1
|
Fan L, Wang Y, Huang H, Wang Z, Liang C, Yang X, Ye P, Lin J, Shi W, Zhou Y, Yan H, Long Z, Wang Z, Liu L, Qian J. RNA binding motif 4 inhibits the replication of ebolavirus by directly targeting 3'-leader region of genomic RNA. Emerg Microbes Infect 2024; 13:2300762. [PMID: 38164794 PMCID: PMC10773643 DOI: 10.1080/22221751.2023.2300762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Ebola virus (EBOV) belongs to Filoviridae family possessing single-stranded negative-sense RNA genome, which is a serious threat to human health. Nowadays, no therapeutics have been proven to be successful in efficiently decreasing the mortality rate. RNA binding proteins (RBPs) are reported to participate in maintaining cell integrity and regulation of viral replication. However, little is known about whether and how RBPs participate in regulating the life cycle of EBOV. In our study, we found that RNA binding motif protein 4 (RBM4) inhibited the replication of EBOV in HEK293T and Huh-7 cells by suppressing viral mRNA production. Such inhibition resulted from the direct interaction between the RRM1 domain of RBM4 and the "CU" enrichment elements located in the PE1 and TSS of the 3'-leader region within the viral genome. Simultaneously, RBM4 could upregulate the expression of some cytokines involved in the host innate immune responses to synergistically exert its antiviral function. The findings therefore suggest that RBM4 might serve as a novel target of anti-EBOV strategy.
Collapse
Affiliation(s)
- Linjin Fan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Yulong Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Hongxin Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Zequn Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Xiaofeng Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Pengfei Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Jingyan Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Wendi Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Yuandong Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Zhenyu Long
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhongyi Wang
- Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Linna Liu
- Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jun Qian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Pseudotyped Viruses for Marburgvirus and Ebolavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:105-132. [PMID: 36920694 DOI: 10.1007/978-981-99-0113-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Marburg virus (MARV) and Ebola virus (EBOV) of the Filoviridae family are the most lethal viruses in terms of mortality rate. However, the development of antiviral treatment is hampered by the requirement for biosafety level-4 (BSL-4) containment. The establishment of BSL-2 pseudotyped viruses can provide important tools for the study of filoviruses. This chapter summarizes general information on the filoviruses and then focuses on the construction of replication-deficient pseudotyped MARV and EBOV (e.g., lentivirus system and vesicular stomatitis virus system). It also details the potential applications of the pseudotyped viruses, including neutralization antibody detection, the study of infection mechanisms, the evaluation of antibody-dependent enhancement, virus entry inhibitor screening, and glycoprotein mutation analysis.
Collapse
|
3
|
Zhang Q, Yang J, Tillieux S, Guo Z, Natividade RDS, Koehler M, Petitjean S, Cui Z, Alsteens D. Stepwise Enzymatic-Dependent Mechanism of Ebola Virus Binding to Cell Surface Receptors Monitored by AFM. NANO LETTERS 2022; 22:1641-1648. [PMID: 35108019 DOI: 10.1021/acs.nanolett.1c04677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ebola virus (EBOV) is responsible for several outbreaks of hemorrhagic fever with high mortality, raising great public concern. Several cell surface receptors have been identified to mediate EBOV binding and internalization, including phosphatidylserine (PS) receptors (TIM-1) and C-type lectin receptors (DC-SIGNR). However, the role of TIM-1 during early cell surface binding remains elusive and in particular whether TIM-1 acts as a specific receptor for EBOV. Here, we used force-distance curve-based atomic force microscopy (FD-based AFM) to quantify the binding between TIM-1/DC-SIGNR and EBOV glycoprotein (GP) and observed that both receptors specifically bind to GP with high-affinity. Since TIM-1 can also directly interact with PS at the single-molecule level, we also confirmed that TIM-1 acts as dual-function receptors of EBOV. These results highlight the direct involvement of multiple high-affinity receptors in the first steps of binding to cell surfaces, thus offering new perspectives for the development of anti-EBOV therapeutic molecules.
Collapse
Affiliation(s)
- Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Sueli Tillieux
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Simon Petitjean
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre 1300, Belgium
| |
Collapse
|
4
|
Tauc M, Cougnon M, Carcy R, Melis N, Hauet T, Pellerin L, Blondeau N, Pisani DF. The eukaryotic initiation factor 5A (eIF5A1), the molecule, mechanisms and recent insights into the pathophysiological roles. Cell Biosci 2021; 11:219. [PMID: 34952646 PMCID: PMC8705083 DOI: 10.1186/s13578-021-00733-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Since the demonstration of its involvement in cell proliferation, the eukaryotic initiation factor 5A (eIF5A) has been studied principally in relation to the development and progression of cancers in which the isoform A2 is mainly expressed. However, an increasing number of studies report that the isoform A1, which is ubiquitously expressed in normal cells, exhibits novel molecular features that reveal its new relationships between cellular functions and organ homeostasis. At a first glance, eIF5A can be regarded, among other things, as a factor implicated in the initiation of translation. Nevertheless, at least three specificities: (1) its extreme conservation between species, including plants, throughout evolution, (2) its very special and unique post-translational modification through the activating-hypusination process, and finally (3) its close relationship with the polyamine pathway, suggest that the role of eIF5A in living beings remains to be uncovered. In fact, and beyond its involvement in facilitating the translation of proteins containing polyproline residues, eIF5A is implicated in various physiological processes including ischemic tolerance, metabolic adaptation, aging, development, and immune cell differentiation. These newly discovered physiological properties open up huge opportunities in the clinic for pathologies such as, for example, the ones in which the oxygen supply is disrupted. In this latter case, organ transplantation, myocardial infarction or stroke are concerned, and the current literature defines eIF5A as a new drug target with a high level of potential benefit for patients with these diseases or injuries. Moreover, the recent use of genomic and transcriptomic association along with metadata studies also revealed the implication of eIF5A in genetic diseases. Thus, this review provides an overview of eIF5A from its molecular mechanism of action to its physiological roles and the clinical possibilities that have been recently reported in the literature.
Collapse
Affiliation(s)
- Michel Tauc
- LP2M, CNRS, Université Côte d'Azur, Nice, France. .,Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France. .,Laboratoire de Physiomédecine Moléculaire, UMR7370, Faculté de Médecine, CNRS, Université Côte d'Azur, 28 Avenue de Valombrose, 06107, Nice Cedex, France.
| | - Marc Cougnon
- LP2M, CNRS, Université Côte d'Azur, Nice, France.,Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - Romain Carcy
- Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, CHU Nice, Hôpital Pasteur 2, Nice, France
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Thierry Hauet
- INSERM, IRTOMIT, CHU de Poitiers, Université de Poitiers, La Milétrie, Poitiers, France
| | - Luc Pellerin
- INSERM, IRTOMIT, CHU de Poitiers, Université de Poitiers, La Milétrie, Poitiers, France
| | - Nicolas Blondeau
- Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France.,IPMC, CNRS, Université Côte d'Azur, Valbonne, France
| | - Didier F Pisani
- LP2M, CNRS, Université Côte d'Azur, Nice, France.,Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
5
|
Exploration of alternate therapeutic remedies in Ebola virus disease: the case of reported antiviral phytochemical derived from the leaves Spondias Mombin Linn. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00603-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Potential pharmacological strategies targeting the Niemann-Pick C1 receptor and Ebola virus glycoprotein interaction. Eur J Med Chem 2021; 223:113654. [PMID: 34175537 DOI: 10.1016/j.ejmech.2021.113654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Niemann-Pick C1 (NPC1) receptor is an intracellular protein located in late endosomes and lysosomes whose main function is to regulate intracellular cholesterol trafficking. Besides being postulated as necessary for the infection of highly pathogenic viruses in which the integrity of cholesterol transport is required, this protein also allows the entry of the Ebola virus (EBOV) into the host cells acting as an intracellular receptor. EBOV glycoprotein (EBOV-GP) interaction with NPC1 at the endosomal membrane triggers the release of the viral material into the host cell, starting the infective cycle. Disruption of the NPC1/EBOV-GP interaction could represent an attractive strategy for the development of drugs aimed at inhibiting viral entry and thus infection. Some of the today available EBOV inhibitors were proposed to interrupt this interaction, but molecular and structural details about their mode of action are still preliminary thus more efforts are needed to properly address these points. Here, we provide a critical discussion of the potential of NPC1 and its interaction with EBOV-GP as a therapeutic target for viral infections.
Collapse
|
7
|
Hou Q, Zhang L. Biomimetic Design of Peptide Neutralizer of Ebola Virus with Molecular Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1813-1821. [PMID: 31986884 DOI: 10.1021/acs.langmuir.9b03832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ebola virus (EBOV) belongs to the Filoviridae family, which can cause severe hemorrhagic fever in humans and nonprimates. The neutralization of EBOV by monoclonal antibody (mAb) ADI-15946 was reported recently. In the present study, the molecular interactions between the receptor GPcl of EBOV and ADI-15946 were studied by molecular dynamics (MD) simulation and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) analysis. Hydrophobic interaction was identified as the main driving force for the binding of ADI-15946 on EBOV. Moreover, the contribution of each amino acid residue for the binding was evaluated. Then, an affinity binding model (ABM) was constructed using the residues favorable for the binding, including Y107, F108, D109, W110, and R113. The biomimetic design of neutralizer against EBOV according to the ABM of ADI-15946 was then performed, followed by screening using docking, structural similarity. Two neutralizers YFDWHMR and YFDWRYR were obtained, which were proven to be capable of strong binding on GPcl and then neutralizing GPcl. These results would be helpful for the development of neutralizers for Ebola virus.
Collapse
Affiliation(s)
- Qianqian Hou
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
8
|
Perez-Zsolt D, Martinez-Picado J, Izquierdo-Useros N. When Dendritic Cells Go Viral: The Role of Siglec-1 in Host Defense and Dissemination of Enveloped Viruses. Viruses 2019; 12:v12010008. [PMID: 31861617 PMCID: PMC7019426 DOI: 10.3390/v12010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are among the first cells that recognize incoming viruses at the mucosal portals of entry. Initial interaction between DCs and viruses facilitates cell activation and migration to secondary lymphoid tissues, where these antigen presenting cells (APCs) prime specific adaptive immune responses. Some viruses, however, have evolved strategies to subvert the migratory capacity of DCs as a way to disseminate infection systemically. Here we focus on the role of Siglec-1, a sialic acid-binding type I lectin receptor potently upregulated by type I interferons on DCs, that acts as a double edge sword, containing viral replication through the induction of antiviral immunity, but also favoring viral spread within tissues. Such is the case for distant enveloped viruses like human immunodeficiency virus (HIV)-1 or Ebola virus (EBOV), which incorporate sialic acid-containing gangliosides on their viral membrane and are effectively recognized by Siglec-1. Here we review how Siglec-1 is highly induced on the surface of human DCs upon viral infection, the way this impacts different antigen presentation pathways, and how enveloped viruses have evolved to exploit these APC functions as a potent dissemination strategy in different anatomical compartments.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Ctra. de Canyet s/n, 08916 Badalona, Spain;
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Ctra. de Canyet s/n, 08916 Badalona, Spain;
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
- Chair in Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence: (J.M.-P.); (N.I.-U.)
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Ctra. de Canyet s/n, 08916 Badalona, Spain;
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
- Correspondence: (J.M.-P.); (N.I.-U.)
| |
Collapse
|
9
|
Perez-Zsolt D, Erkizia I, Pino M, García-Gallo M, Martin MT, Benet S, Chojnacki J, Fernández-Figueras MT, Guerrero D, Urrea V, Muñiz-Trabudua X, Kremer L, Martinez-Picado J, Izquierdo-Useros N. Anti-Siglec-1 antibodies block Ebola viral uptake and decrease cytoplasmic viral entry. Nat Microbiol 2019; 4:1558-1570. [PMID: 31160823 DOI: 10.1038/s41564-019-0453-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Several Ebola viruses cause outbreaks of lethal haemorrhagic fever in humans, but developing therapies tackle only Zaire Ebola virus. Dendritic cells (DCs) are targets of this infection in vivo. Here, we found that Ebola virus entry into activated DCs requires the sialic acid-binding Ig-like lectin 1 (Siglec-1/CD169), which recognizes sialylated gangliosides anchored to viral membranes. Blockage of the Siglec-1 receptor by anti-Siglec-1 monoclonal antibodies halted Ebola viral uptake and cytoplasmic entry, offering cross-protection against other ganglioside-containing viruses such as human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Maria Pino
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Mónica García-Gallo
- Protein Tools Unit and Department of Immunology and Oncology, Spanish National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Maria Teresa Martin
- Protein Tools Unit and Department of Immunology and Oncology, Spanish National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Susana Benet
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - María Teresa Fernández-Figueras
- Department of Pathology, Hospital Universitari General de Catalunya-Grupo Quirón Salud, Barcelona, Spain.,Universitat Internacional de Catalunya, Barcelona, Spain.,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Dolores Guerrero
- Otorhinolaryngology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | - Xabier Muñiz-Trabudua
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Leonor Kremer
- Protein Tools Unit and Department of Immunology and Oncology, Spanish National Center for Biotechnology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain. .,University of Vic-Central University of Catalonia, Vic, Spain. .,Catalan Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Badalona, Spain. .,Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain.
| |
Collapse
|
10
|
Boyce AM, Garibaldi BT. Genomics and High-Consequence Infectious Diseases: A Scoping Review of Emerging Science and Potential Ethical Issues. Health Secur 2019; 17:62-68. [PMID: 30724614 PMCID: PMC6424158 DOI: 10.1089/hs.2018.0108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/14/2018] [Accepted: 01/04/2019] [Indexed: 01/04/2023] Open
Abstract
Host genomic research on high-consequence infectious diseases is a growing area, but the ethical, legal, and social implications of such findings related to potential applications of the research have not yet been identified. While there is a robust ethical debate about the ethical, legal, and social implications of research during an emergency, there has been less consideration of issues facing research conducted outside of the scope of emergency response. Addressing the implications of research at an early stage (anticipatory ethics) helps define the issue space, facilitates preparedness, and promotes ethically and socially responsible practices. To lay the groundwork for more comprehensive anticipatory ethics work, this article provides a preliminary assessment of the state of the field with a scoping review of host genomic research on a subset of high-consequence infectious diseases of relevance to high-level isolation units, focusing on its ethically relevant features and identifying several ethical, legal, and social implications raised by the literature. We discuss the challenges of genomic studies of low-frequency, high-risk events and applications of the science, including identifying targets to guide the development of new therapeutics, improving vaccine development, finding biomarkers to predict disease outcome, and guiding decisions about repurposing existing drugs and genetic screening. Some ethical, legal, and social implications identified in the literature included the rise of systems biology and paradigm shifts in medical countermeasure development; controversies over repurposing of existing drugs; genetic privacy and discrimination; and benefit-sharing and global inequity as part of the broader ecosystem surrounding high-level isolation units. Future anticipatory ethics work should forecast the science and its applications; identify a more comprehensive list of ethical, legal, and social implications; and facilitate evaluation by multiple stakeholders to inform the integration of ethical concerns into high-level isolation unit policy and practice.
Collapse
Affiliation(s)
- Angie M. Boyce
- Angie M. Boyce, PhD, is Research Scholar and Associate Faculty, Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD
| | - Brian T. Garibaldi
- Brian T. Garibaldi, MD, MEHP, is Director, Johns Hopkins Biocontainment Unit, and Associate Professor, Medicine and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Olsen ME, Cressey TN, Mühlberger E, Connor JH. Differential Mechanisms for the Involvement of Polyamines and Hypusinated eIF5A in Ebola Virus Gene Expression. J Virol 2018; 92:e01260-18. [PMID: 30045993 PMCID: PMC6158423 DOI: 10.1128/jvi.01260-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 02/06/2023] Open
Abstract
Polyamines and hypusinated eIF5A have been implicated in the replication of diverse viruses; however, defining their roles in supporting virus replication is still under investigation. We have previously reported that Ebola virus (EBOV) requires polyamines and hypusinated eIF5A for replication. Using a replication-deficient minigenome construct, we show that gene expression, in the absence of genome replication, requires hypusinated eIF5A. Additional experiments demonstrated that the block in gene expression upon hypusine depletion was posttranscriptional, as minigenome reporter mRNA transcribed by the EBOV polymerase accumulated normally in the presence of drug treatment where protein did not. When this mRNA was isolated from cells with low levels of hypusinated eIF5A and transfected into cells with normal eIF5A function, minigenome reporter protein accumulation was normal, demonstrating that the mRNA produced was functional but required hypusinated eIF5A function for translation. Our results support a mechanism in which hypusinated eIF5A is required for the translation, but not synthesis, of EBOV transcripts. In contrast, depletion of polyamines with difluoromethylornithine (DFMO) resulted in a strong block in the accumulation of EBOV polymerase-produced mRNA, indicating a different mechanism of polyamine suppression of EBOV gene expression. Supplementing with exogenous polyamines after DFMO treatment restored mRNA accumulation and luciferase activity. These data indicate that cellular polyamines are required for two distinct aspects of the EBOV life cycle. The bifunctional requirement for polyamines underscores the importance of these cellular metabolites in EBOV replication and suggests that repurposing existing inhibitors of this pathway could be an effective approach for EBOV therapeutics.IMPORTANCE Ebola virus is a genetically simple virus that has a small number of proteins. Because of this, it requires host molecules and proteins to produce new infectious virus particles. Though attention is often focused on cellular proteins required for this process, it has recently been shown that cellular metabolites such as polyamines are also necessary for EBOV replication. Here we show that polyamines such as spermine and spermidine are required for the accumulation of EBOV mRNA and that eIF5A, a molecule modified by spermidine, is required for the translation, but not the production, of EBOV mRNAs. These findings suggest that effectively targeting this pathway could provide a biphasic block of EBOV replication.
Collapse
Affiliation(s)
- Michelle E Olsen
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Tessa N Cressey
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - John H Connor
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Filovirus – Auslöser von hämorrhagischem Fieber. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:894-907. [DOI: 10.1007/s00103-018-2757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Kash JC, Walters KA, Kindrachuk J, Baxter D, Scherler K, Janosko KB, Adams RD, Herbert AS, James RM, Stonier SW, Memoli MJ, Dye JM, Davey RT, Chertow DS, Taubenberger JK. Longitudinal peripheral blood transcriptional analysis of a patient with severe Ebola virus disease. Sci Transl Med 2017; 9:9/385/eaai9321. [PMID: 28404864 DOI: 10.1126/scitranslmed.aai9321] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/21/2016] [Accepted: 02/03/2017] [Indexed: 12/14/2022]
Abstract
The 2013-2015 outbreak of Ebola virus disease in Guinea, Liberia, and Sierra Leone was unprecedented in the number of documented cases, but there have been few published reports on immune responses in clinical cases and their relationships with the course of illness and severity of Ebola virus disease. Symptoms of Ebola virus disease can include severe headache, myalgia, asthenia, fever, fatigue, diarrhea, vomiting, abdominal pain, and hemorrhage. Although experimental treatments are in development, there are no current U.S. Food and Drug Administration-approved vaccines or therapies. We report a detailed study of host gene expression as measured by microarray in daily peripheral blood samples collected from a patient with severe Ebola virus disease. This individual was provided with supportive care without experimental therapies at the National Institutes of Health Clinical Center from before onset of critical illness to recovery. Pearson analysis of daily gene expression signatures revealed marked gene expression changes in peripheral blood leukocytes that correlated with changes in serum and peripheral blood leukocytes, viral load, antibody responses, coagulopathy, multiple organ dysfunction, and then recovery. This study revealed marked shifts in immune and antiviral responses that preceded changes in medical condition, indicating that clearance of replicating Ebola virus from peripheral blood leukocytes is likely important for systemic viral clearance.
Collapse
Affiliation(s)
- John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jason Kindrachuk
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Baxter
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Krisztina B Janosko
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Rick D Adams
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Andrew S Herbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Rebekah M James
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Spencer W Stonier
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Matthew J Memoli
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Richard T Davey
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel S Chertow
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Olejnik J, Forero A, Deflubé LR, Hume AJ, Manhart WA, Nishida A, Marzi A, Katze MG, Ebihara H, Rasmussen AL, Mühlberger E. Ebolaviruses Associated with Differential Pathogenicity Induce Distinct Host Responses in Human Macrophages. J Virol 2017; 91:e00179-17. [PMID: 28331091 PMCID: PMC5432886 DOI: 10.1128/jvi.00179-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/08/2017] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV) and Reston virus (RESTV) are members of the Ebolavirus genus which greatly differ in their pathogenicity. While EBOV causes a severe disease in humans characterized by a dysregulated inflammatory response and elevated cytokine and chemokine production, there are no reported disease-associated human cases of RESTV infection, suggesting that RESTV is nonpathogenic for humans. The underlying mechanisms determining the pathogenicity of different ebolavirus species are not yet known. In this study, we dissected the host response to EBOV and RESTV infection in primary human monocyte-derived macrophages (MDMs). As expected, EBOV infection led to a profound proinflammatory response, including strong induction of type I and type III interferons (IFNs). In contrast, RESTV-infected macrophages remained surprisingly silent. Early activation of IFN regulatory factor 3 (IRF3) and NF-κB was observed in EBOV-infected, but not in RESTV-infected, MDMs. In concordance with previous results, MDMs treated with inactivated EBOV and Ebola virus-like particles (VLPs) induced NF-κB activation mediated by Toll-like receptor 4 (TLR4) in a glycoprotein (GP)-dependent manner. This was not the case in cells exposed to live RESTV, inactivated RESTV, or VLPs containing RESTV GP, indicating that RESTV GP does not trigger TLR4 signaling. Our results suggest that the lack of immune activation in RESTV-infected MDMs contributes to lower pathogenicity by preventing the cytokine storm observed in EBOV infection. We further demonstrate that inhibition of TLR4 signaling abolishes EBOV GP-mediated NF-κB activation. This finding indicates that limiting the excessive TLR4-mediated proinflammatory response in EBOV infection should be considered as a potential supportive treatment option for EBOV disease.IMPORTANCE Emerging infectious diseases are a major public health concern, as exemplified by the recent devastating Ebola virus (EBOV) outbreak. Different ebolavirus species are associated with widely varying pathogenicity in humans, ranging from asymptomatic infections for Reston virus (RESTV) to severe disease with fatal outcomes for EBOV. In this comparative study of EBOV- and RESTV-infected human macrophages, we identified key differences in host cell responses. Consistent with previous data, EBOV infection is associated with a proinflammatory signature triggered by the surface glycoprotein (GP), which can be inhibited by blocking TLR4 signaling. In contrast, infection with RESTV failed to stimulate a strong host response in infected macrophages due to the inability of RESTV GP to stimulate TLR4. We propose that disparate proinflammatory host signatures contribute to the differences in pathogenicity reported for ebolavirus species and suggest that proinflammatory pathways represent an intriguing target for the development of novel therapeutics.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Adriana Forero
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Laure R Deflubé
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Whitney A Manhart
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Andrew Nishida
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Angela L Rasmussen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Baseler L, Chertow DS, Johnson KM, Feldmann H, Morens DM. The Pathogenesis of Ebola Virus Disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:387-418. [DOI: 10.1146/annurev-pathol-052016-100506] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laura Baseler
- Department of Veterinary Medicine and Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Daniel S. Chertow
- Critical Care Medicine Department, Clinical Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Karl M. Johnson
- Founder, Special Pathogens Branch, Centers for Disease Control and Prevention, Placitas, New Mexico 87043
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840
| | - David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|