oak Ridge, TN, USA
- USDA, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, SD, USA
| | - Jesse D Daniels
- USDA, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, SD, USA
| | - Karl A Roeder
- USDA, Agricultural Research Service, North Central Agricultural Research Laboratory, Brookings, SD, USA
| |
Collapse
|
7
|
Guo YW, Liu Y, Huang PC, Rong M, Wei W, Xu YH, Wei JH. Adaptive Changes and Genetic Mechanisms in Organisms Under Controlled Conditions: A Review. Int J Mol Sci 2025; 26:2130. [PMID: 40076752 PMCID: PMC11900562 DOI: 10.3390/ijms26052130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Adaptive changes encompass physiological, morphological, or behavioral modifications occurring in organisms in response to specific environmental conditions. These modifications may become established within a population through natural selection. While adaptive changes can influence individuals or populations over short timeframes, evolution involves the inheritance and accumulation of these changes over extended periods under environmental pressures through natural selection. At present, addressing climate change, emerging infectious diseases, and food security are the main challenges faced by scientists. A comprehensive and profound understanding of the mechanisms of adaptive evolution is of great significance for solving these problems. The genetic basis of these adaptations can be examined through classical genetics, which includes stochastic gene mutations and chromosomal instability, as well as epigenetics, which involves DNA methylation and histone modifications. These mechanisms not only govern the rate and magnitude of adaptive changes but also affect the transmission of adaptive traits to subsequent generations. In the study of adaptive changes under controlled conditions, short-term controlled experiments are commonly utilized in microbial and animal research to investigate long-term evolutionary trends. However, the application of this approach in plant research remains limited. This review systematically compiles the findings on adaptive changes and their genetic foundations in organisms within controlled environments. It aims to provide valuable insights into fundamental evolutionary processes, offering novel theoretical frameworks and research methodologies for future experimental designs, particularly in the field of plant studies.
Collapse
Affiliation(s)
- Yu-Wei Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Yang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Peng-Cheng Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Wei Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (Y.-W.G.); (Y.L.); (P.-C.H.); (M.R.); (W.W.)
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou 570311, China
| |
Collapse
|
8
|
Pekľanská M, van Heerwaarden B, Hoffmann AA, Nouzová M, Šíma R, Ross PA. Elevated developmental temperatures below the lethal limit reduce Aedes aegypti fertility. J Exp Biol 2025; 228:JEB249803. [PMID: 39760305 PMCID: PMC11832123 DOI: 10.1242/jeb.249803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Aedes aegypti mosquitoes are the principal vectors of dengue and continue to pose a threat to human health, with ongoing urbanization, climate change and trade all impacting the distribution and abundance of this species. Hot periods are becoming increasingly common and their impacts on insect mortality have been well established, but they may have even greater impacts on insect fertility. In this study, we investigated the impacts of high temperatures on Ae. aegypti fertility both within and across generations. Mosquitoes developing under elevated temperatures exhibited higher critical thermal maxima (CTmax), reflecting developmental acclimation, but their fertility declined with increasing developmental temperature. In females, elevated developmental temperatures decreased fecundity while in males it tended to decrease the proportion of eggs that hatched and the proportion of individuals producing viable offspring. Rearing both sexes at 35°C increased fecundity in the subsequent generation but effects of elevated temperatures persisted across gonotrophic cycles within the same generation. Moreover, exposure of adults to 35°C further decreased fertility beyond the effects of developmental temperature alone. These findings highlight sub-lethal impacts of elevated temperatures on Ae. aegypti fertility and plastic responses to thermal stress within and across generations. This has significant implications for predicting the distribution and abundance of mosquito populations thriving in increasingly warmer environments.
Collapse
Affiliation(s)
- Miriama Pekľanská
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | - Belinda van Heerwaarden
- School of BioSciences,Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ary A. Hoffmann
- School of BioSciences,Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marcela Nouzová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic
- Bioptic laboratory, Mikulasske namesti 4, 32600 Plzen, Czech Republic
| | - Perran A. Ross
- School of BioSciences,Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
9
|
Garg D, Mayekar HV, Paikra S, Mishra M, Rajpurohit S. Wing spot in a tropical and a temperate drosophilid: C = C enrichment and conserved thermal response. BMC Ecol Evol 2025; 25:13. [PMID: 39849363 PMCID: PMC11755964 DOI: 10.1186/s12862-024-02333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/27/2024] [Indexed: 01/25/2025] Open
Abstract
Wings are primarily used in flight but also play a role in mating behaviour in many insects. Drosophila species exhibit a variety of pigmentation patterns on their wings. In some sexually dimorphic Drosophilids, a pigmented spot pattern is found at the top-right edge of the male wings. Our understanding of wing spot thermal plasticity in sexually dimorphic species is limited with wing spots being primarily associated with sexual selection. Here, we investigated the wing pigmentation response of two species with wing spots: D. biarmipes and D. suzukii species to thermal variation. We exposed freshly hatched larvae of both the species to three different growth temperatures and checked for wing pigmentation in adult males. Our results indicate wing pigmentation is a plastic trait in the species studied and that wing pigmentation is negatively correlated with higher temperature. In both species, wings were darker at lower temperature compared to higher temperature. Further, D. suzukii exhibits darker wing pigmentation compared to D. biarmipes. Variation in wing pigmentation in both D. suzukii and D. biarmipes could reflect habitat level differences; indicating a strong G*E interaction. Raman spectral analysis indicated a shift in chemical profiles of pigmented vs. non-pigmented areas of the wing. The wing spot was found enriched with carbon-carbon double-bond compared to the non-pigmented wing area. We report that C = C formation in spotted area is thermally controlled and conserved in two members of the suzukii subgroup i.e. D. biarmipes and D. suzukii. Our study indicated a conserved mechanism of the spot formation in two Drosophila species coming from contrasting distribution ranges.
Collapse
Affiliation(s)
- Divita Garg
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Harshad Vijay Mayekar
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Sanjeev Paikra
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Monalisa Mishra
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Subhash Rajpurohit
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Commerce Six Road, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
10
|
Papadogiorgou GD, Papadopoulos NT. Temperature and Host Fruit During Immature Development Shape Adult Life History Traits of Different Ceratitis capitata Populations. INSECTS 2025; 16:65. [PMID: 39859647 PMCID: PMC11765621 DOI: 10.3390/insects16010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Temperature and host fruit availability are key factors influencing the life history traits of the Mediterranean fruit fly (medfly) (Ceratitis capitata). This study examines how developmental temperature and host fruit type affect adult longevity and fecundity in medflies from six populations spanning Southern to Central Europe. Larvae were reared on apples and bitter oranges at three constant temperatures (15, 20, and 25 °C), with pupae maintained under the same thermal conditions until adult emergence. Adults were then kept at 25 °C, with longevity and fecundity recorded daily. The results showed that higher developmental temperatures increased adult lifespan across all populations, regardless of host fruit. Similarly, fecundity rates in ovipositing females were higher at higher temperatures. Reproductive periods (pre-oviposition, oviposition, and post-oviposition) varied among populations, indicating population-specific responses. These findings underscore how temperature and host fruit availability shape medfly invasion dynamics, highlighting the species' biological plasticity and adaptation to different environments. This research provides valuable insights for pest management, particularly in the context of climate change, offering strategies to mitigate the spread of medflies into new regions.
Collapse
Affiliation(s)
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Fytokou St., 38446 Volos, Greece;
| |
Collapse
|
11
|
O'Leary TS, Mikucki EE, Tangwancharoen S, Boyd JR, Frietze S, Helms Cahan S, Lockwood BL. Single-nuclei multiome ATAC and RNA sequencing reveals the molecular basis of thermal plasticity in Drosophila melanogaster embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631745. [PMID: 39829925 PMCID: PMC11741353 DOI: 10.1101/2025.01.08.631745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Embryogenesis is remarkably robust to temperature variability, yet there is limited understanding of the homeostatic mechanisms that offset thermal effects during early development. Here, we measured the thermal acclimation response of upper thermal limits and profiled chromatin state and the transcriptome of D. melanogaster embryos (Bownes Stage 11) using single-nuclei multiome ATAC and RNA sequencing. We report that thermal acclimation, while preserving a common set of primordial cell types, rapidly shifted the upper thermal limit. Cool-acclimated embryos showed a homeostatic response characterized by increased chromatin accessibility at transcription factor binding motifs for the transcriptional activator Zelda, along with enhanced activity of gene regulatory networks in the primordial cell types including the foregut and hindgut, mesoderm, and peripheral nervous system. In addition, cool-acclimated embryos had higher expression of genes encoding ribosomal proteins and enzymes involved in oxidative phosphorylation. Despite the hypothesis that differential heat tolerance might be explained by differential expression of molecular chaperones, we did not observe widespread differences in the chromatin accessibility or expression of heat shock genes. Overall, our results suggest that environmental robustness to temperature during embryogenesis necessitates homeostatic gene expression responses that regulate the speed of development, potentially imposing metabolic costs that constrain upper thermal limits.
Collapse
Affiliation(s)
- Thomas S O'Leary
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Emily E Mikucki
- Department of Biology, University of Vermont, Burlington, VT 05405
| | | | - Joseph R Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05401
| | - Sara Helms Cahan
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Brent L Lockwood
- Department of Biology, University of Vermont, Burlington, VT 05405
| |
Collapse
|
12
|
Garfinkel CF, McCain CM. The role of life stage and season in critical thermal limits of carrion beetles. J Therm Biol 2025; 127:104063. [PMID: 39904025 DOI: 10.1016/j.jtherbio.2025.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Larval and winter thermal limits may be vital for understanding responses to climate variability, but many studies of insect critical thermal limits focus on adults reared in benign conditions (lab or summer field conditions). For insects generally, temperature variability and thermal tolerance breadth are correlated. Thus, we predict broader thermal limits in adults compared to less-mobile larvae developing within a restricted microclimate. We also predict lower cold limits in winter adults compared to summer adults. To test for this thermal variability across life stages and seasons, we used a recirculating bath to determine critical thermal limits in two species of Colorado carrion beetles (Coleoptera: Staphylinidae: Silphinae) in which larvae develop within a carcass microclimate. For larval and adult comparisons, we used summer Thanatophilus lapponicus (n = 111) and Thanatophilus coloradensis (n = 46). For winter and summer comparisons, we used adult T. lapponicus (n = 103). We detected no difference between larvae and adults in T. lapponicus for either upper thermal limits (CTmax) or lower thermal limits (CTmin) for wild caught adults, bred larvae, and bred adults. In contrast, wild caught adults of T. coloradensis had a significantly lower CTmin (-5.7 ± 0.5 °C) compared to wild caught larvae (-3.0 ± 1.3 °C) and bred larvae (-3.5 ± 0.8 °C) with no difference in CTmax. Winter T. lapponicus adults displayed a nearly one-degree lower CTmin (-2.8 ± 1.6 °C) than summer adults (-1.9 ± 1.9 °C) with no difference in CTmax. These results demonstrate that even closely related, co-occurring species can have distinct strategies for coping with cold temperatures. And, in some cases, particularly for high-elevation specialists, larvae may benefit from a temperature-buffered microclimate. Heat tolerance was broad and less variable across life stages and seasons, emphasizing that variation in cold temperatures will be critical for responses to climate change, for example, changes in snow levels impacting insulation.
Collapse
Affiliation(s)
- Chloe F Garfinkel
- Ecology and Evolutionary Biology Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Christy M McCain
- Ecology and Evolutionary Biology Department, University of Colorado Boulder, Boulder, CO, 80309, USA; Natural History Museum, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
13
|
Hafsi A, Moquet L, Hendrycks W, De Meyer M, Virgilio M, Delatte H. Evidence for a gut microbial community conferring adaptability to diet quality and temperature stressors in phytophagous insects: the melon fruit fly Zeugodacus cucurbitae (Diptera: Tephritidae) as a case study. BMC Microbiol 2024; 24:514. [PMID: 39627693 PMCID: PMC11613556 DOI: 10.1186/s12866-024-03673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND The high invasiveness of phytophagous insects is related to their adaptability to various environments, that can be influenced by their associated microbial community. Microbial symbionts are known to play a key role in the biology, ecology, and evolution of phytophagous insects, but their abundance and diversity are suggested to be influenced by environmental stressors. In this work, using 16 S rRNA metabarcoding we aim to verify (1) if laboratory rearing affects microbial symbiont communities of Zeugodacus cucurbitae females, a cosmopolitan pest of cucurbitaceous crops (2) if temperature, diet quality, and antibiotic treatments affect microbial symbiont communities of both laboratory and wild populations, and (3) if changes in microbial symbiont communities due to temperature, diet and antibiotic affect longevity and fecundity of Z. cucurbitae. RESULTS The results showed that microbial diversity, particularly the β-diversity was significantly affected by insect origin, temperature, diet quality, and antibiotic treatment. The alteration of gut microbial symbionts, specifically Enterobacteriaceae, was associated with low fecundity and longevity of Z. cucurbitae females feeding on optimal diet only. Fecundity reduction in antibiotic treated females was more pronounced when flies were fed on a poor diet without protein. CONCLUSIONS our study proves the relationship between gut microbiome and host fitness under thermal and diet fluctuation highlighting the importance of microbial community in the adaptation of Z. cucurbitae to environmental stress. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Abir Hafsi
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France.
- Université de la Réunion, Saint Denis, La Réunion, 97400, France.
| | - Laura Moquet
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Wouter Hendrycks
- Royal Museum for Central Africa, Tervuren, Belgium
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, 2610, Belgium
| | | | | | - Hélène Delatte
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| |
Collapse
|
14
|
Sales K, Gage MJG, Vasudeva R. Experimental evolution reveals that males evolving within warmer thermal regimes improve reproductive performance under heatwave conditions in a model insect. J Evol Biol 2024; 37:1329-1344. [PMID: 39283813 DOI: 10.1093/jeb/voae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 11/04/2024]
Abstract
Climate change is increasing mean temperatures, and intensifying heatwaves. Natural populations may respond to stress through shorter-term acclimation via plasticity and/or longer-term inter-generational evolution. However, if the pace and/or extent of thermal change is too great, local extinctions occur; one potential cause in ectotherms is identified to be the heat-liability of male reproductive biology. Recent data from several species, including the beetle Tribolium castaneum, confirmed that male reproductive biology is vulnerable to heatwaves, which may constrain populations. However, such reproductive-damage may be overestimated, if there is potential to adapt to elevated mean temperatures associated with climate change via evolution and/or acclimation. Here, we tested this to evaluate whether pre-exposures could improve heatwave tolerance (adaptation or acclimation), by experimentally evolving Tribolium castaneum populations to divergent thermal regimes (30 °C vs. 38 °C). Findings across assays revealed that relative to 30 °C-regime males, males from the 38 °C regime, maintained constantly at 8 °C warmer for 25 generations, displayed an increase; (i) in post heatwave (42 °C) reproductive fitness by 55%, (ii) survival by 33%, and (iii) 32% larger testes volumes. Unexpectedly, in the acclimation assay, warm-adapted males' post-heatwave survival and reproduction were best if they experienced cool developmental acclimation beforehand, suggesting a cost to adapting to 38 °C. These results help progress knowledge of the potential for survival and reproduction to adapt to climate change; trait specific adaptation to divergent thermal regimes can occur over relatively few generations, but this capacity depended on the interaction of evolutionary and thermal acclimatory processes.
Collapse
Affiliation(s)
- Kris Sales
- Inventory, Forecasting and Operational Support, Forest Research, Farnham, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - M J G Gage
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - R Vasudeva
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- School of Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
15
|
Martínez-De León G, Thakur MP. Ecological debts induced by heat extremes. Trends Ecol Evol 2024; 39:1024-1034. [PMID: 39079760 DOI: 10.1016/j.tree.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 11/08/2024]
Abstract
Heat extremes have become the new norm in the Anthropocene. Their potential to trigger major ecological responses is widely acknowledged, but their unprecedented severity hinders our ability to predict the magnitude of such responses, both during and after extreme heat events. To address this challenge we propose a conceptual framework inspired by the core concepts of ecological stability and thermal biology to depict how responses of populations and communities accumulate at three response stages (exposure, resistance, and recovery). Biological mechanisms mitigating responses at a given stage incur associated costs that only become apparent at other response stages; these are known as 'ecological debts'. We outline several scenarios for how ecological responses associate with debts to better understand biodiversity changes caused by heat extremes.
Collapse
Affiliation(s)
| | - Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
16
|
Meena A, De Nardo AN, Maggu K, Sbilordo SH, Roy J, Snook RR, Lüpold S. Fertility loss and recovery dynamics after repeated heat stress across life stages in male Drosophila melanogaster: patterns and processes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241082. [PMID: 39359471 PMCID: PMC11444773 DOI: 10.1098/rsos.241082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Frequent and extreme temperatures associated with climate change pose a major threat to biodiversity, particularly for organisms whose metabolism is strictly linked to ambient temperatures. Many studies have explored thermal effects on survival, but heat-induced fertility loss is emerging as a greater threat to population persistence. However, while evidence is accumulating that both juvenile and adult stages heat exposure can impair fertility in their own ways, much less is known about the immediate and longer-term fitness consequences of repeated heat stress across life stages. To address this knowledge gap, we used male Drosophila melanogaster to investigate (i) the cumulative fitness effects of repeated heat stress across life stages, (ii) the potential of recovery from these heat exposures, and (iii) the underlying mechanisms. We found individual and combined effects of chronic juvenile and acute adult heat stress on male fitness traits. These effects tended to exacerbate over several days after brief heat exposure, indicating a substantial fertility loss for these short-lived organisms. Our findings highlight the cumulative and persistent effects of heat stress on fitness. Such combined effects could accelerate population declines, particularly in more vulnerable species, emphasizing the importance of considering reproduction and its recovery for more accurate models of species persistence.
Collapse
Affiliation(s)
- Abhishek Meena
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alessio N. De Nardo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Komal Maggu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Sonja H. Sbilordo
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rhonda R. Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Malik TG, Jarrett BJM, Sun SJ. The effect of experimental warming on reproductive performance and parental care in the burying beetle Nicrophorus nepalensis. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240653. [PMID: 39386988 PMCID: PMC11461049 DOI: 10.1098/rsos.240653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/13/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Rising temperatures can adversely affect parental care and reproductive performance across a range of taxa. However, the warming impact is contingent upon understanding how temperature affects the spectrum of parental behaviours and their interplay. Here, we assessed how temperature affects parental care and reproductive success in the burying beetle, Nicrophorus nepalensis, which exhibits complex parental care behaviours. We exposed breeding pairs of N. nepalensis, to three temperature regimes (18°C, 20°C and 22°C) and assessed changes in parental care, and the subsequent development and growth of their offspring. Our findings show that 22°C disrupts carcass nest building by the parents and results in smaller clutches. Moreover, no eggs successfully hatched in the 22°C treatment. A milder increase to 20°C did not affect the hatching rate but resulted in smaller broods and lighter offspring, even when considering brood size, suggesting a change in post-hatching care quality. Our research suggests that warming may weakly affect parental care but has strong detrimental effects on offspring performance. These findings highlight the necessity of investigating the effect of ambient temperature across a diversity of traits and behaviours and across a range of life-history stages to fully assess species vulnerability in the face of future climate change.
Collapse
Affiliation(s)
- Tanzil Gaffar Malik
- International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taipei10617, Taiwan
| | - Benjamin J. M. Jarrett
- School of Environmental & Natural Sciences, Bangor University, Bangor, GwyneddLL57 2UR, UK
| | - Syuan-Jyun Sun
- International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taipei10617, Taiwan
| |
Collapse
|
18
|
Shocket MS, Bernhardt JR, Miazgowicz KL, Orakzai A, Savage VM, Hall RJ, Ryan SJ, Murdock CC. Mean daily temperatures can predict the thermal limits of malaria transmission better than rate summation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614098. [PMID: 39386442 PMCID: PMC11463682 DOI: 10.1101/2024.09.20.614098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Temperature shapes the distribution, seasonality, and magnitude of mosquito-borne disease outbreaks. Mechanistic models predicting transmission often use mosquito and pathogen thermal responses from constant temperature experiments. However, mosquitoes live in fluctuating environments. Rate summation (nonlinear averaging) is a common approach to infer performance in fluctuating environments, but its accuracy is rarely validated. We measured three mosquito traits that impact transmission (bite rate, survival, fecundity) in a malaria mosquito (Anopheles stephensi) across temperature gradients with three diurnal temperature ranges (0, 9 and 12°C). We compared thermal suitability models with temperature-trait relationships observed under constant temperatures, fluctuating temperatures, and those predicted by rate summation. We mapped results across An. stephenesi's native Asian and invasive African ranges. We found: 1) daily temperature fluctuation significantly altered trait thermal responses; 2) rate summation partially captured decreases in performance near thermal optima, but also incorrectly predicted increases near thermal limits; and 3) while thermal suitability characterized across constant temperatures did not perfectly capture suitability in fluctuating environments, it was more accurate for estimating and mapping thermal limits than predictions from rate summation. Our study provides insight into methods for predicting mosquito-borne disease risk and emphasizes the need to improve understanding of organismal performance under fluctuating conditions.
Collapse
Affiliation(s)
- Marta S. Shocket
- Lancaster Environment Centre, Lancaster University, UK
- Department of Geography, University of Florida, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, USA
| | | | | | | | - Van M. Savage
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, USA
| | - Richard J. Hall
- Department of Infectious Diseases, University of Georgia, USA
- Odum School of Ecology, University of Georgia, USA
| | | | | |
Collapse
|
19
|
Brass DP, Cobbold CA, Purse BV, Ewing DA, Callaghan A, White SM. Role of vector phenotypic plasticity in disease transmission as illustrated by the spread of dengue virus by Aedes albopictus. Nat Commun 2024; 15:7823. [PMID: 39242617 PMCID: PMC11379831 DOI: 10.1038/s41467-024-52144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
The incidence of vector-borne disease is on the rise globally, with burdens increasing in endemic countries and outbreaks occurring in new locations. Effective mitigation and intervention strategies require models that accurately predict both spatial and temporal changes in disease dynamics, but this remains challenging due to the complex and interactive relationships between environmental variation and the vector traits that govern the transmission of vector-borne diseases. Predictions of disease risk in the literature typically assume that vector traits vary instantaneously and independently of population density, and therefore do not capture the delayed response of these same traits to past biotic and abiotic environments. We argue here that to produce accurate predictions of disease risk it is necessary to account for environmentally driven and delayed instances of phenotypic plasticity. To show this, we develop a stage and phenotypically structured model for the invasive mosquito vector, Aedes albopictus, and dengue, the second most prevalent human vector-borne disease worldwide. We find that environmental variation drives a dynamic phenotypic structure in the mosquito population, which accurately predicts global patterns of mosquito trait-abundance dynamics. In turn, this interacts with disease transmission to capture historic dengue outbreaks. By comparing the model to a suite of simpler models, we reveal that it is the delayed phenotypic structure that is critical for accurate prediction. Consequently, the incorporation of vector trait relationships into transmission models is critical to improvement of early warning systems that inform mitigation and control strategies.
Collapse
Affiliation(s)
- Dominic P Brass
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK.
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK.
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, UK
| | - Bethan V Purse
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| | - David A Ewing
- Biomathematics and Statistics Scotland, Edinburgh, UK
| | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, UK
| | - Steven M White
- UK Centre for Ecology & Hydrology, Benson Lane, Wallingford, Oxfordshire, UK
| |
Collapse
|
20
|
Angelotti F, Hamada E, Bettiol W. A Comprehensive Review of Climate Change and Plant Diseases in Brazil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2447. [PMID: 39273931 PMCID: PMC11396851 DOI: 10.3390/plants13172447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
Analyzing the impacts of climate change on phytosanitary problems in Brazil is crucial due to the country's special role in global food security as one of the largest producers of essential commodities. This review focuses on the effects of climate change on plant diseases and discusses its main challenges in light of Brazil's diverse agricultural landscape. To assess the risk of diseases caused by fungi, bacteria, viruses, oomycetes, nematodes, and spiroplasms, we surveyed 304 pathosystems across 32 crops of economic importance from 2005 to 2022. Results show that diseases caused by fungi account for 79% of the pathosystems evaluated. Predicting the occurrence of diseases in a changing climate is a complex challenge, and the continuity of this work is strategic for Brazil's agricultural defense. The future risk scenarios analyzed here aim to help guide disease mitigation for cropping systems. Despite substantial progress and ongoing efforts, further research will be needed to effectively prevent economic and environmental damage.
Collapse
Affiliation(s)
- Francislene Angelotti
- Embrapa Semi-Arid, Brazilian Agricultural Research Corporation, Petrolina 56302-970, Brazil
| | - Emília Hamada
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| | - Wagner Bettiol
- Embrapa Environment, Brazilian Agricultural Research Corporation, Jaguariúna 13918-110, Brazil
| |
Collapse
|
21
|
Velikaneye BA, Kozak GM. Timing-dependent effects of elevated temperature on reproductive traits in the European corn borer moth. J Evol Biol 2024; 37:1076-1090. [PMID: 39037024 DOI: 10.1093/jeb/voae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Elevated temperature often has life stage-specific effects on ectotherms because thermal tolerance varies throughout ontogeny. Impacts of elevated temperature may extend beyond the exposed life stage if developmental plasticity causes early exposure to carry-over or if exposure at multiple life stages cumulatively produces effects. Reproductive traits may be sensitive to different thermal environments experienced during development, but such effects have not been comprehensively measured in Lepidoptera. In this study, we investigate how elevated temperature at different life stages alters reproduction in the European corn borer moth, Ostrinia nubilalis. We tested effects of exposure to elevated temperature (28 °C) separately or additively during larval, pupal, and adult life stages compared to control temperatures (23 °C). We found that exposure to elevated pupal and adult temperature decreased the number of egg clusters produced, but exposure limited to a single stage did not significantly impact reproductive output. Furthermore, elevated temperature during the pupal stage led to a faster transition to the adult stage and elevated larval temperature altered synchrony of adult eclosion, either by itself or combined with pupal temperature exposure. These results suggest that exposure to elevated temperature during development alters reproduction in corn borers in multiple ways, including through carry-over and additive effects. Additive effects of temperature across life stages are thought to be less common than stage-specific or carry-over effects, but our results suggest thermal environments experienced at all life stages need to be considered when predicting reproductive responses of insects to heatwaves.
Collapse
Affiliation(s)
- Brittany A Velikaneye
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA, United States
| |
Collapse
|
22
|
Malod K, Bierman A, Karsten M, Manrakhan A, Weldon CW, Terblanche JS. Evidence for transient deleterious thermal acclimation in field recapture rates of an invasive tropical species, Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2024. [PMID: 39126165 DOI: 10.1111/1744-7917.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Knowing how environmental conditions affect performance traits in pest insects is important to improve pest management strategies. It can be informative for monitoring, but also for control programs where insects are mass-reared, and field-released. Here, we investigated how adult thermal acclimation in sterile Bactrocera dorsalis affects dispersal and recapture rates in the field using a mark-release-recapture method. We also considered how current abiotic factors may affect recapture rates and interact with thermal history. We found that acclimation at 20 or 30 °C for 4 d prior to release reduced the number of recaptures in comparison with the 25 °C control group, but with no differences between groups in the willingness to disperse upon release. However, the deleterious effects of acclimation were only detectable in the first week following release, whereafter only the recent abiotic conditions explained recapture rates. In addition, we found that recent field conditions contributed more than thermal history to explain patterns of recaptures. The two most important variables affecting the number of recaptures were the maximum temperature and the average relative humidity experienced in the 24 h preceding trapping. Our results add to the handful of studies that have considered the effect of thermal acclimation on insect field performance, but notably lend support to the deleterious acclimation hypothesis among the various hypotheses that have been proposed. Finally, this study shows that there are specific abiotic conditions (cold/hot and dry) in which recaptures will be reduced, which may therefore bias estimates of wild population size.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Anandi Bierman
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Aruna Manrakhan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Mbombela, South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
23
|
Aagaard A, Bechsgaard J, Sørensen JG, Sandfeld T, Settepani V, Bird TL, Lund MB, Malmos KG, Falck-Rasmussen K, Darolti I, Nielsen KL, Johannsen M, Vosegaard T, Tregenza T, Verhoeven KJF, Mank JE, Schramm A, Bilde T. Molecular Mechanisms of Temperature Tolerance Plasticity in an Arthropod. Genome Biol Evol 2024; 16:evae165. [PMID: 39058286 PMCID: PMC11979766 DOI: 10.1093/gbe/evae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
How species thrive in a wide range of environments is a major focus of evolutionary biology. For many species, limited genetic diversity or gene flow among habitats means that phenotypic plasticity must play an important role in their capacity to tolerate environmental heterogeneity and to colonize new habitats. However, we have a limited understanding of the molecular components that govern plasticity in ecologically relevant phenotypes. We examined this hypothesis in a spider species (Stegodyphus dumicola) with extremely low species-wide genetic diversity that nevertheless occupies a broad range of thermal environments. We determined phenotypic responses to temperature stress in individuals from four climatic zones using common garden acclimation experiments to disentangle phenotypic plasticity from genetic adaptations. Simultaneously, we created data sets on multiple molecular modalities: the genome, the transcriptome, the methylome, the metabolome, and the bacterial microbiome to determine associations with phenotypic responses. Analyses of phenotypic and molecular associations reveal that acclimation responses in the transcriptome and metabolome correlate with patterns of phenotypic plasticity in temperature tolerance. Surprisingly, genes whose expression seemed to be involved in plasticity in temperature tolerance were generally highly methylated contradicting the idea that DNA methylation stabilizes gene expression. This suggests that the function of DNA methylation in invertebrates varies not only among species but also among genes. The bacterial microbiome was stable across the acclimation period; combined with our previous demonstrations that the microbiome is temporally stable in wild populations, this is convincing evidence that the microbiome does not facilitate plasticity in temperature tolerance. Our results suggest that population-specific variation in temperature tolerance among acclimation temperatures appears to result from the evolution of plasticity in mainly gene expression.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Bechsgaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Givskov Sørensen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tobias Sandfeld
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Virginia Settepani
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tharina L Bird
- General Entomology, DITSONG: National Museum of Natural History, Pretoria, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Arachnology and Myriapodology, National Museum of Namibia, Windhoek, Namibia
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Kirsten Gade Malmos
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Kasper Falck-Rasmussen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Tom Tregenza
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| | - Koen J F Verhoeven
- Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| |
Collapse
|
24
|
Castano-Sanz V, Gomez-Mestre I, Rodriguez-Exposito E, Garcia-Gonzalez F. Pesticide exposure triggers sex-specific inter- and transgenerational effects conditioned by past sexual selection. Proc Biol Sci 2024; 291:20241037. [PMID: 39014998 PMCID: PMC11252676 DOI: 10.1098/rspb.2024.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Environmental variation often induces plastic responses in organisms that can trigger changes in subsequent generations through non-genetic inheritance mechanisms. Such transgenerational plasticity thus consists of environmentally induced non-random phenotypic modifications that are transmitted through generations. Transgenerational effects may vary according to the sex of the organism experiencing the environmental perturbation, the sex of their descendants or both, but whether they are affected by past sexual selection is unknown. Here, we use experimental evolution on an insect model system to conduct a first test of the involvement of sexual selection history in shaping transgenerational plasticity in the face of rapid environmental change (exposure to pesticide). We manipulated evolutionary history in terms of the intensity of sexual selection for over 80 generations before exposing individuals to the toxicant. We found that sexual selection history constrained adaptation under rapid environmental change. We also detected inter- and transgenerational effects of pesticide exposure in the form of increased fitness and longevity. These cross-generational influences of toxicants were sex dependent (they affected only male descendants), and intergenerational, but not transgenerational, plasticity was modulated by sexual selection history. Our results highlight the complexity of intra-, inter- and transgenerational influences of past selection and environmental stress on phenotypic expression.
Collapse
Affiliation(s)
- Veronica Castano-Sanz
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
| | - Ivan Gomez-Mestre
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
| | | | - Francisco Garcia-Gonzalez
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
25
|
Fulton TL, Johnstone JN, Tan JJ, Balagopal K, Dedman A, Chan AY, Johnson TK, Mirth CK, Piper MDW. Transiently restricting individual amino acids protects Drosophila melanogaster against multiple stressors. Open Biol 2024; 14:240093. [PMID: 39106944 PMCID: PMC11303031 DOI: 10.1098/rsob.240093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024] Open
Abstract
Nutrition and resilience are linked, though it is not yet clear how diet confers stress resistance or the breadth of stressors that it can protect against. We have previously shown that transiently restricting an essential amino acid can protect Drosophila melanogaster against nicotine poisoning. Here, we sought to characterize the nature of this dietary-mediated protection and determine whether it was sex, amino acid and/or nicotine specific. When we compared between sexes, we found that isoleucine deprivation increases female, but not male, nicotine resistance. Surprisingly, we found that this protection afforded to females was not replicated by dietary protein restriction and was instead specific to individual amino acid restriction. To understand whether these beneficial effects of diet were specific to nicotine or were generalizable across stressors, we pre-treated flies with amino acid restriction diets and exposed them to other types of stress. We found that some of the diets that protected against nicotine also protected against oxidative and starvation stress, and improved survival following cold shock. Interestingly, we found that a diet lacking isoleucine was the only diet to protect against all these stressors. These data point to isoleucine as a critical determinant of robustness in the face of environmental challenges.
Collapse
Affiliation(s)
- Tahlia L. Fulton
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Joshua N. Johnstone
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Jing J. Tan
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Krithika Balagopal
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Amy Dedman
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Andrea Y. Chan
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria3800, Australia
| | - Travis K. Johnson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria3086, Australia
| | - Christen K. Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| | - Matthew D. W. Piper
- School of Biological Sciences, Monash University, Clayton, Victoria3800, Australia
| |
Collapse
|
26
|
Thierry M, Cote J, Bestion E, Legrand D, Clobert J, Jacob S. The interplay between abiotic and biotic factors in dispersal decisions in metacommunities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230137. [PMID: 38913055 PMCID: PMC11391301 DOI: 10.1098/rstb.2023.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 06/25/2024] Open
Abstract
Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Mélanie Thierry
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3 Université Toulouse III - Paul Sabatier, Bât. 4R1, 118 route de Narbonne , Toulouse Cedex 9 31062, France
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| |
Collapse
|
27
|
Lush J, Sgrò CM, Hall MD. Anticipating change: The impact of simulated seasonal heterogeneity on heat tolerances along a latitudinal cline. Ecology 2024; 105:e4359. [PMID: 38877760 DOI: 10.1002/ecy.4359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 06/16/2024]
Abstract
An understanding of thermal limits and variation across geographic regions is central to predicting how any population may respond to global change. Latitudinal clines, in particular, have been used to demonstrate that populations can be locally adapted to their own thermal environment and, as a result, not all populations will be equally impacted by an increase in temperature. But how robust are these signals of thermal adaptation to the other ecological challenges that animals commonly face in the wild? Seasonal changes in population density, food availability, or photoperiod are common ecological challenges that could disrupt patterns of thermal tolerance along a cline if each population differentially used these signals to anticipate future temperatures and adjust their thermal tolerances accordingly. In this study, we aimed to test the robustness of a cline in thermal tolerance to simulated signals of seasonal heterogeneity. Experimental animals were derived from clones of the Australian water flea, Daphnia carinata, sampled from nine distinct populations along a latitudinal transect in Eastern Australia. We then factorially combined summer (18 h light, 6 h dark) and winter (6 h light, 18 h dark) photoperiods with high (5 million algal cells individual-1 day-1) and low (1 million algal cells individual-1 day-1) food availabilities, before performing static heat shock assays to measure thermal tolerance. We found that the thermal tolerances of the clonal populations were sensitive to both measures of seasonal change. In general, higher food availability led to an increase in thermal tolerances, with the magnitude of the increase varying by clone. In contrast, a switch in photoperiod led to rank-order changes in thermal tolerances, with heat resistance increasing for some clones, and decreasing for others. Heat resistance, however, still declined with increasing latitude, irrespective of the manipulation of seasonal signals, with clones from northern populations always showing greater thermal resistance, most likely driven by adaptation to winter thermal conditions. While photoperiod and food availability can clearly shape thermal tolerances for specific populations, they are unlikely to overwhelm overarching signals of thermal adaptation, and thus, observed clines in heat resistance will likely have remained robust to these forms of seasonal heterogeneity.
Collapse
Affiliation(s)
- Jared Lush
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Choy YMM, Walter GM, Mirth CK, Sgrò CM. Within-population plastic responses to combined thermal-nutritional stress differ from those in response to single stressors, and are genetically independent across traits in both males and females. J Evol Biol 2024; 37:717-731. [PMID: 38757509 DOI: 10.1093/jeb/voae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Phenotypic plasticity helps animals to buffer the effects of increasing thermal and nutritional stress created by climate change. Plastic responses to single and combined stressors can vary among genetically diverged populations. However, less is known about how plasticity in response to combined stress varies among individuals within a population or whether such variation changes across life-history traits. This is important because individual variation within populations shapes population-level responses to environmental change. Here, we used isogenic lines of Drosophila melanogaster to assess the plasticity of egg-to-adult viability and sex-specific body size for combinations of 2 temperatures (25 °C or 28 °C) and 3 diets (standard diet, low caloric diet, or low protein:carbohydrate ratio diet). Our results reveal substantial within-population genetic variation in plasticity for egg-to-adult viability and wing size in response to combined thermal-nutritional stress. This genetic variation in plasticity was a result of cross-environment genetic correlations that were often < 1 for both traits, as well as changes in the expression of genetic variation across environments for egg-to-adult viability. Cross-sex genetic correlations for body size were weaker when the sexes were reared in different conditions, suggesting that the genetic basis of traits may change with the environment. Furthermore, our results suggest that plasticity in egg-to-adult viability is genetically independent from plasticity in body size. Importantly, plasticity in response to diet and temperature individually differed from plastic shifts in response to diet and temperature in combination. By quantifying plasticity and the expression of genetic variance in response to combined stress across traits, our study reveals the complexity of animal responses to environmental change, and the need for a more nuanced understanding of the potential for populations to adapt to ongoing climate change.
Collapse
Affiliation(s)
- Yeuk Man Movis Choy
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Greg M Walter
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Christen K Mirth
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Christoffersen SN, Pertoldi C, Sørensen JG, Kristensen TN, Bruhn D, Bahrndorff S. Strong acclimation effect of temperature and humidity on heat tolerance of the Arctic collembolan Megaphorura arctica. J Exp Biol 2024; 227:jeb247394. [PMID: 38841875 DOI: 10.1242/jeb.247394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
The Arctic is a highly variable environment in which extreme daily and seasonal temperature fluctuations can occur. With climate change, an increase in the occurrence of extreme high temperatures and drought events is expected. While the effects of cold and dehydration stress on polar arthropods are well studied in combination, little is known about how these species respond to the combined effects of heat and dehydration stress. In this paper, we investigated how the heat tolerance of the Arctic collembola Megaphorura arctica is affected by combinations of different temperature and humidity acclimation regimes under controlled laboratory conditions. The effect of acclimation temperature was complex and highly dependent on both acclimation time and temperature, and was found to have a positive, negative or no effect depending on experimental conditions. Further, we found marked effects of the interaction between temperature and humidity on heat tolerance, with lower humidity severely decreasing heat tolerance when the acclimation temperature was increased. This effect was more pronounced with increasing acclimation time. Lastly, the effect of acclimation on heat tolerance under a fluctuating temperature regime was dependent on acclimation temperature and time, as well as humidity levels. Together, these results show that thermal acclimation alone has moderate or no effect on heat tolerance, but that drought events, likely to be more frequent in the future, in combination with high temperature stress can have large negative impacts on heat tolerance of some Arctic arthropods.
Collapse
Affiliation(s)
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
- Aalborg Zoo, Mølleparkvej 63, 9000 Aalborg, Denmark
| | | | | | - Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| |
Collapse
|
30
|
Martínez-De León G, Fahrni M, Thakur MP. Temperature-size responses during ontogeny are independent of progenitors' thermal environments. PeerJ 2024; 12:e17432. [PMID: 38799056 PMCID: PMC11127640 DOI: 10.7717/peerj.17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Warming generally induces faster developmental and growth rates, resulting in smaller asymptotic sizes of adults in warmer environments (a pattern known as the temperature-size rule). However, whether temperature-size responses are affected across generations, especially when thermal environments differ from one generation to the next, is unclear. Here, we tested temperature-size responses at different ontogenetic stages and in two consecutive generations using two soil-living Collembola species from the family Isotomidae: Folsomia candida (asexual) and Proisotoma minuta (sexually reproducing). Methods We used individuals (progenitors; F0) from cultures maintained during several generations at 15 °C or 20 °C, and exposed their offspring in cohorts (F1) to various thermal environments (15 °C, 20 °C, 25 °C and 30 °C) during their ontogenetic development (from egg laying to first reproduction; i.e., maturity). We measured development and size traits in the cohorts (egg diameter and body length at maturity), as well as the egg diameters of their progeny (F2). We predicted that temperature-size responses would be predominantly determined by within-generation plasticity, given the quick responsiveness of growth and developmental rates to changing thermal environments. However, we also expected that mismatches in thermal environments across generations would constrain temperature-size responses in offspring, possibly due to transgenerational plasticity. Results We found that temperature-size responses were generally weak in the two Collembola species, both for within- and transgenerational plasticity. However, egg and juvenile development were especially responsive at higher temperatures and were slightly affected by transgenerational plasticity. Interestingly, plastic responses among traits varied non-consistently in both Collembola species, with some traits showing plastic responses in one species but not in the other and vice versa. Therefore, our results do not support the view that the mode of reproduction can be used to explain the degree of phenotypic plasticity at the species level, at least between the two Collembola species used in our study. Our findings provide evidence for a general reset of temperature-size responses at the start of each generation and highlight the importance of measuring multiple traits across ontogenetic stages to fully understand species' thermal responses.
Collapse
Affiliation(s)
| | - Micha Fahrni
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Madhav P. Thakur
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Müller J, Hothorn T, Yuan Y, Seibold S, Mitesser O, Rothacher J, Freund J, Wild C, Wolz M, Menzel A. Weather explains the decline and rise of insect biomass over 34 years. Nature 2024; 628:349-354. [PMID: 37758943 DOI: 10.1038/s41586-023-06402-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/04/2023] [Indexed: 09/29/2023]
Abstract
Insects have a pivotal role in ecosystem function, thus the decline of more than 75% in insect biomass in protected areas over recent decades in Central Europe1 and elsewhere2,3 has alarmed the public, pushed decision-makers4 and stimulated research on insect population trends. However, the drivers of this decline are still not well understood. Here, we reanalysed 27 years of insect biomass data from Hallmann et al.1, using sample-specific information on weather conditions during sampling and weather anomalies during the insect life cycle. This model explained variation in temporal decline in insect biomass, including an observed increase in biomass in recent years, solely on the basis of these weather variables. Our finding that terrestrial insect biomass is largely driven by complex weather conditions challenges previous assumptions that climate change is more critical in the tropics5,6 or that negative consequences in the temperate zone might only occur in the future7. Despite the recent observed increase in biomass, new combinations of unfavourable multi-annual weather conditions might be expected to further threaten insect populations under continuing climate change. Our findings also highlight the need for more climate change research on physiological mechanisms affected by annual weather conditions and anomalies.
Collapse
Affiliation(s)
- Jörg Müller
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany.
- Bavarian Forest National Park, Grafenau, Germany.
| | - Torsten Hothorn
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Ye Yuan
- Ecoclimatology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Sebastian Seibold
- Ecosystem Dynamics and Forest Management Research Group, School of Life Sciences, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
- Forest Zoology, TUD Dresden University of Technology, Tharandt, Germany
| | - Oliver Mitesser
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Julia Rothacher
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Julia Freund
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Clara Wild
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Marina Wolz
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Rauhenebrach, Germany
| | - Annette Menzel
- Ecoclimatology, School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
32
|
Kebede FG, Derks MFL, Dessie T, Hanotte O, Barros CP, Crooijmans RPMA, Komen H, Bastiaansen JWM. Landscape genomics reveals regions associated with adaptive phenotypic and genetic variation in Ethiopian indigenous chickens. BMC Genomics 2024; 25:284. [PMID: 38500079 PMCID: PMC10946127 DOI: 10.1186/s12864-024-10193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Climate change is a threat to sustainable livestock production and livelihoods in the tropics. It has adverse impacts on feed and water availability, disease prevalence, production, environmental temperature, and biodiversity. Unravelling the drivers of local adaptation and understanding the underlying genetic variation in random mating indigenous livestock populations informs the design of genetic improvement programmes that aim to increase productivity and resilience. In the present study, we combined environmental, genomic, and phenotypic information of Ethiopian indigenous chickens to investigate their environmental adaptability. Through a hybrid sampling strategy, we captured wide biological and ecological variabilities across the country. Our environmental dataset comprised mean values of 34 climatic, vegetation and soil variables collected over a thirty-year period for 260 geolocations. Our biological dataset included whole genome sequences and quantitative measurements (on eight traits) from 513 individuals, representing 26 chicken populations spread along 4 elevational gradients (6-7 populations per gradient). We performed signatures of selection analyses ([Formula: see text] and XP-EHH) to detect footprints of natural selection, and redundancy analyses (RDA) to determine genotype-environment and genotype-phenotype-associations. RDA identified 1909 outlier SNPs linked with six environmental predictors, which have the highest contributions as ecological drivers of adaptive phenotypic variation. The same method detected 2430 outlier SNPs that are associated with five traits. A large overlap has been observed between signatures of selection identified by[Formula: see text]and XP-EHH showing that both methods target similar selective sweep regions. Average genetic differences measured by [Formula: see text] are low between gradients, but XP-EHH signals are the strongest between agroecologies. Genes in the calcium signalling pathway, those associated with the hypoxia-inducible factor (HIF) transcription factors, and sports performance (GALNTL6) are under selection in high-altitude populations. Our study underscores the relevance of landscape genomics as a powerful interdisciplinary approach to dissect adaptive phenotypic and genetic variation in random mating indigenous livestock populations.
Collapse
Affiliation(s)
- Fasil Getachew Kebede
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands.
- International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands
| | - Tadelle Dessie
- International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia
- School of Life Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Carolina Pita Barros
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands
| | - Hans Komen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands
| | - John W M Bastiaansen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, PB-6708, The Netherlands
| |
Collapse
|
33
|
Ma LJ, Cao LJ, Chen JC, Tang MQ, Song W, Yang FY, Shen XJ, Ren YJ, Yang Q, Li H, Hoffmann AA, Wei SJ. Rapid and Repeated Climate Adaptation Involving Chromosome Inversions following Invasion of an Insect. Mol Biol Evol 2024; 41:msae044. [PMID: 38401527 PMCID: PMC10924284 DOI: 10.1093/molbev/msae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.
Collapse
Affiliation(s)
- Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng-Qing Tang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fang-Yuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ya-Jing Ren
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiong Yang
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ary Anthony Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
34
|
Gonzalez VH, Herbison N, Robles Perez G, Panganiban T, Haefner L, Tscheulin T, Petanidou T, Hranitz J. Bees display limited acclimation capacity for heat tolerance. Biol Open 2024; 13:bio060179. [PMID: 38427330 PMCID: PMC10979511 DOI: 10.1242/bio.060179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Bees are essential pollinators and understanding their ability to cope with extreme temperature changes is crucial for predicting their resilience to climate change, but studies are limited. We measured the response of the critical thermal maximum (CTMax) to short-term acclimation in foragers of six bee species from the Greek island of Lesvos, which differ in body size, nesting habit, and level of sociality. We calculated the acclimation response ratio as a metric to assess acclimation capacity and tested whether bees' acclimation capacity was influenced by body size and/or CTMax. We also assessed whether CTMax increases following acute heat exposure simulating a heat wave. Average estimate of CTMax varied among species and increased with body size but did not significantly shift in response to acclimation treatment except in the sweat bee Lasioglossum malachurum. Acclimation capacity averaged 9% among species and it was not significantly associated with body size or CTMax. Similarly, the average CTMax did not increase following acute heat exposure. These results indicate that bees might have limited capacity to enhance heat tolerance via acclimation or in response to prior heat exposure, rendering them physiologically sensitive to rapid temperature changes during extreme weather events. These findings reinforce the idea that insects, like other ectotherms, generally express weak plasticity in CTMax, underscoring the critical role of behavioral thermoregulation for avoidance of extreme temperatures. Conserving and restoring native vegetation can provide bees temporary thermal refuges during extreme weather events.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Natalie Herbison
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Trisha Panganiban
- Department of Biological Sciences, California State University, Los Angeles, CA, 35229, USA
| | - Laura Haefner
- Biology Department, Waynesburg University, PA, 47243, USA
| | - Thomas Tscheulin
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, Mytilene, 81100, Greece
| | - Theodora Petanidou
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, Mytilene, 81100, Greece
| | - John Hranitz
- Department of Biology, Commonwealth University of Pennsylvania, Bloomsburg, 17815 PA, USA
| |
Collapse
|
35
|
Cao HQ, Chen JC, Tang MQ, Chen M, Hoffmann AA, Wei SJ. Plasticity of cold and heat stress tolerance induced by hardening and acclimation in the melon thrips. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104619. [PMID: 38301801 DOI: 10.1016/j.jinsphys.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Extreme temperatures threaten species under climate change and can limit range expansions. Many species cope with changing environments through plastic changes. This study tested phenotypic changes in heat and cold tolerance under hardening and acclimation in the melon thrips, Thrips palmi Karny (Thysanoptera: Thripidae), an agricultural pest of many vegetables. We first measured the critical thermal maximum (CTmax) of the species by the knockdown time under static temperatures and found support for an injury accumulation model of heat stress. The inferred knockdown time at 39 °C was 82.22 min. Rapid heat hardening for 1 h at 35 °C slightly increased CTmax by 1.04 min but decreased it following exposure to 31 °C by 3.46 min and 39 °C by 6.78 min. Heat acclimation for 2 and 4 days significantly increased CTmax at 35 °C by 1.83, and 6.83 min, respectively. Rapid cold hardening at 0 °C and 4 °C for 2 h, and cold acclimation at 10 °C for 3 days also significantly increased cold tolerance by 6.09, 5.82, and 2.00 min, respectively, while cold hardening at 8 °C for 2 h and acclimation at 4 °C and 10 °C for 5 days did not change cold stress tolerance. Mortality at 4 °C for 3 and 5 days reached 24.07 % and 43.22 % respectively. Our study showed plasticity for heat and cold stress tolerance in T. palmi, but the thermal and temporal space for heat stress induction is narrower than for cold stress induction.
Collapse
Affiliation(s)
- Hua-Qian Cao
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing 100083, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng-Qing Tang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Min Chen
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing 100083, China.
| | - Ary A Hoffmann
- Bio21 Institute, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
36
|
Wang Y, Zhao Y, Zhang J, Li Z. Heat Shock Protein Genes Affect the Rapid Cold Hardening Ability of Two Invasive Tephritids. INSECTS 2024; 15:90. [PMID: 38392510 PMCID: PMC10889258 DOI: 10.3390/insects15020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Bactrocera dorsalis and Bactrocera correcta are two invasive species that can cause major economic damage to orchards and the fruit import and export industries. Their distribution is advancing northward due to climate change, which is threatening greater impacts on fruit production. This study tested the rapid cold-hardening ability of the two species and identified the temperature associated with the highest survival rate. Transcriptome data and survival data from the two Bactrocera species' larvae were obtained after rapid cold-hardening experiments. Based on the sequencing of transcripts, four Hsp genes were found to be affected: Hsp68 and Hsp70, which play more important roles in the rapid cold hardening of B. dorsalis, and Hsp23 and Hsp70, which play more important roles in the rapid cold hardening of B. correcta. This study explored the adaptability of the two species to cold, demonstrated the expression and function of four Hsps in response to rapid cold hardening, and explained the occurrence and expansion of these two species of tephritids, offering information for further studies.
Collapse
Affiliation(s)
- Yuning Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yan Zhao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Junzheng Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
37
|
Papadogiorgou GD, Papadopoulos AG, Moraiti CA, Verykouki E, Papadopoulos NT. Latitudinal variation in survival and immature development of Ceratitis capitata populations reared in two key overwintering hosts. Sci Rep 2024; 14:467. [PMID: 38172200 PMCID: PMC10764328 DOI: 10.1038/s41598-023-50587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Ceratitis capitata, a major agricultural pest, is currently expanding its geographic distribution to northern, temperate areas of Europe. Its seasonal biology and invasion success depend on temperature, humidity and host availability. In coastal warmer Mediterranean regions and cooler temperature areas, bitter oranges and apples serve as overwintering hosts during the larval stage. We assessed the overwintering capacity of C. capitata populations obtained from different areas of the northern hemisphere by studying the survival and development rates of immature stages in both fruits under laboratory conditions. Eggs from each population were artificially inserted in the flesh of the two hosts and kept at 15, 20, or 25 °C until pupation and adult emergence. Climatic analysis of the area of the population origin showed combined effects of latitude, host and macroclimatic variables on immature survival and development rates. Egg to adult survival rates and developmental duration were longer in apples than in bitter oranges. For populations originated from southern-warmer areas, egg to adult developmental duration was prolonged and adult emergence reduced at 15 °C compared to those populations obtained from northern regions. Our findings reveal varying plastic responses of medfly populations to different overwintering hosts and temperatures highlighting the differential overwintering potential as larvae within fruits. This study contributes towards better understanding the medfly invasion dynamics in temperate areas of Northern Europe and other parts of the globe with similar climates.
Collapse
Affiliation(s)
- Georgia D Papadogiorgou
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Vólos, Greece
| | - Antonis G Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Vólos, Greece
| | - Cleopatra A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Vólos, Greece
| | - Eleni Verykouki
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Vólos, Greece
| | - Nikos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Vólos, Greece.
| |
Collapse
|
38
|
Earls KN, Campbell JB, Rinehart JP, Greenlee KJ. Effects of temperature on metabolic rate during metamorphosis in the alfalfa leafcutting bee. Biol Open 2023; 12:bio060213. [PMID: 38156711 PMCID: PMC10805150 DOI: 10.1242/bio.060213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Spring conditions, especially in temperate regions, may fluctuate abruptly and drastically. Environmental variability can expose organisms to temperatures outside of their optimal thermal ranges. For ectotherms, sudden changes in temperature may cause short- and long-term physiological effects, including changes in respiration, morphology, and reproduction. Exposure to variable temperatures during active development, which is likely to occur for insects developing in spring, can cause detrimental effects. Using the alfalfa leafcutting bee, Megachile rotundata, we aimed to determine if oxygen consumption could be measured using a new system and to test the hypothesis that female and male M. rotundata have a thermal performance curve with a wide optimal range. Oxygen consumption of M. rotundata pupae was measured across a large range of temperatures (6-48°C) using an optical oxygen sensor in a closed respirometry system. Absolute and mass-specific metabolic rates were calculated and compared between bees that were extracted from their brood cells and those remaining in the brood cell to determine whether pupae could be accurately measured inside their brood cells. The metabolic response to temperature was non-linear, which is an assumption of a thermal performance curve; however, the predicted negative slope at higher temperatures was not observed. Despite sexual dimorphism in body mass, sex differences only occurred in mass-specific metabolic rates. Higher metabolic rates in males may be attributed to faster development times, which could explain why there were no differences in absolute metabolic rate measurements. Understanding the physiological and ecological effects of thermal environmental variability on M. rotundata will help to better predict their response to climate change.
Collapse
Affiliation(s)
- Kayla N. Earls
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jacob B. Campbell
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Joseph P. Rinehart
- Edward T. Schafer Agricultural Research Center, US Department of Agriculture/Agricultural Research Station, Fargo, ND 58102,USA
| | - Kendra J. Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
39
|
Johnson CA, Ren R, Buckley LB. Temperature Sensitivity of Fitness Components across Life Cycles Drives Insect Responses to Climate Change. Am Nat 2023; 202:753-766. [PMID: 38033177 DOI: 10.1086/726896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractThermal performance curves (TPCs) are increasingly used as a convenient approach to predict climate change impacts on ectotherms that accounts for organismal thermal sensitivity; however, directly applying TPCs to temperature data to estimate fitness has yielded contrasting predictions depending on assumptions regarding climate variability. We compare direct application of TPCs to an approach integrating TPCs for different fitness components (e.g., per capita birth rate, adult life span) across ectotherm life cycles into a population dynamic model, which we independently validated with census data and applied to hemipteran insect populations across latitude. The population model predicted that climate change will reduce insect fitness more at higher latitudes due to its effects on survival but will reduce net reproductive rate more at lower latitudes due to its effects on fecundity. Directly applying TPCs underestimated climate change impacts on fitness relative to incorporating the TPCs into the population model due to simplifying survival dynamics across the life cycle. The population model predicted that climate change will reduce mean insect density and increase population variability at higher latitudes via reduced survival, despite faster development and a longer activity period. Our study highlights the importance of considering how multiple fitness components respond to climate variability across the life cycle to better understand and anticipate the ecological consequence of climate change.
Collapse
|
40
|
Malod K, Bali EMD, Gledel C, Moquet L, Bierman A, Bataka E, Weldon CW, Karsten M, Delatte H, Papadopoulos NT, Terblanche JS. Tethered-flight performance of thermally-acclimated pest fruit flies (Diptera: Tephritidae) suggests that heat waves may promote the spread of Bactrocera species. PEST MANAGEMENT SCIENCE 2023; 79:4153-4161. [PMID: 37309691 DOI: 10.1002/ps.7611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Thermal history may induce phenotypic plasticity in traits that affect performance and fitness. One type of plastic response triggered by thermal history is acclimation. Because flight is linked to movement in the landscape, trapping and detection rates, and underpins the success of pest management tactics, it is particularly important to understand how thermal history may affect pest insect flight performance. We investigated the tethered-flight performance of Ceratitis capitata, Bactrocera dorsalis and Bactrocera zonata (Diptera: Tephritidae), acclimated for 48 h at 20, 25 or 30 °C and tested at 25 °C. We recorded the total distance, average speed, number of flight events and time spent flying during 2-h tests. We also characterized morphometric traits (body mass, wing shape and wing loading) that can affect flight performance. RESULTS The main factor affecting most flight traits was body mass. The heaviest species, B. dorsalis, flew further, was faster and stopped less often in comparison with the two other species. Bactrocera species exhibited faster and longer flight when compared with C. capitata, which may be associated with the shape of their wings. Moreover, thermal acclimation had sex- and species-specific effects on flight performance. Flies acclimated at 20 °C stopped more often, spent less time flying and, ultimately, covered shorter distances. CONCLUSION Flight performance of B. dorsalis is greater than that of B. zonata and C. capitata. The effects of thermal acclimation are species-specific. Warmer acclimation temperatures may allow pest fruit flies to disperse further and faster. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eleftheria-Maria D Bali
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | | | | | - Anandi Bierman
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Evmorfia Bataka
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | | | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
41
|
Ben-Yosef M, Altman Y, Nemni-Lavi E, Papadopoulos NT, Nestel D. Effect of thermal acclimation on the tolerance of the peach fruit fly (Bactrocera zonata: Tephritidae) to heat and cold stress. J Therm Biol 2023; 117:103677. [PMID: 37643512 DOI: 10.1016/j.jtherbio.2023.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Understanding the thermal biology of insects is of increasing importance for predicting their geographic distribution, particularly in light of current and future global temperature increases. Within the limits set by genetic makeup, thermal tolerance is affected by the physiological conditioning of individuals (e.g., through acclimation). Considering this phenotypic plasticity may add to accurately estimating changes to the distribution of insects under a changing climate. We studied the effect of thermal acclimation on cold and heat tolerance of the peach fruit fly (Bactrocera zonata) - an invasive, polyphagous pest that is currently expanding through Africa and the Middle East. Females and males were acclimated at 20, 25 and 30 °C for up to 19 days following adult emergence. The critical thermal minimum (CTmin) and maximum (CTmax) were subsequently recorded as well adult survival following acute exposure to chilling (0 or -3 °C for 2 h). Additionally, we determined the survival of pupae subjected for 2 h to temperatures ranging from -12 °C to 5 °C. We demonstrate that acclimation at 30 °C resulted in significantly higher CTmax and CTmin values (higher heat resistance and lower cold resistance, respectively). Additionally, adult recovery following exposure to -3 °C was significantly reduced following acclimation at 30 °C, and this effect was significantly higher for females. Pupal mortality increased with the decrease in temperature, reaching LT50 and LT95 values following exposure to -0.32 °C and -6.88 °C, respectively. Finally, we found that the survival of pupae subjected to 0 and 2 °C steadily increased with pupal age. Our findings substantiate a physiological foundation for understanding the current geographic range of B. zonata. We assume that acclimation at 30 °C affected the thermal tolerance of the flies partly through modulating feeding and metabolism. Tolerance to chilling during the pupal stage probably changed according to temperature-sensitive processes occurring during metamorphosis, rendering younger pupae more sensitive to chilling.
Collapse
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel.
| | - Yam Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| | - Esther Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| |
Collapse
|
42
|
Abstract
Ambient temperature (Ta) is a critical abiotic factor for insects that cannot maintain a constant body temperature (Tb). Interestingly, Ta varies during the day, between seasons and habitats; insects must constantly cope with these variations to avoid reaching the deleterious effects of thermal stress. To minimize these risks, insects have evolved a set of physiological and behavioral thermoregulatory processes as well as molecular responses that allow them to survive and perform under various thermal conditions. These strategies range from actively seeking an adequate environment, to cooling down through the evaporation of body fluids and synthesizing heat shock proteins to prevent damage at the cellular level after heat exposure. In contrast, endothermy may allow an insect to fight parasitic infections, fly within a large range of Ta and facilitate nest defense. Since May (1979), Casey (1988) and Heinrich (1993) reviewed the literature on insect thermoregulation, hundreds of scientific articles have been published on the subject and new insights in several insect groups have emerged. In particular, technical advancements have provided a better understanding of the mechanisms underlying thermoregulatory processes. This present Review aims to provide an overview of these findings with a focus on various insect groups, including blood-feeding arthropods, as well as to explore the impact of thermoregulation and heat exposure on insect immunity and pathogen development. Finally, it provides insights into current knowledge gaps in the field and discusses insect thermoregulation in the context of climate change.
Collapse
Affiliation(s)
- Chloé Lahondère
- Department of Biochemistry, The Fralin Life Science Institute, The Global Change Center, Department of Entomology, Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
43
|
Sepúlveda Y, Goulson D. Feeling the heat: Bumblebee workers show no acclimation capacity of upper thermal tolerance to simulated heatwaves. J Therm Biol 2023; 116:103672. [PMID: 37531893 DOI: 10.1016/j.jtherbio.2023.103672] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Climate change is our most significant challenge in the 21st century and among the main drivers of biodiversity loss. Recent distributional shifts and declines in crucial pollinators, such as bumblebees, seem to be associated to this phenomenon. However, despite future climate projections on climate warming, few studies have assessed the ability of temperate bumblebees to acclimate to extreme weather events, such as heatwaves. This study estimates the upper critical thermal limits (Critical Thermal Maximum (CTmax) and Heat Coma Temperature (HCT)), of the bumblebee subspecies Bombus terrestris audax, and assesses whether CTmax increases following exposure to a simulated heatwave. The critical thermal maximum occurred between 48.9 and 52.7 °C, while the heat coma temperature varied between 50.7 and 53.4 °C. After measurement of HCT, around 23% of bees survived 24 h or longer, but coordination was never recovered. There was no significant association between upper critical thermal limits and body mass, which highlights the need to investigate other factors to comprehend the mechanisms behind thermal tolerance limits. Furthermore, the heatwave treatments had no significant effect on the CTmax of bumblebee workers, indicating no acclimation capacity of upper thermal tolerance to simulated heatwaves. Our study provides insights into the upper thermal tolerance limits of Bombus terrestris audax and reveals that exposure to heatwave-like events does not change the upper thermal tolerance of bees, highlighting the need to develop effective strategies that might enable them to cope with extreme weather events.
Collapse
Affiliation(s)
- Yanet Sepúlveda
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
44
|
Tougeron K, Iltis C, Rampnoux E, Goerlinger A, Dhondt L, Hance T. Still standing: The heat protection delivered by a facultative symbiont to its aphid host is resilient to repeated thermal stress. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100061. [PMID: 37304568 PMCID: PMC10250925 DOI: 10.1016/j.cris.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/05/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
Insects have evolved diverse strategies to resist extreme high temperatures (EHT). The adaptive value of such strategies has to be evaluated when organisms experience multiple EHT events during their lifetime, as predicted in a changing climate. This is particularly the case for associations with facultative microbial partners involved in insect heat tolerance, the resilience of which to repeated heat stress has never been studied. We compared two artificial lines of the pea aphid (Acyrthosiphon pisum) differing by the absence or presence of the heat-protective facultative bacterium Serratia symbiotica. We exposed insect nymphs to a varying number of EHT events (between 0 and 3), and recorded fitness parameters. Except survival traits, fitness estimates were affected by the interaction between aphid infection status (absence/presence of S. symbiotica) and thermal treatment (number of heat shocks applied). Costs of bacterial infection were detected in the absence of thermal stress: symbiont-hosting aphids incurred longer development, decreased fecundity and body size. However, symbiotic infection turned neutral, and even beneficial for some traits (development and body size), as the number of heat shocks increased, and compared to the aposymbiotic strain. Conversely, symbiotic infection mediated aphid response to heat shock(s): fitness decreased only in the uninfected group. These findings suggest that (i) the facultative symbiont may alternatively act as a pathogen, commensal or mutualist depending on thermal environment, and (ii) the heat protection it delivered to its host persists under frequent EHT. We discuss eco-evolutionary implications and the role of potentially confounding factors (stage-specific effects, genetic polymorphism displayed by the obligate symbiont).
Collapse
Affiliation(s)
- Kévin Tougeron
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
- Institut de Recherche en Biosciences, Université de Mons, Av. du Champ de Mars 6, 7000 Mons, Belgium
| | - Corentin Iltis
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Eliott Rampnoux
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Goerlinger
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Linda Dhondt
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Earth and Life Institute, Ecology and Biodiversity, Université catholique de Louvain, Croix du Sud 4-5, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
45
|
Prileson EG, Clark J, Diamond SE, Lenard A, Medina-Báez OA, Yilmaz AR, Martin RA. Keep your cool: Overwintering physiology in response to urbanization in the acorn ant, Temnothorax curvispinosus. J Therm Biol 2023; 114:103591. [PMID: 37276746 DOI: 10.1016/j.jtherbio.2023.103591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
Winter presents a challenge for survival, yet temperate ectotherms have remarkable physiological adaptations to cope with low-temperature conditions. Under recent climate change, rather than strictly relaxing pressure on overwintering survival, warmer winters can instead disrupt these low-temperature trait-environment associations, with negative consequences for populations. While there is increasing evidence of physiological adaptation to contemporary warming during the growing season, the effects of winter warming on physiological traits are less clear. To address this knowledge gap, we performed a common garden experiment using relatively warm-adapted versus cold-adapted populations of the acorn ant, Temnothorax curvispinosus, sampled across an urban heat island gradient, to explore the effects of winter conditions on plasticity and evolution of physiological traits. We found no evidence of evolutionary divergence in chill coma recovery nor in metabolic rate at either of two test temperatures (4 and 10 °C). Although we found the expected plastic response of increased metabolic rate under the 10 °C acute test temperature as compared with the 4 °C test temperature, this plastic response, (i.e., the acute thermal sensitivity of metabolic rate), was not different across populations. Surprisingly, we found that winter-acclimated urban ant populations exhibited higher heat tolerance compared with rural ant populations, and that the magnitude of divergence was comparable to that observed among growing-season acclimated ants. Finally, we found no evidence of differences between populations with respect to changes in colony size from the beginning to the end of the overwintering experiment. Together, these findings indicate that despite the evolution of higher heat tolerance that is often accompanied by losses in low-temperature tolerance, urban acorn ants have retained several components of low-temperature physiological performance when assessed under ecologically relevant overwintering conditions. Our study suggests the importance of measuring physiological traits under seasonally-relevant conditions to understand the causes and consequences of evolutionary responses to contemporary warming.
Collapse
Affiliation(s)
- Eric G Prileson
- Case Western Reserve University, Department of Biology, USA.
| | - Jordan Clark
- Case Western Reserve University, Department of Biology, USA
| | | | - Angie Lenard
- Case Western Reserve University, Department of Biology, USA
| | | | - Aaron R Yilmaz
- USDA Agricultural Research Service, Horticultural Insects Research Laboratory, USA
| | - Ryan A Martin
- Case Western Reserve University, Department of Biology, USA
| |
Collapse
|
46
|
Nemaungwe TM, van Dalen EMSP, Waniwa EO, Makaya PV, Chikowore G, Chidawanyika F. Biogeography of the theileriosis vector, Rhipicephalus appendiculatus under current and future climate scenarios of Zimbabwe. EXPERIMENTAL & APPLIED ACAROLOGY 2023:10.1007/s10493-023-00796-1. [PMID: 37171505 PMCID: PMC10293362 DOI: 10.1007/s10493-023-00796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Climate directly influences the epidemiology of vector-borne diseases at various spatial and temporal scales. Following the recent increased incidences of theileriosis in Zimbabwe, a disease mainly transmitted by Rhipicephalus appendiculatus, we determined lethal temperatures for the species and current and possible future distribution using the machine learning algorithm 'Maxent'. Rhipicephalus appendiculatus larvae had an upper lethal temperature (ULT50) of about 44 ± 0.5 °C and this was marginally higher for nymphs and adults at 46 ± 0.5 °C. Environmental temperatures recorded in selected zonal tick microhabitats were below the determined lethal limits, indicating the ability of the tick to survive these regions. The resultant model under current climatic conditions showed areas with high suitability indices to the eastern, northeastern and southeastern parts of the country, mainly in Masvingo, Manicaland and Mashonaland Central provinces. Future predictions as determined by 2050 climatic conditions indicate a reduction in suitable habitats with the tick receding to presently cooler high elevation areas such as the eastern Highlands of Zimbabwe and a few isolated pockets in the interior of the country. Lowveld areas show low suitability under current climatic conditions and are expected to remain unsuitable in future. Overall, the study shows that R. appendiculatus distribution is constrained by climatic factors and helps identify areas of where occurrence of the species and the disease it transmits is highly likely. This will assist in optimizing disease surveillance and vector management strategies targeted at the species.
Collapse
Affiliation(s)
- Tinotenda M Nemaungwe
- Division of Veterinary Technical Services, Ministry of Lands, Fisheries, Water and Rural Development, Harare, Zimbabwe
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Ellie M S P van Dalen
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Emily O Waniwa
- Division of Veterinary Technical Services, Ministry of Lands, Fisheries, Water and Rural Development, Harare, Zimbabwe
| | - Pious V Makaya
- Division of Veterinary Technical Services, Ministry of Lands, Fisheries, Water and Rural Development, Harare, Zimbabwe
| | - Gerald Chikowore
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Grahamstown, 6140, South Africa
| | - Frank Chidawanyika
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
- International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
47
|
de Carvalho CF. Epigenetic effects of climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101029. [PMID: 37028647 DOI: 10.1016/j.cois.2023.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Climate change has been causing severe modifications to the environment that are predicted to aggravate in the future, which create critical challenges for insects to cope. Populations can respond to the changes depending on the standing genetic variation. Additionally, they could potentially rely on epigenetic mechanisms as a source of phenotypic variation. These mechanisms can influence gene regulation and can respond to the external environment, being implicated in phenotypic plasticity. Thus, epigenetic variation could be advantageous in changing, unpredictable environments. However, little is known about causal relationships between epigenetic marks and insects' phenotypes, and whether the effects are truly beneficial to the fitness. Empirical studies are now urgent to better understand whether epigenetic variation can help or hinder insect populations facing climate change.
Collapse
Affiliation(s)
- Clarissa F de Carvalho
- Dep. de Ecologia e Biologia Evolutiva, Federal University of São Paulo, Diadema 09972-270, Brazil.
| |
Collapse
|
48
|
Huisamen E, Bosua HJ, Karsten M, Terblanche JS. Sub-lethal effects of spinetoram application interacts with temperature in complex ways to influence respiratory metabolism, life history and macronutrient composition in false codling moth (Thaumatotibia leucotreta). JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104490. [PMID: 36773842 DOI: 10.1016/j.jinsphys.2023.104490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In many pests, insecticide efficacy is dependent on environmental conditions, including ambient temperature. However, it remains unknown if thermal history alters sub-lethal effects to potentially enhance or reduce pesticide resistance in the false codling moth (FCM), Thaumatotibia leucotreta. Here, using FCM, a pest of economic importance in South Africa infesting several commercial food crops, we report results of sub-lethal exposure to spinetoram, an insecticide that disrupts the nervous system. We investigate whether insecticide efficacy is temperature dependent or perhaps interacts with thermal history by testing the effect of a combination of a sub-lethal dose of spinetoram (4 mg/100 ml) and developmental temperature acclimation (22˚C and 28˚C, i.e., a few degrees above or below optimal development temperatures) on the metabolic rate, life history traits and body composition of FCM in the laboratory. A sub-lethal dose of spinetoram reduced metabolic rate of FCM pupae significantly, led to smaller pupal mass and decreased emergence rates. Additionally, males acclimated at 28 °C had a significantly higher emergence rate compared to males acclimated at 22 °C. Body water, body lipids and body protein reserves of adult FCM tended to be higher in the insecticide treatment compared to the control in the 22 °C acclimation group. In the 28 °C acclimation group, body water, lipids and proteins were lower in the insecticide treatment versus the control. Furthermore, sex influenced both emergence rate and body composition with the direction of change depending on insecticide and temperature treatments. Overall, a sub-lethal dose of spinetoram negatively affects body composition and life history traits but interacts with temperature in complex ways. Therefore, both lethal and sub-lethal effects of spinetoram on FCM, in combination with information on the thermal environment experienced by the pest, should be taken into consideration when pest control decisions are made.
Collapse
Affiliation(s)
- Elizabeth Huisamen
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - Henrika J Bosua
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, South Africa.
| |
Collapse
|
49
|
Ledón-Rettig CC. A transcriptomic investigation of heat-induced transgenerational plasticity in beetles. Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
AbstractIn response to environmental stressors, parents can shape the developmental outcomes of their offspring by contributing non-genetic but heritable factors. The transmission of such factors can potentially allow offspring, from the beginning of their lives, to express phenotypes that match their anticipated environments. In this study, I ask whether enhanced growth in larvae of Onthophagus taurus (the bull-headed dung beetle) is modified by parental exposure to heat or by exposure of the offspring to heat during early life. I find that, irrespective of the early environment of the offspring, individuals produced by parents exposed to heat grow larger. Furthermore, taking a transcriptomic approach, I find that ecdysone signalling might mediate the transgenerational effect and that increased insulin signalling or reduced production of heat shock proteins might be responsible for the enhanced growth in larvae derived from parents exposed to heat. Together, my results provide evidence for a thermally induced transgenerational effect and a foundation for functional testing of candidate mechanisms mediating the effect.
Collapse
|
50
|
Ferguson LV, Adamo SA. From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world? J Exp Biol 2023; 226:288412. [PMID: 36825944 DOI: 10.1242/jeb.244911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Insects are critical to our ecosystems, but we do not fully understand their future in our warming world. Rising temperatures are affecting insect physiology in myriad ways, including changes to their immune systems and the ability to fight infection. Whether predicted changes in temperature will contribute to insect mortality or success, and the role of disease in their future survival, remains unclear. Although heat can enhance immunity by activating the integrated defense system (e.g. via the production of protective molecules such as heat-shock proteins) and accelerating enzyme activity, heat can also compromise the immune system through energetic-resource trade-offs and damage. The responses to heat are highly variable among species. The reasons for this variability are poorly known, and we are lagging in our understanding of how and why the immune system responds to changes in temperature. In this Commentary, we highlight the variation in insect immune responses to heat and the likely underlying mechanisms. We suggest that we are currently limited in our ability to predict the effects of rising temperatures on insect immunity and disease susceptibility, largely owing to incomplete information, coupled with a lack of tools for data integration. Moreover, existing data are concentrated on a relatively small number of insect Orders. We provide suggestions for a path towards making more accurate predictions, which will require studies with realistic temperature exposures and housing design, and a greater understanding of both the thermal biology of the immune system and connections between immunity and the physiological responses to heat.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|