1
|
Krueger A, Horjales S, Yang C, Blakely WJ, Francia ME, Arrizabalaga G. The essential kinase TgGSK regulates centrosome segregation and endodyogeny in Toxoplasma gondii. mSphere 2025; 10:e0011125. [PMID: 40152591 PMCID: PMC12039231 DOI: 10.1128/msphere.00111-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025] Open
Abstract
Intracellular replication is crucial for the success of apicomplexan parasites, including Toxoplasma gondii. Therefore, essential players in parasite replication represent potential targets for drug development. We have characterized TgGSK, a glycogen synthase kinase homolog that plays an important role in Toxoplasma endodyogeny. We have shown that TgGSK has a dynamic localization that is concurrent with the cell cycle. In non-dividing parasites, this kinase is highly concentrated in the nucleus. However, during division, TgGSK displays a cytosolic localization, with concentration foci at the centrosomes, a key organelle involved in parasite division, and the basal end. Conditional knockdown of TgGSK determined that it is essential for the completion of the lytic cycle and proper parasite division. Parasites lacking endogenous protein levels of TgGSK exhibited defects in division synchronicity and the segregation of the nucleus and apicoplast into forming daughter cells. These phenotypes are associated with defects in centrosome duplication and fission. Global phosphoproteomic analysis determined TgGSK-dependent phosphorylation of RNA-processing, basal end, and centrosome proteins. Consistent with the putative regulation of RNA-processing proteins, global transcriptomic analysis suggests that TgGSK is needed for proper splicing. Finally, we show that TgGSK interacts with GCN5b, a well-characterized acetyltransferase with roles in transcriptional control. Conversely, GCN5b chemical inhibition results in specific degradation of TgGSK. Thus, these studies reveal the involvement of TgGSK in various crucial processes, including endodyogeny and splicing, and identify acetylation as a possible mechanism by which this essential kinase is regulated. IMPORTANCE While infection with the parasite Toxplasma gondii is largely asymptomatic in healthy adults, severe disease and death can result in immunocompromised individuals and in those infected congenitally. With minimal treatments for toxoplasmosis available, it is crucial to study parasite-specific processes to identify new drug targets. This study investigated the protein TgGSK, uncovering its essentiality for parasite proper division and survival. We performed an in-depth study of the functional role of this kinase. Importantly, TgGSK was shown to bear higher homology to plant proteins than its mammalian counterparts, which may allow for specific targeting of this protein.
Collapse
Affiliation(s)
- Amanda Krueger
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sofia Horjales
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, , Uruguay
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - William J. Blakely
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maria E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, , Uruguay
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Saldarriaga Cartagena AM, Arias AA, Cristaldi C, Ganuza A, Gonzalez MM, Corvi MM, Sullivan WJ, Vanagas L, Angel SO. Toxoplasma gondii RAD51 recombinase is required to overcome DNA replication stress and its inactivation leads to bradyzoite differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.08.647840. [PMID: 40291705 PMCID: PMC12027067 DOI: 10.1101/2025.04.08.647840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Toxoplasma gondii is an obligate intracellular parasite with a high replication rate that can lead to DNA replicative stress, in turn associated with the generation of DNA double-strand breaks (DSBs). Cells have two main pathways to repair DSBs: non-homologous end joining and homologous recombination repair (NHEJ and HRR respectively). RAD51 is the key recombinase in the HRR pathway. In this work, we achieved endogenous tagging of the RAD51 gene using the Auxin Inducible Degron (AID) system, to generate the clonal line RH RAD51 HA-AID . Here we demonstrate that RAD51 is expressed in replicative tachyzoites and establishes damage foci. Auxin-induced knock-down (KD) affects the correct replication of tachyzoites which show loss of synchronization. The use of the RAD51 inhibitor B02 also affects parasite growth, with an IC 50 of 4.8 µM. B02 produced alterations in tachyzoite replication and arrest in the S phase of the cell cycle. Additionally, B02 induced tachyzoite to bradyzoite differentiation showing small cyst-like structures. In conclusion, the HRR pathway is necessary for maintaining proper tachyzoite replication under normal growth conditions, supporting that replicative stress occurs during the cell cycle. Our findings also suggest that DNA replication stress can induce bradyzoite differentiation.
Collapse
|
3
|
Lu JM, Jin GN, Xin Y, Ma JW, Shen XY, Quan YZ, Liu YM, Zhou JY, Wang BZ, Li YB, Xu X, Piao LX. Lactoferrin-modified nanoemulsions enhance brain-targeting and therapeutic efficacy of arctigenin against Toxoplasma gondii-induced neuronal injury. Int J Parasitol Drugs Drug Resist 2025; 27:100575. [PMID: 39729771 PMCID: PMC11733198 DOI: 10.1016/j.ijpddr.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Toxoplasma gondii, a neurotropic protozoan parasite, affects the central nervous system and causes various neurological disorders. Previous studies have demonstrated that Arctigenin (AG) exhibits anti-T. gondii activity and reduces depression-like behaviors induced by T. gondii infection. This study aimed to enhance AG's brain-targeting and therapeutic efficacy by developing lactoferrin-modified nanoemulsions loaded with AG (Lf-AG-NEs). Lf-modified nanoemulsions were prepared and assessed using in vivo and in vitro infection models with the T. gondii RH strain, and a co-culture system of BV2 microglia and primary neuron cells. The effects of Lf-AG-NEs on T. gondii-induced neuronal injury were examined, and potential molecular mechanisms were elucidated through real-time quantitative PCR, western blotting, immunofluorescence, flow cytometry, immunohistochemistry, and Nissl staining. In vitro assessments showed significant increases in cellular uptake and blood-brain barrier penetration by Lf-AG-NEs. These nanoemulsions notably inhibited T. gondii proliferation in brain tissue and BV2 cells, surpassing the effects of free AG or AG-NEs alone. Additionally, Lf-AG-NEs substantially alleviated neuropathological changes and reduced microglial activation and neuroinflammation by downregulating the TLR4/NF-κB and TNFR1/NF-κB signaling pathways. Co-culturing BV2 cells with primary cortical neurons indicated that Lf-AG-NEs, similarly to CLI-095 and R7050, attenuated T. gondii-induced microglial activation and subsequent neuronal injury. In conclusion, the successfully prepared Lf-AG-NEs not only enhanced the anti-T. gondii effect but also strengthened the protective impact against neuronal injury induced by T. gondii, through the modulation of microglial signaling pathways.
Collapse
Affiliation(s)
- Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan Xin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Wen Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yi-Ming Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jin-Yi Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Bing-Zhe Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Ying-Biao Li
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
4
|
Calixto A, Moen KE, Moreno SNJ. The contribution of the Golgi and the endoplasmic reticulum to calcium and pH homeostasis in Toxoplasma gondii. J Biol Chem 2025; 301:108372. [PMID: 40043955 DOI: 10.1016/j.jbc.2025.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
The cytosolic Ca2+ concentration of all cells is highly regulated demanding the coordinated operation of Ca2+ pumps, channels, exchangers, and binding proteins. In the protozoan parasite Toxoplasma gondii, calcium homeostasis, essential for signaling, governs critical virulence traits. However, the identity of most molecular players involved in signaling and homeostasis in T. gondii is unknown or poorly characterized. In this work, we studied a putative calcium proton exchanger, TgGT1_319550 (TgCAXL1), which belongs to a family of Ca2+/proton exchangers that localize to the Golgi apparatus. We localized TgCAXL1 to the Golgi and the endoplasmic reticulum (ER) of T. gondii and validated its role as a Ca2+/proton exchanger by yeast complementation. Characterization of a knock-out mutant for TgCAXL1 (Δcaxl) underscored the role of TgCAXL1 in Ca2+ storage by the ER and acidic stores, most likely the Golgi. Most interestingly, TgCAXL1 function is linked to the Ca2+ pumping activity of the Sarcoendoplasmic Reticulum Ca2+-ATPase (TgSERCA). TgCAXL1 functions in cytosolic pH regulation and recovery from acidic stress. Our data showed for the first time the role of the Golgi in storing and modulating Ca2+ signaling in T. gondii and the potential link between pH regulation and TgSERCA activity, which is essential for filling intracellular stores with Ca2+.
Collapse
Affiliation(s)
- Abigail Calixto
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Katherine E Moen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
5
|
Gou Y, Vallejo LA, Podadera A, Ng K, Ananvoranich S. Involvement of Toxoplasma gondii natural antisense transcripts in cellular stress responses. Exp Parasitol 2025; 271:108931. [PMID: 40086715 DOI: 10.1016/j.exppara.2025.108931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/10/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Natural antisense transcripts (NATs), as a major subset of long non-coding RNAs (lncRNAs), are derived from every chromosome of Toxoplasma gondii, with the highest occurrence from ChrIa (18.4 NATs per Mbp) and the lowest from ChrIX (3.9 NATs per Mbp). GO analysis indicates that genes, which mRNA-NAT pairs are derived, are important for house-keeping and essential activities of T. gondii. Approximately half of protein encoding genes, whose loci also generate NATs, are involved in biological processes of metabolic processes and protein biochemistry and have canonical catalytic or binding activities. Using NAT of ubiquitin-like protease 1 (TgUlp1-NAT) as our study model, we showed that TgUlp1-NAT expression is part of cellular stress responses. Using a nanoluc reporter system, we confirmed that electroporation or membrane destabilization significantly induced TgUlp1-NAT expression. When the extracellular parasites were exposed to media containing high potassium, high sodium or altered osmotic pressure, TgUlp1-NAT expression was significantly down-regulated. In addition, two TgUlp1-NAT variants were detected in stressed T. gondii. One is an intron-retained variant, and the other is a spliced variant, referred to as TgUlp1-NATa and TgUlp1-NATb, respectively. The intronic sequence is 368 nts long, where regulatory small ncRNAs were derived. Taken together, we have confirmed that NAT expressions and functions are involved in cellular adaptation that allows T. gondii recover from stresses.
Collapse
Affiliation(s)
- Yue Gou
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada, N9B3P4.
| | - Laura Agudelo Vallejo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada, N9B3P4.
| | - Ana Podadera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada, N9B3P4.
| | - Kenneth Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada, N9B3P4.
| | - Sirinart Ananvoranich
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada, N9B3P4.
| |
Collapse
|
6
|
Wu XJ, Wang M, Zhang NZ, Li TT, Gao J, Sun LX, Zhu XQ, Wang JL. AP2XII-9 is essential for parasite growth and suppresses bradyzoite differentiation in Toxoplasma gondii. FASEB J 2025; 39:e70476. [PMID: 40106192 DOI: 10.1096/fj.202402593rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Cyst formation, resulting from the differentiation of rapidly replicating tachyzoites into slowly growing bradyzoites, is the primary cause of chronic toxoplasmosis. Although the mechanisms governing bradyzoite differentiation have been partially elucidated, they remain incompletely understood. In this study, we show that the transcription factor AP2XII-9 is localized in the nucleus and exhibits periodic expression during the tachyzoite stage, with peak expression observed during the synthesis and mitosis phases. Conditional knockdown of AP2XII-9 in both the type I RH strain and type II cyst-forming Pru strain revealed that AP2XII-9 plays a critical role in the lytic cycle by regulating the formation of the inner membrane complex, proper apicoplast inheritance, and normal cell division, underscoring its essential role in T. gondii growth. Furthermore, depletion of AP2XII-9 induced bradyzoite differentiation even in the absence of alkaline stress. Transcriptomic analysis revealed that the deletion of AP2XII-9 resulted in the downregulation of tachyzoite growth-related genes and upregulation of a series of bradyzoite-specific genes. Taken together, these findings indicate that AP2XII-9 is essential for maintaining the rapid and normal replication of tachyzoites while actively repressing bradyzoite differentiation, reflecting the complexity of the mechanisms underlying bradyzoite differentiation.
Collapse
Affiliation(s)
- Xiao-Jing Wu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Nian-Zhang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| |
Collapse
|
7
|
Sheng K, Song K, Yang Y, Wu H, Du Z, Chen X, Yang Y, Ma G, Du A. Phosphatase UBLCP1 is required for the growth, virulence and mitochondrial integrity of Toxoplasma gondii. Parasit Vectors 2025; 18:122. [PMID: 40156024 PMCID: PMC11951701 DOI: 10.1186/s13071-025-06766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND The mitochondrion is proposed as an ideal target organelle for the control of apicomplexan parasites, whose integrity depends on well-controlled protein import, folding, and turnover. The ubiquitin-like domain-containing C-terminal domain phosphatase 1 (UBLCP1) was found to be associated with the mitochondrial integrity in Toxoplasma gondii. However, little is known about the roles and mechanisms of UBLCP1 in this apicomplexan parasite. METHODS The subcellular localization of UBLCP1 in the tachyzoites of T. gondii was determined by an indirect immunofluorescence assay. The roles of UBLCP1 in the growth, cell cycle, and division of T. gondii were assessed by knocking out this molecule in the tachyzoites. Comparative phosphoproteomics between the UBLCP1-deficient and wild-type tachyzoites were performed to understand the roles of UBLCP1 in T. gondii. The virulence of UBLCP1-deficient tachyzoites of T. gondii was tested in mice. RESULTS UBLCP1 is expressed in the nucleus and cytoplasm of T. gondii tachyzoites. Tachyzoites lacking UBLCP1 exhibit collapsed mitochondrion, decreased mitochondrial membrane potential, and compromised growth and proliferation in vitro. Proteins involved in protein turnover and intracellular trafficking have been found differentially phosphorylated in the UBLCP1-deficient tachyzoites compared with the control. Deletion of UBLCP1 also shows that this phosphatase is essential for the propagation and virulence of T. gondii tachyzoites. Mice immunized with UBLCP1-deficient T. gondii tachyzoites survived challenges with the virulent PRU or VEG strain. CONCLUSIONS UBLCP1 is required for the mitochondrial integrity and essential in the lytic cycle (e.g., host cell invasion and parasite replication) in vitro and the pathogenicity of this parasite in vivo. UBLCP1 is a candidate target for a vaccine or a drug for toxoplasmosis in animals.
Collapse
Affiliation(s)
- Kaiyin Sheng
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, 312500, China
| | - Kaiyue Song
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yimin Yang
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Haiyan Wu
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhendong Du
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xueqiu Chen
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Yang
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Ma
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, 312500, China.
| | - Aifang Du
- College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Deng Y, Yu YD, Song C, Xu GY, Xu Y, Ye CJ. Design, Synthesis, and Structure-Activity Relationship of 2-(Piperazin-1-yl)quinazolin-4(3 H)-one Derivatives as Active Agents against Toxoplasma gondii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6215-6230. [PMID: 40008850 DOI: 10.1021/acs.jafc.4c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A novel series of quinazolin-4(3H)-one derivatives were synthesized using a hybridization strategy that combined the quinazolin-4(3H)-one scaffold, the diarylether fragment, and the piperazine ring. The in vitro activity evaluation of these compounds against Toxoplasma gondii demonstrated that most of this series of compounds showed moderate to good effectiveness, with IC50 values ranging from 5.94 to 102.2 μM. Among the synthesized derivatives, compounds 11 and 18 emerged as the most potent inhibitors, significantly reducing the replication rate of T. gondii with IC50 values of 6.33 and 5.94 μM, as well as demonstrated low cytotoxicity with CC50 values of 285 and 59.2 μM, respectively. The structure-activity relationship investigation indicates that the substituent at the N-3 position of the quinazolin-4(3H)-one is important for anti-T. gondii activity while the replacements at the phenyl moiety of the quinazolin-4(3H)-one and at the diarylether fragment cannot improve activity. The invasion and proliferation assay demonstrated that compound 11 could inhibit both parasite invasion and replication ability. Further investigation of the in vitro efficacy revealed irreversible action of compound 11 against T. gondii. In vivo investigations conducted within a murine model of acute infection revealed that compounds 11 and 18 exhibited a remarkable capacity to significantly diminish the parasitic load in comparison to the control group while also extending the survival duration of the subjects. These results underscore the potential of compound 11 as a candidate for further exploration in the development of antitoxoplasmosis therapies.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Yuan-Di Yu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Chao Song
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Guo-Yang Xu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Yue Xu
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Chang-Ju Ye
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| |
Collapse
|
9
|
Claywell JE, Fu Y, Sibley LD. Phospho-relay feedback loops control egress vs. intracellular development in Toxoplasma gondii. Cell Rep 2025; 44:115260. [PMID: 39903669 PMCID: PMC11922314 DOI: 10.1016/j.celrep.2025.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
The intracellular parasite Toxoplasma gondii alternates between a motile invasive and a quiescent intracellular replicative form, yet how these transitions are regulated is unknown. A positive feedback loop involving protein kinase G (PKG) and calcium-dependent PKs (CDPKs) controls motility, invasion, and egress by Toxoplasma gondii, while PKA isoform c1 (PKAc1) counteracts this pathway. Shortly after invasion, PKAc1 is activated by cyclic AMP (cAMP) produced by adenylate cyclases, leading to the suppression of the PKG/CDPK pathway. PKAc1 further activates phosphodiesterase 2, which selectively consumes cAMP, thus forming a negative feedback loop, causing transient activation of PKAc1. Perturbation of cyclic GMP (cGMP) vs. calcium demonstrates that PKAc1 acts on targets between guanylate cyclase and calcium release. The combined activation of PKG/CDPKs and inhibition by PKAc1, controlled by a transient negative feedback loop, ensures that the parasite is responsive to environmental signals needed to activate motility while also ensuring periods of long-term stable intracellular growth.
Collapse
Affiliation(s)
- Ja E Claywell
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Liu Y, Cheng S, He G, He D, Wang D, Wang S, Chen L, Zhu L, Feng Y, Cui L, Cao Y, Zhu X. An inner membrane complex protein IMC1g in Plasmodium berghei is involved in asexual stage schizogony and parasite transmission. mBio 2025; 16:e0265224. [PMID: 39576115 PMCID: PMC11708024 DOI: 10.1128/mbio.02652-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/23/2024] [Indexed: 01/11/2025] Open
Abstract
The inner membrane complex (IMC), a double-membrane organelle underneath the plasma membrane in apicomplexan parasites, plays a significant role in motility and invasion and confers shape to the cell. We characterized the function of PbIMC1g, a component of the IMC1 family member in Plasmodium berghei. PbIMC1g is recruited to the IMC in late schizonts, activated gametocytes, and ookinetes. Pairwise yeast two-hybrid assays demonstrate that PbIMC1g interacts with IMC1c, a component of the PHIL1 complex, and the core sub-repeat motif "EKI(V)V(I)EVP" in PbIMC1g is essential for this interaction. Localization of PbIMC1g to the IMC was dependent on its IMCp domain, while its C-terminus and palmitoylation sites were required for the full efficiency of proper IMC targeting. PbIMC1g is required for asexual stage development, and its conditional knockdown resulted in a defect in schizogony. Additionally, PbIMC1g was also important for male gametogenesis and ookinete development. As an IMC component that assists in anchoring the glideosome to the subpellicular network, PbIMC1g was also involved in ookinete motility and mosquito midgut invasion. IMC1g from the human parasite Plasmodium vivax could functionally replace PbIMC1g in P. berghei, confirming the evolutionary conservation of IMC1g proteins in Plasmodium spp. Together, this work reveals an essential role of IMC1g in the parasite life cycle and suggests that IMC1 family members likely contribute to parasite gliding and invasion. IMPORTANCE The malaria parasite's inner membrane complex is critical to maintain its structural integrity and motility. Here, we identified the function of the IMC1g protein, a member of the IMC1 family, in invasive and proliferative stages of P. berghei. We found that the IMCp domain of PbIMC1g is critical for proper IMC targeting, and PbIMC1g interacts with PbIMC1c. Conditional knockdown of PbIMC1g expression affects schizogony, gametogenesis, and ookinete conversion. PbIMC1g interacts with IMC1c to firmly anchor the glideosome to the subpellicular network. Additionally, we confirmed that IMC1g is functionally conserved in Plasmodium spp. These data reveal the function of IMC1g protein in anchoring the glideosome, providing further insight into the mechanism of the glideosome function.
Collapse
Affiliation(s)
- Yinjie Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shitong Cheng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gang He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dawei He
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Duo Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Sicong Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lumeng Chen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liying Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yonghui Feng
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaotong Zhu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Zhou JY, Lu YN, Shen XY, Quan YZ, Lu JM, Jin GN, Liu YM, Zhang SH, Xu GH, Xu X, Piao LX. Coixol mitigates Toxoplasma gondii infection-induced liver injury by inhibiting the Toxoplasma gondii HSP70/TLR4/NF-κB signaling pathway in hepatic macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118694. [PMID: 39147001 DOI: 10.1016/j.jep.2024.118694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coix seed, the dry mature seed kernel of the gramineous plant coix (Coix lacryma-jobi L. var. ma-yuen Stapf), is widely consumed as a traditional Chinese medicine and functional food in China and South Korea. We have previously demonstrated the protective effect of coixol, a polyphenolic compound extracted from coix, against Toxoplasma gondii (T. gondii) infection-induced lung injury. However, the protective effect of coixol on hepatic injury induced by T. gondii infection have not yet been elucidated. AIM OF THE STUDY This study explores the impact of coixol on T. gondii infection-induced liver injury and elucidates the underlying molecular mechanisms. MATERIALS AND METHODS Female BALB/c mice and Kupffer cells (KCs) were employed to establish an acute T. gondii infection model in vivo and an inflammation model in vitro. The study examined coixol's influence on the T. gondii-derived heat shock protein 70 (T.g.HSP70)/toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway in T. gondii-infected liver macrophages. Furthermore, a co-culture system of KCs and NCTC-1469 hepatocytes was developed to observe the impact of liver macrophages infected with T. gondii on hepatocyte injury. RESULTS Coixol notably inhibited the proliferation of tachyzoites and the expression of T.g.HSP70 in mouse liver and KCs, and attenuated pathological liver injury. Moreover, coixol decreased the production of high mobility group box 1, tumor necrosis factor-α, and inducible nitric oxide synthase by suppressing the TLR4/NF-κB signaling pathway in vitro and in vivo. Coixol also mitigated KCs-mediated hepatocyte injury. CONCLUSIONS Coixol protects against liver injury caused by T. gondii infection, potentially by diminishing hepatocyte injury through the suppression of the inflammatory cascade mediated by the T.g.HSP70/TLR4/NF-κB signaling pathway in KCs. These findings offer new perspectives for developing coixol as a lead compound for anti-T. gondii drugs.
Collapse
Affiliation(s)
- Jin-Yi Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Xin-Yu Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yi-Ming Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Si-Hui Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
12
|
Li ZH, Asady B, Chang L, Triana MAH, Li C, Coppens I, Moreno SN. Calcium transfer from the ER to other organelles for optimal signaling in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608087. [PMID: 39185237 PMCID: PMC11343207 DOI: 10.1101/2024.08.15.608087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Ca2+ signaling in cells begins with the opening of Ca2+ channels in either the plasma membrane (PM) or the endoplasmic reticulum (ER) and results in a dramatic increase in the physiologically low (<100 nM) cytosolic Ca2+ level. The temporal and spatial Ca2+ levels are well regulated to enable precise and specific activation of critical biological processes. Ca2+ signaling regulates pathogenic features of apicomplexan parasites like Toxoplasma gondii which infects approximately one-third of the world's population. T. gondii relies on Ca2+ signals to stimulate traits of its infection cycle and several Ca2+ signaling elements play essential roles in its parasitic cycle. Active egress, an essential step for the infection cycle of T. gondii is preceded by a large increase in cytosolic Ca2+ most likely by release from intracellular stores. Intracellular parasites take up Ca2+ from the host cell during host Ca2+ signaling events to replenish intracellular stores. In this work, we investigated the mechanism by which intracellular stores are replenished with Ca2+ and demonstrated a central role for the SERCA-Ca2+-ATPase in keeping not only the ER filled with Ca2+ but also other stores. We show mitochondrial Ca2+ uptake, by transfer of Ca2+ from the ER likely through membrane contact sites. We propose a central role for the ER in sequestering and redistributing calcium to other intracellular organelles following influx at the PM.
Collapse
Affiliation(s)
- Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
| | - Beejan Asady
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, MD 21205
| | - Le Chang
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
| | - Miryam Andrea Hortua Triana
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
| | - Catherine Li
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, MD 21205
| | - Silvia N.J. Moreno
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
13
|
Luz LC, Ribeiro M, Teixeira SC, de Souza G, Paschoalino M, Sousa DP, Rosini AM, dos Santos NCL, de Oliveira RM, de Lima Júnior JP, Damasceno IS, Almeida MPO, Barbosa MC, Alves CMDOS, da Silva CV, Barbosa BF, Ferro EAV. Galectin-3 plays a key role in controlling infection by Toxoplasma gondii in human trophoblast cells and human villous explants. Front Cell Infect Microbiol 2024; 14:1459810. [PMID: 39654979 PMCID: PMC11625798 DOI: 10.3389/fcimb.2024.1459810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin expressed in cells of the placental microenvironment. This lectin is involved in various biological processes, such as modulation of the immune system and control of parasitic illness. Toxoplasma gondii infection can lead to congenital transmission and cause miscarriages, prematurity and fetal anomalies. However, little is known about the role of Gal-3 in T. gondii infection in the placental microenvironment. This study aimed to unravel the underlying mechanisms of Gal-3 during T. gondii infection. For this purpose, we promoted the knockdown of Gal-3 expression by using RNA interference (RNAi) in BeWo cells or by using a synthetic inhibitor (GB1107) in human villous explants. We showed that the decreased Gal-3 expression in BeWo cells and human villous explants increases the invasion and proliferation of T. gondii probably by downregulating MIF and IL6 levels, highlighting thus the role of this lectin in modulating the immune response. Collectively, our study reveals Gal-3 as a promising target protein during congenital toxoplasmosis.
Collapse
Affiliation(s)
- Luana Carvalho Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Mayara Ribeiro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina Paschoalino
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Daniel Pereira Sousa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Natalia Carine Lima dos Santos
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rafael Martins de Oliveira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Joed Pires de Lima Júnior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Izadora Santos Damasceno
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Matheus Carvalho Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Claudio Vieira da Silva
- Trypanosomatid Laboratory, Department of Immunology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
14
|
Ali DH, Anandakrishnan R, Carruthers VB, Gaji RY. Kinase function of TgTKL1 is essential for its role in Toxoplasma propagation and pathogenesis. mSphere 2024; 9:e0077924. [PMID: 39475314 PMCID: PMC11580469 DOI: 10.1128/msphere.00779-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 11/22/2024] Open
Abstract
The Tyrosine Kinase-Like (TKL) family of proteins are a set of poorly studied kinases that have garnered attention in recent years for their role in Toxoplasma biology. The Toxoplasma genome contains eight TKL kinases, of which six have been predicted to be important for parasite propagation. We have previously shown that TgTKL1 is a nuclear kinase that is critical for the parasite lytic cycle and is essential for acute virulence in the animal model. However, the contribution of the kinase domain to the functioning of TgTKL1 was not known. Hence to determine the significance of its catalytic function, we first validated that TgTKL1 is a true kinase using purified recombinant protein. Furthermore, we successfully generated a TgTKL1 kinase mutant strain of Toxoplasma via CRISPR-Cas9 gene editing. Our studies revealed that the kinase mutant of TgTKL1 displays defects in parasite growth and host-cell invasion. Additionally, loss of kinase function alters the transcriptomic profile of the parasite, including downregulation of the invasion-related gene, TgSUB1. Importantly, this dysregulation of TgSUB1 expression leads to defects in post-exocytosis processing of micronemal proteins, an event critical for normal host-cell invasion. Furthermore, the TgTKL1 kinase mutant is completely avirulent in the mouse model of acute toxoplasmosis. Since the loss of kinase function leads to phenotypic manifestations seen previously with TgTKL1 knockout parasites, we conclude that kinase activity is important for TgTKL1 function in Toxoplasma propagation and virulence. IMPORTANCE Toxoplasma gondii is a protozoan parasite that can cause life-threatening disease in humans. Hence, identifying key factors required for parasite growth and pathogenesis is important to develop novel therapeutics. We have previously shown that a member of the TKL protein kinase family, TgTKL1, is a plant-like kinase that is required for effective Toxoplasma growth in vitro and essential for virulence in vivo. Herein, we show that the TgTKL1 is, indeed, a bona fide kinase, and loss of its kinase function in the Toxoplasma leads to similar defects seen in parasites with complete loss of TgTKL1. More specifically, the TgTKL1 kinase mutant exhibits defects in parasite growth, host-cell invasion, gene expression profile, and virulence in the animal model. Together, these findings suggest that TgTKL1 is a true kinase, and loss of its kinase activity leads to disruption of TgTKL1 function in Toxoplasma.
Collapse
Affiliation(s)
- Dima Hajj Ali
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Ramu Anandakrishnan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine (VCOM), Blacksburg, Virginia, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rajshekhar Y. Gaji
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
15
|
Akins GKH, Furtado JM, Smith JR. Diseases Caused by and Behaviors Associated with Toxoplasma gondii Infection. Pathogens 2024; 13:968. [PMID: 39599521 PMCID: PMC11597819 DOI: 10.3390/pathogens13110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Toxoplasma gondii is an Apicomplexan parasite that is estimated to infect at least one-third of the global human population. T. gondii infection may be transmitted horizontally or vertically. The main risk factors for transmission to humans are related to diet, especially the consumption of undercooked meat, along with soil contact. In immunocompetent persons, the acute infection may go undetected as it typically produces minor, non-specific symptoms that are self-limited. After infection is established, recurrent retinochoroiditis is the most common clinical disease. In contrast, severe systemic or cerebral toxoplasmosis may be life-threatening for immunocompromised individuals. Furthermore, congenital toxoplasmosis acquired in utero may have devastating consequences if not recognized and promptly treated. A growing body of research has identified associations between latent T. gondii infection, and personality traits and risk-taking behaviors. Other studies have documented associations between latent infection and psychiatric conditions that include schizophrenia and bipolar affective disorder. With no current treatment regimens being curative of T. gondii infection, effective prevention measures at both the public health and individual levels are vitally important.
Collapse
Affiliation(s)
- Ginger K. H. Akins
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
| | - João M. Furtado
- Division of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil;
| | - Justine R. Smith
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|
16
|
Lee HJ, Ham DW, Seo SH, Cha GH, Shin EH. Probiotic-induced changes in intestinal microbiome inhibits Toxoplasma gondii infection. PARASITES, HOSTS AND DISEASES 2024; 62:408-423. [PMID: 39622653 PMCID: PMC11614487 DOI: 10.3347/phd.24068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024]
Abstract
Toxoplasma gondii primarily invades the central nervous system, causing latent infections. Cysts persist in the host for life and there is currently no effective treatment. T. gondii infects human hosts through contaminated meat, invading the intestinal tissue and leading to changes in the number and composition of the gut microbiota. Since probiotic ingestion modulates intestinal microbiota changes, we hypothesized that intestinal microbiota dysbiosis caused by T. gondii infection would be restored following probiotic supplementation. To this end, we orally infected C57BL/6 mice with 10 T. gondii cysts and administered supplemental probiotics daily. We analyzed the levels of T. gondii B1 gene DNA, indicative of T. gondii infection, in brain tissue. We investigated alterations in the gut microbiota composition and functional pathways between the probiotic and non-probiotic treatment groups via next-generation sequencing analysis of each fecal sample. The infection level in the probiotic-treated group was significantly reduced after 4 weeks (p<0.05). Probiotic supplementation notably changed the gut microbiota after 2 weeks of infection, increasing the relative abundance of Intestinimonas massiliensis and Lawsonibacter asaccharolyticus. Probiotic supplements appear to modulate the gut microbiota, activating functional pathways involved in intestinal short-chain fatty acid production and strengthening the intestinal barrier, thereby impeding T. gondii infection and subsequent proliferation. Our findings provide valuable insights into T. gondii infection control and future study directions.
Collapse
Affiliation(s)
- Hak-Jae Lee
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Do-Won Ham
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Seung-Hwan Seo
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul 03080,
Korea
| | - Guang-Ho Cha
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon 35015,
Korea
| | - Eun-Hee Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080,
Korea
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul 03080,
Korea
- Seoul National University Bundang Hospital, Seongnam 13620,
Korea
| |
Collapse
|
17
|
Araujo-Ruiz K, Mondragón-Flores R. H +-translocating pyrophosphatases in protozoan parasites. Parasitol Res 2024; 123:353. [PMID: 39419910 PMCID: PMC11486809 DOI: 10.1007/s00436-024-08362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Integral membrane pyrophosphatases (mPPases) hydrolyze pyrophosphate. This enzymatic mechanism is coupled with the pumping of H + and/or Na + across membranes, which can be either K + -dependent or K + -independent. Inorganic proton-translocating pyrophosphatases (H + -PPases) can transport protons across cell membranes and are reported in various organisms such as plants, bacteria, and protozoan parasites. The evolutionary implications of these enzymes are of great interest for proposing approaches related to the treatment of parasitic of phytopathogenic diseases. This work presents a literature review on pyrophosphate, pyrophosphatases, their inhibitors and emphasizes H + -PPases found in various medically significant protozoan parasites such as Toxoplasma gondii, the causative agent of toxoplasmosis, and Plasmodium falciparum, the causative agent of malaria, as well as protozoan species that primarily affect animals, such as Eimeria maxima and Besnoitia besnoiti.
Collapse
Affiliation(s)
- Karina Araujo-Ruiz
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 Col. Zacatenco, Ciudad de México, 07360, México
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 Col. Zacatenco, Ciudad de México, 07360, México.
| |
Collapse
|
18
|
Shi Y, Li X, Xue Y, Hu D, Song X. Cell cycle-regulated transcription factor AP2XII-9 is a key activator for asexual division and apicoplast inheritance in Toxoplasma gondii tachyzoite. mBio 2024; 15:e0133624. [PMID: 39207100 PMCID: PMC11481911 DOI: 10.1128/mbio.01336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Toxoplasma gondii is an intracellular parasitic protozoan that poses a significant risk to the fetus carried by a pregnant woman or to immunocompromised individuals. T. gondii tachyzoites duplicate rapidly in host cells during acute infection through endodyogeny. This highly regulated division process is accompanied by complex gene regulation networks. TgAP2XII-9 is a cell cycle-regulated transcription factor, but its specific role in the parasite cell cycle is not fully understood. In this study, we demonstrate that TgAP2XII-9 is identified as a nuclear transcription factor and is dominantly expressed during the S/M phase of the tachyzoite cell cycle. Cleavage Under Targets and Tagmentation (CUT&Tag) results indicate that TgAP2XII-9 targets key genes for the moving junction machinery (RON2, 4, and 8) and daughter cell inner membrane complex (IMC). TgAP2XII-9 deficiency resulted in a significant downregulation of rhoptry proteins and rhoptry neck proteins, leading to a severe defect in the invasion and egress efficiency of tachyzoites. Additionally, the loss of TgAP2XII-9 correlated with a substantial downregulation of multiple IMC and apicoplast proteins, leading to disorders of daughter bud formation and apicoplast inheritance and further contributing to the inability of cell division and intracellular proliferation. Our study reveals that TgAP2XII-9 acts as a critical S/M-phase regulator that orchestrates the endodyogeny and apicoplast division in T. gondii tachyzoites. This study contributes to a broader understanding of the complexity of the parasite's cell cycle and its key regulators. IMPORTANCE The intracellular apicoplast parasite Toxoplasma gondii poses a great threat to the public health. The acute infection of T. gondii tachyzoites relies on efficient invasion by forming a moving junction structure and also fast replication by highly regulated endodyogeny. This study shows that an ApiAP2 transcription factor, TgAP2XII-9, acts as an activator for the S/M-phase gene expression, including genes related to daughter buds and moving junction formation. Loss of TgAP2XII-9 results in significant growth defects and disorders in endodyogeny and apicoplast inheritance of the parasites. Our results provide valuable insights into the transcriptional regulation of the parasite cell cycle and invading machinery in T. gondii.
Collapse
Affiliation(s)
- Yuehong Shi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xuan Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yingying Xue
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dandan Hu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| | - Xingju Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
| |
Collapse
|
19
|
Hryckowian ND, Ramírez-Flores CJ, Zinda C, Park SC, Kelty MT, Knoll LJ. Host cell-specific metabolism of linoleic acid controls Toxoplasma gondii growth in cell culture. Infect Immun 2024; 92:e0029924. [PMID: 39194219 PMCID: PMC11475615 DOI: 10.1128/iai.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii can infect and replicate in any warm-blooded cell tested to date, but much of our knowledge about T. gondii cell biology comes from just one host cell type: human foreskin fibroblasts (HFFs). To expand our knowledge of host-parasite lipid interactions, we studied T. gondii in intestinal epithelial cells, the first site of host-parasite contact following oral infection and the exclusive site of parasite sexual development in feline hosts. We found that highly metabolic Caco-2 cells are permissive to T. gondii growth even when treated with high levels of linoleic acid (LA), a polyunsaturated fatty acid (PUFA) that kills parasites in HFFs. Caco-2 cells appear to sequester LA away from the parasite, preventing membrane disruptions and lipotoxicity that characterize LA-induced parasite death in HFFs. Our work is an important step toward understanding host-parasite interactions in feline intestinal epithelial cells, an understudied but important cell type in the T. gondii life cycle.
Collapse
Affiliation(s)
- Nicole D. Hryckowian
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carlos J. Ramírez-Flores
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caitlin Zinda
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sung Chul Park
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Martin T. Kelty
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Blandon KOE, Travençolo BAN, Martínez AFF, Rojas YDP, Martins MC, Fontoura KA, Mineo TWP, Beletti ME. The quality and characteristics of bovine sperm are compromised by Toxoplasma gondii antigens, impacting in in vitro bull fertility. Vet Parasitol 2024; 331:110297. [PMID: 39236398 DOI: 10.1016/j.vetpar.2024.110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Studies in various species have demonstrated different results on the effects of T. gondii infection on sperm quality. It has also been demonstrated that in some stages of the disease, there is elimination of cellular debris or even the intact parasite in the semen. The present work aimed to evaluate the in vitro effects of the presence of soluble T. gondii antigens in bovine semen on sperm integrity. The spermatozoa were treated with T. gondii antigens in double serial dilutions classified as high, medium and low doses (8, 4, 2 µg/ml) in "TALP-Sperm" and "TALP-Fert" media. The results showed that T. gondii antigens affect sperm motility and mitochondrial activity, and cause changes in sperm chromatin integrity, as well as damage to the sperm membrane and acrosome. Finally, spermatozoa treated with T. gondii antigens were evaluated in the in vitro production of embryos (IVEP). The use of semen contaminated with antigens in IVEP routines did not lead to a decrease in the fertilization of oocytes, as sperm undergo selection before in vitro fertilization, which eliminates the most altered sperm. However, early embryonic development was affected, probably by structural changes that were not eliminated in the selection process. The results demonstrated that the presence of soluble T. gondii antigens in bovine semen alters sperm integrity and vital characteristics for the fertilization process and embryonic development and therefore causes fertility problems in males.
Collapse
Affiliation(s)
- Kelvin Orlando Espinoza Blandon
- Biology of Reproduction Laboratory, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | - Yulizabeth Daniela Pinto Rojas
- Biology of Reproduction Laboratory, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Muller Carrara Martins
- Biology of Reproduction Laboratory, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Kamila Alves Fontoura
- Biology of Reproduction Laboratory, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Marcelo Emílio Beletti
- Biology of Reproduction Laboratory, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
21
|
Krueger A, Horjales S, Yang C, Blakely WJ, Francia ME, Arrizabalaga G. The essential kinase TgGSK regulates centrosome division and endodyogeny in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615374. [PMID: 39386585 PMCID: PMC11463552 DOI: 10.1101/2024.09.27.615374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Intracellular replication is crucial for the success of apicomplexan parasites, including Toxoplasma gondii. Therefore, essential players in parasite replication present potential targets for drug development. In this study, we have characterized TgGSK, a glycogen synthase kinase homolog that plays an important role in Toxoplasma endodyogeny. We have shown that TgGSK has a dynamic localization that is concurrent with the cell cycle. In non-dividing parasites, this kinase is highly concentrated in the nucleus. However, during division, TgGSK displays a cytosolic localization, with concentration foci at the centrosomes, a key organelle involved in parasite division, and the basal end. Conditional knockdown of TgGSK determined that it is essential for the completion of the lytic cycle and proper parasite division. Parasites lacking endogenous protein levels of TgGSK exhibited defects in division synchronicity and the segregation of the nucleus and apicoplast into forming daughter cells. These phenotypes are associated with defects in centrosome duplication and fission. Global phosphoproteomic analysis determined TgGSK-dependent phosphorylation of RNA-processing, basal end, and centrosome proteins. Consistent with the putative regulation of RNA-processing proteins, global transcriptomic analysis suggests that TgGSK is needed for proper splicing. Finally, we show that TgGSK interacts with GCN5b, a well-characterized acetyltransferase with roles in transcriptional control. Conversely, GCN5b chemical inhibition results in specific degradation of TgGSK. Thus, these studies reveal the involvement of TgGSK in various crucial processes, including endodyogeny and splicing, and identify acetylation as a possible mechanism by which this essential kinase is regulated.
Collapse
Affiliation(s)
- Amanda Krueger
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Sofia Horjales
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - William J. Blakely
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Maria E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo
| |
Collapse
|
22
|
Tagoe DNA, Ribeiro E Silva A, Drozda AA, Coppens I, Coleman BI, Gubbels MJ. Toxoplasma FER1 is a versatile and dynamic mediator of differential microneme trafficking and microneme exocytosis. Sci Rep 2024; 14:21819. [PMID: 39294204 PMCID: PMC11410953 DOI: 10.1038/s41598-024-72628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Toxoplasma gondii is a polarized cell concentrating several secretory organelles at the apical pole. The secretory micronemes come in two sub-populations differentiated by dependence on Rab5A/C in their biogenesis. Calcium-dependent exocytosis of micronemes occurs at the very apical tip and is critical for parasite egress from its host cell, adhesion and invasion of the next cell. Ferlins represent a protein family with roles in exocytosis containing multiple Ca2+-sensing C2 domains. We determined that T. gondii's ferlin 1 (FER1) localized dynamically to the parasite's secretory pathway. FER1 function was dissected by dominant negative overexpression strategies. We demonstrated that FER1 traffics microneme organelles along the following trajectories: (1) Along the cortex to the apical end; (2) To the apical tip for fusion with the plasma membrane; (3) Differential microneme sub-population traffic, and that FER1 could putatively be responsible for microneme protein trafficking. (4) From the trans-Golgi-endosomal network to the subpellicular cortex; (5) Retrograde transport allowing microneme recycling from mother to daughter. Finally, FER1 overexpression triggers a microneme exocytosis burst, supporting the notion that the radially organized micronemes at the apical tip comprise a readily-releasable microneme pool. In summary, FER1 is pivotal for dynamic microneme trafficking, acts differently on the two microneme subpopulations, and acts on the plasma membrane fusion step during microneme exocytosis.
Collapse
Affiliation(s)
- Daniel N A Tagoe
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
- CANbridge Pharmaceuticals Inc., Burlington, MA, USA
| | | | - Allison A Drozda
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
- KromaTiD, Longmont, CO, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Bradley I Coleman
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
- Flagship Pioneering, Cambridge, MA, USA
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
23
|
Li J, Kang Y, Wu ZX, Yang SF, Tian YY, Zhu XQ, Zheng XN. Live-attenuated PruΔgra72 strain of Toxoplasma gondii induces strong protective immunity against acute and chronic toxoplasmosis in mice. Parasit Vectors 2024; 17:377. [PMID: 39237959 PMCID: PMC11378421 DOI: 10.1186/s13071-024-06461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Toxoplasma gondii is an intracellular opportunistic pathogenic protozoan that poses serious threats, particularly in immunocompromised individuals. In the absence of a robust prophylactic measure, the mitigation and management of toxoplasmosis present formidable challenges to public health. We recently found that GRA72 plays an important role in parasitophorous vacuole (PV) morphology, growth and virulence of T. gondii. However, whether gra72-deficient strain can be used as a vaccine remains unknown. METHODS We first examined the attenuated virulence of gra72 gene knockout strain (PruΔgra72) and the parasite load in organs of the infected mice. Subsequently, we evaluated the immune-protective effects of the PruΔgra72 vaccination against challenge with various types of T. gondii tachyzoites and Pru cysts. Furthermore, levels of antibodies and cytokines induced by PruΔgra72 vaccination were examined. Statistical analysis was conducted by Student's t-test or Mantel-Cox log-rank test based on data obtained from three independent experiments with GraphPad Prism 8.0. RESULTS We found that PruΔgra72 strain exhibited a significantly attenuated virulence even at the highest dose of 5 × 107 tachyzoites in Kunming mice model. The significant decrease of brain cyst burden and parasite load in the organs of the PruΔgra72-infected mice suggested its potentiality as a live-attenuated vaccine. Hence, we explored the protective immunity of PruΔgra72 vaccination against toxoplasmosis. Results showed that vaccination with 5 × 106 PruΔgra72 tachyzoites triggered a strong and sustained Th1-biased immune response, marked by significantly increased levels of anti-T. gondii IgG antibodies, and significantly higher levels of Th1 type cytokines (IL-2, IL-12 and IFN-γ) compared to that of Th2 type (IL-4 and IL-10). Vaccination with 5 × 106 PruΔgra72 tachyzoites in mice conferred long-term protection against T. gondii infection by less virulent tachyzoites (ToxoDB#9 PYS and Pru strains) and Pru cysts, provided partial protection against acute infection by high virulent Type I RH tachyzoites and significantly decreased brain cyst burden of chronically infected mice. CONCLUSIONS The avirulent PruΔgra72 induced strong protective immunity against acute and chronic T. gondii infection and is a promising candidate for developing a safe and effective live-attenuated vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Yu Kang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Ze-Xuan Wu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Shu-Feng Yang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Yu-Yang Tian
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China.
| | - Xiao-Nan Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, Shanxi Province, 030801, People's Republic of China.
| |
Collapse
|
24
|
Ali DH, Gaji RY. TKL family kinases in human apicomplexan pathogens. Mol Biochem Parasitol 2024; 259:111628. [PMID: 38719028 PMCID: PMC11182715 DOI: 10.1016/j.molbiopara.2024.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Apicomplexan parasites are the primary causative agents of many human diseases, including malaria, toxoplasmosis, and cryptosporidiosis. These opportunistic pathogens undergo complex life cycles with multiple developmental stages, wherein many key steps are regulated by phosphorylation mechanisms. The genomes of apicomplexan pathogens contain protein kinases from different groups including tyrosine kinase-like (TKL) family proteins. Although information on the role of TKL kinases in apicomplexans is quite limited, recent studies have revealed the important role of this family of proteins in apicomplexan biology. TKL kinases in these protozoan pathogens show unique organization with many novel domains thus making them attractive candidates for drug development. In this mini review, we summarize the current understanding of the role of TKL kinases in human apicomplexan pathogens' (Toxoplasma gondii, Plasmodium falciparum and Cryptosporidium parvum) biology and pathogenesis.
Collapse
Affiliation(s)
- Dima Hajj Ali
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Rajshekhar Y Gaji
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
25
|
Herneisen AL, Peters ML, Smith TA, Shortt E, Lourido S. SPARK regulates AGC kinases central to the Toxoplasma gondii asexual cycle. eLife 2024; 13:RP93877. [PMID: 39136687 PMCID: PMC11321763 DOI: 10.7554/elife.93877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Apicomplexan parasites balance proliferation, persistence, and spread in their metazoan hosts. AGC kinases, such as PKG, PKA, and the PDK1 ortholog SPARK, integrate environmental signals to toggle parasites between replicative and motile life stages. Recent studies have cataloged pathways downstream of apicomplexan PKG and PKA; however, less is known about the global integration of AGC kinase signaling cascades. Here, conditional genetics coupled to unbiased proteomics demonstrates that SPARK complexes with an elongin-like protein to regulate the stability of PKA and PKG in the model apicomplexan Toxoplasma gondii. Defects attributed to SPARK depletion develop after PKG and PKA are down-regulated. Parasites lacking SPARK differentiate into the chronic form of infection, which may arise from reduced activity of a coccidian-specific PKA ortholog. This work delineates the signaling topology of AGC kinases that together control transitions within the asexual cycle of this important family of parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Michelle L Peters
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Tyler A Smith
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Emily Shortt
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
26
|
Pinheiro AAS, Torrecilhas AC, Souza BSDF, Cruz FF, Guedes HLDM, Ramos TD, Lopes‐Pacheco M, Caruso‐Neves C, Rocco PRM. Potential of extracellular vesicles in the pathogenesis, diagnosis and therapy for parasitic diseases. J Extracell Vesicles 2024; 13:e12496. [PMID: 39113589 PMCID: PMC11306921 DOI: 10.1002/jev2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
Parasitic diseases have a significant impact on human and animal health, representing a major hazard to the public and causing economic and health damage worldwide. Extracellular vesicles (EVs) have long been recognized as diagnostic and therapeutic tools but are now also known to be implicated in the natural history of parasitic diseases and host immune response modulation. Studies have shown that EVs play a role in parasitic disease development by interacting with parasites and communicating with other types of cells. This review highlights the most recent research on EVs and their role in several aspects of parasite-host interactions in five key parasitic diseases: Chagas disease, malaria, toxoplasmosis, leishmaniasis and helminthiases. We also discuss the potential use of EVs as diagnostic tools or treatment options for these infectious diseases.
Collapse
Affiliation(s)
- Ana Acacia Sá Pinheiro
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências FarmacêuticasDiadema Campus, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)DiademaSão PauloBrazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell TherapySão Rafael HospitalSalvadorBrazil
- D'Or Institute for Research and Education (IDOR)SalvadorBrazil
| | - Fernanda Ferreira Cruz
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Paulo de Goés (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Fundação Oswaldo Cruz (FIOCRUZ)Instituto Oswaldo Cruz (IOC)Rio de JaneiroBrazil
| | - Tadeu Diniz Ramos
- Instituto de Microbiologia Paulo de Goés (IMPG)Universidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Fundação Oswaldo Cruz (FIOCRUZ)Instituto Oswaldo Cruz (IOC)Rio de JaneiroBrazil
| | - Miqueias Lopes‐Pacheco
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Deparment of PediatricsCenter for Cystic Fibrosis and Airway Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| | - Celso Caruso‐Neves
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineINCT‐REGENERARio de JaneiroBrazil
| | - Patricia R. M. Rocco
- Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
- Rio de Janeiro Innovation Network in Nanosystems for Health‐NanoSAÚDE/Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Rio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative MedicineINCT‐REGENERARio de JaneiroBrazil
| |
Collapse
|
27
|
Pasquarelli RR, Sha J, Wohlschlegel JA, Bradley PJ. BCC0 collaborates with IMC32 and IMC43 to form the Toxoplasma gondii essential daughter bud assembly complex. PLoS Pathog 2024; 20:e1012411. [PMID: 39024411 PMCID: PMC11288415 DOI: 10.1371/journal.ppat.1012411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/30/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Toxoplasma gondii divides by endodyogeny, in which two daughter buds are formed within the cytoplasm of the maternal cell using the inner membrane complex (IMC) as a scaffold. During endodyogeny, components of the IMC are synthesized and added sequentially to the nascent daughter buds in a tightly regulated manner. We previously showed that the early recruiting proteins IMC32 and IMC43 form an essential daughter bud assembly complex which lays the foundation of the daughter cell scaffold in T. gondii. In this study, we identify the essential, early recruiting IMC protein BCC0 as a third member of this complex by using IMC32 as bait in both proximity labeling and yeast two-hybrid screens. We demonstrate that BCC0's localization to daughter buds depends on the presence of both IMC32 and IMC43. Deletion analyses and functional complementation studies reveal that residues 701-877 of BCC0 are essential for both its localization and function and that residues 1-899 are sufficient for function despite minor mislocalization. Pairwise yeast two-hybrid assays additionally demonstrate that BCC0's essential domain binds to the coiled-coil region of IMC32 and that BCC0 and IMC43 do not directly interact. This data supports a model for complex assembly in which an IMC32-BCC0 subcomplex initially recruits to nascent buds via palmitoylation of IMC32 and is locked into the scaffold once bud elongation begins by IMC32 binding to IMC43. Together, this study dissects the organization and function of a complex of three early recruiting daughter proteins which are essential for the proper assembly of the IMC during endodyogeny.
Collapse
Affiliation(s)
- Rebecca R. Pasquarelli
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Jihui Sha
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - Peter J. Bradley
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
28
|
Katelas DA, Cruz-Miron R, Arroyo-Olarte RD, Brouwers JF, Srivastav RK, Gupta N. Phosphatidylserine synthase in the endoplasmic reticulum of Toxoplasma is essential for its lytic cycle in human cells. J Lipid Res 2024; 65:100535. [PMID: 38522751 PMCID: PMC11166882 DOI: 10.1016/j.jlr.2024.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
Glycerophospholipids have emerged as a significant contributor to the intracellular growth of pathogenic protist Toxoplasma gondii. Phosphatidylserine (PtdSer) is one such lipid, attributed to the locomotion and motility-dependent invasion and egress events in its acutely infectious tachyzoite stage. However, the de novo synthesis of PtdSer and the importance of the pathway in tachyzoites remain poorly understood. We show that a base-exchange-type PtdSer synthase (PSS) located in the parasite's endoplasmic reticulum produces PtdSer, which is rapidly converted to phosphatidylethanolamine (PtdEtn) by PtdSer decarboxylase (PSD) activity. The PSS-PSD pathway enables the synthesis of several lipid species, including PtdSer (16:0/18:1) and PtdEtn (18:2/20:4, 18:1/18:2 and 18:2/22:5). The PSS-depleted strain exhibited a lower abundance of the major ester-linked PtdEtn species and concurrent accrual of host-derived ether-PtdEtn species. Most phosphatidylthreonine (PtdThr) species-an exclusive natural analog of PtdSer, also made in the endoplasmic reticulum-were repressed. PtdSer species, however, remained largely unaltered, likely due to the serine-exchange reaction of PtdThr synthase in favor of PtdSer upon PSS depletion. Not least, the loss of PSS abrogated the lytic cycle of tachyzoites, impairing the cell division, motility, and egress. In a nutshell, our data demonstrate a critical role of PSS in the biogenesis of PtdSer and PtdEtn species and its physiologically essential repurposing for the asexual reproduction of a clinically relevant intracellular pathogen.
Collapse
Affiliation(s)
- Dimitrios Alexandros Katelas
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Hyderabad, India
| | - Rosalba Cruz-Miron
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Hyderabad, India
| | - Ruben D Arroyo-Olarte
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Carrera de Médico Cirujano y Unidad de Biomedicina (UBIMED), FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Jos F Brouwers
- Analysis Techniques in the Life Sciences, Centre of Expertise Perspective in Health, Avans University of Applied Sciences, Breda, The Netherlands
| | - Ratnesh Kumar Srivastav
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Hyderabad, India
| | - Nishith Gupta
- Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Hyderabad, India.
| |
Collapse
|
29
|
Nayeri T, Sarvi S, Daryani A. Effective factors in the pathogenesis of Toxoplasmagondii. Heliyon 2024; 10:e31558. [PMID: 38818168 PMCID: PMC11137575 DOI: 10.1016/j.heliyon.2024.e31558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is a cosmopolitan protozoan parasite in humans and animals. It infects about 30 % of the human population worldwide and causes potentially fatal diseases in immunocompromised hosts and neonates. For this study, five English-language databases (ScienceDirect, ProQuest, Web of Science, PubMed, and Scopus) and the internet search engine Google Scholar were searched. This review was accomplished to draw a global perspective of what is known about the pathogenesis of T. gondii and various factors affecting it. Virulence and immune responses can influence the mechanisms of parasite pathogenesis and these factors are in turn influenced by other factors. In addition to the host's genetic background, the type of Toxoplasma strain, the routes of transmission of infection, the number of passages, and different phases of parasite life affect virulence. The identification of virulence factors of the parasite could provide promising insights into the pathogenesis of this parasite. The results of this study can be an incentive to conduct more intensive research to design and develop new anti-Toxoplasma agents (drugs and vaccines) to treat or prevent this infection. In addition, further studies are needed to better understand the key agents in the pathogenesis of T. gondii.
Collapse
Affiliation(s)
- Tooran Nayeri
- Infectious and Tropical Diseases Research Center, Dezful University of Medical Sciences, Dezful, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
30
|
Herneisen AL, Peters ML, Smith TA, Shortt E, Lourido S. SPARK regulates AGC kinases central to the Toxoplasma gondii asexual cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.30.564746. [PMID: 37961644 PMCID: PMC10634940 DOI: 10.1101/2023.10.30.564746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Apicomplexan parasites balance proliferation, persistence, and spread in their metazoan hosts. AGC kinases, such as PKG, PKA, and the PDK1 ortholog SPARK, integrate environmental signals to toggle parasites between replicative and motile life stages. Recent studies have cataloged pathways downstream of apicomplexan PKG and PKA; however, less is known about the global integration of AGC kinase signaling cascades. Here, conditional genetics coupled to unbiased proteomics demonstrates that SPARK complexes with an elongin-like protein to regulate the stability of PKA and PKG in the model apicomplexan Toxoplasma gondii. Defects attributed to SPARK depletion develop after PKG and PKA are down-regulated. Parasites lacking SPARK differentiate into the chronic form of infection, which may arise from reduced activity of a coccidian-specific PKA ortholog. This work delineates the signaling topology of AGC kinases that together control transitions within the asexual cycle of this important family of parasites.
Collapse
Affiliation(s)
- Alice L. Herneisen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Michelle L. Peters
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Tyler A. Smith
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Emily Shortt
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
31
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. The Toxoplasma gondii F-Box Protein L2 Functions as a Repressor of Stage Specific Gene Expression. PLoS Pathog 2024; 20:e1012269. [PMID: 38814984 PMCID: PMC11166348 DOI: 10.1371/journal.ppat.1012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/11/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, California, United States of America
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, Georgia United States of America
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| |
Collapse
|
32
|
Quan JJ, Nikolov LA, Sha J, Wohlschlegel JA, Coppens I, Bradley PJ. Systematic characterization of all Toxoplasma gondii TBC domain-containing proteins identifies an essential regulator of Rab2 in the secretory pathway. PLoS Biol 2024; 22:e3002634. [PMID: 38713739 PMCID: PMC11101121 DOI: 10.1371/journal.pbio.3002634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 05/17/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024] Open
Abstract
Toxoplasma gondii resides in its intracellular niche by employing a series of specialized secretory organelles that play roles in invasion, host cell manipulation, and parasite replication. Rab GTPases are major regulators of the parasite's secretory traffic that function as nucleotide-dependent molecular switches to control vesicle trafficking. While many of the Rab proteins have been characterized in T. gondii, precisely how these Rabs are regulated remains poorly understood. To better understand the parasite's secretory traffic, we investigated the entire family of Tre2-Bub2-Cdc16 (TBC) domain-containing proteins, which are known to be involved in vesicle fusion and secretory protein trafficking. We first determined the localization of all 18 TBC domain-containing proteins to discrete regions of the secretory pathway or other vesicles in the parasite. Second, we use an auxin-inducible degron approach to demonstrate that the protozoan-specific TgTBC9 protein, which localizes to the endoplasmic reticulum (ER), is essential for parasite survival. Knockdown of TgTBC9 results in parasite growth arrest and affects the organization of the ER and mitochondrial morphology. TgTBC9 knockdown also results in the formation of large lipid droplets (LDs) and multi-membranous structures surrounded by ER membranes, further indicating a disruption of ER functions. We show that the conserved dual-finger active site in the TBC domain of the protein is critical for its GTPase-activating protein (GAP) function and that the Plasmodium falciparum orthologue of TgTBC9 can rescue the lethal knockdown. We additionally show by immunoprecipitation and yeast 2 hybrid analyses that TgTBC9 preferentially binds Rab2, indicating that the TBC9-Rab2 pair controls ER morphology and vesicular trafficking in the parasite. Together, these studies identify the first essential TBC protein described in any protozoan and provide new insight into intracellular vesicle trafficking in T. gondii.
Collapse
Affiliation(s)
- Justin J. Quan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Lachezar A. Nikolov
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Jihui Sha
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
33
|
Yang X, Yang J, Lyu M, Li Y, Liu A, Shen B. The α subunit of AMP-activated protein kinase is critical for the metabolic success and tachyzoite proliferation of Toxoplasma gondii. Microb Biotechnol 2024; 17:e14455. [PMID: 38635138 PMCID: PMC11025617 DOI: 10.1111/1751-7915.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/19/2024] Open
Abstract
Toxoplasma gondii is a zoonotic parasite infecting humans and nearly all warm-blooded animals. Successful parasitism in diverse hosts at various developmental stages requires the parasites to fine tune their metabolism according to environmental cues and the parasite's needs. By manipulating the β and γ subunits, we have previously shown that AMP-activated protein kinase (AMPK) has critical roles in regulating the metabolic and developmental programmes. However, the biological functions of the α catalytic subunit have not been established. T. gondii encodes a canonical AMPKα, as well as a KIN kinase whose kinase domain has high sequence similarities to those of classic AMPKα proteins. Here, we found that TgKIN is dispensable for tachyzoite growth, whereas TgAMPKα is essential. Depletion of TgAMPKα expression resulted in decreased ATP levels and reduced metabolic flux in glycolysis and the tricarboxylic acid cycle, confirming that TgAMPK is involved in metabolic regulation and energy homeostasis in the parasite. Sequential truncations at the C-terminus found an α-helix that is key for the function of TgAMPKα. The amino acid sequences of this α-helix are not conserved among various AMPKα proteins, likely because it is involved in interactions with TgAMPKβ, which only have limited sequence similarities to AMPKβ in other eukaryotes. The essential role of the less conserved C-terminus of TgAMPKα provides opportunities for parasite specific drug designs targeting TgAMPKα.
Collapse
Affiliation(s)
- Xuke Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Research Center for Infectious Diseases, Department of Pathogen Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Jichao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Mengyu Lyu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Yaqiong Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Anqi Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Hubei Hongshan LaboratoryWuhanHubei ProvinceChina
- Key Laboratory of Preventive Medicine in Hubei ProvinceHuazhong Agricultural UniversityWuhanHubei ProvinceChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenGuangdong ProvinceChina
| |
Collapse
|
34
|
Hryckowian ND, Zinda C, Park SC, Kelty MT, Knoll LJ. Host cell-specific metabolism of linoleic acid controls Toxoplasma gondii growth in cell culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586332. [PMID: 38562845 PMCID: PMC10983968 DOI: 10.1101/2024.03.22.586332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The obligate intracellular parasite Toxoplasma gondii can infect and replicate in any warm-blooded cell tested to date, but much of our knowledge about T. gondii cell biology comes from just one host cell type: human foreskin fibroblasts (HFFs). To expand our knowledge of host-parasite lipid interactions, we studied T. gondii in intestinal epithelial cells, the first site of host-parasite contact following oral infection and the exclusive site of parasite sexual development in feline hosts. We found that highly metabolic Caco-2 cells are permissive to T. gondii growth even when treated with high levels of linoleic acid (LA), a polyunsaturated fatty acid (PUFA) that kills parasites in HFFs. Caco-2 cells appear to sequester LA away from the parasite, preventing membrane disruptions and lipotoxicity that characterize LA-induced parasite death in HFFs. Our work is an important step toward understanding host-parasite interactions in feline intestinal epithelial cells, an understudied but important cell type in the T. gondii life cycle.
Collapse
Affiliation(s)
- Nicole D. Hryckowian
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin Zinda
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sung Chul Park
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin T. Kelty
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura J. Knoll
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
35
|
Hortua Triana MA, Márquez-Nogueras KM, Fazli MS, Quinn S, Moreno SNJ. Regulation of calcium entry by cyclic GMP signaling in Toxoplasma gondii. J Biol Chem 2024; 300:105771. [PMID: 38382669 PMCID: PMC10959671 DOI: 10.1016/j.jbc.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
Ca2+ signaling impacts almost every aspect of cellular life. Ca2+ signals are generated through the opening of ion channels that permit the flow of Ca2+ down an electrochemical gradient. Cytosolic Ca2+ fluctuations can be generated through Ca2+ entry from the extracellular milieu or release from intracellular stores. In Toxoplasma gondii, Ca2+ ions play critical roles in several essential functions for the parasite, like invasion of host cells, motility, and egress. Plasma membrane Ca2+ entry in T. gondii was previously shown to be activated by cytosolic calcium and inhibited by the voltage-operated Ca2+ channel blocker nifedipine. However, Ca2+ entry in T. gondii did not show the classical characteristics of store regulation. In this work, we characterized the mechanism by which cytosolic Ca2+ regulates plasma membrane Ca2+ entry in extracellular T. gondii tachyzoites loaded with the Ca2+ indicator Fura-2. We compared the inhibition by nifedipine with the effect of the broad spectrum TRP channel inhibitor, anthranilic acid or ACA, and we find that both inhibitors act on different Ca2+ entry activities. We demonstrate, using pharmacological and genetic tools, that an intracellular signaling pathway engaging cyclic GMP, protein kinase G, Ca2+, and the phosphatidyl inositol phospholipase C affects Ca2+ entry and we present a model for crosstalk between cyclic GMP and cytosolic Ca2+ for the activation of T. gondii's lytic cycle traits.
Collapse
Affiliation(s)
- Miryam A Hortua Triana
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | | | | | - Shannon Quinn
- Department of Computer Science, University of Georgia, Athens, Georgia, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
36
|
Klinger CM, Jimenez-Ruiz E, Mourier T, Klingl A, Lemgruber L, Pain A, Dacks JB, Meissner M. Evolutionary analysis identifies a Golgi pathway and correlates lineage-specific factors with endomembrane organelle emergence in apicomplexans. Cell Rep 2024; 43:113740. [PMID: 38363682 DOI: 10.1016/j.celrep.2024.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
The organelle paralogy hypothesis (OPH) aims to explain the evolution of non-endosymbiotically derived organelles. It predicts that lineage-specific pathways or organelles should result when identity-encoding membrane-trafficking components duplicate and co-evolve. Here, we investigate the presence of such lineage-specific membrane-trafficking machinery paralogs in Apicomplexa, a globally important parasitic lineage. We are able to identify 18 paralogs of known membrane-trafficking machinery, in several cases co-incident with the presence of new endomembrane organelles in apicomplexans or their parent lineage, the Alveolata. Moreover, focused analysis of the apicomplexan Arf-like small GTPases (i.e., ArlX3) revealed a specific post-Golgi trafficking pathway. This pathway appears involved in delivery of proteins to micronemes and rhoptries, with knockdown demonstrating reduced invasion capacity. Overall, our data have identified an unforeseen post-Golgi trafficking pathway in apicomplexans and are consistent with the OPH mechanism acting to produce endomembrane pathways or organelles at various evolutionary stages across the alveolate lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Elena Jimenez-Ruiz
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Tobias Mourier
- Pathogen Genomics Laboratory, Bioscience Programme, Biological, and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Andreas Klingl
- Pflanzliche Entwicklungsbiologie, Biozentrum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Leandro Lemgruber
- Cellular Analysis Facility, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Programme, Biological, and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; International Institute for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Centre for Life's Origin and Evolution, Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany.
| |
Collapse
|
37
|
Lüder CGK. IFNs in host defence and parasite immune evasion during Toxoplasma gondii infections. Front Immunol 2024; 15:1356216. [PMID: 38384452 PMCID: PMC10879624 DOI: 10.3389/fimmu.2024.1356216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Interferons (IFNs) are a family of cytokines with diverse functions in host resistance to pathogens and in immune regulation. Type II IFN, i.e. IFN-γ, is widely recognized as a major mediator of resistance to intracellular pathogens, including the protozoan Toxoplasma gondii. More recently, IFN-α/β, i.e. type I IFNs, and IFN-λ (type III IFN) have been identified to also play important roles during T. gondii infections. This parasite is a widespread pathogen of humans and animals, and it is a model organism to study cell-mediated immune responses to intracellular infection. Its success depends, among other factors, on the ability to counteract the IFN system, both at the level of IFN-mediated gene expression and at the level of IFN-regulated effector molecules. Here, I review recent advances in our understanding of the molecular mechanisms underlying IFN-mediated host resistance and immune regulation during T. gondii infections. I also discuss those mechanisms that T. gondii has evolved to efficiently evade IFN-mediated immunity. Knowledge of these fascinating host-parasite interactions and their underlying signalling machineries is crucial for a deeper understanding of the pathogenesis of toxoplasmosis, and it might also identify potential targets of parasite-directed or host-directed supportive therapies to combat the parasite more effectively.
Collapse
Affiliation(s)
- Carsten G. K. Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
38
|
Cudjoe O, Afful R, Hagan TA. Toxoplasma-host endoplasmic reticulum interaction: How T. gondii activates unfolded protein response and modulates immune response. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100223. [PMID: 38352129 PMCID: PMC10861954 DOI: 10.1016/j.crmicr.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Toxoplasma gondii is a neurotropic single-celled zoonotic parasite that can infect human beings and animals. Infection with T. gondii is usually asymptomatic in immune-competent individual, however, it can cause symptomatic and life-threatening conditions in immunocompromised individuals and in developing foetuses. Although the mechanisms that allow T. gondii to persist in host cells are poorly understood, studies in animal models have greatly improved our understanding of Toxoplasma-host cell interaction and how this interaction modulates parasite proliferation and development, host immune response and virulence of the parasite. T. gondii is capable of recruiting the host endoplasmic reticulum (ER), suggesting it may influence the host ER function. Herein, we provide an overview of T. gondii infection and the role of host ER during stressed conditions. Furthermore, we highlight studies that explore T. gondii's interaction with the host ER. We delve into how this interaction activates the unfolded protein response (UPR) and ER stress-mediated apoptosis. Additionally, we examine how T. gondii exploits these pathways to its advantage.
Collapse
Affiliation(s)
- Obed Cudjoe
- Department of Medical Laboratory Science, Klintaps College of Health and Allied Sciences, DTD TDC Plot 30A, Klagon, Tema, Ghana
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Ghana
| | - Roger Afful
- Department of Medical Laboratory Science, Klintaps College of Health and Allied Sciences, DTD TDC Plot 30A, Klagon, Tema, Ghana
| | - Tonny Abraham Hagan
- Department of Biomedical Engineering, School of Life Science and Technology, University of Electronic Science and Technology of China, China
| |
Collapse
|
39
|
Roscoe S, Guo Y, Vacratsis PO, Ananvoranich S. Proteomic profile of Toxoplasma gondii stress granules by high-resolution mass spectrometry. Can J Microbiol 2024; 70:32-39. [PMID: 37826860 DOI: 10.1139/cjm-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Ribonucleoprotein granules are bio-condensates that form a diverse group of dynamic membrane-less organelles implicated in several cellular functions, including stress response and cellular survival. In Toxoplasma gondii, a type of bio-condensates referred to as stress granules (SGs) are formed prior to the parasites' egress from the host cell and are implicated in the survival and invasion competency of extracellular tachyzoites. We used paraformaldehyde to fix and cross-link SG proteins to allow purification by centrifugation and analysis by mass spectrometry. We profiled protein components of SGs at 10 and 30 min post-egress when parasite's invasion ability is significantly diminished. Thirty-three proteins were identified from 10 min SGs, and additional 43 proteins were identified from 30 min SGs. Notably, common SG components such as proteins with intrinsically disordered domains were not identified. Gene ontology analysis of both 10 and 30 min SGs shows that overall molecular functions of SGs' proteins are ATP-binding, GTP-binding, and GTPase activity. Discernable differences between 10 and 30 min SGs are in the proportions of translation and microtubule-related proteins. Ten-minute SGs have a higher proportion of microtubule-related proteins and a lower proportion of ribosome-related proteins, while a reverse correlation was identified for those of 30 min. It remains to be investigated whether this reverse correlation contributes to the ability of extracellular tachyzoites to reinvade host cells.
Collapse
Affiliation(s)
- Scott Roscoe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| | - Yue Guo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| | - Panayiotis O Vacratsis
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| | - Sirinart Ananvoranich
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B3P4, Canada
| |
Collapse
|
40
|
Baptista CG, Hosking S, Gas-Pascual E, Ciampossine L, Abel S, Hakimi MA, Jeffers V, Le Roch K, West CM, Blader IJ. Toxoplasma gondii F-Box Protein L2 Silences Feline-Restricted Genes Necessary for Sexual Commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572150. [PMID: 38187549 PMCID: PMC10769283 DOI: 10.1101/2023.12.18.572150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages requires substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct nuclear sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNA seq data show that TgFBXL2 conditional depletion induces the expression of genes necessary for sexual commitment. We suggest that TgFBXL2 is a latent guardian of sexual stage development in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of sexual development.
Collapse
Affiliation(s)
- Carlos G. Baptista
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| | - Sarah Hosking
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA
| | - Loic Ciampossine
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Steven Abel
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Karine Le Roch
- Department of Molecular, Cell, and Systems Biology, University of California Riverside, Riverside, CA, 92521USA
| | - Christopher M. West
- Department of Biochemistry & Molecular Biology, Center for Tropical & Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA
| | - Ira J. Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY 14203 USA
| |
Collapse
|
41
|
Valleau D, Sidik SM, Godoy LC, Acevedo‐Sánchez Y, Pasaje CFA, Huynh M, Carruthers VB, Niles JC, Lourido S. A conserved complex of microneme proteins mediates rhoptry discharge in Toxoplasma. EMBO J 2023; 42:e113155. [PMID: 37886905 PMCID: PMC10690463 DOI: 10.15252/embj.2022113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Apicomplexan parasites discharge specialized organelles called rhoptries upon host cell contact to mediate invasion. The events that drive rhoptry discharge are poorly understood, yet essential to sustain the apicomplexan parasitic life cycle. Rhoptry discharge appears to depend on proteins secreted from another set of organelles called micronemes, which vary in function from allowing host cell binding to facilitation of gliding motility. Here we examine the function of the microneme protein CLAMP, which we previously found to be necessary for Toxoplasma gondii host cell invasion, and demonstrate its essential role in rhoptry discharge. CLAMP forms a distinct complex with two other microneme proteins, the invasion-associated SPATR, and a previously uncharacterized protein we name CLAMP-linked invasion protein (CLIP). CLAMP deficiency does not impact parasite adhesion or microneme protein secretion; however, knockdown of any member of the CLAMP complex affects rhoptry discharge. Phylogenetic analysis suggests orthologs of the essential complex components, CLAMP and CLIP, are ubiquitous across apicomplexans. SPATR appears to act as an accessory factor in Toxoplasma, but despite incomplete conservation is also essential for invasion during Plasmodium falciparum blood stages. Together, our results reveal a new protein complex that mediates rhoptry discharge following host-cell contact.
Collapse
Affiliation(s)
| | | | - Luiz C Godoy
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | | | | | - My‐Hang Huynh
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Vern B Carruthers
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Jacquin C Niles
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Sebastian Lourido
- Whitehead InstituteCambridgeMAUSA
- Biology DepartmentMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
42
|
Chen XZ, Bai RX, Qin FY, Peng HJ, Ren JF, Hu L, Li YD, He C. Phosphoproteomic Analysis Reveals the Predominating Cellular Processes and the Involved Key Phosphoproteins Essential for the Proliferation of Toxoplasma gondii. Acta Parasitol 2023; 68:820-831. [PMID: 37821727 DOI: 10.1007/s11686-023-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To explore the essential roles of phosphorylation in mediating the proliferation of T. gondii in its cell lytic life. METHODS We profiled the phosphoproteome data of T. gondii residing in HFF cells for 2 h and 6 h, representing the early- and late-stages of proliferation (ESP and LSP) within its first generation of division. RESULTS We identified 70 phosphoproteins, among which 8 phosphoproteins were quantified with the phosphorylation level significantly regulated. While only two of the eight phosphoproteins, GRA7 and TGGT1_242070, were significantly down-regulated at the transcriptional level in the group of LSP vs. ESP. Moreover, GO terms correlated with host membrane component were significantly enriched in the category of cellular component, suggesting phosphoprotein played important roles in acquiring essential substance from host cell via manipulating host membrane. Further GO analysis in the categories of molecular function and biological process and pathway analysis revealed that the cellular processes of glucose and lipid metabolism were regulated by T. gondii phosphoproteins such as PMCAA1, LIPIN, Pyk1 and ALD. Additionally, several phosphoproteins were enriched at the central nodes in the protein-protein interaction network, which may have essential roles in T. gondii proliferation including GAP45, MLC1, fructose-1,6-bisphosphate aldolase, GRAs and so on. CONCLUSION This study revealed the main cellular processes and key phosphoproteins crucial for the intracellular proliferation of T. gondii, which would provide clues to explore the roles of phosphorylation in regulating the development of tachyzoites and new insight into the mechanism of T. gondii development in vitro.
Collapse
Affiliation(s)
- Xin-Zhu Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Rui-Xue Bai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Fei-Yu Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jin-Feng Ren
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Lang Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Yu-di Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
43
|
Grochow T, Beck B, Rentería-Solís Z, Schares G, Maksimov P, Strube C, Raqué L, Kacza J, Daugschies A, Fietz SA. Reduced neural progenitor cell count and cortical neurogenesis in guinea pigs congenitally infected with Toxoplasma gondii. Commun Biol 2023; 6:1209. [PMID: 38012384 PMCID: PMC10682419 DOI: 10.1038/s42003-023-05576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Toxoplasma (T.) gondii is an obligate intracellular parasite with a worldwide distribution. Congenital infection can lead to severe pathological alterations in the brain. To examine the effects of toxoplasmosis in the fetal brain, pregnant guinea pigs are infected with T. gondii oocysts on gestation day 23 and dissected 10, 17 and 25 days afterwards. We show the neocortex to represent a target region of T. gondii and the parasite to infect neural progenitor cells (NPCs), neurons and astrocytes in the fetal brain. Importantly, we observe a significant reduction in neuron number at end-neurogenesis and find a marked reduction in NPC count, indicating that impaired neurogenesis underlies the neuronal decrease in infected fetuses. Moreover, we observe focal microglioses to be associated with T. gondii in the fetal brain. Our findings expand the understanding of the pathophysiology of congenital toxoplasmosis, especially contributing to the development of cortical malformations.
Collapse
Affiliation(s)
- Thomas Grochow
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Britta Beck
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gereon Schares
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- National Reference Laboratory for Toxoplasmosis, Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lisa Raqué
- Veterinary practice Raqué, Leipzig, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany.
| |
Collapse
|
44
|
Chan AW, Broncel M, Yifrach E, Haseley NR, Chakladar S, Andree E, Herneisen AL, Shortt E, Treeck M, Lourido S. Analysis of CDPK1 targets identifies a trafficking adaptor complex that regulates microneme exocytosis in Toxoplasma. eLife 2023; 12:RP85654. [PMID: 37933960 PMCID: PMC10629828 DOI: 10.7554/elife.85654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.
Collapse
Affiliation(s)
- Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malgorzata Broncel
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Eden Yifrach
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Nicole R Haseley
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | | | - Elena Andree
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Emily Shortt
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Moritz Treeck
- Signaling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
45
|
Gao Y, Shen Y, Fan J, Ding H, Zheng B, Yu H, Huang S, Kong Q, Lv H, Zhuo X, Lu S. Establishment and application of an iELISA detection method for measuring apical membrane antigen 1 (AMA1) antibodies of Toxoplasma gondii in cats. BMC Vet Res 2023; 19:229. [PMID: 37924072 PMCID: PMC10623812 DOI: 10.1186/s12917-023-03775-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/05/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Diseases caused by Toxoplasma gondii (T. gondii) have introduced serious threats to public health. There is an urgent need to develop a rapid detection method for T. gondii infection in cats, which are definitive hosts. Recombinant apical membrane antigen 1 (rAMA1) was produced in a prokaryotic expression system and used as the detection antigen. The aim of this study was to evaluate and optimize a reliable indirect enzyme-linked immunosorbent assay (iELISA) method based on rAMA1 for the detection of antibodies against T. gondii in cats. RESULTS The rAMA1-iELISA method was developed and optimized by the chessboard titration method. There were no cross-reactions between T. gondii-positive cat serum and positive serum for other pathogens, indicating that rAMA1-iELISA could only detect T. gondii in most cases. The lowest detection limit of rAMA1-iELISA was 1:3200 (dilution of positive serum), and the CV of repeated tests within batches and between batches were confirmed to be less than 10%. The results of 247 cat serum samples detected by rAMA1-iELISA (kappa value = 0.622, p < 0.001) were in substantial agreement with commercial ELISA. The ROC curve analysis revealed the higher overall check accuracy of rAMA1-iELISA (sensitivity = 91.7%, specificity = 93.6%, AUC = 0.956, 95% CI 0.905 to 1.000) than GRA7-based iELISA (sensitivity = 91.7%, specificity = 85.5%, AUC = 0.936, 95% CI 0.892 to 0.980). Moreover, the positive rate of rAMA1-iELISA (6.5%, 16/247) was higher than that of GRA7-based iELISA (3.6%, 9/247) and that of commercial ELISA kit (4.9%, 12/247). CONCLUSION The iELISA method with good specificity, sensitivity, and reproducibility was established and can be used for large-scale detection of T. gondii infection in clinical cat samples.
Collapse
Affiliation(s)
- Yafan Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yu Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Jiyuan Fan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Haojie Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Haijie Yu
- Jiaxing Vocational & Technical College, Jiaxing, 314036, China
| | - Siyang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Qingming Kong
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Hangjun Lv
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Xunhui Zhuo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| | - Shaohong Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310013, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
- Key Laboratory of Bio-Tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
46
|
Pasquarelli RR, Back PS, Sha J, Wohlschlegel JA, Bradley PJ. Identification of IMC43, a novel IMC protein that collaborates with IMC32 to form an essential daughter bud assembly complex in Toxoplasma gondii. PLoS Pathog 2023; 19:e1011707. [PMID: 37782662 PMCID: PMC10569561 DOI: 10.1371/journal.ppat.1011707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023] Open
Abstract
The inner membrane complex (IMC) of Toxoplasma gondii is essential for all phases of the parasite's life cycle. One of its most critical roles is to act as a scaffold for the assembly of daughter buds during replication by endodyogeny. While many daughter IMC proteins have been identified, most are recruited after bud initiation and are not essential for parasite fitness. Here, we report the identification of IMC43, a novel daughter IMC protein that is recruited at the earliest stages of daughter bud initiation. Using an auxin-inducible degron system we show that depletion of IMC43 results in aberrant morphology, dysregulation of endodyogeny, and an extreme defect in replication. Deletion analyses reveal a region of IMC43 that plays a role in localization and a C-terminal domain that is essential for the protein's function. TurboID proximity labelling and a yeast two-hybrid screen using IMC43 as bait identify 30 candidate IMC43 binding partners. We investigate two of these: the essential daughter protein IMC32 and a novel daughter IMC protein we named IMC44. We show that IMC43 is responsible for regulating the localization of both IMC32 and IMC44 at specific stages of endodyogeny and that this regulation is dependent on the essential C-terminal domain of IMC43. Using pairwise yeast two-hybrid assays, we determine that this region is also sufficient for binding to both IMC32 and IMC44. As IMC43 and IMC32 are both essential proteins, this work reveals the existence of a bud assembly complex that forms the foundation of the daughter IMC during endodyogeny.
Collapse
Affiliation(s)
- Rebecca R. Pasquarelli
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Peter S. Back
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
| | - Jihui Sha
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, United States of America
| | - Peter J. Bradley
- Molecular Biology Institute, University of California, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, United States of America
| |
Collapse
|
47
|
Xiong C, He W, Xiao J, Hao G, Pu J, Chen H, Xu L, Zhu Y, Yang G. Assessment of the Immunoprotective Efficacy of Recombinant 14-3-3 Protein and Dense Granule Protein 10 (GRA10) as Candidate Antigens for Rabbit Vaccines against Eimeria intestinalis. Int J Mol Sci 2023; 24:14418. [PMID: 37833865 PMCID: PMC10572514 DOI: 10.3390/ijms241914418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Eimeria intestinalis infects rabbits, causing severe intestinal coccidiosis. Prolonged anticoccidial drug use might lead to coccidia resistance and drug residues in food. Thus, vaccines are required to control rabbit coccidiosis. In this study, recombinant E. intestinalis 14-3-3 and GRA10 proteins (rEi-14-3-3 and rEi-GRA10) were obtained via prokaryotic expression and used as recombinant subunit vaccines. Fifty 30-day-old rabbits were randomly grouped as follows: PBS-uninfected group, PBS-infected group, Trx-His-S control group, and rEi-14-3-3 and rEi-GRA10 immunized groups. The rabbits were subcutaneously immunized twice at 2-week intervals, challenged with 7 × 104 sporulated oocysts, and sacrificed 14 days later. The protective effects were assessed via clinical signs, relative weight gain, oocyst reduction, mean intestinal lesion score, ACI (anticoccidial index), cytokine, and specific antibody levels in sera. The rEi-14-3-3 and rEi-GRA10 groups had higher relative weight gain rates of 81.94% and 73.61% (p < 0.05), and higher oocyst reduction rates of 86.13% and 84.87% (p < 0.05), respectively. The two immunized groups had fewer intestinal lesions (p < 0.05) and higher IgG levels (p < 0.05). Higher levels of IL-2, IL-4, and IFN-γ cytokines in the rEi-14-3-3 group (p < 0.05) and a higher level of IFN-γ in the rEi-GRA10 group (p < 0.05) were observed. The ACI values of the rEi-14-3-3 and rEi-GRA10 groups were 168.24 and 159.91, with good and moderate protective effects, respectively. Both rEi-14-3-3 and rEi-GRA10 induced humoral immunity in the rabbits. In addition, rEi-14-3-3 induced Th1- and Th2-type immune responses. Both recombinant proteins were protective against E. intestinalis infection in rabbits, with rEi-14-3-3 showing a better protective effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangyou Yang
- Department of Parasitology, College of Veterinary, Sichuan Agricultural University, Chengdu 611130, China; (C.X.); (W.H.); (J.X.); (G.H.); (J.P.); (H.C.); (L.X.); (Y.Z.)
| |
Collapse
|
48
|
D'Ambrosio HK, Keeler AM, Derbyshire ER. Examination of Secondary Metabolite Biosynthesis in Apicomplexa. Chembiochem 2023; 24:e202300263. [PMID: 37171468 DOI: 10.1002/cbic.202300263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Natural product discovery has traditionally relied on the isolation of small molecules from producing species, but genome-sequencing technology and advances in molecular biology techniques have expanded efforts to a wider array of organisms. Protists represent an underexplored kingdom for specialized metabolite searches despite bioinformatic analysis that suggests they harbor distinct biologically active small molecules. Specifically, pathogenic apicomplexan parasites, responsible for billions of global infections, have been found to possess multiple biosynthetic gene clusters, which hints at their capacity to produce polyketide metabolites. Biochemical studies have revealed unique features of apicomplexan polyketide synthases, but to date, the identity and function of the polyketides synthesized by these megaenzymes remains unknown. Herein, we discuss the potential for specialized metabolite production in protists and the possible evolution of polyketide biosynthetic gene clusters in apicomplexan parasites. We then focus on a polyketide synthase from the apicomplexan Toxoplasma gondii to discuss the unique domain architecture and properties of these proteins when compared to previously characterized systems, and further speculate on the possible functions for polyketides in these pathogenic parasites.
Collapse
Affiliation(s)
- Hannah K D'Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Aaron M Keeler
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
49
|
Márquez-Mauricio A, Caballero-Ortega H, Gómez-Chávez F. Congenital Toxoplasmosis Diagnosis: Current Approaches and New Insights. Acta Parasitol 2023; 68:473-480. [PMID: 37368128 DOI: 10.1007/s11686-023-00693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE The aim of this study is to describe and discuss current disadvantages in congenital toxoplasmosis (CT) diagnosis, and what can be improved or changed through new perspectives and technological advances. METHODS We used Pubmed, Cochrane, and EBSCO databases to research publications from 10 years to date describing current diagnostic methods for CT. The keywords used for this Mini-Review were Toxoplasma gondii, congenital toxoplasmosis, diagnosis, and prospects using Boolean operators such as AND, OR, identifying scientific publications highlighting the importance of implementing new diagnostic methods. RESULTS Current diagnosis methods have several disadvantages, i.e., time-consuming, low sensitivity or specificity, and non-cost effective, that bring up the necessity of improving or developing new approaches. Recombinant proteins can help improve specificity by generating tests that use circulating strains in a specific geographical region, SAG1 and BAG1, as they are expressed during a particular stage of the disease (acute or chronic, respectively), for its use in serological diagnoses, such as capture ELISA and immunochromatography. Point of Care (POC) tests are methods performed at the patient care site, which leads to rapid patient treatment; despite the advantages, several improvements and perspectives are necessary to be implemented globally. CONCLUSIONS Although already established diagnosis methods for CT may be sufficient in some regions, there is still a persistent demand to develop tests with higher throughput, cost, and time reduction in developing countries, where prevalence is high. New approaches in CT diagnosis, such as recombinant proteins, capture ELISA, immunochromatography, and POC tests methods, can increase performance in terms of specificity and sensitivity simplifying diagnostic tests' requirements.
Collapse
Affiliation(s)
| | | | - Fernando Gómez-Chávez
- Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, ENMyH-Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
50
|
Thornton LB, Key M, Micchelli C, Stasic AJ, Kwain S, Floyd K, Moreno SN, Dominy BN, Whitehead DC, Dou Z. A cathepsin C-like protease mediates the post-translation modification of Toxoplasma gondii secretory proteins for optimal invasion and egress. mBio 2023; 14:e0017423. [PMID: 37326431 PMCID: PMC10470614 DOI: 10.1128/mbio.00174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/01/2023] [Indexed: 06/17/2023] Open
Abstract
Microbial pathogens use proteases for their infections, such as digestion of proteins for nutrients and activation of their virulence factors. As an obligate intracellular parasite, Toxoplasma gondii must invade host cells to establish its intracellular propagation. To facilitate invasion, the parasites secrete invasion effectors from microneme and rhoptry, two unique organelles in apicomplexans. Previous work has shown that some micronemal invasion effectors experience a series of proteolytic cleavages within the parasite's secretion pathway for maturation, such as the aspartyl protease (TgASP3) and the cathepsin L-like protease (TgCPL), localized within the post-Golgi compartment and the endolysosomal system, respectively. Furthermore, it has been shown that the precise maturation of micronemal effectors is critical for Toxoplasma invasion and egress. Here, we show that an endosome-like compartment (ELC)-residing cathepsin C-like protease (TgCPC1) mediates the final trimming of some micronemal effectors, and its loss further results in defects in the steps of invasion, egress, and migration throughout the parasite's lytic cycle. Notably, the deletion of TgCPC1 completely blocks the activation of subtilisin-like protease 1 (TgSUB1) in the parasites, which globally impairs the surface-trimming of many key micronemal invasion and egress effectors. Additionally, we found that Toxoplasma is not efficiently inhibited by the chemical inhibitor targeting the malarial CPC ortholog, suggesting that these cathepsin C-like orthologs are structurally different within the apicomplexan phylum. Collectively, our findings identify a novel function of TgCPC1 in processing micronemal proteins within the Toxoplasma parasite's secretory pathway and expand the understanding of the roles of cathepsin C protease. IMPORTANCE Toxoplasma gondii is a microbial pathogen that is well adapted for disseminating infections. It can infect virtually all warm-blooded animals. Approximately one-third of the human population carries toxoplasmosis. During infection, the parasites sequentially secrete protein effectors from the microneme, rhoptry, and dense granule, three organelles exclusively found in apicomplexan parasites, to help establish their lytic cycle. Proteolytic cleavage of these secretory proteins is required for the parasite's optimal function. Previous work has revealed that two proteases residing within the parasite's secretory pathway cleave micronemal and rhoptry proteins, which mediate parasite invasion and egress. Here, we demonstrate that a cathepsin C-like protease (TgCPC1) is involved in processing several invasion and egress effectors. The genetic deletion of TgCPC1 prevented the complete maturation of some effectors in the parasites. Strikingly, the deletion led to a full inactivation of one surface-anchored protease, which globally impaired the trimming of some key micronemal proteins before secretion. Therefore, this finding represents a novel post-translational mechanism for the processing of virulence factors within microbial pathogens.
Collapse
Affiliation(s)
- L. Brock Thornton
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Melanie Key
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Chiara Micchelli
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Andrew J. Stasic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Samuel Kwain
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Katherine Floyd
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Silvia N.J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Brian N. Dominy
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Daniel C. Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|