1
|
Niu P, Li D, Chen H, Zhu Y, Zhou J, Zhang J, Liu Y. Cardamonin suppresses mTORC1/SREBP1 through reducing Raptor and inhibits de novo lipogenesis in ovarian cancer. PLoS One 2025; 20:e0322733. [PMID: 40315213 PMCID: PMC12047825 DOI: 10.1371/journal.pone.0322733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2025] [Indexed: 05/04/2025] Open
Abstract
Metabolic reprogramming is a hallmark of cancer and de novo lipogenesis (DNL) accelerates the progression of ovarian cancer. In this study, we investigated the effects of cardamonin, a natural compound potential to suppress various malignancies, on the lipid anabolism in ovarian cancer. Cell proliferation was assessed using CCK-8 and clone formation assay. Cell apoptosis was detected by flow cytometry with Annexin V-FITC/PI staining and mitochondrial membrane potential (MMP) was measured with JC-10 probe. Free fatty acids (FFA) was measured by fluorescence using acyl-CoA oxidation and carnitine palmitoyl transferase-1 (CPT-1) activity was analyzed by spectrophotometric assay using palmitoyl-CoA and DTNB (5,5'-dithio-bis-(2-nitrobenzoic acid)) reaction. mRNA expression was measured by Quantitative Real-Time PCR. Protein expression was analyzed through western blotting and immunofluorescence. Raptor was knocked down by shRNA and Raptor was overexpressed by lentiviral transfection. The antitumor effect of cardamonin was evaluated using a xenotransplantation tumor bearing mouse model. Cardamonin suppressed the cell proliferation, induced cell apoptosis and triggered mitochondrial damage in ovarian cancer cells. Cardamonin inhibited the protein expression of sterol regulatory element binding protein 1 (SREBP1) and its downstream lipogenic enzymes and decreased FFA content and CPT-1 activity. Additionally, cardamonin inhibited the activation of mechanistic target of rapamycin complex 1 (mTORC1) and expression of regulatory-associated protein of mTOR (Raptor). Raptor knockdown abolished the inhibitory effect of cardamonin on mTORC1 and SREBP1. Furthermore, cardamonin inhibited mTORC1 activation and lipogenic proteins expression induced by Raptor overexpression. Cardamonin reduced the tumor growth and fatty acid synthase of the tumors, as evidenced by decreased expression of Ki-67 and FASN. It suggests that cardamonin suppresses mTORC1/SREBP1 through reducing the protein level of Raptor and inhibits DNL of ovarian cancer.
Collapse
Affiliation(s)
- Peiguang Niu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research [Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital)], Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Danyun Li
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Huajiao Chen
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanting Zhu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research [Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital)], Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Jintuo Zhou
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Liu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Gomez RA, Hou J, Gersuk VH, Chow IT, Farrington ML, Robinson D, Kwok WW. Ara h 2 105-124-Specific TH2A Cells Drive Peanut Allergy in DRB1*15:01 Individuals: A Detailed Epitope Analysis. Clin Exp Allergy 2025. [PMID: 40308027 DOI: 10.1111/cea.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/03/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND The IgE-mediated CD4 T-cell response to peanut (Arachis hypogaea) is heterogeneous, yet TH2 cells remain central drivers of pathology. This study aimed to dissect this complexity at the epitope level by focusing on the HLA-DRB1*15:01-DRB5*01:01 haplotype. Specifically, we examined how distinct epitope-specific T-cell subsets shape the immunological landscape of peanut allergy in peanut-allergic (PA) versus non-peanut-allergic (NPA) individuals. METHODS Using in vitro and ex vivo MHC-II tetramer approaches, the phenotype, frequency, function, and transcriptome of CD4 T-cell responses to novel Ara h epitopes were assessed. Bulk RNA sequencing further characterised these T cells, allowing identification of subsets associated with TH2 polarisation in PA individuals. RESULTS Eleven HLA-DRB1*15:01 and DRB5*01:01-restricted epitopes were identified in Ara h 1, 2, 3, 6, 7, and 8 using tetramer-guided epitope mapping on cell lines, followed by ex vivo validation in peripheral blood. T-cell phenotype was epitope-dependent, with a distinct TH2A population specific to the epitope Ara h 2105-124 (Ara h 2 p14) detected only in PA donors. These TH2A cells were phenotypically and transcriptionally distinct, marked by high CRTH2/CD161, low CD27, IL-5 production, and gene enrichment in cytokine signalling and lipid metabolism. Other epitope-specific T-cell subsets displayed more heterogeneous gene profiles related to immune activation, differentiation, and antigen presentation, underscoring the complexity of peanut-specific responses even within a single HLA haplotype. CONCLUSION These findings reveal that the strong TH2 bias in DRB1*15:01-DRB5*01:01 PA individuals arises from a distinct subset of Ara h 2 p14-specific TH2A cells characterised by a specialised metabolic and cytokine signalling program. At the same time, the functional diversity observed in non-Ara h 2 p14 subsets highlights the potential for leveraging these populations in tolerance-promoting therapies. Understanding the epitope-level heterogeneity of peanut-specific T-cells provides insight into the epitope-specific mechanisms driving peanut allergy and has potential implications for therapeutic interventions.
Collapse
Affiliation(s)
- Rebecca A Gomez
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Jue Hou
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - I-Ting Chow
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
- Immune Medicine Division, Adaptive Biotechnologies, Seattle, Washington, USA
| | - Mary L Farrington
- Allergy and Immunology, Virginia Mason Franciscan Health, Seattle, Washington, USA
| | - David Robinson
- Allergy and Immunology, Virginia Mason Franciscan Health, Seattle, Washington, USA
| | - William W Kwok
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Zhang Q, Huang Y, Tong Y, Ng KTC, Zhang J. Copy Number Gains of VPS72 Drive De Novo Lipogenesis and Hepatocarcinogenesis via ATF3/mTORC1/SREBP1 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2411368. [PMID: 40305746 DOI: 10.1002/advs.202411368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/21/2025] [Indexed: 05/02/2025]
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer and a major contributor to cancer-related mortality globally. Central to its pathogenesis is the dysregulation of lipid metabolism in hepatocytes, leading to abnormal lipid accumulation. Our bioinformatics analysis has identified the histone acetyltransferase complex subunit VPS72 as being associated with HCC, yet the precise molecular mechanisms through which VPS72 contributes to hepatocarcinogenesis remain poorly understood. Our analysis of extensive HCC patient cohorts identifies a significant proportion with VPS72 copy number gains, which are strongly linked to adverse prognostic outcomes. By integrating RNA-Seq, ChIP-Seq, ATAC-seq, and experimental validation, we show that VPS72 overexpression activates mTORC1 signaling, subsequently promoting lipid synthesis and driving HCC progression. We further uncover that VPS72 modulates the epigenetic landscape by enhancing DNA methylation at the ATF3 promoter, resulting in ATF3 repression and subsequent activation of mTORC1. This study elucidates a novel regulatory axis that links dysregulated lipid metabolism with HCC progression, highlighting potential epigenetic and metabolic targets for therapeutic intervention.
Collapse
Affiliation(s)
- Qinglin Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Yunxing Huang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Yin Tong
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, SAR, 999077, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, SAR, 999077, China
| | - Kenneth Tsz Chun Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, 999077, China
| |
Collapse
|
4
|
Liu B, Yao Z, Song L, Sun C, Shen C, Cheng F, Cheng Z, Zhang R, Liu R. Vitexin alleviates lipid metabolism disorders and hepatic injury in obese mice through the PI3K/AKT/mTOR/SREBP-1c pathway. Eur J Med Chem 2025; 287:117379. [PMID: 39947052 DOI: 10.1016/j.ejmech.2025.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
Obesity is recognized as a metabolic disorder, and its treatment and management pose ongoing challenges worldwide. Hawthorn, a traditional Chinese herb used to alleviate digestive issues and reduce blood lipid levels, has unclear mechanisms of action regarding its active components in the treatment of obesity. This study investigated the anti-obesity effects of vitexin, a major flavonoid compound found in hawthorn, in high-fat diet (HFD)-induced C57BL/6 mice. The results demonstrated that vitexin significantly reduced body weight, liver weight, blood lipid levels, and inflammatory markers in obese mice, while also inhibiting hepatic lipid accumulation. Mechanistic studies revealed that vitexin likely suppresses adipogenesis by modulating the PI3K-AKT signaling pathway, as evidenced by reduced expression of PI3K, phosphorylated AKT, phosphorylated mTOR, and SREBP-1c in the livers of vitexin-treated obese mice. Additionally, vitexin inhibited NFκB expression by regulating IκBα phosphorylation, thereby alleviating obesity-induced liver injury. These findings suggest that vitexin may be the primary active component in hawthorn responsible for reducing blood lipid levels, highlighting its potential in the treatment of obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziqing Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lin Song
- Department of Pharmacy, Children' S Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Changhong Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zefang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruoqi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Yang B, Zhang H, Feng X, Yu Z, Cao J, Niu Y, Wan P, Liu G, Zhao X. Genetic Diversity Estimation and Genome-Wide Selective Sweep Analysis of the Bazhou Yak. Animals (Basel) 2025; 15:849. [PMID: 40150378 PMCID: PMC11939585 DOI: 10.3390/ani15060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
The Bazhou yak, a major native meat yak breed in Xinjiang, China, is renowned for its fast growth rate, strong adaptability, and particularly high intramuscular fat (IMF) content. However, limited knowledge regarding its phylogenetic history and genomic composition has hindered its long-term conservation and utilization. This study evaluated the genetic diversity, population phylogenetics, and genome-wide selective sweep analysis (GWSA) of 100 newly obtained Bazhou yaks through genome resequencing, as well as 340 public yak genomes from nine other populations on the Qinghai-Tibet Plateau. The results revealed moderate diversity, lower genomic inbreeding levels, and rapid linkage disequilibrium (LD) decay in Bazhou yaks. Principal component analysis (PCA) and phylogenetic analysis showed a clear separation of Bazhou yaks from other yak populations, indicating the Bazhou yak as an independent genetic population. Furthermore, less genetic differentiation was found between the Bazhou yak and the Huanhu yak, while ADMIXTURE analysis revealed a common ancestral lineage between Bazhou yaks and Huanhu yaks, indicating an important genetic contribution of the Qinghai yak population to Bazhou yaks. The GWSA identified a total of 833 selected genes in Bazhou yaks using the top 5% interaction windows of both parameters (FST, Pi ratio, and XP-EHH). A significant number of these genes are related to fat synthesis and deposition, such as MTOR, APOA1, and GPAT4. In summary, this study sheds light on the phylogenetic status and distinctive genomic features of Bazhou yaks, which facilitates our understanding of the genetic basis of the IMF phenotype in Bazhou yaks.
Collapse
Affiliation(s)
- Baigao Yang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Zhou Yu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Jianhua Cao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Yifan Niu
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Gang Liu
- National Animal Husbandry Service, Beijing 100193, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (B.Y.); (H.Z.); (X.F.); (Z.Y.); (J.C.); (Y.N.)
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| |
Collapse
|
6
|
Ding K, Zhang Z, Han Z, Shi L, Li X, Liu Y, Li Z, Zhao C, Cui Y, Zhou L, Xu B, Zhou W, Zhao Y, Wang Z, Huang H, Xie L, Chen XW, Chen Z. Liver ALKBH5 regulates glucose and lipid homeostasis independently through GCGR and mTORC1 signaling. Science 2025; 387:eadp4120. [PMID: 40014709 DOI: 10.1126/science.adp4120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 12/09/2024] [Indexed: 03/01/2025]
Abstract
Maintaining glucose and lipid homeostasis is crucial for health, with dysregulation leading to metabolic diseases such as type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated fatty liver disease (MAFLD). This study identifies alkylation repair homolog protein 5 (ALKBH5), an RNA N6-methyladenosine (m6A) demethylase, as a major regulator in metabolic disease. ALKBH5 is up-regulated in the liver during obesity and also phosphorylated by protein kinase A, causing its translocation to the cytosol. Hepatocyte-specific deletion of Alkbh5 reduces glucose and lipids by inhibiting the glucagon receptor (GCGR) and mammalian target of rapamycin complex 1 (mTORC1) signaling pathways. Targeted knockdown of hepatic Alkbh5 reverses T2DM and MAFLD in diabetic mice, highlighting its therapeutic potential. This study unveils a regulatory mechanism wherein ALKBH5 orchestrates glucose and lipid homeostasis by integrating the GCGR and mTORC1 pathways, providing insight into the regulation of metabolic diseases.
Collapse
Affiliation(s)
- Kaixin Ding
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Zhipeng Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Zhengbin Han
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Lei Shi
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Xinzhi Li
- NHC Key Laboratory of Cell Transplantation, Department of Hepatic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yutong Liu
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Zhenzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Chongchong Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Yifeng Cui
- NHC Key Laboratory of Cell Transplantation, Department of Hepatic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liying Zhou
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Bolin Xu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, and Center for Life Sciences, Peking University, Beijing, China
| | - Wenjing Zhou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, and Center for Life Sciences, Peking University, Beijing, China
| | - Yikui Zhao
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - Zhiqiang Wang
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
| | - He Huang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, and Center for Life Sciences, Peking University, Beijing, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, State Key Laboratory of Matter Behaviors in Space Environment, Frontier Science Center for Interaction between Space Environment and Matter, Zhengzhou Research Institute, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
7
|
Li HY, Wang Y, Ran M, Gao F, Zhu BY, Xiao HY, Xu C. Tacrolimus induces insulin receptor substrate 1 hyperphosphorylation and inhibits mTORc1/S6K1 cascade in HL7702 cells. World J Diabetes 2025; 16:97910. [PMID: 39959267 PMCID: PMC11718479 DOI: 10.4239/wjd.v16.i2.97910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 11/13/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Tacrolimus (FK506) is a key calcineurin inhibitor used to prevent organ transplant rejection and is effective in improving graft survival. However, it is linked to hyperglycemia and insulin resistance, contributing to new-onset diabetes after transplantation and negatively affecting islet function. AIM To study the effects of tacrolimus on the insulin signaling pathway of hepatocytes. METHODS HL7702 cells were treated with different concentrations of tacrolimus (0.1 mg/L, 1 mg/L, 5 mg/L) for 24 hours. The proteins involved in insulin signaling were detected by Western blotting. RESULTS Compared with the control group, phosphorylation of insulin receptor substrate (IRS) 1 at Ser 307 and Ser 323 were increased significantly when the tacrolimus concentration reached 1 and 5 mg/L. Phosphorylation of IRS1 at Ser 1101 was also increased, although not significantly. However, phosphorylation of Ribosomal protein S6 kinase beta-1 at Thr 389 was decreased significantly. The levels of phosphorylated glycogen synthase kinase 3α Ser 21 and Ser 9 were increased. Surprisingly, phosphorylation of glycogen synthase at Ser 641 was increased. There was no significant change in the activity of glycogen phosphorylase. CONCLUSION Tacrolimus has no direct effect on hepatic glucose metabolism, but inhibits IRS1-mediated insulin signaling. This may be one of the underlying mechanisms by which tacrolimus induces insulin resistance.
Collapse
Affiliation(s)
- Hao-Yan Li
- Department of Endocrinology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Yi Wang
- Department of Endocrinology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Min Ran
- Department of Endocrinology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Fei Gao
- Department of Endocrinology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Bo-Yu Zhu
- Department of Endocrinology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Hai-Ying Xiao
- Department of Endocrinology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Chun Xu
- Department of Endocrinology, The Third Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
8
|
Liu H, Blanford J, Shi H, Schwender J, Shanklin J, Zhai Z. The target of rapamycin kinase is a positive regulator of plant fatty acid and lipid synthesis. PLANT PHYSIOLOGY 2025; 197:kiae639. [PMID: 39739868 PMCID: PMC11809584 DOI: 10.1093/plphys/kiae639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 01/02/2025]
Abstract
In eukaryotes, target of rapamycin (TOR), a conserved protein sensor kinase, integrates diverse environmental cues, including growth factor signals, energy availability, and nutritional status, to direct cell growth. In plants, TOR is activated by light and sugars and regulates a wide range of cellular processes, including protein synthesis and metabolism. Fatty acid (FA) synthesis is a key to membrane biogenesis that is required for cell growth. To elucidate the primary regulatory role(s) of TOR in lipid metabolism, we followed FA and lipid changes in plants with altered TOR protein levels or activity for short durations, using Nicotiana benthamiana leaves, Arabidopsis seedlings, and Brassica napus cell suspension cultures. Transient expression of TOR significantly elevated the levels of total FA (TFA) in N. benthamiana leaves. Conversely, treatment of Arabidopsis seedlings with the TOR-specific inhibitor Torin 2 for 1 d caused significant reductions in FA and membrane lipids. Similarly, incubating oil-producing B. napus suspension culture cells with Torin 2 for 8 h led to significant decreases in the levels of TFA and triacylglycerol. The results from 3 independent systems presented here establish that TOR positively regulates lipid synthesis in plants, consistent with its role in animals. Furthermore, RNA-seq analysis of Torin 2-treated Arabidopsis seedlings showed that TOR promotes the upregulation of several genes involved in de novo FA synthesis while downregulating several genes involved in lipid turnover, which we propose as a mechanistic explanation for its promotion of lipid synthesis and accumulation.
Collapse
Affiliation(s)
- Hui Liu
- Department of Biology, BNL 463, 50 Bell Ave, Upton, NY 11973, USA
| | - Jantana Blanford
- Department of Biology, BNL 463, 50 Bell Ave, Upton, NY 11973, USA
| | - Hai Shi
- Department of Biology, BNL 463, 50 Bell Ave, Upton, NY 11973, USA
| | - Jorg Schwender
- Department of Biology, BNL 463, 50 Bell Ave, Upton, NY 11973, USA
| | - John Shanklin
- Department of Biology, BNL 463, 50 Bell Ave, Upton, NY 11973, USA
| | - Zhiyang Zhai
- Department of Biology, BNL 463, 50 Bell Ave, Upton, NY 11973, USA
| |
Collapse
|
9
|
Kloock A, Hubbard EJA. Intestinal RICT-1 regulates the larval germline progenitor pool via the vitellogenin VIT-3 in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.632040. [PMID: 39829881 PMCID: PMC11741266 DOI: 10.1101/2025.01.08.632040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Populations of proliferating cells such as stem cells and tumors are often nutrient responsive. Highly conserved signaling pathways communicate information about the surrounding environmental, organismal, and cellular nutrient conditions. One such pathway is the Target of Rapamycin (TOR) pathway. The TOR kinase exists in two complexes, TOR complex 1 (TORC1) and TOR complex 2 (TORC2). TORC1 has been researched extensively and its regulation, particularly by amino acids, is well characterized. TORC1 activity promotes both stem cell fate and proliferation in the Caenorhabditis elegans hermaphrodite germline stem cell system to facilitate expansion of the larval germline Progenitor Zone (PZ) pool in response to nutrients. By contrast, a role for TORC2 in germline development has not been investigated. Here, we show that RICT-1, the sole ortholog of the TORC2-specific component RICTOR, also promotes expansion of the larval PZ, acting largely through SGK-1. Further, unlike the germline-autonomous role for TORC1 components, intestinal rict-1 is both necessary and sufficient for full germline PZ pool establishment. Furthermore, neither DAF-2/IIS nor DAF-7/TGF-ß pathways mediate the effects of RICT-1. Rather, intestinal RICT-1 likely acts via vitellogenins, intestinally produced yolk proteins previously characterized for provisioning the adult germ line, but not previously characterized for a role in larval germ line development. By comparative RNA-seq on staged L4 larvae, we found vitellogenin genes among highly differentially abundant mRNAs. Genetic analysis supports a role for vit-3 in germline development in a linear pathway with rict-1. Our results establish the C. elegans germ line as a fruitful model for investigating TORC2 and its connection to stem cells and lipid biology.
Collapse
Affiliation(s)
- Anke Kloock
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016
| | | |
Collapse
|
10
|
da Silva Rosa SC, Alizadeh J, Vitorino R, Surendran A, Ravandi A, Kidane B, Ghavami S. A Lipidomics Approach to Determine the Role of Lipids and Its Crosstalk with Autophagy in Lung Cancer Metastasis. Methods Mol Biol 2025; 2879:239-260. [PMID: 38441721 DOI: 10.1007/7651_2024_524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Non-small cell lung cancer (NSCLC) is among the most malignant tumors with high propensity for metastasis and is the leading cause of cancer-related death globally. Most patients present with regional and distant metastasis, associated with poor prognosis. Lipids may play an essential role in either activating or inhibiting detachment-induced apoptosis (anoikis), where the latter is a crucial mechanism to prevent metastasis, and it may have a cross-talk with autophagy. Autophagy has been shown to be induced in various human cancer metastasis, modulating tumor cell motility and invasion, cancer cell differentiation, resistance to anoikis, and epithelial to mesenchymal transition. Hence, it may play a crucial role in the transition of benign to malignant phenotypes, the core of metastasis initiation. Here, we provide a method we have established in our laboratory for detecting lipids in attached and detached non-small lung cancer cells and show how to analyze lipidomics data to find its correlation with autophagy-related pathways.
Collapse
Affiliation(s)
- Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rui Vitorino
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
| | - Arun Surendran
- Mass Spectrometry Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Biniam Kidane
- Department of Surgery, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, Poland.
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
11
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
12
|
Wang S, Yin J, Liu Z, Liu X, Tian G, Xin X, Qin Y, Feng X. Metabolic disorders, inter-organ crosstalk, and inflammation in the progression of metabolic dysfunction-associated steatotic liver disease. Life Sci 2024; 359:123211. [PMID: 39491769 DOI: 10.1016/j.lfs.2024.123211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a global health concern, affecting over 30 % of adults. It is a principal driver in the development of cirrhosis and hepatocellular carcinoma. The complex pathogenesis of MASLD involves an excessive accumulation of lipids, subsequently disrupting lipid metabolism and prompting inflammation within the liver. This review synthesizes the recent research progress in understanding the mechanisms contributing to MASLD progression, with particular emphasis on metabolic disorders and interorgan crosstalk. We highlight the molecular mechanisms linked to these factors and explore their potential as novel targets for pharmacological intervention. The insights gleaned from this article have important implications for both the prevention and therapeutic management of MASLD.
Collapse
Affiliation(s)
- Shendong Wang
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Xijian Xin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yiming Qin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
13
|
Zhang C, Ji J, Du X, Zhang L, Song Y, Wang Y, Jiang Y, Li K, Chang T. Atg5-deficient mesenchymal stem cells protect against non-alcoholic fatty liver by accelerating hepatocyte growth factor secretion. Cell Commun Signal 2024; 22:579. [PMID: 39627775 PMCID: PMC11613616 DOI: 10.1186/s12964-024-01950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/17/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND/AIMS Mesenchymal stem cells (MSCs) have shown promising therapeutic potential in treating liver diseases, such as non-alcoholic fatty liver disease (NAFLD). Genetic modification has been employed to enhance the characteristics of MSCs for more effective disease treatment. Here, we present findings on human adipose-derived MSCs with Atg5 deficiency, investigating their therapeutic impact and the associated mechanisms in NAFLD. METHODS In vitro, lentiviral transduction was employed to downregulate Atg5 or HGF in human adipose-derived MSCs using short hairpin RNA (shRNA). Subsequently, experiments were conducted to evaluate cell senescence, proliferation, cell cycle, apoptosis, and other pertinent aspects. In vivo, a non-alcoholic fatty liver mouse model was established by feeding them a high-fat diet (HFD), and the effects of MSCs transplantation were assessed through serological, biochemical, and pathological analyses. RESULTS Our research findings indicate that Atg5-deficient MSCs display heightened proliferative activity. Subsequent co-culturing of MSCs with hepatocytes and the transplantation of Atg5-deficient MSCs into NAFLD mouse models demonstrated their ability to effectively reduce lipid accumulation in the NAFLD disease model by modulating the AMPKα/mTOR/S6K/Srebp1 pathway. Furthermore, we observed that Atg5 deficiency enhances the secretion of hepatocyte growth factor (HGF) by promoting recycling endosome (RE) production. Lastly, our study revealed that 3-MA-primed MSCs can improve the characteristics of NAFLD by boosting the secretion of HGF. CONCLUSIONS Our research findings suggest that Atg5-deficient MSCs protect against NAFLD by accelerating HGF secretion. This indicates that Atg5 gene-modified MSCs may represent a promising strategy for treating NAFLD.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China.
| | - Juanjuan Ji
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Xuefang Du
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Lanfang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Yaxuan Song
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Yuyu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou , Henan, 450000, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Tingmin Chang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China.
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China.
| |
Collapse
|
14
|
Jun I, Choi YJ, Kim BR, Lee HK, Seo KY, Kim TI. Activation of the mTOR pathway enhances PPARγ/SREBP-mediated lipid synthesis in human meibomian gland epithelial cells. Sci Rep 2024; 14:28118. [PMID: 39548144 PMCID: PMC11568304 DOI: 10.1038/s41598-024-73969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
The involvement of the mechanistic targets of rapamycin (mTOR) pathway in lipid metabolism has been recently elucidated. However, its specific role in the Meibomian gland, where lipid metabolism is significant, remains not fully understood. We investigated the role of mTOR signaling system in the lipogenesis and differentiation of human meibomian gland epithelial cells (HMGECs). Treatment of HMGECs with rapamycin resulted in a reduction in lipid synthesis and the expression of PPARγ and SREBP-1, the major regulators of lipid synthesis. The phosphorylation of p70S6kinase and AKT, which are downstream signals of mTOR complexes 1 and 2, respectively, decreased following rapamycin treatment. In addition, when both mTOR complex 1 and 2 were suppressed using siRNA, there was a significant reduction in the expression of PPARγ and SREBP-1, along with a decrease in lipid synthesis in HMGECs. Our findings suggest that inhibiting the mTOR pathway diminishes the differentiation and adipogenesis of meibomian gland epithelial cells, and both mTOR complexes 1 and 2 appear to play a role in this activity.
Collapse
Affiliation(s)
- Ikhyun Jun
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Young Joon Choi
- Department of Ophthalmology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Bo-Rahm Kim
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyung Keun Lee
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung Yul Seo
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae-Im Kim
- Department of Ophthalmology, The Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Ophthalmology, Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Material Science and Engineering, Yonsei University, Seoul, South Korea.
- Affilate Faculty, Material Research Center for Batteries, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
| |
Collapse
|
15
|
Jung HJ, Kim HA, Hyun M, Lee JY, Kim YJ, Suh SI, Jo EK, Baek WK, Kim JK. Inhibiting lipid droplet biogenesis enhances host protection against hypervirulent Klebsiella pneumoniae infections. Med Microbiol Immunol 2024; 213:26. [PMID: 39541006 PMCID: PMC11564241 DOI: 10.1007/s00430-024-00807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp), an emerging Kp subtype, has become a serious global pathogen. However, the information regarding host interactions and innate immune responses during hvKp infection is limited. Here, we found that hvKp clinical strains increased triacylglycerol synthesis, resulting in lipid droplets (LDs) formation via the mammalian target of rapamycin signaling pathway in RAW264.7 cells. Treatment with rapamycin, an inhibitor of this pathway, affected LDs formation and antimicrobial responses against clinical hvKp infections. In accordance with the role of LDs in modulating inflammation, the pharmacological inhibition of lipogenesis reduced proinflammatory cytokine expression during hvKp infections. In addition, inhibition of LDs formation using pharmacological inhibitors and knockdown of lipogenesis regulators decreased the intracellular survival of hvKp in macrophages. Moreover, inhibiting LDs biogenesis reduced mortality, weight loss, and bacterial loads in hvKp-infected mice. Collectively, these data suggest that LDs biogenesis is crucial in linking host immune responses to clinical hvKp infections.
Collapse
Affiliation(s)
- Hui-Jung Jung
- Department of Microbiology, Keimyung University School of Medicine, Daegu, 42601, Korea
| | - Hyun Ah Kim
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, 42601, Korea
| | - Miri Hyun
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, 42601, Korea
| | - Ji Yeon Lee
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, 42601, Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Seong-Il Suh
- Department of Microbiology, Keimyung University School of Medicine, Daegu, 42601, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, 42601, Korea.
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, 42601, Korea.
| |
Collapse
|
16
|
Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24908-24927. [PMID: 39480905 PMCID: PMC11565747 DOI: 10.1021/acs.jafc.4c07756] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Ancient humans used dietary plants and herbs to treat disease and to pursue eternal life. Today, phytochemicals in dietary plants and herbs have been shown to be the active ingredients, some of which have antiaging and longevity-promoting effects. Here, we summarize 210 antiaging phytochemicals in dietary plants and herbs, systematically classify them into 8 groups. We found that all groups of phytochemicals can be categorized into six areas that regulate organism longevity: ROS levels, nutrient sensing network, mitochondria, autophagy, gut microbiota, and lipid metabolism. We review the role of these processes in aging and the molecular mechanism of the health benefits through phytochemical-mediated regulation. Among these, how phytochemicals promote longevity through the gut microbiota and lipid metabolism is rarely highlighted in the field. Our understanding of the mechanisms of phytochemicals based on the above six aspects may provide a theoretical basis for the further development of antiaging drugs and new insights into the promotion of human longevity.
Collapse
Affiliation(s)
- Yu Wang
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin Ma
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
17
|
Stachowicz A, Czepiel K, Wiśniewska A, Stachyra K, Ulatowska-Białas M, Kuśnierz-Cabala B, Surmiak M, Majka G, Kuś K, Wood ME, Torregrossa R, Whiteman M, Olszanecki R. Mitochondria-targeted hydrogen sulfide donor reduces fatty liver and obesity in mice fed a high fat diet by inhibiting de novo lipogenesis and inflammation via mTOR/SREBP-1 and NF-κB signaling pathways. Pharmacol Res 2024; 209:107428. [PMID: 39303773 DOI: 10.1016/j.phrs.2024.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Metabolic diseases that include obesity and metabolic-associated fatty liver disease (MAFLD) are a rapidly growing worldwide public health problem. The pathogenesis of MAFLD includes abnormally increased lipogenesis, chronic inflammation, and mitochondrial dysfunction. Mounting evidence suggests that hydrogen sulfide (H2S) is an important player in the liver, regulating lipid metabolism and mitochondrial function. However, direct delivery of H2S to mitochondria has not been investigated as a therapeutic strategy in obesity-related metabolic disorders. Therefore, our aim was to comprehensively evaluate the influence of prolonged treatment with a mitochondria sulfide delivery molecule (AP39) on the development of fatty liver and obesity in a high fat diet (HFD) fed mice. Our results demonstrated that AP39 reduced hepatic steatosis in HFD-fed mice, which was corresponded with decreased triglyceride content. Furthermore, treatment with AP39 downregulated pathways related to biosynthesis of unsaturated fatty acids, lipoprotein assembly and PPAR signaling. It also led to a decrease in hepatic de novo lipogenesis by downregulating mTOR/SREBP-1/SCD1 pathway. Moreover, AP39 administration alleviated obesity in HFD-fed mice, which was reflected by reduced weight of mice and adipose tissue, decreased leptin levels in the plasma and upregulated expression of adipose triglyceride lipase in epididymal white adipose tissue (eWAT). Finally, AP39 reduced inflammation in the liver and eWAT measured as the expression of proinflammatory markers (Il1b, Il6, Tnf, Mcp1), which was due to downregulated mTOR/NF-κB pathway. Taken together, mitochondria-targeted sulfide delivery molecules could potentially provide a novel therapeutic approach to the treatment/prevention of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
| | - Klaudia Czepiel
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Wiśniewska
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Kamila Stachyra
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Ulatowska-Białas
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Beata Kuśnierz-Cabala
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- II Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Majka
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Kuś
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mark E Wood
- School of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
18
|
Liu X, Wang Y, Wang Y, Cui H, Zhao G, Guo Y, Wen J. Effect of myristic acid supplementation on triglyceride synthesis and related genes in the pectoral muscles of broiler chickens. Poult Sci 2024; 103:104038. [PMID: 39079330 PMCID: PMC11340564 DOI: 10.1016/j.psj.2024.104038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 08/25/2024] Open
Abstract
Fatty acids (FAs) can serve as energy for poultry, maintain normal cell structure and function, and support a healthy immune system. Although the addition of polyunsaturated fatty acids (PUFAs) to the diet has been extensively studied and reported, the mechanism of action of saturated fatty acids (SFAs) remains to be elucidated. We investigated the effect of 0.04% dietary myristic acid (MA) on slaughter performance, lipid components, tissue FAs, and the transcriptome profile in chickens. The results showed that dietary MA had no effect on slaughter performance (body weight, carcass weight, eviscerated weight, and pectoral muscle weight) (P > 0.05). Dietary MA enrichment increased MA (P < 0.001) and triglycerides (TGs) (P < 0.01) levels in the pectoral muscle. The levels of palmitic acid, linoleic acid (LA), arachidonic acid (AA), SFAs, monounsaturated fatty acids (MUFAs), and PUFAs were significantly higher (P < 0.01) in the MA supplementation group compared to the control group. However, there were no significant differences in the ratios of PUFA/SFA and n6/omega-3 (n3) between the two groups. The MA content was positively correlated with the contents of palmitic acid, LA, linolenic acid (ALA), n3, n6, SFAs, and unsaturated fatty acids (UFA). DHCR24, which is known to be involved in steroid metabolism and cholesterol biosynthesis pathways, was found to be a significantly lower in the MA supplementation group compared to the control group (P < 0.05, log2(fold change) = -0.85). Five overlapping co-expressed genes were identified at the intersection between the differential expressed genes and Weighted Gene Co‑expression Network Analysis-derived hub genes associated with MA phenotype, namely BHLHE40, MSL1, PLAGL1, SRSF4, and ENSGALG00000026875. For the TG phenotype, a total of 28 genes were identified, including CHKA, KLF5, TGIF1, etc. Both sets included the gene PLAGL1, which has a negative correlation with the levels of MA and TG. This study provides valuable information to further understand the regulation of gene expression patterns by dietary supplementation with MA and examines at the molecular level the phenotypic changes induced by supplementation with MA.
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanke Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yidong Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Huanxian Cui
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jie Wen
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China.
| |
Collapse
|
19
|
Jonker PB, Muir A. Metabolic ripple effects - deciphering how lipid metabolism in cancer interfaces with the tumor microenvironment. Dis Model Mech 2024; 17:dmm050814. [PMID: 39284708 PMCID: PMC11423921 DOI: 10.1242/dmm.050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Cancer cells require a constant supply of lipids. Lipids are a diverse class of hydrophobic molecules that are essential for cellular homeostasis, growth and survival, and energy production. How tumors acquire lipids is under intensive investigation, as these mechanisms could provide attractive therapeutic targets for cancer. Cellular lipid metabolism is tightly regulated and responsive to environmental stimuli. Thus, lipid metabolism in cancer is heavily influenced by the tumor microenvironment. In this Review, we outline the mechanisms by which the tumor microenvironment determines the metabolic pathways used by tumors to acquire lipids. We also discuss emerging literature that reveals that lipid availability in the tumor microenvironment influences many metabolic pathways in cancers, including those not traditionally associated with lipid biology. Thus, metabolic changes instigated by the tumor microenvironment have 'ripple' effects throughout the densely interconnected metabolic network of cancer cells. Given the interconnectedness of tumor metabolism, we also discuss new tools and approaches to identify the lipid metabolic requirements of cancer cells in the tumor microenvironment and characterize how these requirements influence other aspects of tumor metabolism.
Collapse
Affiliation(s)
- Patrick B Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Elahi LS, Condro MC, Kawaguchi R, Qin Y, Alvarado AG, Gruender B, Qi H, Li T, Lai A, Castro MG, Lowenstein PR, Garrett MC, Kornblum HI. Valproic acid targets IDH1 mutants through alteration of lipid metabolism. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:20. [PMID: 39149696 PMCID: PMC11321993 DOI: 10.1038/s44324-024-00021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Histone deacetylases (HDACs) have a wide range of targets and can rewire both the chromatin and lipidome of cancer cells. In this study, we show that valproic acid (VPA), a brain penetrant anti-seizure medication and histone deacetylase inhibitor, inhibits the growth of IDH1 mutant tumors in vivo and in vitro, with at least some selectivity over IDH1 wild-type tumors. Surprisingly, genes upregulated by VPA showed no enhanced chromatin accessibility at the promoter, but there was a correlation between VPA-downregulated genes and diminished promoter chromatin accessibility. VPA inhibited the transcription of lipogenic genes and these lipogenic genes showed significant decreases in promoter chromatin accessibility only in the IDH1 MT glioma cell lines tested. VPA inhibited the mTOR pathway and a key lipogenic gene, fatty acid synthase (FASN). Both VPA and a selective FASN inhibitor TVB-2640 rewired the lipidome and promoted apoptosis in an IDH1 MT but not in an IDH1 WT glioma cell line. We further find that HDACs are involved in the regulation of lipogenic genes and HDAC6 is particularly important for the regulation of FASN in IDH1 MT glioma. Finally, we show that FASN knockdown alone and VPA in combination with FASN knockdown significantly improved the survival of mice in an IDH1 MT primary orthotopic xenograft model in vivo. We conclude that targeting fatty acid metabolism through HDAC inhibition and/or FASN inhibition may be a novel therapeutic opportunity in IDH1 mutant gliomas.
Collapse
Affiliation(s)
- Lubayna S. Elahi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Michael C. Condro
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Yue Qin
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Alvaro G. Alvarado
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Brandon Gruender
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Haocheng Qi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| | - Maria G. Castro
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, Department of Cell and Developmental Biology, and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI USA
| | | | - Harley I. Kornblum
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA USA
| |
Collapse
|
21
|
Zhang L, Kan C, Shi J, Qiu H, Zhang J, Ding W, Xu L, Zhang K, Guo Z, Hou N, Sun X, Han F. Sestrin2 knockout exacerbates high-fat diet induced metabolic disorders and complications in female mice. Nutr Metab (Lond) 2024; 21:60. [PMID: 39095887 PMCID: PMC11295554 DOI: 10.1186/s12986-024-00834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/27/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Obesity and its associated complications raise significant public concern, revealing gender disparities in the susceptibility to metabolic disorders, with females often displaying greater resistance to obesity-related metabolic disorder than males. Sestrin2 is a crucial protein involved in metabolism and energy balance. This study seeks to explore whether Sesn2 knockout (KO) exacerbates high-fat diet (HFD) induced obesity in female mice. METHODS Female mice with wild-type (WT) and Sesn2 KO were subjected to a 12-week regimen of normal diet or HFD. Using a Body Composition Analyzer, body composition was gauged. Biochemical assays encompassed glucose, lipid, and liver function measurements, alongside 24-hour urine albumin excretion. Echocardiographic evaluation assessed cardiac function. Histopathological analysis of key metabolic tissues (liver, kidney, and heart tissues) were conducted. Western blotting or qRT-PCR evaluated key proteins and genes linked to inflammation, mitochondrial, and lipid metabolism in adipose tissues. RESULTS In comparison to mice fed a regular diet, those on a HFD exhibited significant increases in body weight and fat mass. Notably, Sesn2 KO further aggravated obesity, showcasing the most pronounced metabolic anomalies: elevated body weight, fat mass, impaired glucose tolerance, and insulin sensitivity, alongside heightened levels of free fatty acids and triglycerides. Additionally, KO-HFD mice displayed exacerbated multi-tissue impairments, including elevated hepatic enzymes, increased urinary albumin excretion, compromised cardiac function, and accumulation of lipids in the liver, kidney, and heart. Moreover, adipose tissue showcased altered lipid dynamics and function, characterized by enhanced triglyceride breakdown and modified adipokine levels. Browning was diminished, along with decreased Pgc1α and Sirt1 in KO-HFD mice. CONCLUSION Sesn2 KO exacerbates HFD-induced obesity and metabolic disorders in female mice. These findings underscore Sestrin2's novel role as a regulator of obesity in female mice.
Collapse
Affiliation(s)
- Le Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Wenli Ding
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Linfei Xu
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261031, China.
| |
Collapse
|
22
|
Wang X, Liu Y, Zhou Y, Li M, Mo T, Xu X, Chen Z, Zhang Y, Yang L. mTORC2 knockdown mediates lipid metabolism to alleviate hyperlipidemic pancreatitis through PPARα. J Biochem Mol Toxicol 2024; 38:e23802. [PMID: 39132808 DOI: 10.1002/jbt.23802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Hyperlipidemic pancreatitis (HP) is an inflammatory injury of the pancreas triggered by elevated serum triglyceride (TG) levels. The mechanistic target of rapamycin (mTOR) signaling pathway plays a crucial role in regulating lipid homeostasis and inflammation. This study aimed to investigate whether the activity of mTOR complex 2 (mTORC2) affects the progression of HP and its underlying mechanisms. In vivo, a high-fat diet and retrograde administration of sodium taurocholate were employed to establish the HP models in rats, with pancreatic tissue pathology evaluated. The expression of Rictor and peroxisome proliferator-activator receptor (PPAR) was examined. The serum levels of TG, fatty acid metabolites, inflammatory and lipid metabolism-related factors were determined. In vitro, pancreatic acinar cells (PACs) were exposed to palmitic acid and cholecystokinin-8. PAC apoptosis, pyroptosis, and ferroptosis were assessed. In the HP models, rats and PACs exhibited upregulated Rictor and downregulated PPARα, and Rictor knockdown promoted PPARα expression. In vivo, Rictor knockdown decreased the serum levels of TG, α-amylase, total cholesterol, low-density lipoprotein cholesterol, lactate dehydrogenase, and inflammatory factors, while increasing high-density lipoprotein cholesterol levels. Rictor knockdown increased ACOX1 and CPT1α and decreased SREBP-1, CD36, SCD1, ACLY, and ACACA. Rictor knockdown reduced damage to pancreatic tissue structure. In vitro, Rictor knockdown inhibited PAC apoptosis, pyroptosis, and ferroptosis. Treatment with the PPARα antagonist GW6471 abolished the beneficial effects of Rictor knockdown. Rictor/mTORC2 deficiency reduces serum TG levels, maintains lipid homeostasis, and suppresses inflammation by inhibiting PPARα expression. Weakening mTORC2 activity holds promise as a novel therapeutic strategy for HP.
Collapse
Affiliation(s)
- Xiangyang Wang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yilei Liu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yaxiong Zhou
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Min Li
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tingting Mo
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhiyuan Chen
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yu Zhang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Li Yang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
23
|
Vo N, Zhang Q, Sung HK. From fasting to fat reshaping: exploring the molecular pathways of intermittent fasting-induced adipose tissue remodeling. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13062. [PMID: 39104461 PMCID: PMC11298356 DOI: 10.3389/jpps.2024.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
Obesity, characterised by excessive fat accumulation, is a complex chronic condition that results from dysfunctional adipose tissue expansion due to prolonged calorie surplus. This leads to rapid adipocyte enlargement that exceeds the support capacity of the surrounding neurovascular network, resulting in increased hypoxia, inflammation, and insulin resistance. Intermittent fasting (IF), a dietary regimen that cycles between periods of fasting and eating, has emerged as an effective strategy to combat obesity and improve metabolic homeostasis by promoting healthy adipose tissue remodeling. However, the precise molecular and cellular mechanisms behind the metabolic improvements and remodeling of white adipose tissue (WAT) driven by IF remain elusive. This review aims to summarise and discuss the relationship between IF and adipose tissue remodeling and explore the potential mechanisms through which IF induces alterations in WAT. This includes several key structural changes, including angiogenesis and sympathetic innervation of WAT. We will also discuss the involvement of key signalling pathways, such as PI3K, SIRT, mTOR, and AMPK, which potentially play a crucial role in IF-mediated metabolic adaptations.
Collapse
Affiliation(s)
- Nathaniel Vo
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qiwei Zhang
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Tessmann JW, Deng P, Durham J, Li C, Banerjee M, Wang Q, Goettl RA, He D, Wang C, Lee EY, Evers BM, Hennig B, Zaytseva YY. Perfluorooctanesulfonic acid exposure leads to downregulation of 3-hydroxy-3-methylglutaryl-CoA synthase 2 expression and upregulation of markers associated with intestinal carcinogenesis in mouse intestinal tissues. CHEMOSPHERE 2024; 359:142332. [PMID: 38754493 PMCID: PMC11157449 DOI: 10.1016/j.chemosphere.2024.142332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a widely recognized environment pollutant known for its high bioaccumulation potential and a long elimination half-life. Several studies have shown that PFOS can alter multiple biological pathways and negatively affect human health. Considering the direct exposure to the gastrointestinal (GI) tract to environmental pollutants, PFOS can potentially disrupt intestinal homeostasis. However, there is limited knowledge about the effect of PFOS exposure on normal intestinal tissues, and its contribution to GI-associated diseases remains to be determined. In this study, we examined the effect of PFOS exposure on the gene expression profile of intestinal tissues of C57BL/6 mice using RNAseq analysis. We found that PFOS exposure in drinking water significantly downregulates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme, in intestinal tissues of mice. We found that diets containing the soluble fibers inulin and pectin, which are known to be protective against PFOS exposure, were ineffective in reversing the downregulation of HMGCS2 expression in vivo. Analysis of intestinal tissues also demonstrated that PFOS exposure leads to upregulation of proteins implicated in colorectal carcinogenesis, including β-catenin, c-MYC, mTOR and FASN. Consistent with the in vivo results, PFOS exposure leads to downregulation of HMGCS2 in mouse and human normal intestinal organoids in vitro. Furthermore, we show that shRNA-mediated knockdown of HMGCS2 in a human normal intestinal cell line resulted in increased cell proliferation and upregulation of key proliferation-associated proteins such as cyclin D, survivin, ERK1/2 and AKT, along with an increase in lipid accumulation. In summary, our results suggest that PFOS exposure may contribute to pathological changes in normal intestinal cells via downregulation of HMGCS2 expression and upregulation of pro-carcinogenic signaling pathways that may increase the risk of colorectal cancer development.
Collapse
Affiliation(s)
- Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Jerika Durham
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Chang Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Moumita Banerjee
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Ryan A Goettl
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA.
| | - Daheng He
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA.
| | - Chi Wang
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA.
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Bernhard Hennig
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40536, USA.
| | - Yekaterina Y Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
25
|
Gao G, Zhao J, Ding J, Liu S, Shen Y, Liu C, Ma H, Fu Y, Xu J, Sun Y, Zhang X, Zhang Z, Xie Z. Alisol B regulates AMPK/mTOR/SREBPs via directly targeting VDAC1 to alleviate hyperlipidemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155313. [PMID: 38520833 DOI: 10.1016/j.phymed.2023.155313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/03/2023] [Accepted: 12/25/2023] [Indexed: 03/25/2024]
Abstract
BACKGROUND The occurrence of hyperlipidemia is significantly influenced by lipid synthesis, which is regulated by sterol regulatory element binding proteins (SREBPs), thus the development of drugs that inhibit lipid synthesis has become a popular treatment strategy for hyperlipidemia. Alisol B (ALB), a triterpenoid compound extracted from Alisma, has been reported to ameliorate no-nalcoholic steatohepatitis (NASH) and slow obesity. However, the effect of ALB on hyperlipidemia and mechanism are unclear. PURPOSE To examine the therapeutic impact of ALB on hyperlipidemia whether it inhibits SREBPs to reduce lipid synthesis. STUDY DESIGN HepG2, HL7702 cells, and C57BL/6J mice were used to explore the effect of ALB on hyperlipidemia and the molecular mechanism in vivo and in vitro. METHODS Hyperlipidemia models were established using western diet (WD)-fed mice in vivo and oleic acid (OA)-induced hepatocytes in vitro. Western blot, real-time PCR and other biological methods verified that ALB regulated AMPK/mTOR/SREBPs to inhibit lipid synthesis. Cellular thermal shift assay (CETSA), molecular dynamics (MD), and ultrafiltration-LC/MS analysis were used to evaluate the binding of ALB to voltage-dependent anion channel protein-1 (VDAC1). RESULTS ALB decreased TC, TG, LDL-c, and increased HDL-c in blood, thereby ameliorating liver damage. Gene set enrichment analysis (GSEA) indicated that ALB inhibited the biosynthesis of cholesterol and fatty acids. Consistently, ALB inhibited the protein expression of n-SREBPs and downstream genes. Mechanistically, the impact of ALB on SREBPs was dependent on the regulation of AMPK/mTOR, thereby impeding the transportation of SREBPs from endoplasmic reticulum (ER) to golgi apparatus (GA). Further investigations indicated that the activation of AMPK by ALB was independent on classical upstream CAMKK2 and LKB1. Instead, ALB resulted in a decrease in ATP levels and an increase in the ratios of ADP/ATP and AMP/ATP. CETSA, MD, and ultrafiltration-LC/MS analysis indicated that ALB interacted with VDAC1. Molecular docking revealed that ALB directly bound to VDAC1 by forming hydrogen bonds at the amino acid sites S196 and H184 in the ATP-binding region. Importantly, the thermal stabilization of ALB on VDAC1 was compromised when VDAC1 was mutated at S196 and H184, suggesting that these amino acids played a crucial role in the interaction. CONCLUSION Our findings reveal that VDAC1 serves as the target of ALB, leading to the inhibition of lipid synthesis, presents potential target and candidate drugs for hyperlipidemia.
Collapse
Affiliation(s)
- Gai Gao
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Jie Zhao
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Jing Ding
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Shuyan Liu
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yanyan Shen
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Changxin Liu
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Huifen Ma
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yu Fu
- College of pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China
| | - Yiran Sun
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Xiaowei Zhang
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| | - Zhishen Xie
- Collaborative Innovation Center of Research and Development on the whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| |
Collapse
|
26
|
Ni M, Yue Z, Tian M, Luo X, Wang W, Shi H, Luo J, Deng L, Li C. Leucine-Mediated SLC7A5 Promotes Milk Protein and Milk Fat Synthesis through mTOR Signaling Pathway in Goat Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13728-13739. [PMID: 38807030 PMCID: PMC11192034 DOI: 10.1021/acs.jafc.4c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The SLC7A5 gene encodes a Na+ and pH-independent transporter protein that regulates cell growth by regulating the uptake of AA. This study, utilizing RNA-seq, aimed to explore the effect of SLC7A5 on the synthesis of milk proteins and fats in goat mammary epithelial cells (GMECs) through gene interference and overexpression techniques. The results demonstrated that the overexpression of SLC7A5 resulted in a significant increase in the expression of CSN1S1, SCD, CEBPB, ACACA, αS1-casein, p-S6K, and p-S6. The levels of p-S6K and p-S6 gradually increased as the AA/Leu stimulation time lengthened. The overexpression of SLC7A5 rescued the role of Torin1 in GMECs. In conclusion, SLC7A5 plays a crucial role in promoting the synthesis of milk proteins and milk fats through the mTOR signaling pathway in GMECs, providing a theoretical foundation for improving the quality of goat milk.
Collapse
Affiliation(s)
- Mengke Ni
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Ziting Yue
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Min Tian
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Xinran Luo
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Wanting Wang
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Huaiping Shi
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Jun Luo
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Lu Deng
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| | - Cong Li
- College of Animal Science
and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
27
|
Samy AM, Kandeil MA, Sabry D, Abdel-Ghany A, Mahmoud MO. From NAFLD to NASH: Understanding the spectrum of non-alcoholic liver diseases and their consequences. Heliyon 2024; 10:e30387. [PMID: 38737288 PMCID: PMC11088336 DOI: 10.1016/j.heliyon.2024.e30387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most frequent chronic liver diseases worldwide in recent decades. Metabolic diseases like excessive blood glucose, central obesity, dyslipidemia, hypertension, and liver function abnormalities cause NAFLD. NAFLD significantly increases the likelihood of liver cancer, heart disease, and mortality, making it a leading cause of liver transplants. Non-alcoholic steatohepatitis (NASH) is a more advanced form of the disease that causes scarring and inflammation of the liver over time and can ultimately result in cirrhosis and hepatocellular carcinoma. In this review, we briefly discuss NAFLD's pathogenic mechanisms, their progression into NASH and afterward to NASH-related cirrhosis. It also covers disease epidemiology, metabolic mechanisms, glucose and lipid metabolism in the liver, macrophage dysfunction, bile acid toxicity, and liver stellate cell stimulation. Additionally, we consider the contribution of intestinal microbiota, genetics, epigenetics, and ecological factors to fibrosis progression and hepatocellular carcinoma risk in NAFLD and NASH patients.
Collapse
Affiliation(s)
- Ahmed M. Samy
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Mohamed A. Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Cairo 11829, Egypt
| | - A.A. Abdel-Ghany
- Department of Biochemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assuit Branch, Egypt
| | - Mohamed O. Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
28
|
Zeng Y, Li Y, Jiang W, Hou N. Molecular mechanisms of metabolic dysregulation in diabetic cardiomyopathy. Front Cardiovasc Med 2024; 11:1375400. [PMID: 38596692 PMCID: PMC11003275 DOI: 10.3389/fcvm.2024.1375400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious complications of diabetes mellitus, has become recognized as a cardiometabolic disease. In normoxic conditions, the majority of the ATP production (>95%) required for heart beating comes from mitochondrial oxidative phosphorylation of fatty acids (FAs) and glucose, with the remaining portion coming from a variety of sources, including fructose, lactate, ketone bodies (KB) and branched chain amino acids (BCAA). Increased FA intake and decreased utilization of glucose and lactic acid were observed in the diabetic hearts of animal models and diabetic patients. Moreover, the polyol pathway is activated, and fructose metabolism is enhanced. The use of ketones as energy sources in human diabetic hearts also increases significantly. Furthermore, elevated BCAA levels and impaired BCAA metabolism were observed in the hearts of diabetic mice and patients. The shift in energy substrate preference in diabetic hearts results in increased oxygen consumption and impaired oxidative phosphorylation, leading to diabetic cardiomyopathy. However, the precise mechanisms by which impaired myocardial metabolic alterations result in diabetes mellitus cardiac disease are not fully understood. Therefore, this review focuses on the molecular mechanisms involved in alterations of myocardial energy metabolism. It not only adds more molecular targets for the diagnosis and treatment, but also provides an experimental foundation for screening novel therapeutic agents for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yue Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Wenyue Jiang
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
29
|
Dong J, Xu Q, Qian C, Wang L, DiSciullo A, Lei J, Lei H, Yan S, Wang J, Jin N, Xiong Y, Zhang J, Burd I, Wang X. Fetal growth restriction exhibits various mTOR signaling in different regions of mouse placentas with altered lipid metabolism. Cell Biol Toxicol 2024; 40:15. [PMID: 38451382 PMCID: PMC10920423 DOI: 10.1007/s10565-024-09855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy and can have significant impact on obstetric and neonatal outcomes. Increasing evidence has shown that the inhibited mechanistic target of rapamycin (mTOR) signaling in placenta is associated with FGR. However, interpretation of existing research is limited due to inconsistent methodologies and varying understanding of the mechanism by which mTOR activity contributes to FGR. Hereby, we have demonstrated that different anatomic regions of human and mouse placentas exhibited different levels of mTOR activity in normal compared to FGR pregnancies. When using the rapamycin-induced FGR mouse model, we found that placentas of FGR pregnancies exhibited abnormal morphological changes and reduced mTOR activity in the decidual-junctional layer. Using transcriptomics and lipidomics, we revealed that lipid and energy metabolism was significantly disrupted in the placentas of FGR mice. Finally, we demonstrated that maternal physical exercise during gestation in our FGR mouse model was associated with increased fetal and placental weight as well as increased placental mTOR activity and lipid metabolism. Collectively, our data indicate that the inhibited placental mTOR signaling contributes to FGR with altered lipid metabolism in mouse placentas, and maternal exercise could be an effective method to reduce the occurrence of FGR or alleviate the adverse outcomes associated with FGR.
Collapse
Affiliation(s)
- Jie Dong
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China.
| | - Qian Xu
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Chenxi Qian
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Lu Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Alison DiSciullo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, 22 S. Greene Street, Suite P6H302, Baltimore, MD, 21201, USA
| | - Jun Lei
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, 22 S. Greene Street, Suite P6H302, Baltimore, MD, 21201, USA
| | - Hui Lei
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Song Yan
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Jingjing Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Ni Jin
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Yujing Xiong
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China
| | - Jianhua Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, 22 S. Greene Street, Suite P6H302, Baltimore, MD, 21201, USA.
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, NO. 569, Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
30
|
Arikawa LM, Mota LFM, Schmidt PI, Frezarim GB, Fonseca LFS, Magalhães AFB, Silva DA, Carvalheiro R, Chardulo LAL, Albuquerque LGD. Genome-wide scans identify biological and metabolic pathways regulating carcass and meat quality traits in beef cattle. Meat Sci 2024; 209:109402. [PMID: 38056170 DOI: 10.1016/j.meatsci.2023.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Genome association studies (GWAS) provides knowledge about the genetic architecture of beef-related traits that allow linking the target phenotype to genomic information aiding breeding decision. Thus, the present study aims to uncover the genetic mechanism involved in carcass (REA: rib eye area, BF: backfat thickness, and HCW: hot carcass weight) and meat quality traits (SF: shear-force, MARB: marbling score, and IMF: intramuscular fat content) in Nellore cattle. For this, 6910 young bulls with phenotypic information and 23,859 animals genotyped with 435 k markers were used to perform the weighted single-step GBLUP (WssGBLUP) approach, considering two iterations. The top 10 genomic regions explained 8.13, 11.81, and 9.58% of the additive genetic variance, harboring a total of 119, 143, and 95 positional candidate genes for REA, BF, and HCW, respectively. For meat quality traits, the top 10 windows explained a large proportion of the total genetic variance for SF (14.95%), MARB (17.56%), and IMF (21.41%) surrounding 92, 155, and 111 candidate genes, respectively. Relevant candidate genes (CAST, PLAG1, XKR4, PLAGL2, AQP3/AQP7, MYLK2, WWOX, CARTPT, and PLA2G16) are related to physiological aspects affecting growth, carcass, meat quality, feed intake, and reproductive traits by signaling pathways controlling muscle control, key signal metabolic molecules INS / IGF-1 pathway, lipid metabolism, and adipose tissue development. The GWAS results provided insights into the genetic control of the traits studied and the genes found are potential candidates to be used in the improvement of carcass and meat quality traits.
Collapse
Affiliation(s)
- Leonardo Machestropa Arikawa
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil.
| | - Lucio Flavio Macedo Mota
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Patrícia Iana Schmidt
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Gabriela Bonfá Frezarim
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Larissa Fernanda Simielli Fonseca
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Ana Fabrícia Braga Magalhães
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Jequitinhonha and Mucuri Valleys, Department of Animal Science, Rod. MG 367, Diamantina, MG 39100-000, Brazil
| | - Delvan Alves Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Viçosa, Department of Animal Science, Av. PH Rolfs, Viçosa, MG 36570-900, Brazil
| | - Roberto Carvalheiro
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Luis Artur Loyola Chardulo
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil
| | - Lucia Galvão de Albuquerque
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil.
| |
Collapse
|
31
|
Wang T, Zhao C, Zhang J, Li S, Zhang Y, Gong Y, Zhou Y, Yan L, Zhang S, Zhang Z, Hu H, Liu A, Bai X, Zou Z. Whitening of brown adipose tissue inhibits osteogenic differentiation via secretion of S100A8/A9. iScience 2024; 27:108857. [PMID: 38303710 PMCID: PMC10830855 DOI: 10.1016/j.isci.2024.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
The mechanism by which brown adipose tissue (BAT) regulates bone metabolism is unclear. Here, we reveal that BAT secretes S100A8/A9, a previously unidentified BAT adipokine (batokine), to impair bone formation. Brown adipocytes-specific knockout of Rheb (RhebBAD KO), the upstream activator of mTOR, causes BAT malfunction to inhibit osteogenesis. Rheb depletion induces NF-κB dependent S100A8/A9 secretion from brown adipocytes, but not from macrophages. In wild-type mice, age-related Rheb downregulation in BAT is associated with enhanced S100A8/A9 secretion. Either batokines from RhebBAD KO mice, or recombinant S100A8/A9, inhibits osteoblast differentiation of mesenchymal stem cells in vitro by targeting toll-like receptor 4 on their surfaces. Conversely, S100A8/A9 neutralization not only rescues the osteogenesis repressed in the RhebBAD KO mice, but also alleviates age-related osteoporosis in wild-type mice. Collectively, our data revealed an unexpected BAT-bone crosstalk driven by Rheb-S100A8/A9, uncovering S100A8/A9 as a promising target for the treatment, and potentially, prevention of osteoporosis.
Collapse
Affiliation(s)
- Ting Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chaoran Zhao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahuan Zhang
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shengfa Li
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Youming Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Gong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yingyue Zhou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lei Yan
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopadics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongling Hu
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, China
| | - Anling Liu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Zou
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
32
|
Zhang M, Zhang Q, Zhao W, Chen X, Zhang Y. The mechanism of blood coagulation induced by sodium dehydroacetate via the regulation of the mTOR/ERK pathway in rats. Toxicol Lett 2024; 392:1-11. [PMID: 38103582 DOI: 10.1016/j.toxlet.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Sodium dehydroacetate (DHA-S), a potent antifungal and antibacterial agent, is widely used in food, feed and cosmetics. However, recent studies have shown that DHA-S could pose a risk for human and animal health. We had previously reported that DHA-S could cause coagulation disorders in rats and chicken. In the present study, we further confirmed that DHA-S induced blood coagulation via VKORC1 and VKORC1L1 in rats, and elucidated the role played by mTOR/ERK signaling. The in vivo studies demonstrated that PT, APTT, and DHA-S content and relative protein expressions in tissues rebounded after drug withdrawal. In BRL-3A cells, 1.0 mM DHA-S increased the expression levels of mTOR, p-mTOR and p-ERK and decreased the levels of VKORC1, VKORC1L1 and Vitamin K. Rapamycin significantly decreased the expression levels of p-mTOR and p-ERK, while FR180204 (p-ERK Inhibition) lead to a decrease in p-ERK level. Rapamycin and FR180202 attenuated the inhibitory effect of DHA-S on VKORC1, VKORC1L1 and vitamin K levels. In addition, DHA-S increased the expression levels of mTOR, p-mTOR and p-ERK in male and female rat livers and prolonged PT and APTT. In summary, this study indicated that DHA-S induced blood coagulation via the modulation of the mTOR/ERK pathway in rats.
Collapse
Affiliation(s)
- Meng Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qingqi Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Weiya Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yumei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
33
|
Xie L, Li R, Zhang J, Li H, Gao X, Zhang M. Methionine Promotes Milk Synthesis through the BRCC36-BRG1-mTOR Signaling Axis in Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2135-2144. [PMID: 38240727 DOI: 10.1021/acs.jafc.3c05370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Methionine (Met) functions as a key stimulator on the mTOR signaling pathway and milk synthesis, but the molecular mechanism remains incompletely understood. We investigated the regulatory roles of BRCC36 in Met-stimulated milk lipid and protein synthesis, cell proliferation, and the mTOR signaling pathway. Knockdown of BRCC36 promoted milk lipid and protein synthesis in HC11 cells as well as cell proliferation by increasing the levels of mTOR gene transcription and protein phosphorylation. Conversely, the gene activation of BRCC36 had opposite effects. Furthermore, BRCC36 gene activation completely blocked Met stimulation on the BRG1 protein level and mTOR mRNA level and protein phosphorylation. BRCC36 bound to BRG1, and BRCC36 and BRG1 bound to the same region on the mTOR promoter. BRCC36 inhibited the BRG1 protein level and the binding of BRG1 to the mTOR promoter. Met decreased the BRCC36 protein level, and this effect was significantly attenuated by MG132 but not affected by cycloheximide or chloroquine. We further showed that Met increased BRCC36 ubiquitination degradation. Our findings reveal that Met promotes milk lipid and protein synthesis in MECs through the BRCC36-BRG1-mTOR signaling axis.
Collapse
Affiliation(s)
- Liping Xie
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Rui Li
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Jinlong Zhang
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Heqian Li
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Xuejun Gao
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Minghui Zhang
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| |
Collapse
|
34
|
Qu S, Lin H, Pfeiffer N, Grus FH. Age-Related Macular Degeneration and Mitochondria-Associated Autoantibodies: A Review of the Specific Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1624. [PMID: 38338904 PMCID: PMC10855900 DOI: 10.3390/ijms25031624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Age-related macular degeneration (AMD) is a severe retinal disease that causes irreversible visual loss and blindness in elderly populations worldwide. The pathological mechanism of AMD is complex, involving the interactions of multiple environmental and genetic factors. A poor understanding of the disease leads to limited treatment options and few effective prevention methods. The discovery of autoantibodies in AMD patients provides an opportunity to explore the pathogenesis and treatment direction of the disease. This review focuses on the mitochondria-associated autoantibodies and summarizes the functional roles of mitochondria under physiological conditions and their alterations during the pathological states. Additionally, it discusses the crosstalk between mitochondria and other organelles, as well as the mitochondria-related therapeutic strategies in AMD.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (S.Q.); (H.L.)
| |
Collapse
|
35
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
36
|
Dai X, Li X, Yin D, Chen X, Wang L, Pang L, Fu Y. Identification and characterization of TOR in Macrobrachium rosenbergii and its role in muscle protein and lipid production. Sci Rep 2024; 14:2082. [PMID: 38267514 PMCID: PMC10810085 DOI: 10.1038/s41598-023-50300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
The recent scarcity of fishmeal and other resources means that studies on the intrinsic mechanisms of nutrients in the growth and development of aquatic animals at the molecular level have received widespread attention. The target of rapamycin (TOR) pathway has been reported to receive signals from nutrients and environmental stresses, and regulates cellular anabolism and catabolism to achieve precise regulation of cell growth and physiological activities. In this study, we cloned and characterized the full-length cDNA sequence of the TOR gene of Macrobrachium rosenbergii (MrTOR). MrTOR was expressed in all tissues, with higher expression in heart and muscle tissues. In situ hybridization also indicated that MrTOR was expressed in muscle, mainly around the nucleus. RNA interference decreased the expression levels of MrTOR and downstream protein synthesis-related genes (S6K, eIF4E, and eIF4B) (P < 0.05) and the expression and enzyme activity of the lipid synthesis-related enzyme, fatty acid synthase (FAS), and increased enzyme activity of the lipolysis-related enzyme, lipase (LPS). In addition, amino acid injection significantly increased the transcript levels of MrTOR and downstream related genes (S6K, eIF4E, eIF4B, and FAS), as well as triglyceride and total cholesterol tissue levels and FAS activity. Starvation significantly increased transcript levels and enzyme activities of adenylate-activated protein kinase and LPS and decreased transcript levels and enzyme activities of FAS, as well as transcript levels of MrTOR and its downstream genes (P < 0.05), whereas amino acid injection alleviated the starvation-induced decreases in transcript levels of these genes. These results suggested that arginine and leucine activated the TOR signaling pathway, promoted protein and lipid syntheses, and alleviated the pathway changes induced by starvation.
Collapse
Affiliation(s)
- Xilin Dai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China.
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xuenan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Danhui Yin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Xin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Linwei Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Luyao Pang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai, 201306, China
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
37
|
Karunasumetta C, Tourthong W, Mala R, Chatgasem C, Bubpamala T, Punchai S, Sawanyawisuth K. Comparative Analysis of Metabolomic Responses in On-Pump and Off-Pump Coronary Artery Bypass Grafting. Ann Thorac Cardiovasc Surg 2024; 30:24-00126. [PMID: 39631940 PMCID: PMC11634389 DOI: 10.5761/atcs.oa.24-00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
PURPOSE Although the clinical outcomes of on-pump (ONCAB) and off-pump CABG (OPCAB) are well established, their metabolomic impacts remain underexplored. This study aims to compare the metabolic profiles of ONCAB and OPCAB to identify differential metabolites associated with clinical outcomes. METHODS In a prospective cohort study conducted between January 2023 and September 2023, 100 plasma samples from 20 patients undergoing isolated elective CABG (10 per group) were analyzed. Samples were collected preoperatively and at multiple postoperative time points (Days 0-3) and processed using proton nuclear magnetic resonance (1H-NMR). Advanced statistical modeling was applied to identify differential metabolites. RESULTS No significant differences were found in clinical outcomes, although ONCAB showed higher postoperative CKMB levels. Both procedures induced metabolomic alterations, with ONCAB demonstrating a more substantial impact, particularly on Day 0. Key metabolites, including leucine, succinate, creatine, glucose, and adenine, affected starch and sucrose metabolism. CONCLUSION ONCAB induces more pronounced metabolic shifts immediately postsurgery, involving protein and energy turnover, oxidative stress, and disrupted glucose metabolism, indicative of cellular stress responses. A comprehensive understanding of these metabolic changes is critical for informing targeted interventions and supports the use of OPCAB as a preferred strategy for patients with elevated metabolic risks.
Collapse
Affiliation(s)
- Chananya Karunasumetta
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wijittra Tourthong
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rachata Mala
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chotika Chatgasem
- Khon Kaen University National Phenome Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Theerayut Bubpamala
- Khon Kaen University National Phenome Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Suriya Punchai
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | |
Collapse
|
38
|
Wang C, Chen Z, Yi Y, Ding Y, Xu F, Kang H, Lin K, Shu X, Zhong Z, Zhang Z, Liu J, Xu Z, Liu L, He X, Chang Y, Zhao Q. RBM45 reprograms lipid metabolism promoting hepatocellular carcinoma via Rictor and ACSL1/ACSL4. Oncogene 2024; 43:328-340. [PMID: 38040804 DOI: 10.1038/s41388-023-02902-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Reprogramming of lipid metabolism during hepatocarcinogenesis is not well elucidated. Here, we aimed to explore pivotal RNA-binding motif proteins (RBMs) in lipid metabolism and their therapeutic potential in hepatocellular carcinoma (HCC). Through bioinformatic analysis, we identified RBM45 as a critical gene of interest among differentially expressed RBMs in HCC, with significant prognostic relevance. RBM45 influenced the malignant biological phenotype and lipid metabolism of HCC cells. Mechanically, RBM45 promotes de novo lipogenesis in HCC by directly targeting two key enzymes involved in long-chain fatty acid synthesis, ACSL1 and ACSL4. RBM45 also targets Rictor, which has been demonstrated to modulate lipid metabolism profoundly. RBM45 also aided lipid degradation through activating a key fatty acid β oxidation enzyme, CPT1A. Thus, RBM45 boosted lipid synthesis and decomposition, indicating an enhanced utility of lipid fuels in HCC. Clinically, body mass index was positively correlated with RBM45 in human HCCs. The combination of a PI3K/AKT/mTOR pathway inhibitor in vitro or Sorafenib in orthotopic liver cancer mouse models with shRBM45 has a more significant therapeutic effect on liver cancer than the drug alone. In summary, our findings highlight the versatile roles of RBM45 in lipid metabolism reprogramming and its therapeutic potential in HCC. Lipids induced RBM45 expression. In turn, RBM45 promoted the utility of lipid in HCCs through accelerating both de novo lipogenesis and fatty acid β oxidation, which required the participation of Rictor, a core component of mTORC2 that has been demonstrated to modulate lipid metabolism potently, as well as ACSL1/ACSL4, two key enzymes of long-chain fatty acid synthesis. When the first-line chemotherapy drug sorafenib is combined with a PI3K/AKT/mTOR pathway inhibitor (MK2206 is an AKT inhibitor, rapamycin is a mTOR inhibitor, and inhibiting RBM45 can significantly inhibit Rictor), cell cycle, proliferation, lipid metabolism reprogramming, and hepatocarcinogenesis can be significantly inhibited, while apoptosis can be significantly enhanced.
Collapse
Affiliation(s)
- Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zhihang Chen
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Yang Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Hui Kang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Kun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Xiawen Shu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zibiao Zhong
- Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhonglin Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Xingxing He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
39
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
40
|
Li H, Ma X, Yang R, Mei S, Zhang X, Li X. Identification of ferroptosis-related proteins in ameloblastoma based on proteomics analysis. J Cancer Res Clin Oncol 2023; 149:16717-16727. [PMID: 37725241 DOI: 10.1007/s00432-023-05412-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE We used proteomic sequencing and experimental verification to identify the potential ferroptosis-related proteins in ameloblastoma. METHODS Samples of ameloblastoma (n = 14) and normal gingival tissues (n = 5) were collected for proteomic sequencing to identify differentially expressed proteins (DEPs) in ameloblastoma. Ferroptosis-related genes were downloaded from FerrDb V2, which were then compared with DEPs to obtain ferroptosis-related DEPs (FR-DEPs). A functional enrichment analysis was performed, and a protein-protein interaction network was built. The hub proteins were screened using the Cytoscape software, and potential drugs targeting them were retrieved from the DrugBank database. A hub protein was selected for immunohistochemical validation, and its expression was assessed in ameloblastomas, odontogenic keratocysts, dentigerous cysts, and normal gingival tissues. The primary ameloblastoma cells were cultured to explore the effect of the protein on the migratory properties of the tumour cells. RESULTS A total of 58 FR-DEPs were screened, and six hub proteins were identified: mTOR, NFE2L2, PRKCA, STAT3, EGFR, and CDH1. Immunohistochemical analysis showed that mTOR expression was upregulated in ameloblastomas compared with that in odontogenic keratocysts, dentigerous cysts, and normal gingival tissues. p-mTOR was highly expressed in ameloblastomas, with a positivity rate of 83.3%. In addition, rapamycin, an inhibitor of mTOR, can inhibit the migratory capacity of primary cultured ameloblastoma cells. CONCLUSION Our results revealed the ferroptosis-related proteins in ameloblastomas and their underlying biological processes. Additionally, mTOR was overexpressed and was found to be associated with the aggressiveness of ameloblastomas, which may be a potential target for future treatments.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, China
| | - Xingyue Ma
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, China
| | - Ruisi Yang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, China
| | - Shuang Mei
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, China
| | - Xudong Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, China
| | - Xiangjun Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Shijiazhuang, 050017, China.
| |
Collapse
|
41
|
Yao R, Wang M, Zhao Y, Ji Q, Feng X, Bai L, Bao L, Wang Y, Hao H, Li X, Wang Z. Chlorogenic acid enhances PPARγ-mediated lipogenesis through preventing Lipin 1 nuclear translocation in Staphylococcus aureus-exposed bovine mammary epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159396. [PMID: 37717905 DOI: 10.1016/j.bbalip.2023.159396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Chlorogenic acid (CGA) as one of the most ubiquitously dietary polyphenolic compounds, has been reported to have various antimicrobial effects and exhibit strong anti-inflammatory ability. Staphylococcus aureus is a gram-positive bacterium that can induce mastitis. However, the mechanism through which S. aureus infection affects lipid synthesis and whether CGA have protective effect on S. aureus reduced lipid synthesis is not fully understood. In this study, the internalization of S. aureus reduced intracellular lipid droplet formation, decreased the levels of intracellular triacylglycerol, total cholesterol and 7 types of fatty acid and downregulated the expression of lipogenic genes FAS, ACC, and DGAT1 in bovine mammary epithelial cells (BMECs). In addition, we found that S. aureus intracellular infection attenuated mTORC1 activation resulting in Lipin 1 nuclear localization. Remarkablely, S. aureus infection-mediated repression of lipid synthesis related to the mTORC1 signaling and Lipin 1 nuclear localization can be alleviated by CGA. Thus, our findings provide a novel mechanism by which lipid synthesis is regulated under S. aureus infection and the protective effects of CGA on lipid synthesis in BMECs.
Collapse
Affiliation(s)
- Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Manshulin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yue Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiang Ji
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Hohhot No. 1 High School, Hohhot 010030, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lili Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot 010070, China; Inner Mongolia SaiKexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
42
|
Arora M, Pavlíková Z, Kučera T, Kozlík P, Šopin T, Vacík T, Ľupták M, Duda M, Slanař O, Kutinová Canová N. Pharmacological effects of mTORC1/C2 inhibitor in a preclinical model of NASH progression. Biomed Pharmacother 2023; 167:115447. [PMID: 37683589 DOI: 10.1016/j.biopha.2023.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
Knowledge of the benefits of mTOR inhibition concerning adipogenesis and inflammation has recently encouraged the investigation of a new generation of mTOR inhibitors for non-alcoholic steatohepatitis (NASH). We investigated whether treatment with a specific mTORC1/C2 inhibitor (Ku-0063794; KU) exerted any beneficial impacts on experimentally-induced NASH in vitro and in vivo. The results indicated that KU decreases palmitic acid-induced lipotoxicity in cultivated primary hepatocytes, thus emerging as a successful candidate for testing in an in vivo NASH dietary model, which adopted the intraperitoneal KU dosing route rather than oral application due to its significantly greater bioavailability in mice. The pharmacodynamics experiments commenced with the feeding of male C57BL/6 mice with a high-fat atherogenic western-type diet (WD) for differing intervals over several weeks aimed at inducing various phases of NASH. In addition to the WD, the mice were treated with KU for 3 weeks or 4 months. Acute and chronic KU treatments were observed to be safe at the given concentrations with no toxicity indications in the mice. KU was found to alleviate NASH-related hepatotoxicity, mitochondrial and oxidative stress, and decrease the liver triglyceride content and TNF-α mRNA in at least one set of in vivo experiments. The KU modulated liver expression of selected metabolic and oxidative stress-related genes depended upon the length and severity of the disease. Although KU failed to completely reverse the histological progression of NASH in the mice, we demonstrated the complexity of mTORC1/C2 signaling regulation and suggest a stratified therapeutic management approach throughout the disease course.
Collapse
Affiliation(s)
- Mahak Arora
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zuzana Pavlíková
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Kučera
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tijana Šopin
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomáš Vacík
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Matthias Duda
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Nikolina Kutinová Canová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
43
|
Nagdev PK, Agnivesh PK, Roy A, Sau S, Kalia NP. Exploring and exploiting the host cell autophagy during Mycobacterium tuberculosis infection. Eur J Clin Microbiol Infect Dis 2023; 42:1297-1315. [PMID: 37740791 DOI: 10.1007/s10096-023-04663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is a fatal infectious disease that prevails to be the second leading cause of death from a single infectious agent despite the availability of multiple drugs for treatment. The current treatment regimen involves the combination of several drugs for 6 months that remain ineffective in completely eradicating the infection because of several drawbacks, such as the long duration of treatment and the side effects of drugs causing non-adherence of patients to the treatment regimen. Autophagy is an intracellular degradative process that eliminates pathogens at the early stages of infection. Mycobacterium tuberculosis's unique autophagy-blocking capability makes it challenging to eliminate compared to usual pathogens. The present review discusses recent advances in autophagy-inhibiting factors and mechanisms that could be exploited to identify autophagy-inducing chemotherapeutics that could be used as adjunctive therapy with the existing first-line anti-TB agent to shorten the duration of therapy and enhance cure rates from multidrug-resistant tuberculosis (MDR-TB) and extreme drug-resistant tuberculosis (XDR-TB).
Collapse
Affiliation(s)
- Pavan Kumar Nagdev
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Arnab Roy
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashikanta Sau
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
44
|
Stevenson ER, Smith LC, Wilkinson ML, Lee SJ, Gow AJ. Etiology of lipid-laden macrophages in the lung. Int Immunopharmacol 2023; 123:110719. [PMID: 37595492 PMCID: PMC10734282 DOI: 10.1016/j.intimp.2023.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Uniquely positioned as sentinel cells constantly exposed to the environment, pulmonary macrophages are vital for the maintenance of the lung lining. These cells are responsible for the clearance of xenobiotics, pathogen detection and clearance, and homeostatic functions such as surfactant recycling. Among the spectrum of phenotypes that may be expressed by macrophages in the lung, the pulmonary lipid-laden phenotype is less commonly studied in comparison to its circulatory counterpart, the atherosclerotic lesion-associated foam cell, or the acutely activated inflammatory macrophage. Herein, we propose that lipid-laden macrophage formation in the lung is governed by lipid acquisition, storage, metabolism, and export processes. The cellular balance of these four processes is critical to the maintenance of homeostasis and the prevention of aberrant signaling that may contribute to lung pathologies. This review aims to examine mechanisms and signaling pathways that are involved in lipid-laden macrophage formation and the potential consequences of this phenotype in the lung.
Collapse
Affiliation(s)
- E R Stevenson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - L C Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States; Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT, United States
| | - M L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - S J Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - A J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
45
|
Xi Y, Kim S, Nguyen TTT, Lee PJ, Zheng J, Lin Z, Cho N. 2-Geranyl-1-methoxyerythrabyssin II alleviates lipid accumulation and inflammation in hepatocytes through AMPK activation and AKT inhibition. Arch Pharm Res 2023; 46:808-824. [PMID: 37782374 DOI: 10.1007/s12272-023-01464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
A growing proportion of the global adult and pediatric populations are currently affected by nonalcoholic steatohepatitis (NASH), leading to rising rates of liver fibrosis and hepatocellular carcinoma without effective pharmacotherapy. Here, we investigated whether 2-geranyl-1-methoxyerythrabyssin II (GMET), isolated from Lespedeza bicolor, could alleviate lipid accumulation and inflammatory responses in a NASH model. GMET exhibited potent in vitro and in vivo effects against lipid accumulation and attenuated inflammatory responses without cytotoxicity. Mechanistically, GMET inhibits acetyl-CoA carboxylase (ACC), sterol regulatory element-binding proteins-1c (SREBP1), and mammalian target of rapamycin (mTOR), and activates PPARα by activating AMP-activated kinase (AMPK), leading to the alleviation of lipid accumulation. In addition, GMET suppresses the NF-κB pathway by activating AMPK and inhibiting the activated protein kinase B (AKT)/IκB-kinase (IKK) pathway, leading to the inhibition of the inflammatory response in hepatocytes. All these protective effects of GMET on lipid accumulation and inflammation in vivo and in vitro were largely abolished by co-treatment with dorsomorphin, an AMPK inhibitor. In conclusion, GMET alleviated lipid accumulation and inflammation to preserve normal hepatocyte function in steatohepatitis. Thus, GMET is a novel potential multi-targeting compound to improve steatohepatitis.
Collapse
Affiliation(s)
- Yiyuan Xi
- The Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Soeun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Thi Thanh Thuy Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Phil Jun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Jujia Zheng
- The Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhuofeng Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea.
| |
Collapse
|
46
|
Goikoetxea-Usandizaga N, Bravo M, Egia-Mendikute L, Abecia L, Serrano-Maciá M, Urdinguio RG, Clos-García M, Rodríguez-Agudo R, Araujo-Legido R, López-Bermudo L, Delgado TC, Lachiondo-Ortega S, González-Recio I, Gil-Pitarch C, Peña-Cearra A, Simón J, Benedé-Ubieto R, Ariño S, Herranz JM, Azkargorta M, Salazar-Bermeo J, Martí N, Varela-Rey M, Falcón-Pérez JM, Lorenzo Ó, Nogueiras R, Elortza F, Nevzorova YA, Cubero FJ, Saura D, Martínez-Cruz LA, Sabio G, Palazón A, Sancho-Bru P, Elguezabal N, Fraga MF, Ávila MA, Bataller R, Marín JJ, Martín F, Martínez-Chantar ML. The outcome of boosting mitochondrial activity in alcohol-associated liver disease is organ-dependent. Hepatology 2023; 78:878-895. [PMID: 36745935 PMCID: PMC10442112 DOI: 10.1097/hep.0000000000000303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.
Collapse
Affiliation(s)
- Naroa Goikoetxea-Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Miren Bravo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Immunology, Microbiology and Parasitology Department, Medicine and Nursing Faculty, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Marina Serrano-Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Rocío G. Urdinguio
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Madrid, Spain
| | - Marc Clos-García
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Rubén Rodríguez-Agudo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Raquel Araujo-Legido
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Spain
| | - Lucía López-Bermudo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Spain
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Irene González-Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Clàudia Gil-Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Ainize Peña-Cearra
- Inflammation and Macrophage Plasticity Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jorge Simón
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and ENT Complutense University School of Medicine Madrid Spain
- Gregorio Maraóón Health Research Institute, Madrid, Spain
- Department of Genetics, Physiology and Microbiology. Faculty of Biology. Complutense University of Madrid, Madrid, Spain
| | - Silvia Ariño
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Jose M. Herranz
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- Hepatology Program, Cima-University of Navarra, Navarra, Spain
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Elche, Spain
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Elche, Spain
| | - Marta Varela-Rey
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Juan M. Falcón-Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Óscar Lorenzo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Spain
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Rubén Nogueiras
- Department of Physiology, Research Centre of Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT Complutense University School of Medicine Madrid Spain
- Gregorio Maraóón Health Research Institute, Madrid, Spain
- Department of Internal Medicine III, University Hospital RWTH Aachen, Germany
| | - Francisco J. Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT Complutense University School of Medicine Madrid Spain
- Gregorio Maraóón Health Research Institute, Madrid, Spain
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE). Edificio Torregaitán, Universidad Miguel Hernández de Elche (UMH), Elche, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Madrid, Spain
| | - Asís Palazón
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Pau Sancho-Bru
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Natalia Elguezabal
- Animal Health Department, NEIKER-BRTA-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Mario F. Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain
- Health Research Institute of Asturias (ISPA), Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Madrid, Spain
| | - Matías A. Ávila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
- Hepatology Program, Cima-University of Navarra, Navarra, Spain
| | - Ramón Bataller
- Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, North Carolina, USA
- Department of Gastroenterology and Hepatology, Division of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - José J.G. Marín
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Franz Martín
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERdem), Spain
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| |
Collapse
|
47
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
48
|
Ran H, Li C, Zhang M, Zhong J, Wang H. Neglected PTM in Animal Adipogenesis: E3-mediated Ubiquitination. Gene 2023:147574. [PMID: 37336271 DOI: 10.1016/j.gene.2023.147574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Ubiquitination is a widespread post-transcriptional modification (PTM) that occurs during protein degradation in eukaryotes and participates in almost all physiological and pathological processes, including animal adipogenesis. Ubiquitination is a cascade reaction regulated by the activating enzyme E1, conjugating enzyme E2, and ligase E3. Several recent studies have reported that E3 ligases play important regulatory roles in adipogenesis. However, as a key influencing factor for the recognition and connection between the substrate and ubiquitin during ubiquitination, its regulatory role in adipogenesis has not received adequate attention. In this review, we summarize the E3s' regulation and modification targets in animal adipogenesis, explain the regulatory mechanisms in lipogenic-related pathways, and further analyze the existing positive results to provide research directions of guiding significance for further studies on the regulatory mechanisms of E3s in animal adipogenesis.
Collapse
Affiliation(s)
- Hongbiao Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Chunyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
49
|
Eldridge RC, Qin ZS, Saba NF, Houser MC, Hayes DN, Miller AH, Bruner DW, Jones DP, Xiao C. Unsupervised Hierarchical Clustering of Head and Neck Cancer Patients by Pre-Treatment Plasma Metabolomics Creates Prognostic Metabolic Subtypes. Cancers (Basel) 2023; 15:3184. [PMID: 37370794 PMCID: PMC10296258 DOI: 10.3390/cancers15123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
There is growing evidence that the metabolism is deeply intertwined with head and neck squamous cell carcinoma (HNSCC) progression and survival but little is known about circulating metabolite patterns and their clinical potential. We performed unsupervised hierarchical clustering of 209 HNSCC patients via pre-treatment plasma metabolomics to identify metabolic subtypes. We annotated the subtypes via pathway enrichment analysis and investigated their association with overall and progression-free survival. We stratified the survival analyses by smoking history. High-resolution metabolomics extracted 186 laboratory-confirmed metabolites. The optimal model created two patient clusters, of subtypes A and B, corresponding to 41% and 59% of the study population, respectively. Fatty acid biosynthesis, acetyl-CoA transport, arginine and proline, as well as the galactose metabolism pathways differentiated the subtypes. Relative to subtype B, subtype A patients experienced significantly worse overall and progression-free survival but only among ever-smokers. The estimated three-year overall survival was 61% for subtype A and 86% for subtype B; log-rank p = 0.001. The association with survival was independent of HPV status and other HNSCC risk factors (adjusted hazard ratio = 3.58, 95% CI: 1.46, 8.78). Our findings suggest that a non-invasive metabolomic biomarker would add crucial information to clinical risk stratification and raise translational research questions about testing such a biomarker in clinical trials.
Collapse
Affiliation(s)
- Ronald C. Eldridge
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (M.C.H.); (D.W.B.); (C.X.)
| | - Zhaohui S. Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - Nabil F. Saba
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA;
| | - Madelyn C. Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (M.C.H.); (D.W.B.); (C.X.)
| | - D. Neil Hayes
- Department of Medicine, UT/West Institute for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Andrew H. Miller
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Deborah W. Bruner
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (M.C.H.); (D.W.B.); (C.X.)
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Canhua Xiao
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (M.C.H.); (D.W.B.); (C.X.)
| |
Collapse
|
50
|
Zhang SY, Gao H, Askar A, Li XP, Zhang GC, Jing TZ, Zou H, Guan H, Zhao YH, Zou CS. Steroid hormone 20-hydroxyecdysone disturbs fat body lipid metabolism and negatively regulates gluconeogenesis in Hyphantria cunea larvae. INSECT SCIENCE 2023; 30:771-788. [PMID: 36342157 DOI: 10.1111/1744-7917.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/15/2023]
Abstract
The steroid hormone 20-hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E-induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effect of 20E on lipid metabolism and gluconeogenesis in the fat body of Hyphantria cunea larvae, a notorious pest in forestry. Lipidomics analysis showed that a total of 1 907 lipid species were identified in the fat body of H. cunea larvae assigned to 6 groups and 48 lipid classes. The differentially abundant lipids analysis showed a significant difference between 20E-treated and control samples, indicating that 20E caused a remarkable alteration of lipidomics profiles in the fat body of H. cunea larvae. Further studies demonstrated that 20E accelerated fatty acid β-oxidation, inhibited lipid synthesis, and promoted lipolysis. Meanwhile, the activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase were dramatically suppressed by 20E in the fat body of H. cunea larvae. As well, the transcriptions of genes encoding these 4 rate-limiting gluconeogenic enzymes were significantly downregulated in the fat body of H. cunea larvae after treatment with 20E. Taken together, our results revealed that 20E disturbed fat body lipid homeostasis, accelerated fatty acid β-oxidation and promoted lipolysis, but negatively regulated gluconeogenesis in H. cunea larvae. The findings might provide a new insight into hormonal regulation of glucose and lipid metabolism in insect fat body.
Collapse
Affiliation(s)
- Sheng-Yu Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Han Gao
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Ankarjan Askar
- School of Forestry, Northeast Forestry University, Harbin, China
| | | | - Guo-Cai Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Tian-Zhong Jing
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Hao Guan
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yun-He Zhao
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Chuan-Shan Zou
- School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|