1
|
Saeedi P, Nilchiani LS, Zand B, Hajimirghasemi M, Halabian R. An overview of stem cells and cell products involved in trauma injury. Regen Ther 2025; 29:60-76. [PMID: 40143930 PMCID: PMC11938091 DOI: 10.1016/j.reth.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Trauma injuries represent a significant public health burden worldwide, often leading to long-term disability and reduced quality of life. This review provides a comprehensive overview of the therapeutic potential of stem cells and cell products for traumatic injuries. The extraordinary characteristics of stem cells, such as self-renewal and transdifferentiation, make them definitive candidates for tissue regeneration. Mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) have been tested in preclinical studies for treating distinct traumatic injuries. Stem cell mechanisms of action are addressed through paracrine signaling, immunomodulation, differentiation, and neuroprotection. Cell products such as conditioned media, exosomes, and secretomes offer cell-free resources, thereby avoiding the risks of live cell transplantation. Clinical trials have reported many effective outcomes; however, variability exists across trauma types. Some challenges include tumorigenicity, standardized protocols, and regulatory issues. Collaboration and interdisciplinary research are being conducted to harness stem cells and products for trauma treatment. This emerging field is promising for improving patient recovery and quality of life after traumatic injuries.
Collapse
Affiliation(s)
- Pardis Saeedi
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Leila Sadat Nilchiani
- Department of Molecular and Cell Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Bita Zand
- Department of Molecular and Cell Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Maryam Hajimirghasemi
- Department of Internal Medicine, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Huang Y, Ye Q, Wang J, Zhu K, Yang H, Jiang X, Shen M. Recent progress in the identification and in vitro culture of skin organoids. Regen Ther 2025; 29:341-351. [PMID: 40242086 PMCID: PMC12000699 DOI: 10.1016/j.reth.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/13/2024] [Accepted: 01/04/2025] [Indexed: 04/18/2025] Open
Abstract
An organoid is a cell-based structure that shows organ-specific properties and shares a similar spatial organization as the corresponding organ. Organoids possess powerful capability to reproduce the key functions of the associated organ structures, and their similarity to the organs makes them physiologically relevant systems. The primary challenge associated with the development of skin organoids is the complexity of the human skin architecture, which encompasses the epidermis and the dermis as well as accessory structures, including hair follicles, sweat glands, and sebaceous glands, that perform various functions such as thermoregulation. The ultimate objectives of developing skin organoids are to regenerate the complete skin structure in vitro and reconstruct the skin in vivo. Consequently, safety, reliability, and the fidelity of the tissue interfaces are key considerations in this process. For this purpose, the present article reviews the most recent advances in this field, focusing on the cell sources, culture methods, culture conditions, and biomarkers for identifying the structure and function of skin organoids developed in vitro or in vivo. The subsequent sections summarize the recent applications of skin organoids in related disease diagnosis and treatments, and discuss the future prospects of these organoids in terms of clinical applications. This review of skin organoids can provide an important foundation for studies on human skin development, disease modeling, and reconstructive surgery, with broad utility for promising future opportunities in both biomedical research and clinical practice.
Collapse
Affiliation(s)
- Yanan Huang
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | - Qing Ye
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | | | - Kaimin Zhu
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | - Haojie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, China
| | - Xiaoping Jiang
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | - Meihua Shen
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| |
Collapse
|
3
|
Zhao Z, Zeng F, Nie Y, Lu G, Xu H, En H, Gu S, Chan WY, Cao N, Wang J. Chemically defined and growth factor-free system for highly efficient endoderm induction of human pluripotent stem cells. Stem Cell Reports 2025; 20:102382. [PMID: 39729989 PMCID: PMC11784501 DOI: 10.1016/j.stemcr.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge. Here, by systematic optimization and high-throughput screening, we report a chemically defined, small-molecule-based defined system that contains only four components (4C), enabling highly efficient and cost-effective DE specification of hPSCs in the absence of recombinant proteins. 4C-induced DE can differentiate into functional hepatocytes, lung epithelium, and pancreatic β cells in vitro and multiple DE derivatives in vivo. Genomic accessibility analysis reveals that 4C reconfigures chromatin architecture to allow key DE transcription factor binding while identifying TEAD3 as a novel key regulator of the process. This system may facilitate mass production of DE derivatives for drug discovery, disease modeling, and cell therapy.
Collapse
Affiliation(s)
- Zhiju Zhao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - Fanzhu Zeng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - He Xu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - He En
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China.
| | - Nan Cao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
4
|
Leto S, Gehlot S, Sheth B, Ratti S, Manzoli L, Divecha N, Fiume R. Enhancing Gene Delivery in NB-4 Cells: Overcoming Transduction and Selection Challenges. Cells 2024; 13:1849. [PMID: 39594598 PMCID: PMC11593156 DOI: 10.3390/cells13221849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Efficient gene transduction and cell viability are critical factors in genetic manipulation for research and therapeutic purposes. In this study, we explored the challenges associated with transducing the NB-4 cell line, a well-established model for acute promyelocytic leukemia (APL), using lentiviral vectors. While the initial transduction efficiency in NB-4 cells reached approximately 30%, we observed a significant decrease in cell viability, a phenomenon not observed in other acute leukemia cell lines such as THP-1 cells. We identified that this toxicity could be mitigated by purifying viral particles through ultracentrifugation or polyethylene glycol (PEG) precipitation, indicating that toxic substances, potentially secondary metabolites released by HEK293, could be responsible for the cell death. Nevertheless, cell selection by puromycin was still ineffective; crucially, we discovered that the human phosphoglycerate kinase (hPGK) promoter, commonly used in the PLKO1 vector, may become silenced in NB-4 cells, preventing effective selection with puromycin. By replacing the hPGK promoter with the elongation factor-1 alpha (EF1α) promoter, we successfully achieved high transduction efficiency and robust selection, demonstrating the potential for this modified vector system to facilitate genetic studies in APL models. These findings provide important insights into optimizing gene transduction protocols not only for NB-4 cells but also for other challenging cell lines, offering a refined approach for gene delivery and selection in cell models.
Collapse
Affiliation(s)
- Stefano Leto
- Cellular Signalling Laboratory, Department of Biomedical Sciences, University of Bologna, 40126 Bologna, Italy; (S.L.); (S.R.); (L.M.)
| | - Sonakshi Gehlot
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK; (S.G.); (B.S.)
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK; (S.G.); (B.S.)
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical Sciences, University of Bologna, 40126 Bologna, Italy; (S.L.); (S.R.); (L.M.)
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical Sciences, University of Bologna, 40126 Bologna, Italy; (S.L.); (S.R.); (L.M.)
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK; (S.G.); (B.S.)
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical Sciences, University of Bologna, 40126 Bologna, Italy; (S.L.); (S.R.); (L.M.)
| |
Collapse
|
5
|
Jin K, Zhou J, Wu G, Li Z, Zhu X, Liang Y, Li T, Chen G, Zuo Q, Niu Y, Song J, Han W. CHIR99021 and Brdu Are Critical in Chicken iPSC Reprogramming via Small-Molecule Screening. Genes (Basel) 2024; 15:1206. [PMID: 39336797 PMCID: PMC11431361 DOI: 10.3390/genes15091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Induced pluripotent stem cells (iPSCs) reprogrammed from somatic cells into cells with most of the ESC (embryonic stem cell) characteristics show promise toward solving ethical problems currently facing stem cell research and eventually yield clinical grade pluripotent stem cells for therapies and regenerative medicine. In recent years, an increasing body of research suggests that the chemical induction of pluripotency (CIP) method can yield iPSCs in vitro, yet its application in avian species remains unreported. Methods: Herein, we successfully obtained stably growing chicken embryonic fibroblasts (CEFs) using the tissue block adherence method and employed 12 small-molecule compounds to induce chicken iPSC formation. Results: The final optimized iPSC induction system was bFGF (10 ng/mL), CHIR99021 (3 μM), RepSox (5 μM), DZNep (0.05 μM), BrdU (10 μM), BMP4 (10 ng/mL), vitamin C (50 μg/mL), EPZ-5676 (5 μM), and VPA (0.1 mM). Optimization of the induction system revealed that the highest number of clones was induced with 8 × 104 cells per well and at 1.5 times the original concentration. Upon characterization, these clones exhibited iPSC characteristics, leading to the development of a stable compound combination for iPSC generation in chickens. Concurrently, employing a deletion strategy to investigate the functionality of small-molecule compounds during induction, we identified CHIR99021 and BrdU as critical factors for inducing chicken iPSC formation. Conclusions: In conclusion, this study provides a reference method for utilizing small-molecule combinations in avian species to reprogram cells and establish a network of cell fate determination mechanisms.
Collapse
Affiliation(s)
- Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jing Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Gaoyuan Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Youchen Liang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Tingting Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| | - Wei Han
- Jiangsu Institute of Poultry Sciences/Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China;
| |
Collapse
|
6
|
Chen KG, Park K, Maric D, Johnson KR, Robey PG, Mallon BS. Metabolic Quadrivalency in RSeT Human Embryonic Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581486. [PMID: 38496581 PMCID: PMC10942463 DOI: 10.1101/2024.02.21.581486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
One of the most important properties of human embryonic stem cells (hESCs) is related to their pluripotent states. In our recent study, we identified a previously unrecognized pluripotent state induced by RSeT medium. This state makes primed hESCs resistant to conversion to naïve pluripotent state. In this study, we have further characterized the metabolic features in these RSeT hESCs, including metabolic gene expression, metabolomic analysis, and various functional assays. The commonly reported metabolic modes include glycolysis or both glycolysis and oxidative phosphorylation (i.e., metabolic bivalency) in pluripotent stem cells. However, besides the presence of metabolic bivalency, RSeT hESCs exhibited a unique metabolome with additional fatty acid oxidation and imbalanced nucleotide metabolism. This metabolic quadrivalency is linked to hESC growth independent of oxygen tension and restricted capacity for naïve reprogramming in these cells. Thus, this study provides new insights into pluripotent state transitions and metabolic stress-associated hPSC growth in vitro.
Collapse
Affiliation(s)
- Kevin G. Chen
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kyeyoon Park
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kory R. Johnson
- Intramural IT and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Barbara S. Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Abstract
The trabecular meshwork (TM) of the eye serves as an essential tissue in controlling aqueous humor (AH) outflow and intraocular pressure (IOP) homeostasis. However, dysfunctional TM cells and/or decreased TM cellularity is become a critical pathogenic cause for primary open-angle glaucoma (POAG). Consequently, it is particularly valuable to investigate TM characteristics, which, in turn, facilitates the development of new treatments for POAG. Since 2006, the advancement in induced pluripotent stem cells (iPSCs) provides a new tool to (1) model the TM in vitro and (2) regenerate degenerative TM in POAG. In this context, we first summarize the current approaches to induce the differentiation of TM-like cells from iPSCs and compare iPSC-derived TM models to the conventional in vitro TM models. The efficacy of iPSC-derived TM cells for TM regeneration in POAG models is also discussed. Through these approaches, iPSCs are becoming essential tools in glaucoma modeling and for developing personalized treatments for TM regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China.
| | - Xiaoyan Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, China
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
8
|
Moura MT. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol Biol 2023; 2647:1-35. [PMID: 37041327 DOI: 10.1007/978-1-0716-3064-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes initiates nuclear reprogramming of lineage-committed cells to totipotency. Pioneer SCNT work culminated with cloned amphibians from tadpoles, while technical and biology-driven advances led to cloned mammals from adult animals. Cloning technology has been addressing fundamental questions in biology, propagating desired genomes, and contributing to the generation of transgenic animals or patient-specific stem cells. Nonetheless, SCNT remains technically complex and cloning efficiency relatively low. Genome-wide technologies revealed barriers to nuclear reprogramming, such as persistent epigenetic marks of somatic origin and reprogramming resistant regions of the genome. To decipher the rare reprogramming events that are compatible with full-term cloned development, it will likely require technical advances for large-scale production of SCNT embryos alongside extensive profiling by single-cell multi-omics. Altogether, cloning by SCNT remains a versatile technology, while further advances should continuously refresh the excitement of its applications.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Chemical Biology Graduate Program, Federal University of São Paulo - UNIFESP, Campus Diadema, Diadema - SP, Brazil
| |
Collapse
|
9
|
Haraguchi D, Nakamura T. Pramef12 enhances reprogramming into naïve iPS cells. Biochem Biophys Rep 2022; 30:101267. [PMID: 35592616 PMCID: PMC9111934 DOI: 10.1016/j.bbrep.2022.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by forced expression of the transcription factors Oct3/4, Klf4, Sox2, and c-Myc (OKSM). Somatic cell nuclear transfer can also be utilized to reprogram somatic cells into totipotent embryos, suggesting that factors present in oocytes potentially enhance the efficiency of iPS cell generation. Here, we showed that preferentially expressed antigen of melanoma family member 12 (Pramef12), which is highly expressed in oocytes, enhances the generation of iPS cells from mouse fibroblasts. Overexpression of Pramef12 during the early phase of OKSM-induced reprogramming enhanced the efficiency of iPS cell derivation. In addition, overexpression of Pramef12 also enhanced expression of naïve pluripotency-associated genes, Gtl2 located within the Dlk1–Dio3 imprinted region essential for full pluripotency, glycolysis-associated genes, and oxidative phosphorylation-associated genes, and it promoted mesenchymal-to-epithelial transition during iPS cell generation. Furthermore, Pramef12 greatly activated β-catenin during iPS cell generation. These observations suggested that Pramef12 enhances OKSM-induced reprogramming via activation of the Wnt/β-catenin pathway. Pramef12 enhances OKSM-induced reprogramming into naïve iPS cells. Pramef12 enhances expression of naïve pluripotency-associated genes, essential genes for full pluripotency, glycolysis-associated genes, and oxidative phosphorylation-associated genes. Pramef12 promotes mesenchymal-to-epithelial transition during iPS cell generation. Pramef12 enhances OKSM-induced reprogramming via activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
| | - Toshinobu Nakamura
- Gaduate School of Bio-Science, Japan
- Department of Bio-Science, Japan
- Genome Editing Research Institute, Ngahama Institute of Bio-Science and Technology, Shiga, 526-0829, Japan
- Corresponding author. Laboratory for epigenetic regulation, Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Japan.
| |
Collapse
|
10
|
Borst S, Nations CC, Klein JG, Pavani G, Maguire JA, Camire RM, Drazer MW, Godley LA, French DL, Poncz M, Gadue P. Study of inherited thrombocytopenia resulting from mutations in ETV6 or RUNX1 using a human pluripotent stem cell model. Stem Cell Reports 2021; 16:1458-1467. [PMID: 34019812 PMCID: PMC8190596 DOI: 10.1016/j.stemcr.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/29/2022] Open
Abstract
Inherited thrombocytopenia results in low platelet counts and increased bleeding. Subsets of these patients have monoallelic germline mutations in ETV6 or RUNX1 and a heightened risk of developing hematologic malignancies. Utilizing CRISPR-Cas9, we compared the in vitro phenotype of hematopoietic progenitor cells and megakaryocytes derived from induced pluripotent stem cell (iPSC) lines harboring mutations in either ETV6 or RUNX1. Both mutant lines display phenotypes consistent with a platelet-bleeding disorder. Surprisingly, these cellular phenotypes were largely distinct. The ETV6-mutant iPSCs yield more hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are immature and less responsive to agonist stimulation. On the contrary, RUNX1-mutant iPSCs yield fewer hematopoietic progenitor cells and megakaryocytes, but the megakaryocytes are more responsive to agonist stimulation. However, both mutant iPSC lines display defects in proplatelet formation. Our work highlights that, while patients harboring germline ETV6 or RUNX1 mutations have similar clinical phenotypes, the molecular mechanisms may be distinct.
Collapse
Affiliation(s)
- Sara Borst
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Catriana C Nations
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Joshua G Klein
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Rodney M Camire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael W Drazer
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mortimer Poncz
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, CTRB 5012, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nat Commun 2021; 12:3094. [PMID: 34035273 PMCID: PMC8149870 DOI: 10.1038/s41467-021-23353-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
Short-term, systemic expression of the Yamanaka reprogramming factors (Oct-3/4, Sox2, Klf4 and c-Myc [OSKM]) has been shown to rejuvenate aging cells and promote tissue regeneration in vivo. However, the mechanisms by which OSKM promotes tissue regeneration are unknown. In this work, we focus on a specific tissue and demonstrate that local expression of OSKM, specifically in myofibers, induces the activation of muscle stem cells or satellite cells (SCs), which accelerates muscle regeneration in young mice. In contrast, expressing OSKM directly in SCs does not improve muscle regeneration. Mechanistically, expressing OSKM in myofibers regulates the expression of genes important for the SC microenvironment, including upregulation of p21, which in turn downregulates Wnt4. This is critical because Wnt4 is secreted by myofibers to maintain SC quiescence. Thus, short-term induction of the Yamanaka factors in myofibers may promote tissue regeneration by modifying the stem cell niche. Short term systemic expression of the reprogramming factors Oct-3/4, Sox2, Klf4, c-Myc (OSKM) rejuvenates aging cells and promotes tissue regeneration. Here the authors show that myofiber-specific expression of OSKM accelerates muscle regeneration by reducing secretion of muscle stem cell quiescence promoting Wnt4.
Collapse
|
12
|
Campbell DR, Senger CN, Ryan AL, Magin CM. Engineering Tissue-Informed Biomaterials to Advance Pulmonary Regenerative Medicine. Front Med (Lausanne) 2021; 8:647834. [PMID: 33898484 PMCID: PMC8060451 DOI: 10.3389/fmed.2021.647834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
Biomaterials intentionally designed to support the expansion, differentiation, and three-dimensional (3D) culture of induced-pluripotent stem cells (iPSCs) may pave the way to cell-based therapies for chronic respiratory diseases. These conditions are endured by millions of people worldwide and represent a significant cause of morbidity and mortality. Currently, there are no effective treatments for the majority of advanced lung diseases and lung transplantation remains the only hope for many chronically ill patients. Key opinion leaders speculate that the novel coronavirus, COVID-19, may lead to long-term lung damage, further exacerbating the need for regenerative therapies. New strategies for regenerative cell-based therapies harness the differentiation capability of human iPSCs for studying pulmonary disease pathogenesis and treatment. Excitingly, biomaterials are a cell culture platform that can be precisely designed to direct stem cell differentiation. Here, we present a closer look at the state-of-the-art of iPSC differentiation for pulmonary engineering, offer evidence supporting the power of biomaterials to improve stem cell differentiation, and discuss our perspective on the potential for tissue-informed biomaterials to transform pulmonary regenerative medicine.
Collapse
Affiliation(s)
- Donald R. Campbell
- Department of Bioengineering, Denver, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
| | - Christiana N. Senger
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, United States
| | - Amy L. Ryan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chelsea M. Magin
- Department of Bioengineering, Denver, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, United States
| |
Collapse
|
13
|
Abstract
Traumatic injuries are a leading cause of death and disability in both military and civilian populations. Given the complexity and diversity of traumatic injuries, novel and individualized treatment strategies are required to optimize outcomes. Cellular therapies have potential benefit for the treatment of acute or chronic injuries, and various cell-based pharmaceuticals are currently being tested in preclinical studies or in clinical trials. Cellular therapeutics may have the ability to complement existing therapies, especially in restoring organ function lost due to tissue disruption, prolonged hypoxia or inflammatory damage. In this article we highlight the current status and discuss future directions of cellular therapies for the treatment of traumatic injury. Both published research and ongoing clinical trials are discussed here.
Collapse
|
14
|
Chen IP. Differentiation of Human Induced Pluripotent Stem Cells (hiPSCs) into Osteoclasts. Bio Protoc 2020; 10:e3854. [PMID: 33659501 DOI: 10.21769/bioprotoc.3854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/02/2022] Open
Abstract
Defects in bone resorption by osteoclasts result in numerous rare genetic bone disorders as well as in some common diseases such as osteoporosis or osteopetrosis. The use of hiPSC-differentiated osteoclasts opens new avenues in this research field by providing an unlimited cell source and overcoming obstacles such as unavailability of human specimens and suitable animal models. Generation of hiPSCs is well established but efficient differentiation of hiPSCs into osteoclasts has been challenging. Published hiPSC-osteoclast differentiation protocols use a hiPSC-OP9 co-culture system or hiPSC-derived embryoid bodies (EBs) with multiple cytokines. Our three-stage protocol consists of 1) EB mesoderm differentiation, 2) expansion of myelomonocytic cells and 3) maturation of hiPSC-osteoclasts. We generate uniformly-sized EBs by culturing Accutase-dissociated hiPSCs on Nunclon Sphera microplates and promote EB mesoderm differentiation in a cytokine cocktail for 4 days. For Stage 2, EBs are transferred to gelatin-coated plates and cultured with hM-CSF and hIL-3 to expand the myelomonocytic population. By supplementing with vitamin D, hTGFβ, hM-CSF and hRANKL, cells collected at the end of Stage 2 are differentiated into mature osteoclasts (Stage 3). Compared to other techniques, our protocol does not require a co-culture system; induces EBs into mesoderm differentiation in a homogenous manner; uses less cytokines for differentiation; requires only a short time for osteoclast maturation and produces sufficient numbers of osteoclasts for subsequent molecular analyses. Graphic abstract.
Collapse
Affiliation(s)
- I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
15
|
Dotson GA, Ryan CW, Chen C, Muir L, Rajapakse I. Cellular reprogramming: Mathematics meets medicine. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 13:e1515. [PMID: 33289324 PMCID: PMC8867497 DOI: 10.1002/wsbm.1515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/11/2022]
Abstract
Generating needed cell types using cellular reprogramming is a promising strategy for restoring tissue function in injury or disease. A common method for reprogramming is addition of one or more transcription factors that confer a new function or identity. Advancements in transcription factor selection and delivery have culminated in successful grafting of autologous reprogrammed cells, an early demonstration of their clinical utility. Though cellular reprogramming has been successful in a number of settings, identification of appropriate transcription factors for a particular transformation has been challenging. Computational methods enable more sophisticated prediction of relevant transcription factors for reprogramming by leveraging gene expression data of initial and target cell types, and are built on mathematical frameworks ranging from information theory to control theory. This review highlights the utility and impact of these mathematical frameworks in the field of cellular reprogramming. This article is categorized under: Reproductive System Diseases > Reproductive System Diseases>Genetics/Genomics/Epigenetics Reproductive System Diseases > Reproductive System Diseases>Stem Cells and Development Reproductive System Diseases > Reproductive System Diseases>Computational Models.
Collapse
Affiliation(s)
- Gabrielle A. Dotson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Charles W. Ryan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Can Chen
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Lindsey Muir
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Indika Rajapakse
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
16
|
Eintracht J, Toms M, Moosajee M. The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders. Front Cell Neurosci 2020; 14:265. [PMID: 32973457 PMCID: PMC7468397 DOI: 10.3389/fncel.2020.00265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Approximately one-third of childhood blindness is attributed to developmental eye disorders, of which 80% have a genetic cause. Eye morphogenesis is tightly regulated by a highly conserved network of transcription factors when disrupted by genetic mutations can result in severe ocular malformation. Human-induced pluripotent stem cells (hiPSCs) are an attractive tool to study early eye development as they are more physiologically relevant than animal models, can be patient-specific and their use does not elicit the ethical concerns associated with human embryonic stem cells. The generation of self-organizing hiPSC-derived optic cups is a major advancement to understanding mechanisms of ocular development and disease. Their development in vitro has been found to mirror that of the human eye and these early organoids have been used to effectively model microphthalmia caused by a VSX2 variant. hiPSC-derived optic cups, retina, and cornea organoids are powerful tools for future modeling of disease phenotypes and will enable a greater understanding of the pathophysiology of many other developmental eye disorders. These models will also provide an effective platform for identifying molecular therapeutic targets and for future clinical applications.
Collapse
Affiliation(s)
| | - Maria Toms
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
17
|
Kanwal S, Guo X, Ward C, Volpe G, Qin B, Esteban MA, Bao X. Role of Long Non-coding RNAs in Reprogramming to Induced Pluripotency. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:16-25. [PMID: 32445708 PMCID: PMC7393543 DOI: 10.1016/j.gpb.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
The generation of induced pluripotent stem cells through somatic cell reprogramming requires a global reorganization of cellular functions. This reorganization occurs in a multi-phased manner and involves a gradual revision of both the epigenome and transcriptome. Recent studies have shown that the large-scale transcriptional changes observed during reprogramming also apply to long non-coding RNAs (lncRNAs), a type of traditionally neglected RNA species that are increasingly viewed as critical regulators of cellular function. Deeper understanding of lncRNAs in reprogramming may not only help to improve this process but also have implications for studying cell plasticity in other contexts, such as development, aging, and cancer. In this review, we summarize the current progress made in profiling and analyzing the role of lncRNAs in various phases of somatic cell reprogramming, with emphasis on the re-establishment of the pluripotency gene network and X chromosome reactivation.
Collapse
Affiliation(s)
- Shahzina Kanwal
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Xiangpeng Guo
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Carl Ward
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Giacomo Volpe
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Baoming Qin
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (5)Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Miguel A Esteban
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; (6)Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xichen Bao
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; (7)Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
18
|
Arsenic trioxide blocked proliferation and cardiomyocyte differentiation of human induced pluripotent stem cells: Implication in cardiac developmental toxicity. Toxicol Lett 2019; 309:51-58. [DOI: 10.1016/j.toxlet.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 01/29/2019] [Accepted: 03/17/2019] [Indexed: 11/22/2022]
|
19
|
Park CY, Sung JJ, Cho SR, Kim J, Kim DW. Universal Correction of Blood Coagulation Factor VIII in Patient-Derived Induced Pluripotent Stem Cells Using CRISPR/Cas9. Stem Cell Reports 2019; 12:1242-1249. [PMID: 31105049 PMCID: PMC6565751 DOI: 10.1016/j.stemcr.2019.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
Hemophilia A (HA) is caused by genetic mutations in the blood coagulation factor VIII (FVIII) gene. Genome-editing approaches can be used to target the mutated site itself in patient-derived induced pluripotent stem cells (iPSCs). However, these approaches can be hampered by difficulty in preparing thousands of editing platforms for each corresponding variant found in HA patients. Here, we report a universal approach to correct the various mutations in HA patient iPSCs by the targeted insertion of the FVIII gene into the human H11 site via CRISPR/Cas9. We derived corrected clones from two types of patient iPSCs with frequencies of up to 64% and 66%, respectively, without detectable unwanted off-target mutations. Moreover, we demonstrated that endothelial cells differentiated from the corrected iPSCs successfully secreted functional protein. This strategy may provide a universal therapeutic method for correcting all genetic variants found in HA patients. Two types of FVIII mutations were corrected using Cas9-mediated KI in patient iPSCs Targeted KI of the FVIII into the H11 site induced the production of functional protein Whole-genome sequencing analyses revealed no off-target mutations in the corrected iPSCs
Collapse
Affiliation(s)
- Chul-Yong Park
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jin Jea Sung
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jongwan Kim
- S.Biomedics Co., Ltd, 28 Seongsui-ro, 26-gil, Seongdong-gu, Seoul 04797, Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
20
|
Wang Z, Huang J. Apela Promotes Cardiomyocyte Differentiation from Transgenic Human Embryonic Stem Cell Lines. Appl Biochem Biotechnol 2019; 189:396-410. [PMID: 31025171 DOI: 10.1007/s12010-019-03012-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
Although embryonic stem (ES) cells (ESCs) may be a promising donor source for the repair of infarcted or ischemic heart tissues, their successful application in regenerative medicine has been hampered by difficulties in enriching, identifying, and selecting cardiomyocytes from the differentiating cells. We established transgenic human ES cell lines by transcriptional control of the α-cardiac myosin heavy chain (α-MHC) promoter driving green fluorescent protein (GFP) expression. Differentiated GFP-expressing cells display the characteristics of cardiomyocytes (CMs). Apela, a recently identified short peptide, up-regulated the expression of the cardiac-restricted transcription factors Tbx5 and GATA4 as well as differentiated the cardiomyocyte markers α-MHC and β-MHC. Flow cytometric analysis showed that apela increased the percentage of GFP-expressing cells in the beating foci of the embryoid bodies. The percentage of cardiac troponin T (TNT)-positive cells and the protein expression of TNT were increased in the ES cell-derived CMs with apela treatment. Functionally, the contractile frequency of the ES-derived CMs responded appropriately to the vasoactive drugs isoprenaline and carbachol. Our work presented a protocol for specially labelling and enriching CMs by combining transgenic human ES cell lines and exogenous growth factor treatment.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, People's Republic of China. .,Department of Cardiology, Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Jin Huang
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, People's Republic of China.
| |
Collapse
|
21
|
Sasaki T, Suzuki I, Yokoi R, Sato K, Ikegaya Y. Synchronous spike patterns in differently mixed cultures of human iPSC-derived glutamatergic and GABAergic neurons. Biochem Biophys Res Commun 2019; 513:300-305. [PMID: 30954214 DOI: 10.1016/j.bbrc.2019.03.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/24/2019] [Indexed: 01/16/2023]
Abstract
Human induced-pluripotent stem cell (hiPSC)-derived neurons develop organized neuronal networks under in vitro cultivation conditions. Here, using a multielectrode array system, we examined whether the spike patterns of hiPSC-derived neuronal populations differed in a manner that depended on the proportions of glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons in the cultures. Synchronous burst firing events spanning multiple electrodes became more frequent as the number of days in culture increased. However, at all developmental stages, the event rates of synchronous burst firing, the repertoires of synchronous burst firing, and the frequencies of sporadic spikes did not differ in cultures with different glutamatergic-to-GABAergic ratios. Pharmacological blockade of GABAergic synaptic transmission increased the frequencies of spike patterns specifically in cultures with lower glutamatergic-to-GABAergic ratios. These results demonstrate that a robust homeostatic property of developing hiPSC-derived neuronal networks in culture counteracts chronically imbalanced glutamatergic and GABAergic signaling.
Collapse
Affiliation(s)
- Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan; iPS-non-Clinical Experiments for Nervous System (iNCENS) Project, Kanagawa, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi), Kanagawa, Japan.
| | - Remi Yokoi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Kaoru Sato
- iPS-non-Clinical Experiments for Nervous System (iNCENS) Project, Kanagawa, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi), Kanagawa, Japan; Laboratory of Neuropharmacology, Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
22
|
Neganova I, Cotts L, Banks P, Gassner K, Shukurov A, Armstrong L, Ladds G, Lako M. Endothelial Differentiation G Protein-Coupled Receptor 5 Plays an Important Role in Induction and Maintenance of Pluripotency. Stem Cells 2019; 37:318-331. [PMID: 30512203 PMCID: PMC6446721 DOI: 10.1002/stem.2954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/08/2018] [Accepted: 10/25/2018] [Indexed: 02/03/2023]
Abstract
Direct reprogramming of human somatic cells toward induced pluripotent stem cells holds great promise for regenerative medicine and basic biology. We used a high-throughput small interfering RNA screening assay in the initiation phase of reprogramming for 784 genes belonging to kinase and phosphatase families and identified 68 repressors and 22 effectors. Six new candidates belonging to the family of the G protein-coupled receptors (GPCRs) were identified, suggesting an important role for this key signaling pathway during somatic cell-induced reprogramming. Downregulation of one of the key GPCR effectors, endothelial differentiation GPCR5 (EDG5), impacted the maintenance of pluripotency, actin cytoskeleton organization, colony integrity, and focal adhesions in human embryonic stem cells, which were associated with the alteration in the RhoA-ROCK-Cofilin-PAXILLIN-actin signaling pathway. Similarly, downregulation of EDG5 during the initiation stage of somatic cell-induced reprogramming resulted in alteration of cytoskeleton, loss of human-induced pluripotent stem cell colony integrity, and a significant reduction in partially and fully reprogrammed cells as well as the number of alkaline phosphatase positive colonies at the end of the reprogramming process. Together, these data point to an important role of EDG5 in the maintenance and acquisition of pluripotency. Stem Cells 2019;37:318-331.
Collapse
Affiliation(s)
- Irina Neganova
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Lewis Cotts
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Peter Banks
- High Throughput Screening Facility, Medical School, Newcastle, United Kingdom
| | - Katja Gassner
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Anvar Shukurov
- School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lyle Armstrong
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Majlinda Lako
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
23
|
Fang F, Li Z, Zhao Q, Li H, Xiong C. Human induced pluripotent stem cells and male infertility: an overview of current progress and perspectives. Hum Reprod 2019; 33:188-195. [PMID: 29315416 PMCID: PMC5850345 DOI: 10.1093/humrep/dex369] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 01/30/2023] Open
Abstract
Recently, significant progress has been made in ART for the treatment of male infertility. However, current ART has failed to help infertile patients with non-obstructive azoospermia, unless donor sperm is used. In fact, most couples wish to have their own genetically related child. Human induced pluripotent stem cells (hiPSCs) can be generated from patients’ somatic cells and in vitro derivation of functional germ cells from patient-specific iPSCs may provide new therapeutic strategies for infertile couples. The overall developmental dynamics of human primordial germ cells are similar to that in mice, but accumulating evidence suggests that there are crucial differences between human and mouse PGC specification. Unlike mouse iPSCs (miPSCs) in naive state, hiPSCs exhibit a primed pluripotency which possess less potential for the germ cell fate. Based on research in mice, male germ cells at different stages have been derived from hiPSCs with different protocols, including spontaneous differentiation, overexpression of germ cell regulators, addition of cytokines, co-culture with gonadal cells in vitro and xeno-transplantation. The aim of this review is to summarize the current advances in derivation of male germ cells from hiPSCs and raise the perspectives of hiPSCs in medical application for male infertility, as well as in basic research for male germ cell development.
Collapse
Affiliation(s)
- Fang Fang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Zili Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Qian Zhao
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Honggang Li
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| |
Collapse
|
24
|
Zimmer B, Ewaleifoh O, Harschnitz O, Lee YS, Peneau C, McAlpine JL, Liu B, Tchieu J, Steinbeck JA, Lafaille F, Volpi S, Notarangelo LD, Casanova JL, Zhang SY, Smith GA, Studer L. Human iPSC-derived trigeminal neurons lack constitutive TLR3-dependent immunity that protects cortical neurons from HSV-1 infection. Proc Natl Acad Sci U S A 2018; 115:E8775-E8782. [PMID: 30154162 PMCID: PMC6140487 DOI: 10.1073/pnas.1809853115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in Western countries. Some HSE children carry inborn errors of the Toll-like receptor 3 (TLR3)-dependent IFN-α/β- and -λ-inducing pathway. Induced pluripotent stem cell (iPSC)-derived cortical neurons with TLR3 pathway mutations are highly susceptible to HSV-1, due to impairment of cell-intrinsic TLR3-IFN immunity. In contrast, the contribution of cell-intrinsic immunity of human trigeminal ganglion (TG) neurons remains unclear. Here, we describe efficient in vitro derivation and purification of TG neurons from human iPSCs via a cranial placode intermediate. The resulting TG neurons are of sensory identity and exhibit robust responses to heat (capsaicin), cold (icilin), and inflammatory pain (ATP). Unlike control cortical neurons, both control and TLR3-deficient TG neurons were highly susceptible to HSV-1. However, pretreatment of control TG neurons with poly(I:C) induced the cells into an anti-HSV-1 state. Moreover, both control and TLR3-deficient TG neurons developed resistance to HSV-1 following pretreatment with IFN-β but not IFN-λ. These data indicate that TG neurons are vulnerable to HSV-1 because they require preemptive stimulation of the TLR3 or IFN-α/β receptors to induce antiviral immunity, whereas cortical neurons possess a TLR3-dependent constitutive resistance that is sufficient to block incoming HSV-1 in the absence of prior antiviral signals. The lack of constitutive resistance in TG neurons in vitro is consistent with their exploitation as a latent virus reservoir in vivo. Our results incriminate deficiencies in the constitutive TLR3-dependent response of cortical neurons in the pathogenesis of HSE.
Collapse
Affiliation(s)
- Bastian Zimmer
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Osefame Ewaleifoh
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Oliver Harschnitz
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Yoon-Seung Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Camille Peneau
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Jessica L McAlpine
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Becky Liu
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Jason Tchieu
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Julius A Steinbeck
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| | - Fabien Lafaille
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Stefano Volpi
- Pediatric and Rheumatology Unit, Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto Giannina Gaslini and University of Genoa, 16147 Genoa, Italy
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Descartes University, 75015 Paris, France
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
| | - Lorenz Studer
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065;
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065
| |
Collapse
|
25
|
Izmiryan A, Ganier C, Bovolenta M, Schmitt A, Mavilio F, Hovnanian A. Ex Vivo COL7A1 Correction for Recessive Dystrophic Epidermolysis Bullosa Using CRISPR/Cas9 and Homology-Directed Repair. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:554-567. [PMID: 30195791 PMCID: PMC6077132 DOI: 10.1016/j.omtn.2018.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
Recessive dystrophic epidermolysis bullosa is a rare and severe genetic skin disease resulting in blistering of the skin and mucosa. Recessive dystrophic epidermolysis bullosa (RDEB) is caused by a wide variety of mutations in COL7A1-encoding type VII collagen, which is essential for dermal-epidermal adhesion. Here we demonstrate the feasibility of ex vivo COL7A1 editing in primary RDEB cells and in grafted 3D skin equivalents through CRISPR/Cas9-mediated homology-directed repair. We designed five guide RNAs to correct a RDEB causative null mutation in exon 2 (c.189delG; p.Leu64Trpfs*40). Among the site-specific guide RNAs tested, one showed significant cleavage activity in primary RDEB keratinocytes and in fibroblasts when delivered as integration-deficient lentivirus. Genetic correction was detected in transduced keratinocytes and fibroblasts by allele-specific highly sensitive TaqMan-droplet digital PCR (ddPCR), resulting in 11% and 15.7% of corrected COL7A1 mRNA expression, respectively, without antibiotic selection. Grafting of genetically corrected 3D skin equivalents onto nude mice showed up to 26% re-expression and normal localization of type VII collagen as well as anchoring fibril formation at the dermal-epidermal junction. Our study provides evidence that precise genome editing in primary RDEB cells is a relevant strategy to genetically correct COL7A1 mutations for the development of future ex vivo clinical applications.
Collapse
Affiliation(s)
- Araksya Izmiryan
- Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Imagine Institute, 24 bd du Montparnasse, Paris, France; University Paris Descartes-Sorbonne Cité, Paris, France
| | - Clarisse Ganier
- Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Imagine Institute, 24 bd du Montparnasse, Paris, France; University Paris Descartes-Sorbonne Cité, Paris, France
| | | | - Alain Schmitt
- Electronic Microscopy Facility, INSERM UMR 1016, Cochin Institute, Paris, France
| | - Fulvio Mavilio
- University Paris Descartes-Sorbonne Cité, Paris, France; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Imagine Institute, Paris, France
| | - Alain Hovnanian
- Laboratory of Genetic Skin Diseases, INSERM UMR 1163, Imagine Institute, 24 bd du Montparnasse, Paris, France; University Paris Descartes-Sorbonne Cité, Paris, France; Department of Genetics, Necker Hospital for Sick Children, APHP, Paris, France.
| |
Collapse
|
26
|
Efficient differentiation of cardiomyocytes and generation of calcium-sensor reporter lines from nonhuman primate iPSCs. Sci Rep 2018; 8:5907. [PMID: 29651156 PMCID: PMC5897327 DOI: 10.1038/s41598-018-24074-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/28/2018] [Indexed: 01/10/2023] Open
Abstract
Nonhuman primate (NHP) models are more predictive than rodent models for developing induced pluripotent stem cell (iPSC)-based cell therapy, but robust and reproducible NHP iPSC-cardiomyocyte differentiation protocols are lacking for cardiomyopathies research. We developed a method to differentiate integration-free rhesus macaque iPSCs (RhiPSCs) into cardiomyocytes with >85% purity in 10 days, using fully chemically defined conditions. To enable visualization of intracellular calcium flux in beating cardiomyocytes, we used CRISPR/Cas9 to stably knock-in genetically encoded calcium indicators at the rhesus AAVS1 safe harbor locus. Rhesus cardiomyocytes derived by our stepwise differentiation method express signature cardiac markers and show normal electrochemical coupling. They are responsive to cardiorelevant drugs and can be successfully engrafted in a mouse myocardial infarction model. Our approach provides a powerful tool for generation of NHP iPSC-derived cardiomyocytes amenable to utilization in basic research and preclinical studies, including in vivo tissue regeneration models and drug screening.
Collapse
|
27
|
Lyu C, Shen J, Wang R, Gu H, Zhang J, Xue F, Liu X, Liu W, Fu R, Zhang L, Li H, Zhang X, Cheng T, Yang R, Zhang L. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system. Stem Cell Res Ther 2018; 9:92. [PMID: 29625575 PMCID: PMC5889534 DOI: 10.1186/s13287-018-0839-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 02/12/2023] Open
Abstract
Background Replacement therapy for hemophilia remains a lifelong treatment. Only gene therapy can cure hemophilia at a fundamental level. The clustered regularly interspaced short palindromic repeats–CRISPR associated nuclease 9 (CRISPR-Cas9) system is a versatile and convenient genome editing tool which can be applied to gene therapy for hemophilia. Methods A patient’s induced pluripotent stem cells (iPSCs) were generated from their peripheral blood mononuclear cells (PBMNCs) using episomal vectors. The AAVS1-Cas9-sgRNA plasmid which targets the AAVS1 locus and the AAVS1-EF1α-F9 cDNA-puromycin donor plasmid were constructed, and they were electroporated into the iPSCs. When insertion of F9 cDNA into the AAVS1 locus was confirmed, whole genome sequencing (WGS) was carried out to detect the off-target issue. The iPSCs were then differentiated into hepatocytes, and human factor IX (hFIX) antigen and activity were measured in the culture supernatant. Finally, the hepatocytes were transplanted into non-obese diabetic/severe combined immunodeficiency disease (NOD/SCID) mice through splenic injection. Results The patient’s iPSCs were generated from PBMNCs. Human full-length F9 cDNA was inserted into the AAVS1 locus of iPSCs of a hemophilia B patient using the CRISPR-Cas9 system. No off-target mutations were detected by WGS. The hepatocytes differentiated from the inserted iPSCs could secrete hFIX stably and had the ability to be transplanted into the NOD/SCID mice in the short term. Conclusions PBMNCs are good somatic cell choices for generating iPSCs from hemophilia patients. The iPSC technique is a good tool for genetic therapy for human hereditary diseases. CRISPR-Cas9 is versatile, convenient, and safe to be used in iPSCs with low off-target effects. Our research offers new approaches for clinical gene therapy for hemophilia. Electronic supplementary material The online version of this article (10.1186/s13287-018-0839-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cuicui Lyu
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Department of Hematology, The First Central Hospital of Tianjin, Tianjin, 300192, China
| | - Jun Shen
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Rui Wang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Haihui Gu
- Department of Transfusion Medicine, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jianping Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Liyan Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaobing Zhang
- Division of Regenerative Medicine MC1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92350, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Gene Therapy of Blood Diseases, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
28
|
Role of Jnk1 in development of neural precursors revealed by iPSC modeling. Oncotarget 2018; 7:60919-60928. [PMID: 27556303 PMCID: PMC5308626 DOI: 10.18632/oncotarget.11377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/13/2016] [Indexed: 01/09/2023] Open
Abstract
Jnk1-deficient mice manifest disrupted anterior commissure formation and loss of axonal and dendritic microtubule integrity. However, the mechanisms and the specific stages underlying the developmental defects remain to be elucidated. Here, we report the generation of Jnk1-deficient (Jnk1 KO) iPSCs from Jnk1 KO mouse tail-tip fibroblasts (TTFs) for modeling the neural disease development. The efficiency in the early induction of iPSCs was higher from Jnk1 KO fibroblasts than that of wild-type (WT) fibroblasts. These Jnk1 KO iPSCs exhibited pluripotent stem cell properties and had the ability of differentiation into general three embryonic germ layers in vitro and in vivo. However, Jnk1 KO iPSCs showed reduced capacity in neural differentiation in the spontaneous differentiation by embryoid body (EB) formation. Notably, by directed lineage differentiation, Jnk1 KO iPSCs specifically exhibited an impaired ability to differentiate into early stage neural precursors. Furthermore, the neuroepitheliums generated from Jnk1 KO iPSCs appeared smaller, indicative of neural stem cell developmental defects, as demonstrated by teratoma tests in vivo. These data suggest that Jnk1 deficiency inhibits the development of neural stem cells/precursors and provide insights to further understanding the complex pathogenic mechanisms of JNK1-related neural diseases.
Collapse
|
29
|
Fiorotto R, Amenduni M, Mariotti V, Fabris L, Spirli C, Strazzabosco M. Src kinase inhibition reduces inflammatory and cytoskeletal changes in ΔF508 human cholangiocytes and improves cystic fibrosis transmembrane conductance regulator correctors efficacy. Hepatology 2018; 67:972-988. [PMID: 28836688 PMCID: PMC5783790 DOI: 10.1002/hep.29400] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), the channel mutated in cystic fibrosis (CF), is expressed by the biliary epithelium (i.e., cholangiocytes) of the liver. Progressive clinical liver disease (CF-associated liver disease; CFLD) occurs in around 10% of CF patients and represents the third leading cause of death. Impaired secretion and inflammation contribute to CFLD; however, the lack of human-derived experimental models has hampered the understanding of CFLD pathophysiology and the search for a cure. We have investigated the cellular mechanisms altered in human CF cholangiocytes using induced pluripotent stem cells (iPSCs) derived from healthy controls and a ΔF508 CFTR patient. We have devised a novel protocol for the differentiation of human iPSC into polarized monolayers of cholangiocytes. Our results show that iPSC-cholangiocytes reproduced the polarity and the secretory function of the biliary epithelium. Protein kinase A/cAMP-mediated fluid secretion was impaired in ΔF508 cholangiocytes and negligibly improved by VX-770 and VX-809, two small molecule drugs used to correct and potentiate ΔF508 CFTR. Moreover, ΔF508 cholangiocytes showed increased phosphorylation of Src kinase and Toll-like receptor 4 and proinflammatory changes, including increased nuclear factor kappa-light-chain-enhancer of activated B cells activation, secretion of proinflammatory chemokines (i.e., monocyte chemotactic protein 1 and interleukin-8), as well as alterations of the F-actin cytoskeleton. Treatment with Src inhibitor (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine) decreased the inflammatory changes and improved cytoskeletal defects. Inhibition of Src, along with administration of VX-770 and VX-809, successfully restored fluid secretion to normal levels. CONCLUSION Our findings have strong translational potential and indicate that targeting Src kinase and decreasing inflammation may increase the efficacy of pharmacological therapies aimed at correcting the basic ΔF508 defect in CF liver patients. These studies also demonstrate the promise of applying iPSC technology in modeling human cholangiopathies. (Hepatology 2018;67:972-988).
Collapse
Affiliation(s)
- Romina Fiorotto
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
- International Center for Digestive Health, University of Milan-Bicocca, Milan, Italy
| | - Mariangela Amenduni
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| | - Valeria Mariotti
- Department of Molecular Medicine, University of Padua, School of Medicine, Padua, Italy
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua, School of Medicine, Padua, Italy
| | - Carlo Spirli
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
- International Center for Digestive Health, University of Milan-Bicocca, Milan, Italy
| | - Mario Strazzabosco
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
- International Center for Digestive Health, University of Milan-Bicocca, Milan, Italy
| |
Collapse
|
30
|
Kajiwara K, Tanemoto T, Wada S, Karibe J, Ihara N, Ikemoto Y, Kawasaki T, Oishi Y, Samura O, Okamura K, Takada S, Akutsu H, Sago H, Okamoto A, Umezawa A. Fetal Therapy Model of Myelomeningocele with Three-Dimensional Skin Using Amniotic Fluid Cell-Derived Induced Pluripotent Stem Cells. Stem Cell Reports 2018; 8:1701-1713. [PMID: 28591652 PMCID: PMC5470234 DOI: 10.1016/j.stemcr.2017.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 01/28/2023] Open
Abstract
Myelomeningocele (MMC) is a congenital disease without genetic abnormalities. Neurological symptoms are irreversibly impaired after birth, and no effective treatment has been reported to date. Only surgical repairs have been reported so far. In this study, we performed antenatal treatment of MMC with an artificial skin using induced pluripotent stem cells (iPSCs) generated from a patient with Down syndrome (AF-T21-iPSCs) and twin-twin transfusion syndrome (AF-TTTS-iPSCs) to a rat model. We manufactured three-dimensional skin with epidermis generated from keratinocytes derived from AF-T21-iPSCs and AF-TTTS-iPSCs and dermis of human fibroblasts and collagen type I. For generation of epidermis, we developed a protocol using Y-27632 and epidermal growth factor. The artificial skin was successfully covered over MMC defect sites during pregnancy, implying a possible antenatal surgical treatment with iPSC technology.
Collapse
Affiliation(s)
- Kazuhiro Kajiwara
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Tomohiro Tanemoto
- Department of Medical Science, Chiba University Graduate School of Medicine, Chiba 260-0856, Japan
| | - Seiji Wada
- Maternal-Fetal, Neonatal and Reproductive Medicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Jurii Karibe
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Norimasa Ihara
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Yu Ikemoto
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Tomoyuki Kawasaki
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Yoshie Oishi
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Kohji Okamura
- Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Shuji Takada
- Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Hidenori Akutsu
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Haruhiko Sago
- Maternal-Fetal, Neonatal and Reproductive Medicine, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, Center for Regenerative Medicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| |
Collapse
|
31
|
Kayama T, Suzuki I, Odawara A, Sasaki T, Ikegaya Y. Temporally coordinated spiking activity of human induced pluripotent stem cell-derived neurons co-cultured with astrocytes. Biochem Biophys Res Commun 2017; 495:1028-1033. [PMID: 29170135 DOI: 10.1016/j.bbrc.2017.11.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Abstract
In culture conditions, human induced-pluripotent stem cells (hiPSC)-derived neurons form synaptic connections with other cells and establish neuronal networks, which are expected to be an in vitro model system for drug discovery screening and toxicity testing. While early studies demonstrated effects of co-culture of hiPSC-derived neurons with astroglial cells on survival and maturation of hiPSC-derived neurons, the population spiking patterns of such hiPSC-derived neurons have not been fully characterized. In this study, we analyzed temporal spiking patterns of hiPSC-derived neurons recorded by a multi-electrode array system. We discovered that specific sets of hiPSC-derived neurons co-cultured with astrocytes showed more frequent and highly coherent non-random synchronized spike trains and more dynamic changes in overall spike patterns over time. These temporally coordinated spiking patterns are physiological signs of organized circuits of hiPSC-derived neurons and suggest benefits of co-culture of hiPSC-derived neurons with astrocytes.
Collapse
Affiliation(s)
- Tasuku Kayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan.
| | - Aoi Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan; Japan Society for the Promotion of Science, 5-3-1 Koujimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
32
|
Bhuvanalakshmi G, Arfuso F, Kumar AP, Dharmarajan A, Warrier S. Epigenetic reprogramming converts human Wharton's jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators. Stem Cell Res Ther 2017; 8:185. [PMID: 28807014 PMCID: PMC5557557 DOI: 10.1186/s13287-017-0638-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Background Lineage commitment of mesenchymal stem cells (MSCs) to cardiac differentiation is controlled by transcription factors that are regulated by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Here, we studied the differentiation of human Wharton’s jelly MSCs (WJMSCs) into the cardiomyocyte lineage via epigenetic manipulations. Methods We introduced these changes using inhibitors of DNA methyl transferase and histone deacetylase, DC301, DC302, and DC303, in various combinations. We characterized for cardiogenic differentiation by assessing the expression of cardiac-specific markers by immunolocalization, quantitative RT-PCR, and flow cytometry. Cardiac functional studies were performed by FURA2AM staining and Greiss assay. The role of Wnt signaling during cardiac differentiation was analyzed by quantitative RT-PCR. In-vivo studies were performed in a doxorubicin-induced cardiotoxic mouse model by injecting cardiac progenitor cells. Promoter methylation status of the cardiac transcription factor Nkx2.5 and the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), after cardiac differentiation was studied by bisulfite sequencing. Results By induction with DC301 and DC302, WJMSCs differentiated into cardiomyocyte-like structures with an upregulation of Wnt antagonists, sFRP3 and sFRP4, and Dickkopf (Dkk)1 and Dkk3. The cardiac function enhancer, vinculin, and DDX20, a DEAD-box RNA helicase, were also upregulated in differentiated cardiomyocytes. Additionally, bisulfite sequencing revealed, for the first time in cardiogenesis, that sFRP4 is activated by promoter CpG island demethylation. In vivo, these MSC-derived cardiac progenitors could not only successfully engraft to the site of cardiac injury in mice with doxorubicin-induced cardiac injury, but also form functional cardiomyocytes and restore cardiac function. Conclusion The present study unveils a link between Wnt inhibition and epigenetic modification to initiate cardiac differentiation, which could enhance the efficacy of stem cell therapy for ischemic heart disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0638-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G Bhuvanalakshmi
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 065, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia.,School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Alan Prem Kumar
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 065, India.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.,National University Cancer Institute, Singapore, 119074, Singapore.,Department of Biological Sciences, University of North Texas, Denton, TX, 76203-5017, USA
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 065, India. .,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia. .,Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, 6875, Australia.
| |
Collapse
|
33
|
Calatayud C, Carola G, Consiglio A, Raya A. Modeling the genetic complexity of Parkinson's disease by targeted genome edition in iPS cells. Curr Opin Genet Dev 2017; 46:123-131. [PMID: 28759872 DOI: 10.1016/j.gde.2017.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 06/08/2017] [Indexed: 02/08/2023]
Abstract
Patient-specific iPSC are being intensively exploited as experimental disease models. Even for late-onset diseases of complex genetic influence, such as Parkinson's disease (PD), the use of iPSC-based models is beginning to provide important insights into the genetic bases of PD heritability. Here, we present an update on recently reported genetic risk factors associated with PD. We discuss how iPSC technology, combined with targeted edition of the coding or noncoding genome, can be used to address clinical observations such as incomplete penetrance, and variability in phenoconversion or age-at-onset in familial PD. Finally, we also discuss the relevance of advanced iPSC/CRISPR/Cas9 disease models to ascertain causality in genotype-to-phenotype correlation studies of sporadic PD.
Collapse
Affiliation(s)
- Carles Calatayud
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028 Barcelona, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, 08908 Barcelona, Spain
| | - Giulia Carola
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028 Barcelona, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, 08908 Barcelona, Spain
| | - Antonella Consiglio
- Institute of Biomedicine (IBUB) of the University of Barcelona (UB), 08028 Barcelona, Spain; Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, 08908 Barcelona, Spain; Department of Molecular and Translational Medicine, University of Brescia and National Institute of Neuroscience, 25123 Brescia, Italy.
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd Floor, Av. Gran Via 199-203, 08908 Hospitalet de Llobregat (Barcelona), Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
34
|
Jurgielewicz P, Harmsen S, Wei E, Bachmann MH, Ting R, Aras O. New imaging probes to track cell fate: reporter genes in stem cell research. Cell Mol Life Sci 2017; 74:4455-4469. [PMID: 28674728 DOI: 10.1007/s00018-017-2584-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023]
Abstract
Cell fate is a concept used to describe the differentiation and development of a cell in its organismal context over time. It is important in the field of regenerative medicine, where stem cell therapy holds much promise but is limited by our ability to assess its efficacy, which is mainly due to the inability to monitor what happens to the cells upon engraftment to the damaged tissue. Currently, several imaging modalities can be used to track cells in the clinical setting; however, they do not satisfy many of the criteria necessary to accurately assess several aspects of cell fate. In recent years, reporter genes have become a popular option for tracking transplanted cells, via various imaging modalities in small mammalian animal models. This review article examines the reporter gene strategies used in imaging modalities such as MRI, SPECT/PET, Optoacoustic and Bioluminescence Imaging. Strengths and limitations of the use of reporter genes in each modality are discussed.
Collapse
Affiliation(s)
- Piotr Jurgielewicz
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Stefan Harmsen
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Suite 1511, New York, NY, 10065, USA.
| |
Collapse
|
35
|
Canto-Soler V, Flores-Bellver M, Vergara MN. Stem Cell Sources and Their Potential for the Treatment of Retinal Degenerations. Invest Ophthalmol Vis Sci 2017; 57:ORSFd1-9. [PMID: 27116661 PMCID: PMC6892419 DOI: 10.1167/iovs.16-19127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Stem cells offer unprecedented opportunities for the development of strategies geared toward the treatment of retinal degenerative diseases. A variety of cellular sources have been investigated for various potential clinical applications, including tissue regeneration, disease modeling, and screening for non–cell-based therapeutic agents. As the field transitions from more than a decade of preclinical research to the first phase I/II clinical trials, we provide a concise overview of the stem cell sources most commonly used, weighing their therapeutic potential on the basis of their technical strengths/limitations, their ethical implications, and the extent of the progress achieved to date. This article serves as a framework for further in-depth analyses presented in the following chapters of this Special Issue.
Collapse
|
36
|
Detailed comparison of retroviral vectors and promoter configurations for stable and high transgene expression in human induced pluripotent stem cells. Gene Ther 2017; 24:298-307. [PMID: 28346436 DOI: 10.1038/gt.2017.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/27/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
Abstract
Correction of patient-specific induced pluripotent stem cells (iPSC) upon gene delivery through retroviral vectors offers new treatment perspectives for monogenetic diseases. Gene-modified iPSC clones can be screened for safe integration sites and differentiated into transplantable cells of interest. However, the current bottleneck is epigenetic vector silencing. In order to identify the most suitable retroviral expression system in iPSC, we systematically compared vectors from different retroviral genera, different promoters and their combination with ubiquitous chromatin opening elements (UCOE), and several envelope pseudotypes. Lentiviral vectors (LV) pseudotyped with vesicular stomatitis virus glycoprotein were superior to gammaretroviral and alpharetroviral vectors and other envelopes tested. The elongation factor 1α short (EFS) promoter mediated the most robust expression, whereas expression levels were lower from the potent but more silencing-prone spleen focus forming virus (SFFV) promoter. Both full-length (A2UCOE) and minimal (CBX3) UCOE juxtaposed to two physiological and one viral promoter reduced transgene silencing with equal efficiency. However, a promoter-specific decline in expression levels was not entirely prevented. Upon differentiation of transgene-positive iPSC into endothelial cells, A2UCOE.EFS and CBX3.EFS vectors maintained highest transgene expression in a larger fraction of cells as compared with all other constructs tested here. The function of UCOE diminished, but did not fully counteract, vector silencing and possibilities for improvements remain. Nevertheless, the CBX3.EFS in a LV background exhibited the most promising promoter and vector configuration for both high titer production and long-term genetic modification of human iPSC and their progeny.
Collapse
|
37
|
Berger RP, Dookwah M, Steet R, Dalton S. Glycosylation and stem cells: Regulatory roles and application of iPSCs in the study of glycosylation-related disorders. Bioessays 2016; 38:1255-1265. [PMID: 27667795 PMCID: PMC5214967 DOI: 10.1002/bies.201600138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycosylation refers to the co- and post-translational modification of protein and lipids by monosaccharides or oligosaccharide chains. The surface of mammalian cells is decorated by a heterogeneous and highly complex array of protein and lipid linked glycan structures that vary significantly between different cell types, raising questions about their roles in development and disease pathogenesis. This review will begin by focusing on recent findings that define roles for cell surface protein and lipid glycosylation in pluripotent stem cells and their functional impact during normal development. Then, we will describe how patient derived induced pluripotent stem cells are being used to model human diseases such as congenital disorders of glycosylation. Collectively, these studies indicate that cell surface glycans perform critical roles in human development and disease.
Collapse
Affiliation(s)
- Ryan P. Berger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Michelle Dookwah
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Richard Steet
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
38
|
Lin Y, Linask KL, Mallon B, Johnson K, Klein M, Beers J, Xie W, Du Y, Liu C, Lai Y, Zou J, Haigney M, Yang H, Rao M, Chen G. Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin-Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem Cells Transl Med 2016; 6:527-538. [PMID: 28191759 PMCID: PMC5442822 DOI: 10.5966/sctm.2015-0428] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/28/2016] [Indexed: 01/08/2023] Open
Abstract
Cardiomyocytes can be differentiated from human pluripotent stem cells (hPSCs) in defined conditions, but efficient and consistent cardiomyocyte differentiation often requires expensive reagents such as B27 supplement or recombinant albumin. Using a chemically defined albumin-free (E8 basal) medium, we identified heparin as a novel factor that significantly promotes cardiomyocyte differentiation efficiency, and developed an efficient method to differentiate hPSCs into cardiomyocytes. The treatment with heparin helped cardiomyocyte differentiation consistently reach at least 80% purity (up to 95%) from more than 10 different hPSC lines in chemically defined Dulbecco's modified Eagle's medium/F-12-based medium on either Matrigel or defined matrices like vitronectin and Synthemax. One of heparin's main functions was to act as a Wnt modulator that helped promote robust and consistent cardiomyocyte production. Our study provides an efficient, reliable, and cost-effective method for cardiomyocyte derivation from hPSCs that can be used for potential large-scale drug screening, disease modeling, and future cellular therapies. Stem Cells Translational Medicine 2017;6:527-538.
Collapse
Affiliation(s)
- Yongshun Lin
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Kaari L. Linask
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Michael Klein
- Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Jeanette Beers
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Wen Xie
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yubin Du
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chengyu Liu
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yinzhi Lai
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jizhong Zou
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
- Center for Regenerative Medicine, NIH, Bethesda, Maryland, USA
| | - Mark Haigney
- Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Hushan Yang
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahendra Rao
- Center for Regenerative Medicine, NIH, Bethesda, Maryland, USA
| | - Guokai Chen
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
- Faculty of Health Sciences, University of Macau, Tapai, Macau, People's Republic of China
| |
Collapse
|
39
|
Burke J, Hunter M, Kolhe R, Isales C, Hamrick M, Fulzele S. Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. Clin Transl Med 2016; 5:27. [PMID: 27510262 PMCID: PMC4980326 DOI: 10.1186/s40169-016-0112-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease affecting articular cartilage in joints, and it is a leading cause of disability in the United States. Current pharmacological treatment strategies are ineffective to prevent the OA progression; however, cellular therapies have the potential to regenerate the lost cartilage, combat cartilage degeneration, provide pain relief, and improve patient mobility. One of the most promising sources of cellular regenerative medicine is from mesenchymal stem cells (MSCs). MSCs can be isolated from adipose tissue, bone marrow, synovial tissue, and other sources. The aim of this review is to compile recent advancement in cellular based therapy more specifically in relation to MSCs in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- John Burke
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA
| | - Monte Hunter
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA
| | - Ravindra Kolhe
- Department of Pathology, Georgia Regents University, Augusta, GA, USA
| | - Carlos Isales
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA.,Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Mark Hamrick
- Department of Cell Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Orthopedics, Georgia Regents University, Augusta, GA, USA. .,Institute of Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA. .,Department of Orthopedics Surgery, Augusta University, Augusta, GA, 30904, USA.
| |
Collapse
|
40
|
p18 inhibits reprogramming through inactivation of Cdk4/6. Sci Rep 2016; 6:31085. [PMID: 27484146 PMCID: PMC4971472 DOI: 10.1038/srep31085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/13/2016] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells (PSCs), including embryonic and induced pluripotent stem cells (iPSCs), show atypical cell cycle regulation characterized by a high proliferation rate and a shorter G1 phase compared with somatic cells. The mechanisms by which somatic cells remodel their cell cycle to achieve the high proliferation rate of PSCs during reprogramming are unclear. Here we identify that the Ink4 protein p18, which is expressed at high levels in somatic cells but at low levels in PSCs, is a roadblock to successful reprogramming. Mild inhibition of p18 expression enhances reprogramming efficiency, while ectopic expression of p18 completely blocks reprogramming. Mechanistic studies show that expression of wild-type p18, but not a p18D68N mutant which cannot inhibit Cdk4/6, down-regulates expression of Cdk4/6 target genes involved in DNA synthesis (TK, TS, DHFR, PCNA) and cell cycle regulation (CDK1 and CCNA2) and thus inhibits reprogramming. These results indicate that p18 blocks reprogramming by targeting Cdk4/6-mediated cell cycle regulation. Taken together, our results define a novel pathway that inhibits somatic cell reprogramming, and provide a new target to enhance reprogramming efficiency.
Collapse
|
41
|
Xu M, Motabar O, Ferrer M, Marugan JJ, Zheng W, Ottinger EA. Disease models for the development of therapies for lysosomal storage diseases. Ann N Y Acad Sci 2016; 1371:15-29. [PMID: 27144735 DOI: 10.1111/nyas.13052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 12/11/2022]
Abstract
Lysosomal storage diseases (LSDs) are a group of rare diseases in which the function of the lysosome is disrupted by the accumulation of macromolecules. The complexity underlying the pathogenesis of LSDs and the small, often pediatric, population of patients make the development of therapies for these diseases challenging. Current treatments are only available for a small subset of LSDs and have not been effective at treating neurological symptoms. Disease-relevant cellular and animal models with high clinical predictability are critical for the discovery and development of new treatments for LSDs. In this paper, we review how LSD patient primary cells and induced pluripotent stem cell-derived cellular models are providing novel assay systems in which phenotypes are more similar to those of the human LSD physiology. Furthermore, larger animal disease models are providing additional tools for evaluation of the efficacy of drug candidates. Early predictors of efficacy and better understanding of disease biology can significantly affect the translational process by focusing efforts on those therapies with the higher probability of success, thus decreasing overall time and cost spent in clinical development and increasing the overall positive outcomes in clinical trials.
Collapse
Affiliation(s)
- Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland.,Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Omid Motabar
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| | - Elizabeth A Ottinger
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
42
|
El Khatib MM, Ohmine S, Jacobus EJ, Tonne JM, Morsy SG, Holditch SJ, Schreiber CA, Uetsuka K, Fusaki N, Wigle DA, Terzic A, Kudva YC, Ikeda Y. Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration. Stem Cells Transl Med 2016; 5:694-702. [PMID: 26987352 PMCID: PMC4835241 DOI: 10.5966/sctm.2015-0017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/23/2015] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Human induced pluripotent stem cells (iPSCs) and derived progeny provide invaluable regenerative platforms, yet their clinical translation has been compromised by their biosafety concern. Here, we assessed the safety of transplanting patient-derived iPSC-generated pancreatic endoderm/progenitor cells. Transplantation of progenitors from iPSCs reprogrammed by lentiviral vectors (LV-iPSCs) led to the formation of invasive teratocarcinoma-like tumors in more than 90% of immunodeficient mice. Moreover, removal of primary tumors from LV-iPSC progeny-transplanted hosts generated secondary and metastatic tumors. Combined transgene-free (TGF) reprogramming and elimination of residual pluripotent cells by enzymatic dissociation ensured tumor-free transplantation, ultimately enabling regeneration of type 1 diabetes-specific human islet structures in vivo. The incidence of tumor formation in TGF-iPSCs was titratable, depending on the oncogenic load, with reintegration of the cMYC expressing vector abolishing tumor-free transplantation. Thus, transgene-free cMYC-independent reprogramming and elimination of residual pluripotent cells are mandatory steps in achieving transplantation of iPSC progeny for customized and safe islet regeneration in vivo. SIGNIFICANCE Pluripotent stem cell therapy for diabetes relies on the safety as well as the quality of derived insulin-producing cells. Data from this study highlight prominent tumorigenic risks of induced pluripotent stem cell (iPSC) products, especially when reprogrammed with integrating vectors. Two major underlying mechanisms in iPSC tumorigenicity are residual pluripotent cells and cMYC overload by vector integration. This study also demonstrated that combined transgene-free reprogramming and enzymatic dissociation allows teratoma-free transplantation of iPSC progeny in the mouse model in testing the tumorigenicity of iPSC products. Further safety assessment and improvement in iPSC specification into a mature β cell phenotype would lead to safe islet replacement therapy for diabetes.
Collapse
Affiliation(s)
| | - Seiga Ohmine
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Egon J Jacobus
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Salma G Morsy
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sara J Holditch
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Claire A Schreiber
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Koji Uetsuka
- Laboratory of Animal Health and Hygiene, Department of Biological Production Science, College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Noemi Fusaki
- PRESTO, Japan Science and Technology Agency, Saitama, Japan Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Dennis A Wigle
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA Department of Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yogish C Kudva
- Division of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
43
|
Callahan SJ, Mica Y, Studer L. Feeder-free Derivation of Melanocytes from Human Pluripotent Stem Cells. J Vis Exp 2016:e53806. [PMID: 26967464 PMCID: PMC4828213 DOI: 10.3791/53806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) represent a platform to study human development in vitro under both normal and disease conditions. Researchers can direct the differentiation of hPSCs into the cell type of interest by manipulating the culture conditions to recapitulate signals seen during development. One such cell type is the melanocyte, a pigment-producing cell of neural crest (NC) origin responsible for protecting the skin against UV irradiation. This protocol presents an extension of a currently available in vitro Neural Crest differentiation protocol from hPSCs to further differentiate NC into fully pigmented melanocytes. Melanocyte precursors can be enriched from the Neural Crest protocol via a timed exposure to activators of WNT, BMP, and EDN3 signaling under dual-SMAD-inhibition conditions. The resultant melanocyte precursors are then purified and matured into fully pigmented melanocytes by culture in a selective medium. The resultant melanocytes are fully pigmented and stain appropriately for proteins characteristic of mature melanocytes.
Collapse
Affiliation(s)
- Scott J Callahan
- The Center for Stem Cell Biology, Developmental Biology Program, Memorial Sloan-Kettering Cancer Center; Cancer Biology and Genetics Program, Gerstner Sloan-Kettering Graduate School, Sloan-Kettering Institute for Cancer Research
| | | | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Memorial Sloan-Kettering Cancer Center;
| |
Collapse
|
44
|
Sridhar A, Ohlemacher SK, Langer KB, Meyer JS. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage. Stem Cells Transl Med 2016; 5:417-26. [PMID: 26933039 PMCID: PMC4798730 DOI: 10.5966/sctm.2015-0093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
Abstract
The ability and efficiency of mRNA-reprogrammed human induced pluripotent stem cells (hiPSCs) to yield retinal cell types in a directed, stepwise manner was tested. hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes. Such methods represent a promising new approach for retinal stem cell research, especially translational applications. The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications. Significance In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hiPSCs), followed by the differentiation of these cells toward a retinal lineage, including photoreceptors, retinal ganglion cells, and retinal pigment epithelium, has been demonstrated. The use of mRNA reprogramming to yield pluripotency represents a unique ability to derive pluripotent stem cells without the use of DNA vectors, ensuring the lack of genomic integration and constitutive expression. The studies reported in the present article serve to establish a more reproducible system with which to derive retinal cell types from hiPSCs through the prevention of genomic integration of delivered genes and should also eliminate the risk of constitutive expression of these genes. Such ability has important implications for the study of, and development of potential treatments for, retinal degenerative disorders and the development of novel therapeutic approaches to the treatment of these diseases.
Collapse
Affiliation(s)
- Akshayalakshmi Sridhar
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Sarah K Ohlemacher
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Kirstin B Langer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Jason S Meyer
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, USA Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
45
|
Abstract
Induced pluripotent stem (iPS) cells have great potential in regenerative medicine, including cell replacement therapies and disease modelling in vitro. However, with this potential comes several challenges, including clinical safety, reprogramming and differentiation efficiency, and compromised functionality of differentiated cell types after transplantation. Many of these issues arise from imprecise control of cell fate. With large-scale sequencing and genome-editing technologies we can now precisely manipulate the genome, which has expanded our knowledge of functional cell types and cell identity. These technologies may improve our efforts in generating iPS-derived therapeutic cells and in development of therapies for human diseases.
Collapse
|
46
|
Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries. INTERNATIONAL ORTHOPAEDICS 2016; 40:615-24. [PMID: 26762517 DOI: 10.1007/s00264-015-3099-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.
Collapse
|
47
|
Daniel MG, Lemischka IR, Moore K. Converting cell fates: generating hematopoietic stem cells de novo via transcription factor reprogramming. Ann N Y Acad Sci 2016; 1370:24-35. [PMID: 26748878 DOI: 10.1111/nyas.12989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Even though all paradigms of stem cell therapy and regenerative medicine emerged from the study of hematopoietic stem cells (HSCs), the inability to generate these cells de novo or expand them in vitro persists. Initial efforts to obtain these cells began with the use of embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technologies, but these strategies have yet to yield fully functional cells. Subsequently, more recent approaches involve transcription factor (TF) overexpression to reprogram PSCs and various somatic cells. The induction of pluripotency with just four TFs by Yamanaka informs our ability to convert cell fates and demonstrates the feasibility of utilizing terminally differentiated cells to generate cells with multilineage potential. In this review, we discuss the recent efforts undertaken using TF-based reprogramming strategies to convert several cell types into HSCs.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York.,The Graduate School of Biomedical Science, Icahn School of Medicine, New York, New York
| | - Ihor R Lemischka
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, New York
| | - Kateri Moore
- Department of Developmental and Regenerative Biology, Icahn School of Medicine, New York, New York.,Black Family Stem Cell Institute, Icahn School of Medicine, New York, New York
| |
Collapse
|
48
|
Su RJ, Neises A, Zhang XB. Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors. Methods Mol Biol 2016; 1357:57-69. [PMID: 25403468 DOI: 10.1007/7651_2014_139] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Peripheral blood is the easy-to-access, minimally invasive, and the most abundant cell source to use for cell reprogramming. The episomal vector is among the best approaches for generating integration-free induced pluripotent stem (iPS) cells due to its simplicity and affordability. Here we describe the detailed protocol for the efficient generation of integration-free iPS cells from peripheral blood mononuclear cells. With this optimized protocol, one can readily generate hundreds of iPS cell colonies from 1 ml of peripheral blood.
Collapse
Affiliation(s)
- Ruijun Jeanna Su
- Division of Regenerative Medicine MC1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92350, USA
| | - Amanda Neises
- Division of Regenerative Medicine MC1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92350, USA
| | - Xiao-Bing Zhang
- Division of Regenerative Medicine MC1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA, 92350, USA.
| |
Collapse
|
49
|
Stratmann HG. Stem Cells and Organ Transplantation: Resetting Our Biological Clocks. SCIENCE AND FICTION 2016. [PMCID: PMC7124065 DOI: 10.1007/978-3-319-16015-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human body has only a limited ability to repair itself. Illness, injury, and aging can overwhelm its built-in capability to replace dysfunctional, damaged, or destroyed tissues. We can at best only partly regenerate our organs and cannot grow back a whole limb.
Collapse
|
50
|
Panicker LM, Miller D, Awad O, Bose V, Lun Y, Park TS, Zambidis ET, Sgambato JA, Feldman RA. Gaucher iPSC-derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development. Stem Cells 2015; 32:2338-49. [PMID: 24801745 DOI: 10.1002/stem.1732] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/09/2014] [Indexed: 12/21/2022]
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by mutations in the acid β-glucocerebrosidase (GCase; GBA) gene. The hallmark of GD is the presence of lipid-laden Gaucher macrophages, which infiltrate bone marrow and other organs. These pathological macrophages are believed to be the sources of elevated levels of inflammatory mediators present in the serum of GD patients. The alteration in the immune environment caused by GD is believed to play a role in the increased risk of developing multiple myeloma and other malignancies in GD patients. To determine directly whether Gaucher macrophages are abnormally activated and whether their functional defects can be reversed by pharmacological intervention, we generated GD macrophages by directed differentiation of human induced pluripotent stem cells (hiPSC) derived from patients with types 1, 2, and 3 GD. GD hiPSC-derived macrophages expressed higher levels of tumor necrosis factor α, IL-6, and IL-1β than control cells, and this phenotype was exacerbated by treatment with lipopolysaccharide. In addition, GD hiPSC macrophages exhibited a striking delay in clearance of phagocytosed red blood cells, recapitulating the presence of red blood cell remnants in Gaucher macrophages from bone marrow aspirates. Incubation of GD hiPSC macrophages with recombinant GCase, or with the chaperones isofagomine and ambroxol, corrected the abnormal phenotypes of GD macrophages to an extent that reflected their known clinical efficacies. We conclude that Gaucher macrophages are the likely source of the elevated levels of inflammatory mediators in the serum of GD patients and that GD hiPSC are valuable new tools for studying disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Leelamma M Panicker
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|