1
|
Horio F, Seo H, Win SY, Sato J, Motai Y, Yamagami S, Sato T, Ohishi E, Maekawa N, Okagawa T, Konnai S, Ohashi K, Murata S. Characterization of a lipocalin-like molecule from Dermanyssus gallinae as a potential vaccine antigen. Vet Immunol Immunopathol 2025; 283:110921. [PMID: 40157313 DOI: 10.1016/j.vetimm.2025.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Poultry red mites (PRMs, Dermanyssus gallinae) are hematophagous ectoparasites of chickens that pose a significant threat to the egg-laying industry. The emergence of acaricide-resistant PRMs raises the demand for alternative control approaches such as vaccination. However, several vaccine antigens have failed to suppress the growth of PRM populations in field trials due to difficulties in maintaining antibody levels. In ticks, the molecules exposed to the host, such as lipocalins, can facilitate antibody production, and are therefore considered advantageous as vaccine antigens. Therefore, we focused on a lipocalin-like molecule (Dg-Lipocalin) identified from an RNA-seq analysis reported by Fujisawa et al. (2020) and analyzed its exposure to the host and potential as a vaccine antigen. Western blotting using 500-fold diluted plasma of chickens from PRM-contaminated farms revealed the presence of antibodies against Dg-Lipocalin, suggesting its exposure to the host. To evaluate its potential as a vaccine antigen, PRMs were artificially fed immune plasma with 32,000- to 64,000-fold antibody titers or plasma from PBS-inoculated control chickens, and their mortality was observed for 7 days. In experiment 1, the immune plasma significantly increased PRM mortality compared to the control plasma. However, these effects were not observed in experiment 2, although the total mortality was significantly increased in immune plasma-fed PRMs. Thus, the efficacy of Dg-Lipocalin appears to be limited; however, its exposure to the host may result in sustained antibody titers. Further investigation is required to evaluate its feasibility.
Collapse
Affiliation(s)
- Fumiya Horio
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Hikari Seo
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Shwe Yee Win
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Shunsuke Yamagami
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Eiji Ohishi
- Vaxxinova Japan K.K., 1-24-8 Hamamatsucho, Minato-ku, Tokyo 105-0013, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 001-0021, Japan; Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 001-0020, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan; Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 001-0020, Japan; International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818, Japan; Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo 001-0020, Japan.
| |
Collapse
|
2
|
Mustafa S, Alsayeqh AF. Role of plant phytochemicals/extracts for the control of Dermanyssus gallinae in poultry and its zoonotic importance. Poult Sci 2025; 104:104899. [PMID: 40014968 PMCID: PMC11910102 DOI: 10.1016/j.psj.2025.104899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 03/01/2025] Open
Abstract
Dermanyssus gallinae (poultry red mite) has negative impact on poultry production, causing major economic losses by damaging the health of chickens and other bird species, globally. D. gallinae also acts as vector and reservoir of different viral and bacterial pathogens such as, E. coli, S. enteriditis, P. multocida, S. gallinarum, Newcastle disease, Avian influenza, Erysipelothrix rhusiopathiae, Eastern, Western and Venezuelan equine encephalomyelitis viruses. Some of them are important from zoonotic point of view like, S. enteritidis, Borrelia burgdorferi and avian influenza A virus. It also causes gamasoidosis in humans. For its control various acaricides have been used, but because of D. gallinae resistance against these chemicals, and environmental issues related to these acaricides have encouraged research into different alternatives. One of them are plant extracts and phytochemicals that play a major role by offering a promising option for permanent pest control because of their bioactive abilities. Important phytochemicals that are most effective against these mites are phenol, flavonoid, terpenoid, tannin, and phenylpropanoids. That give their effects by creating neurotoxicity, digestive and metabolic disruption, cuticle disruption, oxidative stress, cell membrane damage, respiratory inhibition, and hormonal disruption in these mites. This review explains the significance of various plant extracts, their phytochemicals and their methods of application against D. gallinae infestations in poultry. Different types of plant's active metabolites have acaricidal, repellent and growth inhibitory effects such as tannins, phenols, terpenoids, and flavonoids. The mode of action, effectiveness and toxicity of these extracts are also discussed. This review also discusses zoonotic importance of D. gallinae.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah F Alsayeqh
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia.
| |
Collapse
|
3
|
Deenekamp PJM, Gladan I, Velkers FC, Spaninks MP, Meurs J, Cristescu SM. Odor characterization of the poultry red mite (Dermanyssus gallinae) for identification of volatile biomarkers of infestation across multiple commercial laying hen systems. Poult Sci 2025; 104:105101. [PMID: 40158286 PMCID: PMC11997325 DOI: 10.1016/j.psj.2025.105101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Infestations by the poultry red mite (PRM) (Dermanyssus gallinae) in laying hen farms can have serious adverse effects on animal health and welfare, and lead to increased egg production costs. Early detection of the PRM is paramount to mitigate its negative impact and for effective pest control. However, current detection methods are labor-intensive and time-consuming. As poultry experts have reported that the presence of PRM is accompanied by a specific scent, opportunities lie in using odor-based detection methods. These methods may offer a fast and reliable alternative for identifying PRM infestations in early stages. To date, however, there is a lack of data on the odor profile of PRM as it has not been characterized. Therefore, in this study, the first step is taken towards determining the composition of the emitted scent of PRM. Samples of PRM and litter were collected across multiple commercial laying hen farms and subjected to TD-GC-MS analysis with subsequent multivariate analysis. Five highly specific volatile organic compound (VOC) targets were identified (1-vinyl-aziridine, 1H-pyrrole, 1-octen-3-one, heptanal and octanal), independent of housing type, feed and farm management. Although the metabolic origin of these VOCs could not be determined in this study, the odor character of several of these VOCs (1-octen-3-one, heptanal and octanal) matches the poultry experts' description. Furthermore, the specificity of all identified VOC targets to PRM samples make them highly interesting potential targets for odor-based detection of PRM infestation.
Collapse
Affiliation(s)
- Pascalle J M Deenekamp
- Life Science Trace Detection Laboratory, Department of Analytical Chemistry, Institute for Molecules & Materials, Radboud University
| | - Iram Gladan
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Francisca C Velkers
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Mirlin P Spaninks
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Joris Meurs
- Life Science Trace Detection Laboratory, Department of Analytical Chemistry, Institute for Molecules & Materials, Radboud University.
| | - Simona M Cristescu
- Life Science Trace Detection Laboratory, Department of Analytical Chemistry, Institute for Molecules & Materials, Radboud University
| |
Collapse
|
4
|
MERINO M, GARCÍA‐DEL RÍO M, CASTAÑO‐VÁZQUEZ F, MERINO S. A long-term study on the impact of climatic variables on two common nest-dwelling ectoparasites of the Eurasian blue tit (Cyanistes caeruleus). Integr Zool 2025; 20:224-235. [PMID: 38724456 PMCID: PMC11897932 DOI: 10.1111/1749-4877.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
We explored the potential influence of temperature and precipitation on the abundance of two nest-dwelling ectoparasites (blowflies and mites) of Eurasian blue tits (Cyanistes caeruleus) during a period of 21 years and compared the results with those of a shorter period. The abundance of blowflies was negatively related to precipitation, which could prevent flies from locating their host, and laying date. In addition, blowflies were positively related to brood size (more food implies more parasites) and the interaction between precipitation and temperature. The highest abundances of blowfly pupae were attained in conditions of increasing precipitation and decreasing temperature, which should be more common at the beginning of the bird breeding season. Mites were significantly and positively related to laying date and the interaction between average precipitation and temperature but only for the larger dataset. Higher abundances of mites were related to intermediate values of temperature and precipitations, conditions that are found at the end of the breeding season. These results imply that optimal conditions for both parasites differ, with blowflies preferring earlier breeders and colder and more humid conditions than mites. Thus, the effects of the climatic conditions studied on parasite abundances are non-monotonic and can vary with years and parasite species. Finally, the fact that average temperature and precipitation decreases across the years of study is probably due to the advancement in Eurasian blue tit laying date because we calculated those variables for the period of birds' reproduction. This earlier nesting does not affect parasite abundance.
Collapse
Affiliation(s)
- Maritxu MERINO
- Department of Evolutionary Ecology, National Museum of Natural SciencesSpanish Higher Council for Scientific Research (CSIC)MadridSpain
| | - Marina GARCÍA‐DEL RÍO
- Department of Evolutionary Ecology, National Museum of Natural SciencesSpanish Higher Council for Scientific Research (CSIC)MadridSpain
| | - Francisco CASTAÑO‐VÁZQUEZ
- Department of Evolutionary Ecology, National Museum of Natural SciencesSpanish Higher Council for Scientific Research (CSIC)MadridSpain
| | - Santiago MERINO
- Department of Evolutionary Ecology, National Museum of Natural SciencesSpanish Higher Council for Scientific Research (CSIC)MadridSpain
| |
Collapse
|
5
|
INOUE T, MIZUTANI K, KUNISADA H, LADZEKPO D, KWOFIE KD, KOIKE Y, SASAKI S, JIMBO K, KAWADA H, MIKAMI F, Anisuzzaman, ALIM MA, MATSUBAYASHI M, YOSHIDA T, FURUKAWA T, UENO T, ODA K, TSUJI N, HATTA T. Growth kinetics and population density of a laboratory colony of the poultry red mite (Dermanyssus gallinae) established in Japan. J Vet Med Sci 2025; 87:215-222. [PMID: 39756933 PMCID: PMC11830435 DOI: 10.1292/jvms.24-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/15/2024] [Indexed: 01/07/2025] Open
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, is a hematophagous ectoparasite that significantly threatens the poultry industry, not only through blood-feeding but also as a vector for deadly pathogens. With the growing challenge of acaricidal resistance, the demand for alternative control measures is urgent. However, effective PRM research, particularly in acaricidal efficacy and new drug discovery, hinges on the availability of reliable laboratory colonies. In this study, we successfully established a stable PRM laboratory colony, originally isolated from the field in 2021 and maintained under controlled conditions at the Research Institute for Animal Science in Biochemistry and Toxicology (RIAS). We investigated the growth kinetics and population dynamics of the laboratory colony within a Styrofoam-based maintenance box (SBMB) containing chicks. PRM propagation was tracked over 28 days, with mites collected every seven days. The average bulk weight of the mites in the trap increased from 4.3 ± 1.2 mg on day 7 to 201.4 ± 56.5 mg on day 28, despite seasonal variations, indicating optimal conditions for population growth. The collected mites spanned various blood-feeding developmental stages such as protonymph, deutonymph, and adult stages, enabling comprehensive assessments of molting and egg-laying efficiency. Our findings confirm that the laboratory colony of PRM can be stably maintained, providing a reliable source of PRMs for further experimental research aimed at advancing control strategies against this pervasive pest.
Collapse
Affiliation(s)
- Takahiro INOUE
- Department of Molecular and Cellular Parasitology, Graduate
School of Medical Sciences, Kitasato University, Kanagawa, Japan
- Research Institute for Animal Science in Biochemistry and
Toxicology, Kanagawa, Japan
| | - Keiko MIZUTANI
- Department of Molecular and Cellular Parasitology, Graduate
School of Medical Sciences, Kitasato University, Kanagawa, Japan
- Research Institute for Animal Science in Biochemistry and
Toxicology, Kanagawa, Japan
| | - Hanako KUNISADA
- Department of Molecular and Cellular Parasitology, Graduate
School of Medical Sciences, Kitasato University, Kanagawa, Japan
- Research Institute for Animal Science in Biochemistry and
Toxicology, Kanagawa, Japan
| | - Danielle LADZEKPO
- Department of Parasitology and Tropical Medicine, Kitasato
University School of Medicine, Kanagawa, Japan
| | - Kofi Dadzie KWOFIE
- Department of Parasitology and Tropical Medicine, Kitasato
University School of Medicine, Kanagawa, Japan
| | - Yuki KOIKE
- Department of Molecular and Cellular Parasitology, Graduate
School of Medical Sciences, Kitasato University, Kanagawa, Japan
| | - Sana SASAKI
- Department of Molecular and Cellular Parasitology, Graduate
School of Medical Sciences, Kitasato University, Kanagawa, Japan
| | - Kei JIMBO
- Department of Molecular and Cellular Parasitology, Graduate
School of Medical Sciences, Kitasato University, Kanagawa, Japan
| | - Hayato KAWADA
- Department of Molecular and Cellular Parasitology, Graduate
School of Medical Sciences, Kitasato University, Kanagawa, Japan
- Department of Parasitology and Tropical Medicine, Kitasato
University School of Medicine, Kanagawa, Japan
| | - Fusako MIKAMI
- Department of Parasitology and Tropical Medicine, Kitasato
University School of Medicine, Kanagawa, Japan
| | - Anisuzzaman
- Department of Parasitology, Faculty of Veterinary Science,
Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Abdul ALIM
- Department of Parasitology, Faculty of Veterinary Science,
Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Makoto MATSUBAYASHI
- Department of Veterinary Immunology, Graduate School of
Veterinary Medical Sciences, Osaka Metropolitan University, Osaka, Japan
| | - Tomoo YOSHIDA
- Research Institute for Animal Science in Biochemistry and
Toxicology, Kanagawa, Japan
| | - Takashi FURUKAWA
- Department of Health Science, Kitasato University School of
Allied Health Sciences, Kanagawa, Japan
| | - Takahisa UENO
- Department of Electrical and Electronic Engineering,
National Institute of Technology, Oita College, Oita, Japan
| | - Kenji ODA
- Research Institute for Animal Science in Biochemistry and
Toxicology, Kanagawa, Japan
| | - Naotoshi TSUJI
- Department of Molecular and Cellular Parasitology, Graduate
School of Medical Sciences, Kitasato University, Kanagawa, Japan
- Department of Parasitology and Tropical Medicine, Kitasato
University School of Medicine, Kanagawa, Japan
| | - Takeshi HATTA
- Department of Molecular and Cellular Parasitology, Graduate
School of Medical Sciences, Kitasato University, Kanagawa, Japan
- Department of Parasitology and Tropical Medicine, Kitasato
University School of Medicine, Kanagawa, Japan
| |
Collapse
|
6
|
Sun T, Wu H, Liu J, Jiang L, Wang X, Xu F, Li X. Safety study of fluralaner solution on poultry red mite: A clinical study screening of the optimal dose and focusing on hepatic and renal parameters. Poult Sci 2025; 104:104685. [PMID: 39733736 PMCID: PMC11743113 DOI: 10.1016/j.psj.2024.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024] Open
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, a significant ectoparasite causing diseases in poultry, is globally prevalent and necessitates effective control strategies. There are restrictions on the use of acaricides in poultry across several nations due to worries about medication residues. Consequently, finding safe and efficient treatments for PRM is imperative. Fluralaner solution has emerged as a potential therapeutic agent, distinguished by its rapid onset, enduring efficacy, and lack of a withdrawal period for egg production. To ascertain the optimal dosage and therapeutic efficacy of fluralaner solution in PRM treatment, this study evaluated blood biochemical parameters and mite populations across various treatment groups. A cohort of 500 laying hens was randomly assigned to one of five treatment groups, each comprising 100 individuals:high-dose group (0.1 ml/kg-bw, group 4 ×, coop 1), medium-dose group (0.05 ml/kg-bw, group 2 ×, coop 5), low-dose group (0.025 ml/kg-bw, group 1 ×, coop 2), drug-control group (Intervet Productions, 0.05 ml/kg-bw recommended dose, coop 3) and blank control group (coop 4). Hens received their respective dosages of the fluralaner solution via oral administration on Days 0 (D0) and 7 (D7) of the experimental period. Over the study's ninety days, blood biochemical markers and mite counts in each coop were measured to evaluate the drug's safety, effectiveness, and ideal dosage. Data analysis was performed utilizing SPSS software. The study findings indicated that, for effective PRM infestation treatment, a dosage of 0.5 mg fluralaner per kilogram of body weight (equivalent to 0.05 ml) administered daily, followed by a subsequent dose post a 7-day interval, is recommended. Additionally, clinical observations coupled with blood biochemical assessments confirmed the safety of fluralaner across the three tested dosage levels in hens.
Collapse
Affiliation(s)
- Tingting Sun
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Liu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Jiang
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyu Wang
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Xu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiubo Li
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Sargison ND, Chaudhry U, Costa-Junior L, Kutcher JR, Li K, Sargison FA, Zahid O. The diagnosis and vector potential of Ornithonyssus bacoti tropical rat mites in northern Europe. Vet Parasitol Reg Stud Reports 2025; 58:101204. [PMID: 40049993 DOI: 10.1016/j.vprsr.2025.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 05/13/2025]
Abstract
The mesostigmatid tropical rat mite, Ornithonyssus bacoti, is an important cause of disease in small rodents, and of gamasoidosis in humans when they come into contact with infestations. Most reports of O. bacoti infestations are from warmer parts of the Americas, southern Europe and Asia; and infection has only rarely been recorded in northern Europe. In 2021 and 2024, two separate cases of gamasoidosis were identified in student flats in the city of Edinburgh, UK. Further investigation highlighted the value of combining conventional morphological and 16S ribosomal DNA sequencing methods in establishing the species identity of the mites; hence confirming the diagnosis of gamasoidosis. The bacterial microbiome associated with the mites was explored by conventional culture and metabarcoding microbiome sequencing of the ribosomal16S v3-v4 hypervariable region. The results highlight the utility of the mixed approach; and show the presence of potentially pathogenic bacteria and recognised causes of opportunistic nosocomial infections, along with known mite gut and intracellular symbionts. The results indicate the potential for O. bacoti mites as vectors of bacterial infections. The clinical presentation of gamasoidosis is indistinguishable from non-specific arthropod-bite reactions; and the cause is seldom confirmed because the temporarily parasitic mites spend most of their time in the environment. The two confirmed index cases may, therefore, represent a more widespread emerging problem; putatively associated with an increase in urban rodent populations.
Collapse
Affiliation(s)
- N D Sargison
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK.
| | - U Chaudhry
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | - L Costa-Junior
- Federal University of Maranhão, Pathology Department, São Luís, Maranhão, Brazil
| | - J R Kutcher
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | - K Li
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | - F A Sargison
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| | - O Zahid
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, UK
| |
Collapse
|
8
|
Liu B, Liu Q, Wang B, Wang P, Zhu K, Meng J, Li H, Sun W, Pan B. An efficient in vivo feeding method for poultry red mites, Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 2025; 334:110405. [PMID: 39864204 DOI: 10.1016/j.vetpar.2025.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Dermanyssus gallinae (D. gallinae), the poultry red mite (PRM), is a haematophagous pest infesting poultry and wild birds. In studies of the biology of D. gallinae and the development of vaccines and systemic acaricides against the mites, it is often necessary to feed the mites under laboratory conditions. Although several feeding methods have been developed, however, some defects exist in these methods, such as low engorgement rate, low oviposition of mites, and difficulty in mite recovery after feeding. In this study, we developed an in vivo feeding method for D. gallinae based on a feeding device consisting of a fixing device and a feeding-storage device, which made the introduction and recovery of mites convenient, and provided protection of the mites during feeding. Under optimized conditions, the mean engorgement rate for adult female mites, protonymphs, and deutonymphs were 86.80 ± 6.57 %, 50.80 ± 12.85 %, and 62.8 ± 7.82 %, respectively. The average oviposition rate was 98.5 ± 1.38 %, with an average of 5.35 ± 0.41 eggs per mite, and an egg hatching rate of 98.92 ± 0.45 %. Additionally, the mean molting rate for protonymphs and deutonymphs fed with the device, were 97.68 % ± 3.18 % and 92.57 % ± 3.78 %, respectively. The whole life cycle of the mites could be completed with this method. The highly reliable feeding method established in this research exhibits potential application in the biological research of D. gallinae as well as in the development of novel control methods.
Collapse
Affiliation(s)
- Boxing Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bohan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Penglong Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kexin Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiali Meng
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huan Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Sárkány P, Bagi Z, Süli Á, Kusza S. Challenges of Dermanyssus gallinae in Poultry: Biological Insights, Economic Impact and Management Strategies. INSECTS 2025; 16:89. [PMID: 39859669 PMCID: PMC11765809 DOI: 10.3390/insects16010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Bird mites are parasites that feed on both wild and domesticated bird species, causing severe degradation in avian welfare. The chicken mite, Dermanyssus gallinae in particular, is a widespread ectoparasite in poultry, responsible for several challenges faced by the poultry industry, including poor animal health, which causes significant economic losses. This review, based on our current knowledge, aims to provide a comprehensive insight into the biology and distribution of these mites, as well as their impact on poultry health and production. It explores the most prevalent mites in avian species, with a focus on D. gallinae, and examines the different psychological and physiological alterations observed in infected stocks, such as decreased egg production, weight loss, and an increased susceptibility to diseases. This review will also cover existing control strategies, including chemical, biological, and environmental approaches, with attention to the growing concern around pesticide resistance. Additionally, it delves into genetic research conducted on these mites, primarily focusing on phylogenetic studies, which have provided insights into their evolutionary relationships and potential vulnerabilities. By compiling existing studies, this article underscores the urgent need for effective and sustainable countermeasures, as well as further genetic research to mitigate the substantial impact of D. gallinae on the poultry sector.
Collapse
Affiliation(s)
- Péter Sárkány
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, H-4032 Debrecen, Hungary; (P.S.); (Z.B.)
| | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, H-4032 Debrecen, Hungary; (P.S.); (Z.B.)
| | - Ágnes Süli
- Institute of Animal Sciences and Wildlife Management, University of Szeged, H-6800 Hódmezővásárhely, Hungary;
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, H-4032 Debrecen, Hungary; (P.S.); (Z.B.)
| |
Collapse
|
10
|
Ramadan RM, Salem MA, Mohamed HI, Orabi A, El-Bahy MM, Taha NM. Dermanyssus gallinae as a pathogen vector: Phylogenetic analysis and associated health risks in pigeons. Vet Parasitol Reg Stud Reports 2025; 57:101198. [PMID: 39855842 DOI: 10.1016/j.vprsr.2025.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Dermanyssus gallinae (D. gallinae) is a nocturnal, blood-feeding ectoparasite that primarily infests poultry, causing significant economic losses. This study aimed to identify poultry red mites and detect associated pathogens using morphological and molecular techniques. Mites and blood samples were collected from naturally infected pigeons. Mite species and blood parasites were identified morphologically, while representative pooled mite samples were cultured on general and selective media to detect microbial pathogens. Molecular identification of mites was conducted using PCR targeting the cytochrome oxidase I (COXI) mitochondrial gene, 18S ribosomal RNA (rRNA), and 16S rRNA for parasites and microbial pathogens, respectively. BLAST analysis of the COXI sequence confirmed a high similarity to D. gallinae. Screening of 100 pooled mite samples revealed vector-borne pathogens, with Haemoproteus and Plasmodium parasites detected in 18 % and 3 % of mite samples and 15 % and 2 % of blood samples, respectively. Microbiological cultures and molecular analyses identified five bacterial species: Staphylococcus aureus (76 %), Escherichia coli (41 %), Klebsiella pneumoniae (29 %), Salmonella enterica (21 %), and Listeria monocytogenes (11 %). Additionally, two fungal species were detected: Candida albicans (7 %) and Cryptococcus neoformans (9 %). This study underscores the association of D. gallinae with various pathogens, though its role in transmission remains unclear. Further research is needed to evaluate the biological implications of these associations and the associated health risks.
Collapse
Affiliation(s)
- Reem M Ramadan
- Department of Parasitology, Faculty of Veterinary Medicine Cairo University, 1221 Giza, Egypt..
| | - Mai A Salem
- Department of Parasitology, Faculty of Veterinary Medicine Cairo University, 1221 Giza, Egypt
| | - Hend Ibrahim Mohamed
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Egypt
| | - Ahmed Orabi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, 1221 Giza, Egypt
| | - Mohamed M El-Bahy
- Department of Parasitology, Faculty of Veterinary Medicine Cairo University, 1221 Giza, Egypt
| | - Noha Madbouly Taha
- Department of Parasitology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Wang B, Meng J, Qi X, Wang P, Liu Q, Wang L, Sun W, Pan B. Surface hydrophobicity mechanism of poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae), gives novel meaning to chemical control. Vet Parasitol 2024; 332:110327. [PMID: 39406054 DOI: 10.1016/j.vetpar.2024.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Surface hydrophobicity of organisms provides biological self-protection. The hydrophobicity of pest surface, acting as a main obstacle for the pest control, can lead to low utilization and high loss of pesticides. Dermanyssus gallinae is a notorious pest in egg-laying hens, whose control primarily depends on acaricide spraying, while its surface hydrophobicity and potential influence on pesticide effectiveness are not clear. In the present study, the contact angle measurements revealed that the surface of D. gallinae was hydrophobic. Analysis using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the surface microstructures of D. gallinae consist of cuticular folds, with a lipid-rich outermost layer of the cuticle. Based on gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC), it was found that the major compositions of cuticular lipids were fatty acids and n-alkanes. Modifying the chemical compositions and microstructures of the D. gallinae surface resulted in a reduction in surface hydrophobicity and an increase in the permeation of Rhodamine B through the cuticle. This observation suggested that the chemical compositions and microstructures were pivotal in determining surface hydrophobicity, hindering compound penetration into the cuticle. Finally, it was found improving the wettability of pesticide solution by adding surfactants could overcome the surface hydrophobicity and enhance the efficacy of pesticide against the mites. This study sheds light on the surface hydrophobicity mechanism of D. gallinae and provides a novel strategy to improve the efficacy of acaricides against the mites.
Collapse
Affiliation(s)
- Bohan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Jiali Meng
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xiaoxiao Qi
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Penglong Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Qi Liu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Lifang Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Weiwei Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
12
|
Truong AT, Yoo MS, Woo SD, Lee H, Park Y, Nguyen TT, Youn SY, Min S, Lim J, Yoon SS, Cho YS. Evaluation of acaricidal activity in entomopathogenic fungi for poultry red mite (Dermanyssus gallinae) control. Vet Parasitol 2024; 331:110292. [PMID: 39208531 DOI: 10.1016/j.vetpar.2024.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
The poultry red mite (PRM), Dermanyssus gallinae, significantly impacts the health of egg-laying hens. Mites feed on the blood of infested chickens and have a great economic impact on the poultry industry. Chemical treatment of mites raises concerns about their resistance to miticides and residues in eggs and poultry. Biocontrol using entomopathogenic fungi is expected to be a chemical-free strategy for reducing PRM infestations. Therefore, the present study aimed to investigate the effects of various entomopathogenic fungal species collected in South Korea on the inhibition of PRM. Seventeen strains of six fungal species collected from various sources were used to evaluate acaricidal activity against PRM. The results showed that 16/17 strains had acaricidal properties against PRM, of which strains of Metarhizium anisopliae had the highest acaricidal activity. Mites treated with M. anisopliae CBNU 4-2 showed 100 % mortality 5 d after inoculation, followed by M. flavoviride var. pemphigi. The M. flavoviride var. pemphigi CBNU 1-1-1 showed 97.78 % mortality after 10 d of exposure to fungi. The mortality rate of PRM treated with other strains slowly increased and reached its highest value on the 14th day of inoculation. The results of this study provide information on the acaricidal activity of different entomopathogenic fungi against PRM. This information is important for the selection of fungal species for developing biocontrol methods for PRM treatment. These strains could be used for further evaluation of PRM treatment on chicken farms, or in combination with other methods, to increase PRM treatment efficiency.
Collapse
Affiliation(s)
- A-Tai Truong
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea; Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen 250000, Vietnam
| | - Mi-Sun Yoo
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Soo Dong Woo
- Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Heungsik Lee
- Plant Pest Research Laboratory, Plant Quarantine Technology Center Division, Department of Plant Quarantine, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Youngjin Park
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Thi-Thu Nguyen
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - So Youn Youn
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Subin Min
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Jiyeon Lim
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Soon-Seek Yoon
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yun Sang Cho
- Parasitic and Honeybee Disease Laboratory, Bacterial Disease Division, Department of Animal and Plant Health Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea.
| |
Collapse
|
13
|
Holquinn JA, Sutherland HL, Sculley ER, Erasmus MA, Brito LF, Murillo AC. How mites influence cage-free egg production in the United States, mite management strategies, and the mitigating role of genomic selection. Anim Front 2024; 14:24-31. [PMID: 39411335 PMCID: PMC11471901 DOI: 10.1093/af/vfae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Affiliation(s)
| | | | - Elaina R Sculley
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Marisa A Erasmus
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Amy C Murillo
- Department of Entomology, University of California, Riverside, CA, USA
| |
Collapse
|
14
|
Klikha A, Schiavone A, Djemai S, Samarelli R, Aissi M, Pugliese N, Khoualed Y, Camarda A. Molecular detection of avian pathogens in poultry red mite (Dermanyssus gallinae) in Algerian layer farms as a potential predictive tool. Acta Trop 2024; 258:107345. [PMID: 39094829 DOI: 10.1016/j.actatropica.2024.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The poultry red mite Dermanyssus gallinae is a hematophagous ectoparasite of layer hens. Infestations with poultry red mites pose an increasing threat to the egg production industry, causing serious problems to animal health and welfare, directly or indirectly as a vector of several infectious agents. In this study, we aimed to investigate common avian pathogens in mites. The mite samples were collected from 58 poultry farms in 7 regions accounting for more than 70 % of the national egg production in Algeria. The presence of 13 avian pathogens was detected using DNA and RNA samples from mites collected. Results revealed significant associations between PRM and potential pathogens such as Escherichia coli, Salmonella enterica, fowlpox virus, and gallid herpesvirus 1. Pathogen detection in Dermanyssus gallinae could serve as an early diagnostic or a risk analysis tool for infectious diseases in poultry farms, facilitating effective disease management strategies. Despite further research being necessary to address uncertainties, such a strategy could be used to enhance the integrated management of poultry health.
Collapse
Affiliation(s)
- Abdennour Klikha
- National Veterinary Higher School of Algiers Rabie Bouchama, Rue Issad Abbes, Oued Smar, Algiers, Algeria; Laboratory of Animal Health and Production (SPA); National Veterinary Higher School of Algiers, Algiers, Algeria
| | - Antonella Schiavone
- Department of Veterinary Medicine, University of Bari, S.P. per Casamassima, km 3, Valenzano, BA 70010, Italy; Moredun Research Institute, Edinburgh, United Kingdom
| | - Samir Djemai
- Padesca Laboratory, Institute of Veterinary Sciences, University of Constantine, Constantine, Algeria
| | - Rossella Samarelli
- Department of Veterinary Medicine, University of Bari, S.P. per Casamassima, km 3, Valenzano, BA 70010, Italy
| | - Miriem Aissi
- National Veterinary Higher School of Algiers Rabie Bouchama, Rue Issad Abbes, Oued Smar, Algiers, Algeria; Laboratory of Animal Health and Production (SPA); National Veterinary Higher School of Algiers, Algiers, Algeria
| | - Nicola Pugliese
- Department of Veterinary Medicine, University of Bari, S.P. per Casamassima, km 3, Valenzano, BA 70010, Italy.
| | - Yassine Khoualed
- Laboratory of Biology and Animal Physiology, Higher Normal School of Kouba, Algiers, Algeria
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari, S.P. per Casamassima, km 3, Valenzano, BA 70010, Italy
| |
Collapse
|
15
|
Rüster V, Werner H, Avramidis G, Wieneke S, Strube C, Schnabel C, Bartels T. Morphological changes in plasma-exposed poultry red mites (Dermanyssus gallinae) using high-resolution video camera and optical coherence tomography (OCT). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:339-352. [PMID: 38937375 PMCID: PMC11269420 DOI: 10.1007/s10493-024-00934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Dermanyssus gallinae, the poultry red mite (PRM), is a hematophagous temporary ectoparasite that causes serious economic losses and animal health impairment on laying hen farms worldwide. Control is limited by the parasite's hidden lifestyle, restrictions on the use of chemical acaricides and the development of resistance against certain drug classes. As a result, research was conducted to explore alternative control methods. In recent years, atmospheric pressure plasma has been increasingly reported as an alternative to chemical acaricides for pest control. This physical method has also shown promising against PRM under laboratory conditions. However, the detailed mechanisms of action have not yet been elucidated. In the present study, the effects of cold atmospheric pressure plasma on PRM were investigated using digital videography and optical coherence tomography (OCT), an imaging technique that visualizes the topography of surfaces and internal structures. Digital videography showed that a redistribution of the contents of the intestinal tract and excretory organs (Malpighian tubules) occurred immediately after plasma exposure. The body fluids reached the distal leg segments of PRM and parts of the haemocoel showed whiter and denser clumps, indicating a coagulation of the haemocoel components. OCT showed a loss of the boundaries of the hollow organs in transverse and sagittal sectional images as well as in the three-dimensional image reconstruction. In addition, a dorso-ventral shrinkage of the idiosoma was observed in plasma-exposed mites, which had shrunk to 44.0% of its original height six minutes after plasma exposure.
Collapse
Affiliation(s)
- Vanessa Rüster
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Henrik Werner
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Göttingen, Germany
| | - Georg Avramidis
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Göttingen, Germany
| | - Stephan Wieneke
- Faculty of Engineering and Health, University of Applied Sciences and Arts, Göttingen, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christian Schnabel
- Departement of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Thomas Bartels
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany.
| |
Collapse
|
16
|
Bayramoğlu M, Bayramoğlu Z, Aydın L, Zengin SA, Çırak VY, Demirbağ Z, Demir İ. Entomopathogenic fungi with biological control potential against poultry red mite (Dermanyssus gallinae, Arachnida: Dermanyssidae). Vet Parasitol 2024; 328:110155. [PMID: 38452531 DOI: 10.1016/j.vetpar.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
The poultry red mite, Dermanyssus gallinae (Arachnida: Dermanyssidae) is a pest that causes significant economic loss in laying hens for which control methods are limited. In this study, the effects of 20 indigenous fungal strains on poultry red mites in chicken farms were investigated. All experiments were conducted under laboratory condition at 28 ± 1 °C and 80 ± 5% humidity. A screening test showed that Metharizium flavoviride strain As-2 and Beauveria bassiana strain Pa4 had the greatest measured effect on D. gallinae at 1 × 107 conidia/ml 7 days after application. In a subsequent does-response experiment, these strains also caused 92.7% mortality at 1 × 109 conidia/ml within the same period. The LC50 of these strains was 5.5 × 104 (95% CI: 0.8-37.5) conidia/ml for As-2 and 3.2 × 104 (95% CI: 0.4-26.0) conidia/ml for Pa4, and their LT50 were 1.94 and 1.57 days, respectively. The commercial Metarhizium anisopliae bioinsecticide Bio-Storm 1.15% WP, used as a comparator, had LC50 and LT50 1 × 105 (95% CI: 0.1-7.9) conidia/ml and 3.03 (95% CI: 2.4-3.8) days, respectively. It is suggested that mycoacaricides could be developed using the best two fungal strains found in this study (As-2 and Pa4), providing potential for biological control of poultry red mites.
Collapse
Affiliation(s)
- Miraç Bayramoğlu
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye
| | - Zeynep Bayramoğlu
- Department of Plant and Animal Production, Pazar Vocational School, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Levent Aydın
- Department of Parasitology, Faculty of Veterinary Medicine, Uludağ University, Bursa, Türkiye
| | - Suna Aslı Zengin
- Arion Pharmaceuticals Istanbul Tuzla Organized Industrial Zone (ITOSB) , 12th Street No:8 34959 Tepeören Tuzla, İstanbul, Türkiye
| | - Veli Yılgör Çırak
- Department of Parasitology, Faculty of Veterinary Medicine, Uludağ University, Bursa, Türkiye
| | - Zihni Demirbağ
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye
| | - İsmail Demir
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Türkiye.
| |
Collapse
|
17
|
Boulanger L, Planchon C, Taudière A, McCoy KD, Burgess STG, Nisbet AJ, Bartley K, Galliot P, Creach P, Sleeckx N, Roy L. The Poultry Red Mite, Dermanyssus gallinae, travels far but not frequently, and takes up permanent residence on farms. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 120:105584. [PMID: 38521481 DOI: 10.1016/j.meegid.2024.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Management of Dermanyssus gallinae, a cosmopolitan hematophagous mite responsible for damage in layer poultry farming, is hampered by a lack of knowledge of its spatio-temporal population dynamics. Previous studies have shown that the circulation of this pest between farms is of strictly anthropogenic origin, that a mitochondrial haplogroup has been expanding on European farms since the beginning of the 21st century and that its local population growth may be particularly rapid. To refine our understanding of how D. gallinae spreads within and among farms, we characterized the genetic structure of mite populations at different spatial scales and sought to identify the main factors interrupting gene flow between poultry houses and between mitochondrial haplogroups. To this end, we selected and validated the first set of nuclear microsatellite markers for D. gallinae and sequenced a region of the CO1-encoding mitochondrial gene in a subsample of microsatellite-genotyped mites. We also tested certain conditions required for effective contamination of a poultry house through field experimentation, and conducted a survey of practices during poultry transfers. Our results confirm the role of poultry transport in the dissemination of mite populations, but the frequency of effective contamination after the introduction of contaminated material into poultry houses seems lower than expected. The high persistence of mites on farms, even during periods when poultry houses are empty and cleaned, and the very large number of nodes in the logistic network (large number of companies supplying pullets or transporting animals) undoubtedly explain the very high prevalence on farms. Substantial genetic diversity was measured in farm populations, probably as a result of the mite's known haplodiploid mode of sexual reproduction, coupled with the dense logistic network. The possibility of the occasional occurrence of asexual reproduction in this sexually reproducing mite was also revealed in our analyses, which could explain the extreme aggressiveness of its demographic dynamics under certain conditions.
Collapse
Affiliation(s)
- L Boulanger
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, 1919 route de Mende, 3400 Montpellier, France
| | - C Planchon
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, 1919 route de Mende, 3400 Montpellier, France
| | - A Taudière
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, 1919 route de Mende, 3400 Montpellier, France
| | - K D McCoy
- Université de Montpellier, CNRS, IRD, MIVEGEC, Domaine La Valette - 900, rue Jean François BRETON, 34090 Montpellier, France
| | - S T G Burgess
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK
| | - A J Nisbet
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK
| | - K Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK
| | - P Galliot
- Institut Technique de l'AVIculture (ITAVI), FranceITAVI, 41 rue Beaucemaine, 22440 Ploufragan, France
| | - P Creach
- Institut Technique de l'AVIculture (ITAVI), FranceITAVI, 41 rue Beaucemaine, 22440 Ploufragan, France
| | - N Sleeckx
- Experimental Poultry Centre, 77 Poiel, Geel 2440, Belgium
| | - Lise Roy
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, 1919 route de Mende, 3400 Montpellier, France.
| |
Collapse
|
18
|
Zhang X, Zhang Y, Xu K, Qin J, Wang D, Xu L, Wang C. Identification and biochemical characterization of a carboxylesterase gene associated with β-cypermethrin resistance in Dermanyssus gallinae. Poult Sci 2024; 103:103612. [PMID: 38492248 PMCID: PMC10959707 DOI: 10.1016/j.psj.2024.103612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Dermanyssus gallinae is a major hematophagous ectoparasite in layer hens. Although the acaricide β-cypermethrin has been used to control mites worldwide, D. gallinae has developed resistance to this compound. Carboxylesterases (CarEs) are important detoxification enzymes that confer resistance to β-cypermethrin in arthropods. However, CarEs associated with β-cypermethrin resistance in D. gallinae have not yet been functionally characterized. Here, we isolated a CarE gene (Deg-CarE) from D. gallinae and assayed its activity. The results revealed significantly higher expression of Deg-CarE in the β-cypermethrin-resistant strain (RS) than in the susceptible strain (SS) toward α-naphthyl acetate (α-NA) and β-naphthyl acetate (β-NA). These findings suggest that enhanced esterase activities might have contributed to β-cypermethrin resistance in D. gallinae. Quantitative real-time PCR analysis revealed that Deg-CarE expression levels were significantly higher in adults than in other life stages. Although Deg-CarE was upregulated in the RS, significant differences in gene copy numbers were not observed. Additionally, Deg-CarE expression was significantly induced by β-cypermethrin in both the SS and RS. Moreover, silencing Deg-CarE via RNA interference decreased the enzyme activity and increased the susceptibility of the RS to β-cypermethrin, confirming that Deg-CarE is crucial for β-cypermethrin detoxification. Finally, recombinant Deg-CarE (rDeg-CarE) expressed in Escherichia coli displayed high enzymatic activity toward α/β-NA. However, metabolic analysis indicated that rDeg-CarE did not directly metabolize β-cypermethrin. The collective findings indicate that D. gallinae resistance to β-cypermethrin is associated with elevated CarEs protein activity and increased Deg-CarE expression levels. These findings provide insights into the metabolic resistance of D. gallinae and offer scientific guidance for the management and control of D. gallinae.
Collapse
Affiliation(s)
- Xuedi Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Yue Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Kai Xu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Jianhua Qin
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Lijun Xu
- Baoding Livestock Husbandry workstation, Baoding 071023, Hebei, China
| | - Chuanwen Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, Hebei, China.
| |
Collapse
|
19
|
Sioutas G, Gelasakis AI, Papadopoulos E. Spatial Distribution of Dermanyssus gallinae Infestations in Greece and Their Association with Ambient Temperature, Humidity, and Altitude. Pathogens 2024; 13:347. [PMID: 38668302 PMCID: PMC11053509 DOI: 10.3390/pathogens13040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024] Open
Abstract
Dermanyssus gallinae, the poultry red mite (PRM), is the most prevalent and harmful ectoparasite of laying hens globally. Although prevalence and risk factor studies can help veterinarians make decisions regarding farm treatments, relevant data are scarce. The present study investigated the prevalence and infestation severity of PRM in poultry farms across Greece and examined potential risk factors. AviVet traps were used to sample 84 farms (51 backyard, 33 industrial) over three years. Farm altitude, temperature, humidity, region, and production systems were assessed as potential risk factors with chi-square tests, initially for all the studied farms and then exclusively for backyard farms. The overall prevalence was 75.0% and was higher in backyard farms (80.4%) compared with industrial ones (66.7%), varying regionally from 66.7 to 90.9%. Altitude and temperature were not significant risk factors, but farms with humidity <60% had a lower infestation risk. Infestation severity did not significantly differ by risk factors. The poultry red mite is highly prevalent across Greek poultry production systems and regions. In the future, global warming, reduced acaricide options, and a ban on cage systems will all threaten a wider spatio-temporal distribution of the PRM, justifying the urgent need for effective monitoring and control methods to protect hen production and welfare and workers' health.
Collapse
Affiliation(s)
- Georgios Sioutas
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece;
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
20
|
Wang P, Li H, Meng J, Liu Q, Wang X, Wang B, Liu B, Wang C, Sun W, Pan B. Activation of CncC pathway by ROS burst regulates ABC transporter responsible for beta-cypermethrin resistance in Dermanyssus gallinae (Acari:Dermanyssidae). Vet Parasitol 2024; 327:110121. [PMID: 38286058 DOI: 10.1016/j.vetpar.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 01/31/2024]
Abstract
The drug resistance of poultry red mites to chemical acaricides is a global issue in the control of the mites, which presents an ongoing threat to the poultry industry. Though the increased production of detoxification enzymes has been frequently implicated in resistance development, the overexpression mechanism of acaricide-resistant related genes in mites remains unclear. In the present study, it was observed that the transcription factor Cap 'n' Collar isoform-C (CncC) and its partner small muscle aponeurosis fibromatosis (Maf) were highly expressed in resistant strains compared to sensitive strains under the stress of beta-cypermethrin. When the CncC/Maf pathway genes were down-regulated by RNA interference (RNAi), the expression of the ABC transporter genes was down-regulated, leading to a significant increase in the sensitivity of resistant strains to beta-cypermethrin, suggesting that CncC/Maf played a crucial role in mediating the resistance of D.gallinae to beta-cypermethrin by regulating ABC transporters. Furthermore, it was observed that the content of H2O2 and the activities of peroxidase (POD) and catalase (CAT) enzymes were significantly higher in resistant strains after beta-cypermethrin stress, indicating that beta-cypermethrin activates reactive oxygen species (ROS). In ROS scavenger assays, it was found that the expression of CncC/Maf significantly decreased, along with a decrease in the ABC transporter genes. The present study showed that beta-cypermethrin seemed to trigger the outbreak of ROS, subsequently activated the CncC/Maf pathway, as a result induced the ABC transporter-mediated resistance to the drug, shedding more light on the resistance mechanisms of D.gallinae to pyrethroids.
Collapse
Affiliation(s)
- Penglong Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Huan Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Jiali Meng
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Qi Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Xu Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Bohan Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Boxing Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Chuanwen Wang
- College of Veterinary Medicine, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding 071001, Hebei, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China.
| |
Collapse
|
21
|
Raeisi M, Zamani Moghaddam A, Tohidifar SS, Malekan M. Administering Fluralaner in Drinking Water for Treatment of Dermanyssus gallinae Infestation in Hy-Line W80 Laying Hens. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e145526. [PMID: 39830671 PMCID: PMC11742101 DOI: 10.5812/ijpr-145526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 01/22/2025]
Abstract
Background Poultry red mites, or Dermanyssus gallinae, pose a threat to the welfare and productivity of laying hens. Moreover, the increasing resistance of these mites to conventional miticides highlights the urgent need for alternative treatment options. There are also documented cases of poultry red mite infestations in humans. Objectives The primary objective of this study was to evaluate the efficacy of fluralaner against Dermanyssus gallinae infestation in hens. Methods Fluralaner was selected as a novel treatment for poultry red mite due to its effectiveness and safety profile. The presence of live mites in the drinking water tank served as the indicator of infestation. Live mites were counted on nine occasions throughout the study. Fluralaner was administered at three doses of 0.5 mg/kg in drinking water with a seven-day interval between each dose. The efficacy of fluralaner was assessed, with an efficacy percentage exceeding 90% considered indicative of antiparasitic efficacy. Results The overall efficacy of Fluralaner in the current study exceeded 90% by day 5 and reached 100% by day 17. Conclusions This study demonstrates that fluralaner is an effective alternative treatment, achieving efficacy rates exceeding 90% against poultry red mite infestation in laying hens.
Collapse
Affiliation(s)
- MohammadReza Raeisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord, Iran
| | | | | | - Maryam Malekan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord, Iran
| |
Collapse
|
22
|
Rüster V, Lückemann AK, Wittmann M, Strube C, Bartels T. Successful long-term control of poultry red mite (Dermanyssus gallinae) infestations in floor-kept laying hens via integrated pest management-a case report. Parasitol Res 2023; 122:2549-2555. [PMID: 37642771 PMCID: PMC10567861 DOI: 10.1007/s00436-023-07954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
This case report describes the successful control of poultry red mite [PRM] (Dermanyssus gallinae) infestations in an experimental laying hen house via a combined use of cleaning and disinfection measure, the preventive application of a synthetic silica-based acaricide and frequent mite monitoring. The high number of PRM in the laying hen house was reduced by 99.8% by treatment with fluralaner (Exzolt®, MSD Animal Health Unterschleißheim, Germany; 0.5 mg/kg body weight via drinking water twice, 7 days apart). After the laying hens were removed, the hen house was dry-cleaned, wet-cleaned and disinfected. After drying, synthetic amorphous silica (Fossil Shield® instant white, Bein GmbH, Eiterfeld, Germany) was applied as a preventive measure before the hen house was restocked with pullets for two housing periods of 58 and 52 weeks. Over these periods (i.e. more than 2 years), no PRM was detected during mite monitoring at two-week intervals via tube traps and visual monitoring. This result therefore suggests that the combined use of appropriate chemical and physical prevention measures within an integrated pest management regime can be successfully used for the long-term control of PRM. This could reduce the use of acaricidal drugs, thereby helping maintain their efficacy.
Collapse
Affiliation(s)
- Vanessa Rüster
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Margareta Wittmann
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Soest, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Bartels
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany.
| |
Collapse
|
23
|
da Silva GG, Zaldívar MF, Oliveira LAR, Mariano RMDS, Lair DF, de Souza RA, Galdino AS, Chávez-Fumagalli MA, da Silveira-Lemos D, Dutra WO, Nascimento Araújo R, Ferreira LL, Giunchetti RC. Advances in Non-Chemical Tools to Control Poultry Hematophagous Mites. Vet Sci 2023; 10:589. [PMID: 37888541 PMCID: PMC10611074 DOI: 10.3390/vetsci10100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The blood-sucking mites Dermanyssus gallinae ("red mite"), Ornithonyssus sylviarum ("northern fowl mite"), and Ornithonyssus bursa ("tropical fowl mite") stand out for causing infestations in commercial poultry farms worldwide, resulting in significant economic damage for producers. In addition to changes in production systems that include new concerns for animal welfare, global climate change in recent years has become a major challenge in the spread of ectoparasites around the world. This review includes information regarding the main form of controlling poultry mites through the use of commercially available chemicals. In addition, non-chemical measures against blood-sucking mites were discussed such as extracts and oils from plants and seeds, entomopathogenic fungi, semiochemicals, powder such as diatomaceous earth and silica-based products, and vaccine candidates. The control of poultry mites using chemical methods that are currently used to control or eliminate them are proving to be less effective as mites develop resistance. In contrast, the products based on plant oils and extracts, powders of plant origin, fungi, and new antigens aimed at developing transmission-blocking vaccines against poultry mites provide some encouraging options for the rational control of these ectoparasites.
Collapse
Affiliation(s)
- Geralda Gabriele da Silva
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Maykelin Fuentes Zaldívar
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Lucilene Aparecida Resende Oliveira
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Reysla Maria da Silveira Mariano
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Daniel Ferreira Lair
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Renata Antunes de Souza
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, Federal University of São João Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis 35501-296, MG, Brazil;
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Arequipa 04000, Peru;
| | - Denise da Silveira-Lemos
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Walderez Ornelas Dutra
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| | - Ricardo Nascimento Araújo
- Laboratory of Hematophagous Arthropods, Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Lorena Lopes Ferreira
- Laboratory of Ectoparasites, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Institute of Biological Sciences, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.A.R.O.); (R.M.d.S.M.); (D.F.L.); (R.A.d.S.); (D.d.S.-L.); (W.O.D.)
| |
Collapse
|
24
|
De Rouck S, İnak E, Dermauw W, Van Leeuwen T. A review of the molecular mechanisms of acaricide resistance in mites and ticks. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103981. [PMID: 37391089 DOI: 10.1016/j.ibmb.2023.103981] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
The Arachnida subclass of Acari comprises many harmful pests that threaten agriculture as well as animal health, including herbivorous spider mites, the bee parasite Varroa, the poultry mite Dermanyssus and several species of ticks. Especially in agriculture, acaricides are often used intensively to minimize the damage they inflict, promoting the development of resistance. Beneficial predatory mites used in biological control are also subjected to acaricide selection in the field. The development and use of new genetic and genomic tools such as genome and transcriptome sequencing, bulked segregant analysis (QTL mapping), and reverse genetics via RNAi or CRISPR/Cas9, have greatly increased our understanding of the molecular genetic mechanisms of resistance in Acari, especially in the spider mite Tetranychus urticae which emerged as a model species. These new techniques allowed to uncover and validate new resistance mutations in a larger range of species. In addition, they provided an impetus to start elucidating more challenging questions on mechanisms of gene regulation of detoxification associated with resistance.
Collapse
Affiliation(s)
- Sander De Rouck
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Emre İnak
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Plant Protection, Faculty of Agriculture, Ankara University, Dıskapı, 06110, Ankara, Turkiye
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Thomas Van Leeuwen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
25
|
Fukatsu T, Gottlieb Y, Duron O, Graf J. Editorial: Microbial associates of blood-sucking arthropods and other animals: relevance to their physiology, ecology and evolution. Front Microbiol 2023; 14:1256275. [PMID: 37564283 PMCID: PMC10411339 DOI: 10.3389/fmicb.2023.1256275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuval Gottlieb
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Olivier Duron
- MIVEGEC, CNRS, IRD, University of Montpellier, Montpellier, France
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
26
|
Win SY, Murata S, Fujisawa S, Seo H, Sato J, Motai Y, Sato T, Oishi E, Taneno A, Htun LL, Bawm S, Okagawa T, Maekawa N, Konnai S, Ohashi K. Characterization of cysteine proteases from poultry red mite, tropical fowl mite, and northern fowl mite to assess the feasibility of developing a broadly efficacious vaccine against multiple mite species. PLoS One 2023; 18:e0288565. [PMID: 37440547 DOI: 10.1371/journal.pone.0288565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Infestation with poultry red mites (PRM, Dermanyssus gallinae) causes anemia, reduced egg production, and death in serious cases, resulting in significant economic losses to the poultry industry. As a novel strategy for controlling PRMs, vaccine approaches have been focused upon and several candidate vaccine antigens against PRMs have been reported. Tropical (TFM, Ornithonyssus bursa) and northern (NFM, Ornithonyssus sylviarum) fowl mites are also hematophagous and cause poultry industry problems similar to those caused by PRM. Therefore, ideal antigens for anti-PRM vaccines are molecules that cross-react with TFMs and NFMs, producing pesticidal effects similar to those against PRMs. In this study, to investigate the potential feasibility of developing vaccines with broad efficacy across mite species, we identified and characterized cysteine proteases (CPs) of TFMs and NFMs, which were previously reported to be effective vaccine antigens of PRMs. The open reading frames of CPs from TFMs and NFMs had the same sequences, which was 73.0% similar to that of PRMs. Phylogenetic analysis revealed that the CPs of TFMs and NFMs clustered in the same clade as CPs of PRMs. To assess protein functionality, we generated recombinant peptidase domains of CPs (rCP-PDs), revealing all rCP-PDs showed CP-like activities. Importantly, the plasma obtained from chickens immunized with each rCP-PD cross-reacted with rCP-PDs of different mites. Finally, all immune plasma of rCP-PDs reduced the survival rate of PRMs, even when the plasma was collected from chickens immunized with rCP-PDs derived from TFM and NFM. Therefore, CP antigen is a promising, broadly efficacious vaccine candidate against different avian mites.
Collapse
Affiliation(s)
- Shwe Yee Win
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Sotaro Fujisawa
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hikari Seo
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | | | - Lat Lat Htun
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
27
|
Zhu K, Liu X, Qi X, Liu Q, Wang B, Sun W, Pan B. Acaricidal activity of bioactive compounds isolated from Aspergillus oryzae against poultry red mites, Dermanyssus gallinae (Acari: Dermanyssidae). Vet Parasitol 2023; 320:109983. [PMID: 37450962 DOI: 10.1016/j.vetpar.2023.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Dermanyssus gallinae, the poultry red mite (PRM), is an obligate ectoparasite feeding on poultry blood, seriously affecting the health of layers and egg production. The control of PRMs mainly relies on chemical drugs, which is facing several challenges such as the environment pollution and drug resistance. Using fungal metabolites is an environmentally friendly alternative for the control of pests. However, few studies have been conducted on the efficacy of fungal metabolites against D. gallinae. In this study, five strains of fungi were isolated from D. gallinae under laboratory conditions, and their extracts with ethyl acetate were tested for acaricidal activity on D. gallinae. The crude extract of Aspergillus oryzae caused 75.55 ± 6.94% mortality of mites at a concentration of 12.5 mg/mL, showing the highest acaricidal effect in all extracts. Subsequently, the extract of A. oryzae was isolated by bio-guided fractionation, and ten major compounds were identified by LC-MS/MS analysis. The results of bioassays indicated that five compounds exhibited acaricidal activity against D. gallinae. N, N-dimethyldecylamine N-oxide was the optimal acaricidal compound with LC50 of 0.568 mg/mL. Additionally, palmitic acid, triethanolamine, cuminaldehyde, and 2,4-dimethylbenzaldehyde also showed acaricidal activity. These compounds have great application potential in the mite control, and the analysis of these fungal acaricidal substances provides a new idea and basis for the subsequent development of PRM control technology.
Collapse
Affiliation(s)
- Kexin Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxiao Qi
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bohan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
28
|
Hwang ET. Management of the poultry red mite Dermanyssus gallinae with physical control methods by inorganic material and future perspectives. Poult Sci 2023; 102:102772. [PMID: 37245438 DOI: 10.1016/j.psj.2023.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
Poultry red mite (PRM), the ectoparasitic mite Dermanyssus gallinae found in laying hen farms, is a significant threat to poultry production and human health worldwide. It is a suspected disease vector and attacks hosts' other than chickens, including humans, and its economic importance has increased greatly. Different strategies to control PRM have been widely tested and investigated. In principle, several synthetic pesticides have been applied to control PRM. However, recent alternative control methods to avoid the side effects of pesticides have been introduced, although many remain in the early stage of commercialization. In particular, advances in material science have made various materials more affordable as alternatives for controlling PRM through physical interactions between PRM. This review provides a summary of PRM infestation, and then includes a discussion and comparison of different conventional approaches: 1) organic substances, 2) biological approaches, and 3) physical inorganic material treatment. The advantages of inorganic materials are discussed in detail, including the classification of materials, as well as the physical mechanism-induced effect on PRM. In this review, we also consider the perspective of using several synthetic inorganic materials to suggest novel strategies for improved monitoring and better information regarding treatment interventions.
Collapse
Affiliation(s)
- Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
29
|
Win SY, Murata S, Fujisawa S, Seo H, Sato J, Motai Y, Sato T, Oishi E, Taneno A, Htun LL, Bawm S, Okagawa T, Maekawa N, Konnai S, Ohashi K. Potential of ferritin 2 as an antigen for the development of a universal vaccine for avian mites, poultry red mites, tropical fowl mites, and northern fowl mites. Front Vet Sci 2023; 10:1182930. [PMID: 37138911 PMCID: PMC10149675 DOI: 10.3389/fvets.2023.1182930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Poultry red mites (PRMs, Dermanyssus gallinae), blood-sucking ectoparasites, are a threat to the poultry industry because of reduced production caused by infestation. In addition, tropical fowl mites (TFMs, Ornithonyssus bursa) and northern fowl mites (NFMs, Ornithonyssus sylviarum) are hematophagous, distributed in various regions, genetically and morphologically close to PRMs, and cause similar problems to the poultry industry. Vaccine approaches have been studied for PRM control, and several molecules have been identified in PRMs as candidates for effective vaccine antigens. The development of an anti-PRM vaccine as a universal vaccine with broad efficacy against avian mites could improve the productivity of poultry farms worldwide. Molecules that are highly conserved among avian mites and have critical functions in the physiology and growth of mites could be ideal antigen candidates for the development of universal vaccines. Ferritin 2 (FER2), an iron-binding protein, is critical for the reproduction and survival of PRMs and has been reported as a useful vaccine antigen for the control of PRMs and a candidate for the universal vaccine antigen in some tick species. Method and results Herein, we identified and characterized FER2 in TFMs and NFM. Compared with the sequence of PRM, the ferroxidase centers of the heavy chain subunits were conserved in FER2 of TFMs and NFMs. Phylogenetic analysis revealed that FER2 belongs to clusters of secretory ferritins of mites and other arthropods. Recombinant FER2 (rFER2) proteins from PRMs, TFMs, and NFMs exhibited iron-binding abilities. Immunization with each rFER2 induced strong antibody responses in chickens, and each immune plasma cross-reacted with rFER2 from different mites. Moreover, mortality rates of PRMs fed with immune plasma against rFER2 from TFMs or NFMs, in addition to PRMs, were higher than those of control plasma. Discussion rFER2 from each avian mite exhibited anti-PRM effects. This data suggests that it has the potential to be used as an antigen candidate for a universal vaccine against avian mites. Further studies are needed to access the usefulness of FER2 as a universal vaccine for the control of avian mites.
Collapse
Affiliation(s)
- Shwe Yee Win
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Sotaro Fujisawa
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hikari Seo
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Jumpei Sato
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinosuke Motai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | - Lat Lat Htun
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw, Myanmar
- Department of Livestock and Aquaculture Research, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw, Myanmar
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
30
|
He J, Liu Q, Wang P, Liu B, Sun W, Pan B. Sex dimorphism in the deutonymphs of Dermanyssus gallinae (De Geer, 1778) based on geometric morphometrics. Exp Parasitol 2023; 249:108530. [PMID: 37040857 DOI: 10.1016/j.exppara.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023]
Abstract
The lifecycle of poultry red mite (PRM), Dermanyssus gallinae,includes several stages and only the adult has been reported to have sex discrimination based on body structures and color patterns. Currently, it's still unknown how to distinguish two sexes of deutonymphs. We measured body length of 254 engorged deutonymphs and examined body size and shape variation of 104 engorged deutonymphs using geometric morphometric techniques. Our findings showed that deutonymph females (with average values of 813.08 μm) had a longer body length than deutonymph males (713.39 μm). Additionally, deutonymph females were found to had a narrow and elongated posterior body shape while deutonymph males had a suboval shape, and the former was bigger than the latter. These results suggest that there is sexual dimorphism in PRM deutonymphs, and the differentiation of deutonymph females and males based on their body length, shape, and size will facilitate a better understanding of reproductive behavior and the accurate population dynamics of PRMs.
Collapse
Affiliation(s)
- Jiaqi He
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Qi Liu
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Penglong Wang
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Boxing Liu
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Weiwei Sun
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
31
|
Alves LFA, Johann L, Oliveira DGP. Challenges in the Biological Control of Pests in Poultry Production: a Critical Review of Advances in Brazil. NEOTROPICAL ENTOMOLOGY 2023; 52:292-301. [PMID: 36656489 DOI: 10.1007/s13744-022-01021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Poultry farming is an important activity in animal protein production worldwide, either by laying hen farming or broilers. Over the last decades, the change in production systems with confinement of large numbers of hens has increased productivity and reduced costs; however, it has also increased sanitary issues. In this setting, arthropods that are adapted to poultry houses have gained great importance. They cause direct damage to hens, either by blood spoliation caused by ectoparasites or lesions in the digestive tract (e.g., lesser mealworm) or by indirect damages, by transmitting pathogens or by affecting egg quality, when they attain pest status. Synthetic chemical products comprise the most frequently used control strategy against these pests, with relative efficacy and many side effects. In Europe, some countries also adopt alternative prevention or control measures. In Brazil, however, although there are some groups of researchers that work on developing alternative control, its use is virtually zero. The present review shows a critical overview of this context in Brazil, based on the alternatives that have already been studied and made available, but have not been implemented, yet, and the potential stumbling blocks created by the very poultry market against these advances.
Collapse
Affiliation(s)
- Luis Francisco Angeli Alves
- Agricultural Biotechnology Laboratory, Western Parana State University, Cascavel, Paraná, Brazil.
- Bolsista de Produtividade Em Pesquisa/CNPq, Brasília, Brazil.
| | - Liana Johann
- Bolsista de Produtividade Em Pesquisa/CNPq, Brasília, Brazil
- University of Vale do Taquari - Univates, Lajeado, Rio Grande Do Sul, Brazil
| | | |
Collapse
|
32
|
Sioutas G, Tsouknidas A, Gelasakis AI, Vlachou A, Kaldeli AK, Kouki M, Symeonidou I, Papadopoulos E. In Vitro Acaricidal Activity of Silver Nanoparticles (AgNPs) against the Poultry Red Mite ( Dermanyssus gallinae). Pharmaceutics 2023; 15:pharmaceutics15020659. [PMID: 36839980 PMCID: PMC9963603 DOI: 10.3390/pharmaceutics15020659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Dermanyssus gallinae (PRM) is the most common blood-sucking ectoparasite in laying hens and is resistant against numerous acaricides. Silver nanoparticles (AgNPs) represent an innovative solution against PRM. The current study aimed to assess the in vitro acaricidal activity of AgNPs against PRM and describe their potential mechanism of action. Nanoparticles were produced using a wet chemistry approach. Mites were collected using AviVet traps from 18 poultry farms in Greece. Contact toxicity bioassays were carried out for 24 h with negative controls, 20, 40, 60, or 80 ppm AgNPs. Analysis of variance was used to compare the mortality rates of PRM between the control and treatment groups, while LC50, LC90, and LC99 values were estimated using probit regression analysis for the total farms jointly and separately. Nanoparticles displayed strong acaricidal activity, and mortality rates were significantly different between groups and increased by AgNPs concentration. Overall mean LC50, LC90, and LC99 values were 26.5, 58.8, and 112.3 ppm, respectively. Scanning electron microscopy on mites treated with 80 ppm AgNPs revealed cracks in their exoskeleton and limb detachments, presumably resulting from the interaction between AgNPs and the mites' chitin. Future studies should focus on assessing AgNPs residues in chicken tissues before moving into field trials.
Collapse
Affiliation(s)
- Georgios Sioutas
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandros Tsouknidas
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy and Physiology of Farm Animals, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Afrodite Vlachou
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece
| | - Alexandra K. Kaldeli
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece
| | - Maria Kouki
- PLiN Nanotechnology S.A., Spectra Business Center 12th km Thessaloniki-Chalkidiki, Thermi, 57001 Thessaloniki, Greece
| | - Isaia Symeonidou
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-69-4488-2872
| |
Collapse
|
33
|
Auffray T, Arriaga-Jiménez A, Taudière A, Roy LJM, Lapeyre B, Roy L. Attractant Activity of Host-Related Chemical Blends on the Poultry Red Mite at Different Spatial Scales. J Chem Ecol 2023; 49:18-35. [PMID: 36534242 DOI: 10.1007/s10886-022-01399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Many blood-feeding arthropods use volatile organic compounds (VOCs) to detect their vertebrate hosts. The role of chemical interactions in mediating the behavior of hematophagous insects and ticks has been investigated before but remains poorly understood in hematophagous mesostigmatic mites. The poultry red mite Dermanyssus gallinae is an obligatory blood-sucking mesostigmatic mite that feeds on birds and causes damage in poultry farms. We characterized the attractive response of D. gallinae to candidate VOCs previously reported from the odor emitted by living hens. We performed in-vitro choice-test bioassays as well as semi-field and field trials using baited and unbaited traps, in the presence and absence of hens. Among different tested combinations of VOCs, a blend of 5 VOCs (mix1.0) was significantly attractive to our reference population of D. gallinae in vitro, whereas the same individual compounds tested alone were not attractive. Ammonia was attractive on its own and increased the mix1.0 attractiveness. The attractiveness of mix1.0 was confirmed at 'natural' spatial scales in the absence of hens both at the lab and on the farm that provided the reference population. The presence of hens inhibited the mix1.0 attractiveness. The attractive power of mix1.0 was not found in other farms. This research is an important step to advance our understanding of host-parasite interactions in hematophagous mesostigmatic mites and paves the way for developing alternative control tools against D. gallinae by interfering with chemical interactions. Moreover, it underlines the importance of assessing kairomonal activity on different pest populations when developing attract-and-kill systems.
Collapse
Affiliation(s)
- Thomas Auffray
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Alfonsina Arriaga-Jiménez
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Insect Ecology Lab, School of Environmental and Rural Sciences, University of New England, Armidale, NSW, 2350, Australia
| | - Adrien Taudière
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | | | - Benoît Lapeyre
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Lise Roy
- CEFE, Univ Paul Valéry Montpellier 3, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| |
Collapse
|
34
|
Fujisawa S, Murata S, Isezaki M, Win SY, Sato T, Oishi E, Taneno A, Maekawa N, Okagawa T, Konnai S, Ohashi K. Suppressive modulation of host immune responses by Dermanyssus gallinae infestation. Poult Sci 2023; 102:102532. [PMID: 36796246 PMCID: PMC9958498 DOI: 10.1016/j.psj.2023.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The poultry red mite (Dermanyssus gallinae, PRM) is a blood-sucking ectoparasite in chickens and is one of the most serious threats to poultry farms. Mass infestation with PRMs causes various health problems in chickens, resulting in significant productivity reduction in the poultry industry. Infestation with hematophagous ectoparasites, such as ticks, induces host inflammatory and hemostatic reactions. On the other hand, several studies have reported that hematophagous ectoparasites secrete various immunosuppressants from their saliva to suppress host immune responses to maintain blood sucking. Here, we examined the expression of cytokines in peripheral blood cells to investigate whether PRM infestation affects immunological states in chickens. In PRM-infested chickens, anti-inflammatory cytokines, IL-10 and TGF-β1, and immune checkpoint molecules, CTLA-4 and PD-1, were highly expressed compared to noninfested chickens. PRM-derived soluble mite extracts (SME) upregulated the gene expression of IL-10 in peripheral blood cells and HD-11 chicken macrophages. In addition, SME suppressed the expression of interferons and inflammatory cytokines in HD-11 chicken macrophages. Moreover, SME induces the polarization of macrophages into anti-inflammatory phenotypes. Collectively, PRM infestation could affect host immune responses, especially suppress the inflammatory responses. Further studies are warranted to fully understand the influence of PRM infestation on host immunity.
Collapse
Affiliation(s)
- Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shwe Yee Win
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | - Eiji Oishi
- Vaxxinova Japan K.K., Minato-ku, Tokyo, Japan
| | | | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan,International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
35
|
Masier S, Taudière A, Roy LJM, Carrasco D, Barnagaud JY, Planchon C, Soulié AS, Sleeckx N, Roy L. High-throughput behavioral phenotyping of tiny arthropods: Chemosensory traits in a mesostigmatic hematophagous mite. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:46-62. [PMID: 36052497 PMCID: PMC10087610 DOI: 10.1002/jez.2651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
Pest management using attractive and/or repellent semiochemicals is a key alternative to synthetic insecticides. Its implementation requires a good understanding of the intra- and interspecific chemical interactions of arthropod pests, their interactions with their abiotic environment, as well as their evolutionary dynamics. Although mites include many pest species and biocontrol agents of economic importance in agriculture, their chemical ecology is largely understudied compared to insects. We developed a high-throughput ethomics system to analyze these small arthropods and conducted a study on Dermanyssus gallinae, a problematic poultry parasite in the egg industry. Our purpose was to elucidate the role played by host-derived odorants (synthetic kairomone) and conspecific odorants (mite body odors) in D. gallinae. After validating our nanocomputer controlled olfactometric system with volatile semiochemicals of known biological activity, we characterized response traits to kairomonal and/or pheromonal volatile blends in mites from different populations. We were able to accurately characterize the repulsion or attraction behaviors in >1000 individual specimens in a standardized way. Our results confirm the presence of a volatile aggregation pheromone emitted by D. gallinae and bring new elements to the effect of odor source presentation. Our results also confirm the attractive effect on Dermanyssus gallinae of a blend of volatile compounds contained in hen odor, while highlighting a repellent effect at high concentration. Significant interindividual and interpopulation variation was noted particularly in responses to synthetic kairomone. This information lays a valuable foundation for further exploring the emergence risk of resistance to semiochemicals.
Collapse
Affiliation(s)
- Stefano Masier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Adrien Taudière
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | | | - David Carrasco
- MiVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Jean-Yves Barnagaud
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Camille Planchon
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Anne-Sophie Soulié
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | | | - Lise Roy
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
36
|
Microbiome comparison of Dermanyssus gallinae populations from different farm rearing systems and the presence of common endosymbiotic bacteria at developmental stages. Parasitol Res 2023; 122:227-235. [PMID: 36401143 DOI: 10.1007/s00436-022-07721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/05/2022] [Indexed: 11/21/2022]
Abstract
The hematophagous arthropod, Dermanyssus gallinae (Poultry red mite, PRM) can cause remarkable economic losses in the poultry industry across the globe. Although overall composition of endosymbiotic bacteria has been shown in previous studies, how farm habitats influence the microbiome remains unclear. In the present study, we compared the bacterial communities of D. gallinae populations collected from the cage and free-range farms using next-generation sequences targeting the V3-V4 hypervariable region of the 16S rRNA gene. The QIIME2 pipeline was followed in bioinformatic analyses. Proteobacteria represented a great majority of the total bacterial community of D. gallinae from both farming systems. More specifically, Bartonella-like bacteria (40.8%) and Candidatus Cardinium (21.5%) were found to be predominant genera in free-range and cage rearing systems, respectively. However, the microbiome variation based on farming systems was not statistically significant. In addition, the presence of the five common endosymbiotic bacteria (Wolbachia, Cardinium, Rickettsiella, Spiroplasma, and Schineria) was screened in different developmental stages of D. gallinae. Cardinium was detected in all developmental stages of D. gallinae. On the other hand, Wolbachia and Rickettsiella were only found in adults/nymphs, but neither in the eggs nor larvae. To our knowledge, this study provides the first microbiome comparison at genus-level in D. gallinae populations collected from different farm habitats and will contribute to the knowledge of the biology of D. gallinae.
Collapse
|
37
|
Pigeon mite: An underdiagnosed cause of papular urticaria. Allergol Immunopathol (Madr) 2023; 51:111-114. [PMID: 36916094 DOI: 10.15586/aei.v51i2.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 03/09/2023]
Abstract
BACKGROUND Dermanyssus gallinae, known as bird mite, generally lives on nestlings' featherless skin. Humans are accidentally infected, and itchy dermatitis is induced when the mites are unable to use birds' blood. The diagnosis is difficult due to the very small size and rapid movement of the mites, which make them hard to spot. CASE PRESENTATION A 14-year-old male and his mother were referred to the allergy clinic complaining of a 2-week generalized itchy cutaneous papular lesion, unresponsive to antihista-mines, with the feeling of an insect moving on the surface of the skin. Due to the history of recently hatched pigeons nesting on their balcony and finding very small bugs, diagnosed as D. gallinae, they were instructed to clean the pigeon's nest as the source of these parasites, which successfully solved the problem. CONCLUSION Bird mite infestation should be considered in the differential diagnosis of recurrent pruritus and urticaria, refractory to conventional treatments. Physicians should be aware of this mite infestation in approach to any patient with papular urticaria.
Collapse
|
38
|
Barlaam A, Puccini A, Caiaffa MF, Di Bona D, Macchia L, Giangaspero A. Dermanyssosis in the Urban Context: When the One Health Paradigm Is Put into Practice. Pathogens 2022; 11:pathogens11121396. [PMID: 36558730 PMCID: PMC9782833 DOI: 10.3390/pathogens11121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Poultry red mites (Dermanyssus gallinae) are primarily ectoparasites of laying hens but also parasitize synanthropic birds in urban contexts. This mite can occasionally attack mammals, including humans, and cause mild to severe dermatitis. Attacks by zoonotic Mesostigmata mites are currently an increasing but still neglected problem of urban life. The authors present two cases of dermanyssosis involving two health workers at a hospital, linked to air conditioning outdoor units colonized by pigeons. Videos that describe the environmental contamination by D. gallinae and show where the infestation originated are presented. In addition, the authors update the literature of all urban cases, which, to date, reports over 240 clinical cases, mostly in private homes but also in public buildings. Dermatitis due to these mites is often unrecognized and, therefore, misdiagnosed. This report describes how the two cases herein reported were rapidly resolved thanks to the close cooperation between veterinary parasitologists and allergologists. It is crucial to raise awareness of the problem among general practitioners and specialists. In addition, the authors suggest a reconsideration of urban architectural choices that increase the public health risk posed by dermanyssosis and other diseases related to synanthropic birds.
Collapse
Affiliation(s)
- Alessandra Barlaam
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
- Correspondence: ; Tel.: +39-3925410131
| | | | - Maria Filomena Caiaffa
- Department of Medical and Surgical Sciences, School and Chair of Allergology and Clinical Immunology, University of Foggia, 71122 Foggia, Italy
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, School and Chair of Allergology and Clinical Immunology, University of Bari-Aldo Moro, 70121 Bari, Italy
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation, School and Chair of Allergology and Clinical Immunology, University of Bari-Aldo Moro, 70121 Bari, Italy
| | - Annunziata Giangaspero
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| |
Collapse
|
39
|
Nishide Y, Sugimoto TN, Watanabe K, Egami H, Kageyama D. Genetic variations and microbiome of the poultry red mite Dermanyssus gallinae. Front Microbiol 2022; 13:1031535. [PMID: 36425043 PMCID: PMC9680903 DOI: 10.3389/fmicb.2022.1031535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
The poultry red mite Dermanyssus gallinae poses a significant threat to the health of hens and poultry production. A comprehensive understanding of D. gallinae is necessary to develop sustainable and efficacious control methods. Here we examined 144 D. gallinae collected from 18 poultry farms throughout the Japanese Archipelago for their genetic variations based on mitochondrial cytochrome c oxidase subunit I (COI) sequences, and microbiome variations based on amplicon sequencing of the 16S ribosomal RNA gene. According to COI sequencing, the Japanese samples were categorized into three haplogroups, which did not reflect the geographical distribution. Microbiome analyses found that the major bacteria associated with D. gallinae were Bartonella, Cardinium, Wolbachia, and Tsukamurella, with Bartonella being most predominant. Among 144 individual mites, all possessed one of the two major types of Bartonella (Bartonella sp. A), while 140 mites possessed the other type (Bartonella sp. B). The presence of the two strains of Bartonella was also confirmed by a single copy gene, rpoB. The presence of Bartonella in laid eggs suggested transovarial vertical transmission. Given that obligate blood-feeding arthropods generally require a supply of B vitamins from symbiotic bacteria, Bartonella may play an important role in mite survival. Rickettsiella, a major symbiont in European D. gallinae populations, and suggested to be an important symbiont by genomic data, was rarely found in Japanese populations. Cardinium detected from D. gallinae fell into a major clade found widely in arthropods, whereas Wolbachia detected in Japanese D. gallinae appear to be a new lineage, located at the base of Wolbachia phylogeny. Of the mitochondrial phylogeny, infection patterns of Cardinium and Wolbachia were strongly correlated, possibly suggesting one or both of the symbionts induce reproductive manipulations and increase spread in the host populations.
Collapse
Affiliation(s)
- Yudai Nishide
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- *Correspondence: Yudai Nishide,
| | - Takafumi N. Sugimoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Kenji Watanabe
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Hiroshi Egami
- Research and Development Sector, SC Environmental Science Co., Ltd., Chuo-ku,Tokyo, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- *Correspondence: Yudai Nishide,
| |
Collapse
|
40
|
Genetic Characterization of the Poultry Red Mite (Dermanyssus gallinae) in Poland and a Comparison with European and Asian Isolates. Pathogens 2022; 11:pathogens11111301. [DOI: 10.3390/pathogens11111301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
(1) Background: The blood-feeding mite Dermanyssus gallinae (De Geer 1778) continues to attract wide interest from researchers and bird breeders. The aim of this study was to evaluate the genetic diversity of D. gallinae populations in five commercial laying hen farms in Poland and to determine their similarity with isolates from other countries. The study involved an analysis of a fragment of the cytochrome c oxidase subunit I gene (COI). A total of 38 isolates obtained from Polish farms and 338 sequences deposited in GenBank were analyzed. (2) Results: Haplotype No. 46 was dominant (90%) in Polish isolates and was homologous with the isolates from Great Britain, the Netherlands, Belgium, Japan, and South Korea. These results are indicative of high genetic homogeneity and common ancestry of the poultry red mite and point to a common source of infestation in the examined farms. (3) Conclusions: The genetic diversity of D. gallinae should be further studied to promote a better understanding of how this parasite is disseminated within and between countries.
Collapse
|
41
|
Kolics B, Kolics É, Solti I, Bacsi Z, Taller J, Specziár A, Mátyás K. Lithium Chloride Shows Effectiveness against the Poultry Red Mite ( Dermanyssus gallinae). INSECTS 2022; 13:1005. [PMID: 36354829 PMCID: PMC9694377 DOI: 10.3390/insects13111005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The poultry red mite (Dermanyssus gallinae) is the main pest of poultry, causing severe problems by being a vector of several animal and human pathogens. The number of miticides is few, and their efficacy in practice implies problems of residues and resistance; therefore, the demand for a new and safe agent is constant. The present publication investigated the effectiveness of lithium chloride under in vitro conditions on poultry red mites. This chemical currently appears to be one of the most promising alternatives to study amongst potential applicants to treat varroosis, a fatal disease of honey bees. In Experiment I, the previously used experimental doses (5.52 M, 2.76 M, 1.38 M) on Varroa mites confirmed their in vitro activity on the poultry red mite. Three event times (uncontrolled movement, immobilisation and death) were recorded to base the response to treatment for each concentration. In Experiment II, the LD 50 value was calculated, i.e., the value at which 50% of the mites were killed by the treatment. This Experiment showed that the LD50 of lithium chloride = 0.265 M in the poultry red mite. It is to note that the study remained restricted to in vitro confirmation of lithium chloride's effectiveness on the parasite. Thus, further extensive studies are needed to decide whether it has any relevance in practice against D. gallinae, and also to assess potential residue problems that could affect poultry products.
Collapse
Affiliation(s)
- Balázs Kolics
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Éva Kolics
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Izabella Solti
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - Zsuzsanna Bacsi
- Institute of Agricultural and Food Economics, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - János Taller
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| | - András Specziár
- Balaton Limnological Research Institute, H-8237 Tihany, Hungary
| | - Kinga Mátyás
- Festetics Bioinnovation Group, Institute of Genetics and Biotechnology, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, H-8360 Keszthely, Hungary
| |
Collapse
|
42
|
A new method using quail (Coturnix coturnix) as a suitable host for laboratory rearing of Dermanyssus gallinae. Exp Parasitol 2022; 243:108422. [DOI: 10.1016/j.exppara.2022.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
|
43
|
Sparagano O, Song B, Aziz U, Hussain S, Yang G, George D, Zeb J. Poultry Mites: Ubiquitous, Spreading, and Still a Growing Threat. Avian Dis 2022; 66:1-7. [PMID: 36198007 DOI: 10.1637/aviandiseases-d-22-00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022]
Abstract
Poultry mites continue to be a major threat to poultry meat and egg production all over the world, with some species being blood-feeding arthropods that spend most of their time off-host and others burrowing under the bird's skin. Regardless of feeding strategy, these mites create welfare issues and production losses in poultry production systems in terms of bird growth, egg quality, and egg quantity. Furthermore, some species are able to transmit pathogens, introducing secondary infections that affect the birds' development and survival. Because of national restrictions on acaricide use and the development of mite resistance to available control products, the eradication of poultry mites is far from being achieved. However, new drugs and a better understanding of mite genetic and transcriptomic factors should aid the development of new control and treatment strategies. This review focuses on the main poultry mite species, their significance, and their current and future control.
Collapse
Affiliation(s)
- Olivier Sparagano
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China,
| | - Baolin Song
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China
| | - Umair Aziz
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China
| | - Sabir Hussain
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China
| | - Guan Yang
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China
| | - David George
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, United Kingdom
| | - Jehan Zeb
- Department of Public Health and Infectious Diseases, Jockey Club College of Life Sciences and Veterinary Medicine, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
44
|
Dupray S, Blatrix R, Roy LJ, Soulié A, Dadu L, Degueldre D, Sleeckx N, Bicout DJ, Roy L. Population dynamics of a poultry hematophagous mite: characterization of the population growth and identification of factors of its slowdown using closed mesocosms. PEST MANAGEMENT SCIENCE 2022; 78:4151-4165. [PMID: 35674477 PMCID: PMC9546284 DOI: 10.1002/ps.7033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A thorough knowledge of the population dynamics of pests and of the main factors affecting population growth is an important prerequisite for the development of effective control strategies. Failures of various treatments aimed at regulating populations of Dermanyssus gallinae are regularly reported in poultry farms and pullulations occur very quickly after first detection. To finely characterize population dynamics of D. gallinae, and to identify the factors modulating population growth, we conducted two successive multi-generation experiments using closed mesocosms equipped with or without automatic counters and housing a host full- or part-time (three nights per week). RESULTS Population growth was very rapid and the adult to juvenile ratio very different from the prediction by a mathematical model. A male-biased sex ratio was observed in some mesocosms from 21 days and in most mesocosms from 35 days of population growth originating from an inoculum of adult females. A dramatic slowdown in growth was measured in mesocosms equipped with trackers, where the mites' path to the host was constrained. The slowdown in population growth induced by the intermittent presence of the host compared to its full-time presence was much less marked. CONCLUSION These findings suggest avenues of research for new management methods. They question the relevance of a critical threshold based on traditional trap monitoring to manage D. gallinae. Our results highlight a unique characteristic of D. gallinae that makes it a recalcitrant case to threshold-based practices recommended for integrated pest management (IPM) against other arthropod pests. The dramatic effect of a physical constraint for the mite to access the host (unnatural constrained path) confirms an observation made in 1917 and is a reason to design perches that are less conducive to parasite traffic. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sébastien Dupray
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | - Rumsais Blatrix
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | | | - Anne‐Sophie Soulié
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | - Liza Dadu
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | - David Degueldre
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | | | - Dominique J Bicout
- Translational Innovation in Medicine and Complexity (TIMC, Grenoble Alpes University, VetAgro SupMarcy l'EtoileFrance
| | - Lise Roy
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| |
Collapse
|
45
|
Rüster V, Werner H, Wieneke S, Avramidis G, Ten Bosch L, Krause ET, Strube C, Bartels T. Short-time cold atmospheric pressure plasma exposure can kill all life stages of the poultry red mite, Dermanyssus gallinae, under laboratory conditions. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 88:139-152. [PMID: 36272039 PMCID: PMC9666290 DOI: 10.1007/s10493-022-00751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
In the present study, the acaricidal effects of cold atmospheric pressure plasma treatment on poultry red mites of different developmental stages have been investigated under laboratory conditions using a dielectric barrier discharge system. A total of 1890 poultry red mites and 90 mite eggs, respectively, were exposed to the plasma under various parameter settings with a single plasma pulse generated using the gas mixture of the ambient air at atmospheric pressure. The results showed that all developmental stages of the poultry red mite could be killed by cold atmospheric pressure plasma treatment. Plasma exposure to mite eggs resulted in a complete 100% hatch inhibition regardless of the parameter settings. Post-exposure mortality rates of larvae, nymphs and adults showed significant differences after utilization of plasma at 10 W for 1.0 s. In addition, the mortality rate increased with progressing time after plasma exposure. An average mortality rate of 99.7% was observed after 12 h in all mites exposed to plasma, regardless of the selected plasma parameter, developmental stage, and nutritional status of the mites. Cold atmospheric pressure plasma has an acaricidal effect on all developmental stages of Dermanyssus gallinae, suggesting that it could be developed to an effective method for the control of poultry red mites in laying hen husbandry.
Collapse
Affiliation(s)
- Vanessa Rüster
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Henrik Werner
- Faculty of Engineering and Health, University of Applied Sciences and Art, Göttingen, Germany
| | - Stephan Wieneke
- Faculty of Engineering and Health, University of Applied Sciences and Art, Göttingen, Germany
| | - Georg Avramidis
- Faculty of Engineering and Health, University of Applied Sciences and Art, Göttingen, Germany
| | - Lars Ten Bosch
- University of Applied Sciences and Art, Hildesheim, Germany
| | - Eike Tobias Krause
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Bartels
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany.
| |
Collapse
|
46
|
Chambless KN, Cornell KA, Crespo R, Snyder WE, Owen JP. Diversity and Prevalence of Ectoparasites on Poultry from Open Environment Farms in the Western-United States of Washington, Idaho, Oregon, and California. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1837-1841. [PMID: 35869567 DOI: 10.1093/jme/tjac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 06/15/2023]
Abstract
Open-environment poultry farms that allow chickens to forage outdoors are becoming increasingly common throughout the United States and Europe; however, there is little information regarding the diversity and prevalence of ectoparasites in these farming systems. Eight to 25 birds were captured and surveyed for ectoparasites on each of 17 farms across the states of Washington, Idaho, Oregon, and California. Among the farms sampled, six louse species (Phthiraptera: Ischnocera & Amblycera) and two parasitic mite species (Acari: Mesostigmata) were collected and identified: Goniodes gigas (Taschenberg, 1879; Phthiraptera: Menoponidae) on one farm, Menacathus cornutus (Schömmer, 1913; Phthiraptera: Menoponidae) on one farm, Menopon gallinae (Linnaeus, 1758; Phthiraptera: Menoponidae) on six farms, Lipeurus caponis (Linnaeus, 1758; Phthiraptera: Philopteridae) on five farms, Menacanthus stramineus (Nitzsch, 1818; Phthiraptera: Menoponidae) on nine farms, Goniocotes gallinae De Geer (Phthiraptera: Philopteridae) on 11 farms, Dermanyssus gallinae (De Geer, 1778; Mesostigmata: Dermanyssidae) on two farms, and Ornithonyssus sylviarum (Canestrini & Fanzago, 1877; Mesostigmata: Macronyssidae) on one farm. The diversity of ectoparasites on these open environment poultry farms highlights a need for additional research on ectoparasite prevalence and intensity in these poultry farming systems.
Collapse
Affiliation(s)
- Kendra N Chambless
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Kevin A Cornell
- Department of Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rocio Crespo
- Avian Health and Food Safety Laboratory, Washington State University, Puyallup, WA 98371, USA
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - William E Snyder
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Jeb P Owen
- Department of Entomology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
47
|
Guerrini A, Morandi B, Roncada P, Brambilla G, Dini FM, Galuppi R. Evaluation of the Acaricidal Effectiveness of Fipronil and Phoxim in Field Populations of Dermanyssus gallinae (De Geer, 1778) from Ornamental Poultry Farms in Italy. Vet Sci 2022; 9:vetsci9090486. [PMID: 36136703 PMCID: PMC9504075 DOI: 10.3390/vetsci9090486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022] Open
Abstract
The poultry red mite Dermanyssus gallinae is the most important blood-sucking ectoparasite in egg-laying hen facilities. The aim of this study was to evaluate the in vitro acaricidal activity of different concentration of authorized (phoxim, ByeMite®, 500 mg/mL) and unauthorized (fipronil, Frontline® 250 mg/100 mL spray) molecules on 14 field isolates of D. gallinae collected from different ornamental poultry farms from different Italian regions. The sensitivity test was performed by contact exposure to four concentrations of each insecticide diluted at 1:5 (10,000-2000-400-80 ppm for phoxim, 500-100-20-4 ppm for fipronil) on a filter paper. The effectiveness of the treatment was significantly (p < 0.0001) associated with the dose of the pesticide used. Considering the mean lethality, phoxim has greater efficacy compared to fipronil (p < 0.001). A great variability of lethality rate was observed with the increase in fipronil dilution; conversely, for phoxim, some outliers were observed, particularly in one farm, suggesting the hypothesis that a certain degree of resistance in the mite population could occur possibly as a consequence of the continual contact with the molecule. This underlines the importance of the use of licensed products administered at correct dosages and the need for alternative molecules to avoid the onset of drug resistance phenomena.
Collapse
Affiliation(s)
- Alessandro Guerrini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy
- Correspondence:
| | - Benedetto Morandi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Paola Roncada
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Gianfranco Brambilla
- Istituto Superiore di Sanità, Dipartimento Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Reparto Malattie Trasmissibili con gli Alimenti, Viale Regina Elena, 299, 00161 Roma, Italy
| | - Filippo Maria Dini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy
| |
Collapse
|
48
|
Pesapane R, Chaves A, Foley J, Javeed N, Barnum S, Greenwald K, Dodd E, Fontaine C, Duignan P, Murray M, Miller M. Nasopulmonary mites (Acari: Halarachnidae) as potential vectors of bacterial pathogens, including Streptococcus phocae, in marine mammals. PLoS One 2022; 17:e0270009. [PMID: 35709209 PMCID: PMC9202935 DOI: 10.1371/journal.pone.0270009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/01/2022] [Indexed: 01/16/2023] Open
Abstract
Nasopulmonary mites (NPMs) of the family Halarachnidae are obligate endoparasites that colonize the respiratory tracts of mammals. NPMs damage surface epithelium resulting in mucosal irritation, respiratory illness, and secondary infection, yet the role of NPMs in facilitating pathogen invasion or dissemination between hosts remains unclear. Using 16S rRNA massively parallel amplicon sequencing of six hypervariable regions (or "16S profiling"), we characterized the bacterial community of NPMs from 4 southern sea otters (Enhydra lutris nereis). This data was paired with detection of a priority pathogen, Streptococcus phocae, from NPMs infesting 16 southern sea otters and 9 California sea lions (Zalophus californianus) using nested conventional polymerase chain reaction (nPCR). The bacteriome of assessed NPMs was dominated by Mycoplasmataceae and Vibrionaceae, but at least 16 organisms with pathogenic potential were detected as well. Importantly, S. phocae was detected in 37% of NPM by nPCR and was also detected by 16S profiling. Detection of multiple organisms with pathogenic potential in or on NPMs suggests they may act as mechanical vectors of bacterial infection for marine mammals.
Collapse
Affiliation(s)
- Risa Pesapane
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
- School of Environment and Natural Resources, College of Food, Agricultural, and Environmental Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrea Chaves
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Nadia Javeed
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Katherine Greenwald
- California Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, Santa Cruz, California, United States of America
| | - Erin Dodd
- California Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, Santa Cruz, California, United States of America
| | - Christine Fontaine
- The Marine Mammal Center, Sausalito, California, United States of America
| | - Padraig Duignan
- The Marine Mammal Center, Sausalito, California, United States of America
| | - Michael Murray
- Monterey Bay Aquarium, Monterey, California, United States of America
| | - Melissa Miller
- California Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, Santa Cruz, California, United States of America
| |
Collapse
|
49
|
Canton L, Signorini M, Canton C, Dominguez P, Farias C, Alvarez L, Lanusse C, Moreno L. Quantitative exposure assessment and risk characterization for fipronil residues in laying hen eggs. J Food Sci 2022; 87:2775-2788. [PMID: 35534087 DOI: 10.1111/1750-3841.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Poultry production is linked to veterinary drug use to treat diseases. Few ectoparasitic compounds are approved for poultry. Fipronil is a pesticide widely used in agriculture. It is also a drug authorized to control ectoparasites in small animals and, in some countries, in cattle. There has been evidence of fipronil extra-label use in laying hens, mainly to control the red mite Dermanyssus gallinae. Fipronil's popularity is due to its high toxicity to invertebrates. It could be metabolized to more toxic metabolites that potentially damage human health. In the present study, we carry out a quantitative exposure assessment and risk characterization for fipronil residues in laying hen eggs for local consumption in five cities of Buenos Aires province in Argentina, namely, Azul, Balcarce, Juarez, Chaves, and Tandil. Consumption surveys and egg sampling were conducted for three summer periods. Eggs were analyzed by UFLC-MS-MS. Fipronil prevalence, residue concentrations, residue stability to cooking methods, egg consumption, among the most important variables were modeled. The results indicated that 20.7% of samples contained fipronil residues. The highest residue was fipronil sulfone metabolite. Fipronil concentrations quantified ranged between 10 and 2510 ppb (median value = 150 ppb). When eggs were cooked, fipronil residues were stable. The exposure assessment and risk characterization revealed that the highest probability of consuming eggs with fipronil residues above the admissible limits was for young adults (20.8%), followed by babies (16.9%), young children (16.4%), children (13.4%), teenagers (10.3%), older adults (9.41%), and adults (8.65%). These results suggest an unacceptable risk associated with egg consumption with fipronil residues for all age groups. PRACTICAL APPLICATION: Fipronil is widely used as an extra-label way on laying hens since its use is prohibited in poultry production both in Argentina and in most countries. This molecule has been classified as Class II, a moderately hazardous pesticide because it could damage various human organs. Fipronil residues in eggs could be one of the exposure pathways for consumers. Monitoring residual levels and carrying out the health risk assessment in eggs are thus in an urge.
Collapse
Affiliation(s)
- Lucila Canton
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Facultad de Ciencias Veterinarias, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Marcelo Signorini
- Departamento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Argentina.,Consejo Nacional de Investigación Científica y Técnica (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Rafaela, Rafaela, Argentina
| | - Candela Canton
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Facultad de Ciencias Veterinarias, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Paula Dominguez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Facultad de Ciencias Veterinarias, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Cristina Farias
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Facultad de Ciencias Veterinarias, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Luis Alvarez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Facultad de Ciencias Veterinarias, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Carlos Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Facultad de Ciencias Veterinarias, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| | - Laura Moreno
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Facultad de Ciencias Veterinarias, UNCPBA-CICPBA-CONICET, Tandil, Argentina
| |
Collapse
|
50
|
Arioli F, Negro V, Roncada P, Guerrini A, Villa R, Nobile M, Chiesa L, Panseri S. Presence of fipronil and metabolites in eggs and feathers of ornamental hens from Italian family farms. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|