1
|
Bertinat R, Holyoak T, Gatica R, Jara N, González-Chavarría I, Westermeier F. The neglected PCK1/glucagon (inter)action in nutrient homeostasis beyond gluconeogenesis: Disease pathogenesis and treatment. Mol Metab 2025; 94:102112. [PMID: 39954782 PMCID: PMC11909762 DOI: 10.1016/j.molmet.2025.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Glucagon plays a central role in hepatic adaptation during fasting, with the upregulation of hepatic phosphoenolpyruvate carboxykinase 1 (PCK1) traditionally associated with increased gluconeogenesis. However, recent experimental models and clinical studies have challenged this view, suggesting a more complex interplay between PCK1 and glucagon, which extends beyond gluconeogenesis and has broader implications for metabolic regulation in health and disease. SCOPE OF REVIEW This review provides a comprehensive overview of the current evidence on the multifaceted roles of PCK1 in glucagon-dependent hepatic adaptation during fasting, which is crucial for maintaining systemic homeostasis not only of glucose, but also of lipids and amino acids. We explore the relationship between PCK1 deficiency and glucagon resistance in metabolic disorders, including inherited PCK1 deficiency and metabolic dysfunction-associated steatotic liver disease (MASLD), and compare findings from experimental animal models with whole-body or tissue-specific ablation of PCK1 or the glucagon receptor. We propose new research platforms to advance the therapeutic potential of targeting PCK1 in metabolic diseases. MAJOR CONCLUSIONS We propose that hepatic PCK1 deficiency might be an acquired metabolic disorder linking alterations in lipid metabolism with impaired glucagon signaling. Our findings highlight interesting links between glycerol, PCK1 deficiency, elevated plasma alanine levels and glucagon resistance. We conclude that the roles of PCK1 and glucagon in metabolic regulation are more complex than previously assumed. In this (un)expected scenario, hepatic PCK1 deficiency and glucagon resistance appear to exert limited control over glycemia, but have broader metabolic effects related to lipid and amino acid dysregulation. Given the shift in glucagon research from receptor inhibition to activation, we propose that a similar paradigm shift is needed in the study of hepatic PCK1. Understanding PCK1 expression and activity in the glucagon-dependent hepatic adaptation to fasting might provide new perspectives and therapeutic opportunities for metabolic diseases.
Collapse
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA-BIO BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile; Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile.
| | - Todd Holyoak
- Department of Biology, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Rodrigo Gatica
- Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Nery Jara
- Departamento de Farmacología, Universidad de Concepción, Concepción, Chile
| | - Iván González-Chavarría
- Laboratorio de Lipoproteínas y Cáncer, Departamento de Fisiopatología, Universidad de Concepción, Concepción, Chile
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH JOANNEUM University of Applied Sciences, Graz, Austria; Centro de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
2
|
Yu S, Liu X, Xu Y, Pan L, Zhang Y, Li Y, Dong S, Tu D, Sun Y, Zhang Y, Zhou Z, Liang X, Huang Y, Chu J, Tu S, Liu C, Chen H, Chen W, Ge M, Zhang Q. m 6 A-mediated gluconeogenic enzyme PCK1 upregulation protects against hepatic ischemia-reperfusion injury. Hepatology 2025; 81:94-110. [PMID: 38085830 DOI: 10.1097/hep.0000000000000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND AIMS Ischemia-reperfusion (I/R) injury frequently occurs during liver surgery, representing a major reason for liver failure and graft dysfunction after operation. The metabolic shift from oxidative phosphorylation to glycolysis during ischemia increased glucose consumption and accelerated lactate production. We speculate that donor livers will initiate gluconeogenesis, the reverse process of glycolysis in theory, to convert noncarbohydrate carbon substrates (including lactate) to glucose to reduce the loss of hepatocellular energy and foster glycogen storage for use in the early postoperative period, thus improving post-transplant graft function. APPROACH AND RESULTS By analyzing human liver specimens before and after hepatic I/R injury, we found that the rate-limiting enzyme of gluconeogenesis, PCK1, was significantly induced during liver I/R injury. Mouse models with liver I/R operation and hepatocytes treated with hypoxia/reoxygenation confirmed upregulation of PCK1 during I/R stimulation. Notably, high PCK1 level in human post-I/R liver specimens was closely correlated with better outcomes of liver transplantation. However, blocking gluconeogenesis with PCK1 inhibitor aggravated hepatic I/R injury by decreasing glucose level and deepening lactate accumulation, while overexpressing PCK1 did the opposite. Further mechanistic study showed that methyltransferase 3-mediated RNA N6-methyladinosine modification contributes to PCK1 upregulation during hepatic I/R injury, and hepatic-specific knockout of methyltransferase 3 deteriorates liver I/R injury through reducing the N6-methyladinosine deposition on PCK1 transcript and decreasing PCK1 mRNA export and expression level. CONCLUSIONS Our study found that activation of the methyltransferase 3/N6-methyladinosine-PCK1-gluconeogenesis axis is required to protect against hepatic I/R injury, providing potential intervention approaches for alleviating hepatic I/R injury during liver surgery.
Collapse
Affiliation(s)
- Shanshan Yu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Liu
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijie Pan
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihan Zhang
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanli Li
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuai Dong
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Tu
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuetong Sun
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiwang Zhang
- Department of Pathology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuowei Zhou
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqi Liang
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiju Huang
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajie Chu
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Silin Tu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaxin Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Chen
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mian Ge
- Department of Anesthesiology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Biotherapy Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Centre, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Lane AN, Higashi RM, Fan TWM. Challenges of Spatially Resolved Metabolism in Cancer Research. Metabolites 2024; 14:383. [PMID: 39057706 PMCID: PMC11278851 DOI: 10.3390/metabo14070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Stable isotope-resolved metabolomics comprises a critical set of technologies that can be applied to a wide variety of systems, from isolated cells to whole organisms, to define metabolic pathway usage and responses to perturbations such as drugs or mutations, as well as providing the basis for flux analysis. As the diversity of stable isotope-enriched compounds is very high, and with newer approaches to multiplexing, the coverage of metabolism is now very extensive. However, as the complexity of the model increases, including more kinds of interacting cell types and interorgan communication, the analytical complexity also increases. Further, as studies move further into spatially resolved biology, new technical problems have to be overcome owing to the small number of analytes present in the confines of a single cell or cell compartment. Here, we review the overall goals and solutions made possible by stable isotope tracing and their applications to models of increasing complexity. Finally, we discuss progress and outstanding difficulties in high-resolution spatially resolved tracer-based metabolic studies.
Collapse
Affiliation(s)
- Andrew N. Lane
- Department of Toxicology and Cancer Biology and Markey Cancer Center, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA; (R.M.H.); (T.W.-M.F.)
| | | | | |
Collapse
|
4
|
Estes SK, Shiota C, O'Brien TP, Printz RL, Shiota M. The impact of glucagon to support postabsorptive glucose flux and glycemia in healthy rats and its attenuation in male Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 2024; 326:E308-E325. [PMID: 38265288 PMCID: PMC11193518 DOI: 10.1152/ajpendo.00192.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Hyperglucagonemia is a hallmark of type 2 diabetes (T2DM), yet the role of elevated plasma glucagon (P-GCG) to promote excessive postabsorptive glucose production and contribute to hyperglycemia in patients with this disease remains debatable. We investigated the acute action of P-GCG to safeguard/support postabsorptive endogenous glucose production (EGP) and euglycemia in healthy Zucker control lean (ZCL) rats. Using male Zucker diabetic fatty (ZDF) rats that exhibit the typical metabolic disorders of human T2DM, such as excessive EGP, hyperglycemia, hyperinsulinemia, and hyperglucagonemia, we examined the ability of hyperglucagonemia to promote greater rates of postabsorptive EGP and hyperglycemia. Euglycemic or hyperglycemic basal insulin (INS-BC) and glucagon (GCG-BC) clamps were performed in the absence or during an acute setting of glucagon deficiency (GCG-DF, ∼10% of basal), either alone or in combination with insulin deficiency (INS-DF, ∼10% of basal). Glucose appearance, disappearance, and cycling rates were measured using [2-3H] and [3-3H]-glucose. In ZCL rats, GCG-DF reduced the levels of hepatic cyclic AMP, EGP, and plasma glucose (PG) by 50%, 32%, and 50%, respectively. EGP fell in the presence GCG-DF and INS-BC, but under GCG-DF and INS-DF, EGP and PG increased two- and threefold, respectively. GCG-DF revealed the hyperglucagonemia present in ZDF rats lacked the ability to regulate hepatic intracellular cyclic AMP levels and glucose flux, since EGP and PG levels fell by only 10%. We conclude that the liver in T2DM suffers from resistance to all three major regulatory factors, glucagon, insulin, and glucose, thus leading to a loss of metabolic flexibility.NEW & NOTEWORTHY In postabsorptive state, basal plasma insulin (P-INS) and plasma glucose (PG) act dominantly to increase hepatic glucose cycling and reduce endogenous glucose production (EGP) and PG in healthy rats, which is only counteracted by the acute action of basal plasma glucagon (P-GCG) to support EGP and euglycemia. Hyperglucagonemia, a hallmark of type 2 diabetes (T2DM) present in Zucker diabetic fatty (ZDF) rats, is not the primary mediator of hyperglycemia and high EGP as commonly thought; instead, the liver is resistant to glucagon as well as insulin and glucose.
Collapse
Affiliation(s)
- Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Richard L Printz
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Abstract
The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Melissa Inigo
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Stanisław Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
6
|
LaBarre JL, Singer K, Burant CF. Advantages of Studying the Metabolome in Response to Mixed-Macronutrient Challenges and Suggestions for Future Research Designs. J Nutr 2021; 151:2868-2881. [PMID: 34255076 PMCID: PMC8681069 DOI: 10.1093/jn/nxab223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
Evaluating the postprandial response to a dietary challenge containing all macronutrients-carbohydrates, lipids, and protein-may provide stronger insights of metabolic health than a fasted measurement. Metabolomic profiling deepens the understanding of the homeostatic and adaptive response to a dietary challenge by classifying multiple metabolic pathways and biomarkers. A total of 26 articles were identified that measure the human blood metabolome or lipidome response to a mixed-macronutrient challenge. Most studies were cross-sectional, exploring the baseline and postprandial response to the dietary challenge. Large variations in study designs were reported, including the macronutrient and caloric composition of the challenge and the delivery of the challenge as a liquid shake or a solid meal. Most studies utilized a targeted metabolomics platform, assessing only a particular metabolic pathway, however, several studies utilized global metabolomics and lipidomics assays demonstrating the expansive postprandial response of the metabolome. The postprandial response of individual amino acids was largely dependent on the amino acid composition of the test meal, with the exception of alanine and proline, 2 nonessential amino acids. Long-chain fatty acids and unsaturated long-chain acylcarnitines rapidly decreased in response to the dietary challenges, representing the switch from fat to carbohydrate oxidation. Studies were reviewed that assessed the metabolome response in the context of obesity and metabolic diseases, providing insight on how weight status and disease influence the ability to cope with a nutrient load and return to homeostasis. Results demonstrate that the flexibility to respond to a substrate load is influenced by obesity and metabolic disease and flexibility alterations will be evident in downstream metabolites of fat, carbohydrate, and protein metabolism. In response, we propose suggestions for standardization between studies with the potential of creating a study exploring the postprandial response to a multitude of challenges with a variety of macronutrients.
Collapse
Affiliation(s)
| | - Kanakadurga Singer
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles F Burant
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Rahim M, Hasenour CM, Bednarski TK, Hughey CC, Wasserman DH, Young JD. Multitissue 2H/13C flux analysis reveals reciprocal upregulation of renal gluconeogenesis in hepatic PEPCK-C-knockout mice. JCI Insight 2021; 6:e149278. [PMID: 34156032 PMCID: PMC8262479 DOI: 10.1172/jci.insight.149278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The liver is the major source of glucose production during fasting under normal physiological conditions. However, the kidney may also contribute to maintaining glucose homeostasis in certain circumstances. To test the ability of the kidney to compensate for impaired hepatic glucose production in vivo, we developed a stable isotope approach to simultaneously quantify gluconeogenic and oxidative metabolic fluxes in the liver and kidney. Hepatic gluconeogenesis from phosphoenolpyruvate was disrupted via liver-specific knockout of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C; KO). 2H/13C isotopes were infused in fasted KO and WT littermate mice, and fluxes were estimated from isotopic measurements of tissue and plasma metabolites using a multicompartment metabolic model. Hepatic gluconeogenesis and glucose production were reduced in KO mice, yet whole-body glucose production and arterial glucose were unaffected. Glucose homeostasis was maintained by a compensatory rise in renal glucose production and gluconeogenesis. Renal oxidative metabolic fluxes of KO mice increased to sustain the energetic and metabolic demands of elevated gluconeogenesis. These results show the reciprocity of the liver and kidney in maintaining glucose homeostasis by coordinated regulation of gluconeogenic flux through PEPCK-C. Combining stable isotopes with mathematical modeling provides a versatile platform to assess multitissue metabolism in various genetic, pathophysiological, physiological, and pharmacological settings.
Collapse
Affiliation(s)
- Mohsin Rahim
- Department of Chemical and Biomolecular Engineering and
| | | | | | - Curtis C Hughey
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering and.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Abstract
"Omics"-based analyses are widely used in numerous areas of research, advances in instrumentation (both hardware and software) allow investigators to collect a wealth of data and therein characterize metabolic systems. Although analyses generally examine differences in absolute or relative (fold-) changes in concentrations, the ability to extract mechanistic insight would benefit from the use of isotopic tracers. Herein, we discuss important concepts that should be considered when stable isotope tracers are used to capture biochemical flux. Special attention is placed on in vivo systems, however, many of the general ideas have immediate impact on studies in cellular models or isolated-perfused tissues. While it is somewhat trivial to administer labeled precursor molecules and measure the enrichment of downstream products, the ability to make correct interpretations can be challenging. We will outline several critical factors that may influence choices when developing and/or applying a stable isotope tracer method. For example, is there a "best" tracer for a given study? How do I administer a tracer? When do I collect my sample(s)? While these questions may seem straightforward, we will present scenarios that can have dramatic effects on conclusions surrounding apparent rates of metabolic activity.
Collapse
Affiliation(s)
- Stephen F Previs
- Department of Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA.
| | - Daniel P Downes
- Department of Chemistry, Merck & Co., Inc., Kenilworth, NJ, USA
| |
Collapse
|
9
|
Species-Specific Glucose-6-Phosphatase Activity in the Small Intestine-Studies in Three Different Mammalian Models. Int J Mol Sci 2019; 20:ijms20205039. [PMID: 31614497 PMCID: PMC6829527 DOI: 10.3390/ijms20205039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Besides the liver, which has always been considered the major source of endogenous glucose production in all post-absorptive situations, kidneys and intestines can also produce glucose in blood, particularly during fasting and under protein feeding. However, observations gained in different experimental animals have given ambiguous results concerning the presence of the glucose-6-phosphatase system in the small intestine. The aim of this study was to better define the species-related differences of this putative gluconeogenic organ in glucose homeostasis. The components of the glucose-6-phosphatase system (i.e., glucose-6-phosphate transporter and glucose-6-phosphatase itself) were analyzed in homogenates or microsomal fractions prepared from the small intestine mucosae and liver of rats, guinea pigs, and humans. Protein and mRNA levels, as well as glucose-6-phosphatase activities, were detected. The results showed that the glucose-6-phosphatase system is poorly represented in the small intestine of rats; on the other hand, significant expressions of glucose-6-phosphate transporter and of the glucose-6-phosphatase were found in the small intestine of guinea pigs and homo sapiens. The activity of the recently described fructose-6-phosphate transporter–intraluminal hexose isomerase pathway was also present in intestinal microsomes from these two species. The results demonstrate that the gluconeogenic role of the small intestine is highly species-specific and presumably dependent on feeding behavior (e.g., fructose consumption) and the actual state of metabolism.
Collapse
|
10
|
Liu H, Pfirrmann T. The Gid-complex: an emerging player in the ubiquitin ligase league. Biol Chem 2019; 400:1429-1441. [DOI: 10.1515/hsz-2019-0139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
Abstract
The Saccharomyces cerevisiae Gid-complex is a highly evolutionary conserved ubiquitin ligase with at least seven protein subunits. Here, we review our knowledge about the yeast Gid-complex as an important regulator of glucose metabolism, specifically targeting key enzymes of gluconeogenesis for degradation. Furthermore, we summarize existing data about the individual subunits, the topology and possible substrate recognition mechanisms and compare the striking similarities, but also differences, between the yeast complex and its vertebrate counterpart. Present data is summarized to give an overview about cellular processes regulated by the vertebrate GID-complex that range from cell cycle regulation, primary cilia function to the regulation of energy homeostasis. In conclusion, the vertebrate GID-complex evolved as a versatile ubiquitin ligase complex with functions beyond the regulation of glucose metabolism.
Collapse
Affiliation(s)
- Huaize Liu
- Martin Luther University Halle-Wittenberg , Institute of Physiological Chemistry , Hollystr. 1 , D-06114 Halle , Germany
| | - Thorsten Pfirrmann
- Martin Luther University Halle-Wittenberg , Institute of Physiological Chemistry , Hollystr. 1 , D-06114 Halle , Germany
| |
Collapse
|
11
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Potts A, Uchida A, Deja S, Berglund ED, Kucejova B, Duarte JA, Fu X, Browning JD, Magnuson MA, Burgess SC. Cytosolic phosphoenolpyruvate carboxykinase as a cataplerotic pathway in the small intestine. Am J Physiol Gastrointest Liver Physiol 2018; 315:G249-G258. [PMID: 29631378 PMCID: PMC6139646 DOI: 10.1152/ajpgi.00039.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PEPCK) is a gluconeogenic enzyme that is highly expressed in the liver and kidney but is also expressed at lower levels in a variety of other tissues where it may play adjunct roles in fatty acid esterification, amino acid metabolism, and/or TCA cycle function. PEPCK is expressed in the enterocytes of the small intestine, but it is unclear whether it supports a gluconeogenic rate sufficient to affect glucose homeostasis. To examine potential roles of intestinal PEPCK, we generated an intestinal PEPCK knockout mouse. Deletion of intestinal PEPCK ablated ex vivo gluconeogenesis but did not significantly affect glycemia in chow, high-fat diet, or streptozotocin-treated mice. In contrast, postprandial triglyceride secretion from the intestine was attenuated in vivo, consistent with a role in fatty acid esterification. Intestinal amino acid profiles and 13C tracer appearance into these pools were significantly altered, indicating abnormal amino acid trafficking through the enterocyte. The data suggest that the predominant role of PEPCK in the small intestine of mice is not gluconeogenesis but rather to support nutrient processing, particularly with regard to lipids and amino acids. NEW & NOTEWORTHY The small intestine expresses gluconeogenic enzymes for unknown reasons. In addition to glucose synthesis, the nascent steps of this pathway can be used to support amino acid and lipid metabolisms. When phosphoenolpyruvate carboxykinase, an essential gluconeogenic enzyme, is knocked out of the small intestine of mice, glycemia is unaffected, but mice inefficiently absorb dietary lipid, have abnormal amino acid profiles, and inefficiently catabolize glutamine. Therefore, the initial steps of intestinal gluconeogenesis are used for processing dietary triglycerides and metabolizing amino acids but are not essential for maintaining blood glucose levels.
Collapse
Affiliation(s)
- Austin Potts
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aki Uchida
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stanislaw Deja
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Eric D. Berglund
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Blanka Kucejova
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joao A. Duarte
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaorong Fu
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey D. Browning
- 3Department of Clinical Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark A. Magnuson
- 5Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shawn C. Burgess
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas,4Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
13
|
Lampert F, Stafa D, Goga A, Soste MV, Gilberto S, Olieric N, Picotti P, Stoffel M, Peter M. The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation. eLife 2018; 7:35528. [PMID: 29911972 PMCID: PMC6037477 DOI: 10.7554/elife.35528] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022] Open
Abstract
In yeast, the glucose-induced degradation-deficient (GID) E3 ligase selectively degrades superfluous gluconeogenic enzymes. Here, we identified all subunits of the mammalian GID/CTLH complex and provide a comprehensive map of its hierarchical organization and step-wise assembly. Biochemical reconstitution demonstrates that the mammalian complex possesses inherent E3 ubiquitin ligase activity, using Ube2H as its cognate E2. Deletions of multiple GID subunits compromise cell proliferation, and this defect is accompanied by deregulation of critical cell cycle markers such as the retinoblastoma (Rb) tumor suppressor, phospho-Histone H3 and Cyclin A. We identify the negative regulator of pro-proliferative genes Hbp1 as a bonafide GID/CTLH proteolytic substrate. Indeed, Hbp1 accumulates in cells lacking GID/CTLH activity, and Hbp1 physically interacts and is ubiquitinated in vitro by reconstituted GID/CTLH complexes. Our biochemical and cellular analysis thus demonstrates that the GID/CTLH complex prevents cell cycle exit in G1, at least in part by degrading Hbp1.
Collapse
Affiliation(s)
| | - Diana Stafa
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Algera Goga
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | | | | | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
14
|
Predicting the murine enterocyte metabolic response to diets that differ in lipid and carbohydrate composition. Sci Rep 2017; 7:8784. [PMID: 28821741 PMCID: PMC5562867 DOI: 10.1038/s41598-017-07350-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 11/09/2022] Open
Abstract
The small intestine serves as gatekeeper at the interface between body and diet and is thought to play an important role in the etiology of obesity and associated metabolic disorders. A computational modelling approach was used to improve our understanding of the metabolic responses of epithelial cells to different diets. A constraint based, mouse-specific enterocyte metabolic model (named mmu_ENT717) was constructed to describe the impact of four fully characterized semi-purified diets, that differed in lipid and carbohydrate composition, on uptake, metabolism, as well as secretion of carbohydrates and lipids. Our simulation results predicted luminal sodium as a limiting factor for active glucose absorption; necessity of apical localization of glucose transporter GLUT2 for absorption of all glucose in the postprandial state; potential for gluconeogenesis in enterocytes; and the requirement of oxygen for the formation of endogenous cholesterol needed for chylomicron formation under luminal cholesterol-free conditions. In addition, for a number of enzymopathies related to intestinal carbohydrate and lipid metabolism it was found that their effects might be ameliorated through dietary interventions. In conclusion, our improved enterocyte-specific model was shown to be a suitable platform to study effects of dietary interventions on enterocyte metabolism, and provided novel and deeper insights into enterocyte metabolism.
Collapse
|
15
|
Abstract
Intestinal gluconeogenesis is a recently identified function influencing energy homeostasis. Intestinal gluconeogenesis induced by specific nutrients releases glucose, which is sensed by the nervous system surrounding the portal vein. This initiates a signal positively influencing parameters involved in glucose control and energy management controlled by the brain. This knowledge has extended our vision of the gut-brain axis, classically ascribed to gastrointestinal hormones. Our work raises several questions relating to the conditions under which intestinal gluconeogenesis proceeds and may provide its metabolic benefits. It also leads to questions on the advantage conferred by its conservation through a process of natural selection.
Collapse
Affiliation(s)
- Maud Soty
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France.
| |
Collapse
|
16
|
Bian XL, Chen HZ, Yang PB, Li YP, Zhang FN, Zhang JY, Wang WJ, Zhao WX, Zhang S, Chen QT, Zheng Y, Sun XY, Wang XM, Chien KY, Wu Q. Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation. Nat Commun 2017; 8:14420. [PMID: 28240261 PMCID: PMC5333363 DOI: 10.1038/ncomms14420] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Gluconeogenesis, an essential metabolic process for hepatocytes, is downregulated in hepatocellular carcinoma (HCC). Here we show that the nuclear receptor Nur77 is a tumour suppressor for HCC that regulates gluconeogenesis. Low Nur77 expression in clinical HCC samples correlates with poor prognosis, and a Nur77 deficiency in mice promotes HCC development. Nur77 interacts with phosphoenolpyruvate carboxykinase (PEPCK1), the rate-limiting enzyme in gluconeogenesis, to increase gluconeogenesis and suppress glycolysis, resulting in ATP depletion and cell growth arrest. However, PEPCK1 becomes labile after sumoylation and is degraded via ubiquitination, which is augmented by the p300 acetylation of ubiquitin-conjugating enzyme 9 (Ubc9). Although Nur77 attenuates sumoylation and stabilizes PEPCK1 via impairing p300 activity and preventing the Ubc9-PEPCK1 interaction, Nur77 is silenced in HCC samples due to Snail-mediated DNA methylation of the Nur77 promoter. Our study reveals a unique mechanism to suppress HCC by switching from glycolysis to gluconeogenesis through Nur77 antagonism of PEPCK1 degradation.
Collapse
MESH Headings
- Acetylation
- Animals
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Down-Regulation/genetics
- E1A-Associated p300 Protein/metabolism
- Enzyme Stability
- Gene Expression Regulation, Neoplastic
- Gluconeogenesis
- Glucose/metabolism
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Methylation
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phosphoenolpyruvate Carboxykinase (ATP)/metabolism
- Proteolysis
- Snail Family Transcription Factors/metabolism
- Sumoylation
- Tumor Suppressor Proteins/metabolism
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitin-Conjugating Enzyme UBC9
Collapse
Affiliation(s)
- Xue-li Bian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Hang-zi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Peng-bo Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Ying-ping Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Fen-na Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Jia-yuan Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Wei-jia Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Wen-xiu Zhao
- Department of Hepatobiliary Surgery, Zhong Shan Hospital, Xiamen University, Fujian Province, Xiamen 361005, China
| | - Sheng Zhang
- Department of Hepatobiliary Surgery, Zhong Shan Hospital, Xiamen University, Fujian Province, Xiamen 361005, China
| | - Qi-tao Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Yu Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Xiao-yu Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Xiao-min Wang
- Department of Hepatobiliary Surgery, Zhong Shan Hospital, Xiamen University, Fujian Province, Xiamen 361005, China
| | - Kun-Yi Chien
- Molecular Medicine Research Center, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| |
Collapse
|
17
|
Nutritional regulation of the anabolic fate of amino acids within the liver in mammals: concepts arising from in vivo studies. Nutr Res Rev 2016; 28:22-41. [PMID: 26156215 DOI: 10.1017/s0954422415000013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At the crossroad between nutrient supply and requirements, the liver plays a central role in partitioning nitrogenous nutrients among tissues. The present review examines the utilisation of amino acids (AA) within the liver in various physiopathological states in mammals and how the fates of AA are regulated. AA uptake by the liver is generally driven by the net portal appearance of AA. This coordination is lost when demands by peripheral tissues is important (rapid growth or lactation), or when certain metabolic pathways within the liver become a priority (synthesis of acute-phase proteins). Data obtained in various species have shown that oxidation of AA and export protein synthesis usually responds to nutrient supply. Gluconeogenesis from AA is less dependent on hepatic delivery and the nature of nutrients supplied, and hormones like insulin are involved in the regulatory processes. Gluconeogenesis is regulated by nutritional factors very differently between mammals (glucose absorbed from the diet is important in single-stomached animals, while in carnivores, glucose from endogenous origin is key). The underlying mechanisms explaining how the liver adapts its AA utilisation to the body requirements are complex. The highly adaptable hepatic metabolism must be capable to deal with the various nutritional/physiological challenges that mammals have to face to maintain homeostasis. Whereas the liver responds generally to nutritional parameters in various physiological states occurring throughout life, other complex signalling pathways at systemic and tissue level (hormones, cytokines, nutrients, etc.) are involved additionally in specific physiological/nutritional states to prioritise certain metabolic pathways (pathological states or when nutritional requirements are uncovered).
Collapse
|
18
|
PEPCK Coordinates the Regulation of Central Carbon Metabolism to Promote Cancer Cell Growth. Mol Cell 2015; 60:571-83. [PMID: 26481663 DOI: 10.1016/j.molcel.2015.09.025] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/14/2015] [Accepted: 09/25/2015] [Indexed: 01/05/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is well known for its role in gluconeogenesis. However, PEPCK is also a key regulator of TCA cycle flux. The TCA cycle integrates glucose, amino acid, and lipid metabolism depending on cellular needs. In addition, biosynthetic pathways crucial to tumor growth require the TCA cycle for the processing of glucose and glutamine derived carbons. We show here an unexpected role for PEPCK in promoting cancer cell proliferation in vitro and in vivo by increasing glucose and glutamine utilization toward anabolic metabolism. Unexpectedly, PEPCK also increased the synthesis of ribose from non-carbohydrate sources, such as glutamine, a phenomenon not previously described. Finally, we show that the effects of PEPCK on glucose metabolism and cell proliferation are in part mediated via activation of mTORC1. Taken together, these data demonstrate a role for PEPCK that links metabolic flux and anabolic pathways to cancer cell proliferation.
Collapse
|
19
|
Patel C, Douard V, Yu S, Tharabenjasin P, Gao N, Ferraris RP. Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. Am J Physiol Regul Integr Comp Physiol 2015; 309:R499-509. [PMID: 26084694 DOI: 10.1152/ajpregu.00128.2015] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
Marked increases in fructose consumption have been tightly linked to metabolic diseases. One-third of ingested fructose is metabolized in the small intestine, but the underlying mechanisms regulating expression of fructose-metabolizing enzymes are not known. We used genetic mouse models to test the hypothesis that fructose absorption via glucose transporter protein, member 5 (GLUT5), metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein in brain 11a (Rab11a)-dependent endosomes are required for the regulation of intestinal fructolytic and gluconeogenic enzymes. Fructose feeding increased the intestinal mRNA and protein expression of these enzymes in the small intestine of adult wild-type (WT) mice compared with those gavage fed with lysine or glucose. Fructose did not increase expression of these enzymes in the GLUT5 knockout (KO) mice. Blocking intracellular fructose metabolism by KHK ablation also prevented fructose-induced upregulation. Glycolytic hexokinase I expression was similar between WT and GLUT5- or KHK-KO mice and did not vary with feeding solution. Gavage feeding with the fructose-specific metabolite glyceraldehyde did not increase enzyme expression, suggesting that signaling occurs before the hydrolysis of fructose to three-carbon compounds. Impeding GLUT5 trafficking to the apical membrane using intestinal epithelial cell-specific Rab11a-KO mice impaired fructose-induced upregulation. KHK expression was uniformly distributed along the villus but was localized mainly in the basal region of the cytosol of enterocytes. The feedforward upregulation of fructolytic and gluconeogenic enzymes specifically requires GLUT5 and KHK and may proactively enhance the intestine's ability to process anticipated increases in dietary fructose concentrations.
Collapse
Affiliation(s)
- Chirag Patel
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Veronique Douard
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Shiyan Yu
- Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey
| | - Phuntila Tharabenjasin
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| | - Nan Gao
- Department of Biological Sciences, School of Arts and Sciences, Rutgers University, Newark, New Jersey
| | - Ronaldo P Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey; and
| |
Collapse
|
20
|
Arble DM, Sandoval DA, Seeley RJ. Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery. Diabetologia 2015; 58:211-20. [PMID: 25374275 PMCID: PMC4289431 DOI: 10.1007/s00125-014-3433-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/03/2014] [Indexed: 02/06/2023]
Abstract
Obesity is a growing health risk with few successful treatment options and fewer still that target both obesity and obesity-associated comorbidities. Despite ongoing scientific efforts, the most effective treatment option to date was not developed from basic research but by surgeons observing outcomes in the clinic. Bariatric surgery is the most successful treatment for significant weight loss, resolution of type 2 diabetes and the prevention of future weight gain. Recent work with animal models has shed considerable light on the molecular underpinnings of the potent effects of these 'metabolic' surgical procedures. Here we review data from animal models and how these studies have evolved our understanding of the critical signalling systems that mediate the effects of bariatric surgery. These insights could lead to alternative therapies able to accomplish effects similar to bariatric surgery in a less invasive manner.
Collapse
|
21
|
Chen J, Lee HJ, Wu X, Huo L, Kim SJ, Xu L, Wang Y, He J, Bollu LR, Gao G, Su F, Briggs J, Liu X, Melman T, Asara JM, Fidler IJ, Cantley LC, Locasale JW, Weihua Z. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain. Cancer Res 2014; 75:554-65. [PMID: 25511375 DOI: 10.1158/0008-5472.can-14-2268] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells, but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the nonoxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBP) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients.
Collapse
Affiliation(s)
- Jinyu Chen
- Department of Biochemistry and Biology, College of Natural Science and Mathematics, University of Houston, Houston, Texas
| | - Ho-Jeong Lee
- Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Xuefeng Wu
- Department of Biochemistry and Biology, College of Natural Science and Mathematics, University of Houston, Houston, Texas
| | - Lei Huo
- Department of Pathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Sun-Jin Kim
- Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Lei Xu
- Department of Biochemistry and Biology, College of Natural Science and Mathematics, University of Houston, Houston, Texas
| | - Yan Wang
- Department of Pathology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Junqing He
- Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Lakshmi R Bollu
- Department of Biochemistry and Biology, College of Natural Science and Mathematics, University of Houston, Houston, Texas
| | - Guang Gao
- Department of Biochemistry and Biology, College of Natural Science and Mathematics, University of Houston, Houston, Texas
| | - Fei Su
- Department of Biochemistry and Biology, College of Natural Science and Mathematics, University of Houston, Houston, Texas
| | - James Briggs
- Department of Biochemistry and Biology, College of Natural Science and Mathematics, University of Houston, Houston, Texas
| | - Xiaojing Liu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Tamar Melman
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School Boston, Massachusetts
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Isaiah J Fidler
- Department of Cancer Biology, MD Anderson Cancer Center, The University of Texas, Houston, Texas
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Zhang Weihua
- Department of Biochemistry and Biology, College of Natural Science and Mathematics, University of Houston, Houston, Texas.
| |
Collapse
|
22
|
Do TTH, Hindlet P, Waligora-Dupriet AJ, Kapel N, Neveux N, Mignon V, Deloménie C, Farinotti R, Fève B, Buyse M. Disturbed intestinal nitrogen homeostasis in a mouse model of high-fat diet-induced obesity and glucose intolerance. Am J Physiol Endocrinol Metab 2014; 306:E668-80. [PMID: 24425764 DOI: 10.1152/ajpendo.00437.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The oligopeptide transporter peptide cotransporter-1 Slc15a1 (PEPT1) plays a major role in the regulation of nitrogen supply, since it is responsible for 70% of the dietary nitrogen absorption. Previous studies demonstrated that PEPT1 expression and function in jejunum are reduced in diabetes and obesity, suggesting a nitrogen malabsorption from the diet. Surprisingly, we reported here a decrease in gut nitrogen excretion in high-fat diet (HFD)-fed mice and further investigated the mechanisms that could explain this apparent contradiction. Upon HFD, mice exhibited an increased concentration of free amino acids (AAs) in the portal vein (60%) along with a selective increase in the expression of two AA transporters (Slc6a20a, Slc36a1), pointing to a specific and adaptive absorption of some AAs. A delayed transit time (+40%) and an increased intestinal permeability (+80%) also contribute to the increase in nitrogen absorption. Besides, HFD mice exhibited a 2.2-fold decrease in fecal DNA resulting from a reduction in nitrogen catabolism from cell desquamation and/or in the intestinal microbiota. Indeed, major quantitative (2.5-fold reduction) and qualitative alterations of intestinal microbiota were observed in feces of HFD mice. Collectively, our results strongly suggest that both increased AA transporters, intestinal permeability and transit time, and changes in gut microbiota are involved in the increased circulating AA levels. Modifications in nitrogen homeostasis provide a new insight in HFD-induced obesity and glucose intolerance; however, whether these modifications are beneficial or detrimental for the HFD-associated metabolic complications remains an open issue.
Collapse
Affiliation(s)
- Thi Thu Huong Do
- Université Pierre et Marie Curie, Paris, Unité Mixte de Recherche S938, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Multiple roles of glucose-6-phosphatases in pathophysiology. Biochim Biophys Acta Gen Subj 2013; 1830:2608-18. [DOI: 10.1016/j.bbagen.2012.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/28/2022]
|
24
|
Glass C, Hipskind P, Tsien C, Malin SK, Kasumov T, Shah SN, Kirwan JP, Dasarathy S. Sarcopenia and a physiologically low respiratory quotient in patients with cirrhosis: a prospective controlled study. J Appl Physiol (1985) 2013; 114:559-65. [PMID: 23288550 DOI: 10.1152/japplphysiol.01042.2012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Patients with cirrhosis have increased gluconeogenesis and fatty acid oxidation that may contribute to a low respiratory quotient (RQ), and this may be linked to sarcopenia and metabolic decompensation when these patients are hospitalized. Therefore, we conducted a prospective study to measure RQ and its impact on skeletal muscle mass, survival, and related complications in hospitalized cirrhotic patients. Fasting RQ and resting energy expenditure (REE) were determined by indirect calorimetry in cirrhotic patients (n = 25), and age, sex, and weight-matched healthy controls (n = 25). Abdominal muscle area was quantified by computed tomography scanning. In cirrhotic patients we also examined the impact of RQ on mortality, repeat hospitalizations, and liver transplantation. Mean RQ in patients with cirrhosis (0.63 ± 0.05) was significantly lower (P < 0.0001) than healthy matched controls (0.84 ± 0.06). Psoas muscle area in cirrhosis (24.0 ± 6.6 cm(2)) was significantly (P < 0.001) lower than in controls (35.9 ± 9.5 cm(2)). RQ correlated with the reduction in psoas muscle area (r(2) = 0.41; P = 0.01). However, in patients with cirrhosis a reduced RQ did not predict short-term survival or risk of developing complications. When REE was normalized to psoas area, energy expenditure was significantly higher (P < 0.001) in patients with cirrhosis (66.7 ± 17.8 kcal/cm(2)) compared with controls (47.7 ± 7.9 kcal/cm(2)). We conclude that hospitalized patients with cirrhosis have RQs well below the traditional lowest physiological value of 0.69, and this metabolic state is accompanied by reduced skeletal muscle area. Although low RQ does not predict short-term mortality in these patients, it may reflect a decompensated metabolic state that requires careful nutritional management with appropriate consideration for preservation of skeletal muscle mass.
Collapse
Affiliation(s)
- Cathy Glass
- Department of Nutrition Therapy, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Stefater MA, Wilson-Pérez HE, Chambers AP, Sandoval DA, Seeley RJ. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev 2012; 33:595-622. [PMID: 22550271 PMCID: PMC3410227 DOI: 10.1210/er.2011-1044] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite considerable scientific progress on the biological systems that regulate energy balance, we have made precious little headway in providing new treatments to curb the obesity epidemic. Diet and exercise are the most popular treatment options for obesity, but rarely are they sufficient to produce long-term weight loss. Bariatric surgery, on the other hand, results in dramatic, sustained weight loss and for this reason has gained increasing popularity as a treatment modality for obesity. At least some surgical approaches also reduce obesity-related comorbidities including type 2 diabetes and hyperlipidemia. This success puts a premium on understanding how these surgeries exert their effects. This review focuses on the growing human and animal model literature addressing the underlying mechanisms. We compare three common procedures: Roux-en-Y Gastric Bypass (RYGB), vertical sleeve gastrectomy (VSG), and adjustable gastric banding (AGB). Although many would group together VSG and AGB as restrictive procedures of the stomach, VSG is more like RYGB than AGB in its effects on a host of endpoints including intake, food choice, glucose regulation, lipids and gut hormone secretion. Our strong belief is that to advance our understanding of these procedures, it is necessary to group bariatric procedures not on the basis of surgical similarity but rather on how they affect key physiological variables. This will allow for greater mechanistic insight into how bariatric surgery works, making it possible to help patients better choose the best possible procedure and to develop new therapeutic strategies that can help a larger portion of the obese population.
Collapse
Affiliation(s)
- Margaret A Stefater
- Metabolic Diseases Institute, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
26
|
Fan TWM, Lorkiewicz PK, Sellers K, Moseley HNB, Higashi RM, Lane AN. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther 2012; 133:366-91. [PMID: 22212615 PMCID: PMC3471671 DOI: 10.1016/j.pharmthera.2011.12.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 12/14/2022]
Abstract
Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Department of Chemistry, University of Louisville, KY 40292, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Yasui K, Tanabe H, Miyoshi N, Suzuki T, Goto S, Taguchi K, Ishigami Y, Paeng N, Fukutomi R, Imai S, Isemura M. Effects of (-)-epigallocatechin-3-O-gallate on expression of gluconeogenesis-related genes in the mouse duodenum. ACTA ACUST UNITED AC 2012; 32:313-20. [PMID: 22033300 DOI: 10.2220/biomedres.32.313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Green tea has been shown to have many beneficial health effects. We have previously reported that dietary (-)-epigallocatechin-3-O-gallate (EGCG), the major polyphenol in green tea, reduced gene expressions of gluconeogenic enzymes, glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), in the normal mouse liver. In the present study, we examined the effects of intragastrical administration of EGCG on the expression of gluconeogenesis-related genes in the mouse intestine. The results of experiments with the semi-quantitative reverse transcription-polymerase chain reaction indicated that EGCG at 0.6 mg/head caused a reduced expression of G6Pase, PEPCK, hepatocyte nuclear factor 1α (HNF1α), and HNF4α. Experiments using the quantitative real-time polymerase chain reaction confirmed these effects. We then examined the effects of EGCG using human colon carcinoma Caco-2 cells stimulated with dexamethasone and dibutyryl cAMP. The results were generally consistent with those from the experiments in vivo. The present findings suggest EGCG to contribute to the beneficial effects of green tea on diabetes, obesity, and cancer by modulating gene expression in the intestine.
Collapse
Affiliation(s)
- Kensuke Yasui
- Health Care Research Center, Nisshin Pharma Inc., Fujimino, Saitama 356-8511
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Lohrenz AK, Duske K, Schönhusen U, Losand B, Seyfert H, Metges C, Hammon H. Glucose transporters and enzymes related to glucose synthesis in small intestinal mucosa of mid-lactation dairy cows fed 2 levels of starch. J Dairy Sci 2011; 94:4546-55. [DOI: 10.3168/jds.2011-4333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/22/2011] [Indexed: 11/19/2022]
|
30
|
Park JE, Kim HT, Lee S, Lee YS, Choi UK, Kang JH, Choi SY, Kang TC, Choi MS, Kwon OS. Differential expression of intermediate filaments in the process of developing hepatic steatosis. Proteomics 2011; 11:2777-89. [DOI: 10.1002/pmic.201000544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 03/19/2011] [Accepted: 04/13/2011] [Indexed: 12/18/2022]
|
31
|
Bouchoucha M, Uzzan B, Cohen R. Metformin and digestive disorders. DIABETES & METABOLISM 2011; 37:90-6. [DOI: 10.1016/j.diabet.2010.11.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 10/22/2010] [Accepted: 11/03/2010] [Indexed: 12/22/2022]
|
32
|
Vornanen M, Asikainen J, Haverinen J. Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp (Carassius carassius L.). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2011; 98:225-32. [PMID: 21279319 DOI: 10.1007/s00114-011-0764-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Glycogen is a vital energy substrate for anaerobic organisms, and the size of glycogen stores can be a limiting factor for anoxia tolerance of animals. To this end, glycogen stores in 12 different tissues of the crucian carp (Carassius carassius L.), an anoxia-tolerant fish species, were examined. Glycogen content of different tissues was 2-10 times higher in winter (0.68-18.20% of tissue wet weight) than in summer (0.12-4.23%). In scale, bone and brain glycogen stores were strongly dependent on body mass (range between 0.6 and 785 g), small fish having significantly more glycogen than large fish (p < 0.05). In fin and skin, size dependence was evident in winter, but not in summer, while in other tissues (ventricle, atrium, intestine, liver, muscle, and spleen), no size dependence was found. The liver was much bigger in small than large fish (p < 0.001), and there was a prominent enlargement of the liver in winter irrespective of fish size. As a consequence, the whole body glycogen reserves, measured as a sum of glycogen from different tissues, varied from 6.1% of the body mass in the 1-g fish to 2.0% in the 800-g fish. Since anaerobic metabolic rate scales down with body size, the whole body glycogen reserves could provide energy for approximately 79 and 88 days of anoxia in small and large fish, respectively. There was, however, a drastic difference in tissue distribution of glycogen between large and small fish: in the small fish, the liver was the major glycogen store (68% of the stores), while in the large fish, the white myotomal muscle was the principal deposit of glycogen (57%). Since muscle glycogen is considered to be unavailable for blood glucose regulation, its usefulness in anoxia tolerance of the large crucian carp might be limited, although not excluded. Therefore, mobilization of muscle glycogen under anoxia needs to be rigorously tested.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Biology, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland.
| | | | | |
Collapse
|
33
|
Westerterp-Plantenga M, Nieuwenhuizen A, Tomé D, Soenen S, Westerterp K. Dietary Protein, Weight Loss, and Weight Maintenance. Annu Rev Nutr 2009; 29:21-41. [DOI: 10.1146/annurev-nutr-080508-141056] [Citation(s) in RCA: 374] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M.S. Westerterp-Plantenga
- Department of Human Biology, Nutrim, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD, Maastricht, The Netherlands;
- TIFN, 6700 AN Wageningen, The Netherlands
| | - A. Nieuwenhuizen
- Department of Human Biology, Nutrim, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD, Maastricht, The Netherlands;
- TIFN, 6700 AN Wageningen, The Netherlands
| | - D. Tomé
- AgroParisTech, Department of Life Sciences and Health, UMR914 Nutrition Physiology and Ingestive Behavior, F75005, Paris, France
| | - S. Soenen
- Department of Human Biology, Nutrim, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD, Maastricht, The Netherlands;
- TIFN, 6700 AN Wageningen, The Netherlands
| | - K.R. Westerterp
- Department of Human Biology, Nutrim, Faculty of Health, Medicine, and Life Sciences, Maastricht University, 6200 MD, Maastricht, The Netherlands;
- TIFN, 6700 AN Wageningen, The Netherlands
| |
Collapse
|