1
|
Zhang L, Tuoliken H, Li J, Gao H. Diet, gut microbiota, and health: a review. Food Sci Biotechnol 2025; 34:2087-2099. [PMID: 40351733 PMCID: PMC12064509 DOI: 10.1007/s10068-024-01759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 05/14/2025] Open
Abstract
The relationship between diet and human physical and mental health is highly interconnected and has been significantly correlated with the occurrence of various diseases, including neurological disorders, cancer, and chronic inflammatory diseases. Moreover, diet has been demonstrated to play a pivotal role in governing gut microbiota composition, making it one of the most influential factors. The diet is crucial in connecting humans and their gut microorganisms. The nutrients ingested supply energy to the body and serve as substrates for the metabolic processes of the gut microorganisms. Consequently, the gut flora and their metabolites reciprocally impact the host's metabolism, thereby influencing the physiological state of the human body. Extensive investigations on human and mouse models have revealed that diet potentially underlies various effects on human health and disease. Graphical abstract
Collapse
Affiliation(s)
- Longxiang Zhang
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang, Medical University, Urumqi, 830000 Xinjiang China
| | - Haishaer Tuoliken
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang, Medical University, Urumqi, 830000 Xinjiang China
| | - Jian Li
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang, Medical University, Urumqi, 830000 Xinjiang China
| | - Hongliang Gao
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang, Medical University, Urumqi, 830000 Xinjiang China
| |
Collapse
|
2
|
Gearey JEJ, Wang M, Antle MC. Chronic circadian disruption alters cardiac function and glucose regulation in mice. NPJ BIOLOGICAL TIMING AND SLEEP 2025; 2:18. [PMID: 40376388 PMCID: PMC12074981 DOI: 10.1038/s44323-025-00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/05/2025] [Indexed: 05/18/2025]
Abstract
Cardiometabolic disease is a leading cause of death worldwide. One factor that may contribute to the risk, onset, and severity of symptoms is disrupted circadian rhythms. Our study uses two strains of mice to further elucidate this relationship: healthy controls, and a mouse model of insulin resistance with short freerunning periods (~ 22.75 h) and enlarged hearts, raised in either a 24-h or 22.75-h LD cycle. Through glucose and insulin tolerance tests, routine electrocardiograms from one to four months old, and histology, we reveal worse cardiometabolic health outcomes for mice gestated and housed in a mismatched LD cycle compared to those in an LD cycle that matches their endogenous rhythm. This was characterized by heightened blood glucose levels following a glucose or insulin bolus, altered electrophysiological parameters of the cardiac waveform, and increased cardiomyocyte size. Circadian disruption due to work/social schedules or circadian-related disorders in people is often confounded with other unhealthy lifestyles. The present study demonstrates that circadian disruption on its own can lead to adverse health states.
Collapse
Affiliation(s)
- Jenna E. J. Gearey
- Department of Psychology, University of Calgary, Calgary, AB Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Melinda Wang
- Department of Psychology, University of Calgary, Calgary, AB Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Michael C. Antle
- Department of Psychology, University of Calgary, Calgary, AB Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| |
Collapse
|
3
|
Hays HM, Sefidmooye Azar P, Kang M, Tinsley GM, Wijayatunga NN. Effects of time-restricted eating with exercise on body composition in adults: a systematic review and meta-analysis. Int J Obes (Lond) 2025; 49:755-765. [PMID: 39794384 PMCID: PMC12095083 DOI: 10.1038/s41366-024-01704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The effects of time-restricted eating (TRE) with exercise on body composition in adults are not clear. OBJECTIVE This meta-analysis aimed to assess the effects of TRE when followed in combination with various forms of exercise, including aerobic, resistance, and combined aerobic and resistance [concurrent] training on body composition. METHODS Studies published up to May 2023 were searched in EBSCOhost (MEDLINE, CINAHL, SPORTSDISCUS), PubMed, and SCOPUS databases. Fifteen studies, including 338 participants, that evaluated TRE vs. unrestricted eating in individuals performing exercise were analyzed. A random-effects model was used to calculate the weighted mean effect sizes (ES) with 95% confidence intervals (95% CI's). RESULTS According to the pooled results, TRE had a small but significant reduction of fat mass (FM) kg with an effect size of -0.20 (95% CI = -0.28 to -0.13, p < 0.001) and on body fat percent (BF%) with an effect size of -0.23 (95% CI = -0.35 to -0.11, p < 0.001). The prediction interval ranged from -0.48 to 0.08 for FM and from -0.64 to 0.18 for BF%, respectively. TRE did not significantly alter fat-free mass (FFM) kg compared to control (p = 0.07). Furthermore, age, body mass index (BMI), exercise type, study duration, and energy intake did not have a significant impact on the variation in effect sizes according to the subgroup analyses (p > 0.05). CONCLUSION TRE with exercise may reduce fat mass compared to an unrestricted eating window exercise-matched control while preserving FFM. However, more studies are needed.
Collapse
Affiliation(s)
- Harry M Hays
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, MS, USA
| | - Pouria Sefidmooye Azar
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, MS, USA
| | - Minsoo Kang
- Department of Health, Exercise Science and Recreation Management, University of Mississippi, Oxford, MS, USA
| | - Grant M Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Nadeeja N Wijayatunga
- Department of Nutrition and Hospitality Management, University of Mississippi, Oxford, MS, USA.
| |
Collapse
|
4
|
Heath RJ, Welbourne J, Martin D. What are the effects of time-restricted eating upon metabolic health outcomes in individuals with metabolic syndrome: A scoping review. Physiol Rep 2025; 13:e70338. [PMID: 40323226 PMCID: PMC12051377 DOI: 10.14814/phy2.70338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The primary objective of this scoping review (ScR) was to assess the breadth and type of evidence related to time-restricted eating (TRE) as an intervention to modify metabolic health outcomes in individuals with diagnosed metabolic syndrome (MetS), a major health challenge due to increasing prevalence and association with other chronic diseases. MetS comprises three or more of hypertension, hypercholesterolaemia, dyslipidaemia, dysregulated glucose homeostasis, and abdominal obesity. TRE, also known as time-restricted feeding (TRF), restricts food intake to specific time windows within a day, for example, a 10-h eating period between 10:00 and 20:00. Via multiple mechanisms, TRE interventions may provide an effective tool to prevent and treat metabolic disease such as MetS. While studies have assessed TRE in populations with components of MetS, there is a gap in the knowledge of how effective TRE can be for people with diagnosed MetS. A search of studies published in English in the PubMed (Medline), Embase, Cochrane, and PROSPERO databases was performed in February 2024. Of 3449 articles, 45 underwent full text analysis, and three were accepted into the ScR. These studies, comprising 10 and 8 h TRE interventions for 12 weeks, showed mixed benefits to body composition markers such as body weight, fat mass, and abdominal fat, blood pressure, and blood markers of lipid and glucose homeostasis. Future research into TRE and MetS will aim to more closely define optimal formulations of TRE interventions to improve MetS and its components.
Collapse
Affiliation(s)
- Rory J. Heath
- Peninsula Medical SchoolUniversity of PlymouthPlymouthUK
- Derriford HospitalUniversity Hospitals Plymouth NHS TrustPlymouthUK
| | - Jessie Welbourne
- Peninsula Medical SchoolUniversity of PlymouthPlymouthUK
- Derriford HospitalUniversity Hospitals Plymouth NHS TrustPlymouthUK
| | - Daniel Martin
- Peninsula Medical SchoolUniversity of PlymouthPlymouthUK
- Derriford HospitalUniversity Hospitals Plymouth NHS TrustPlymouthUK
| |
Collapse
|
5
|
Fernandes-Alves D, Teixeira GP, Guimarães KC, Crispim CA. Systematic Review and Meta-analysis of Randomized Clinical Trials Comparing Time-Restricted Eating With and Without Caloric Restriction for Weight Loss. Nutr Rev 2025:nuaf053. [PMID: 40298934 DOI: 10.1093/nutrit/nuaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
CONTEXT Although it is well established that caloric restriction (CR) is the primary driver of weight loss, circadian-driven metabolic benefits have been recognized as possibly enhancing the effects of CR. Time-restricted eating (TRE) has emerged as a promising approach in this context. OBJECTIVE We conducted a systematic review and meta-analysis to compare the effects of TRE with isocaloric diet controls (analysis 1) and non-isocaloric controls (analysis 2) on anthropometric and body-composition parameters in adults with overweight or obesity. DATA SOURCES A search was carried out in the Medline, LILACS, Embase, and CENTRAL databases using Medical Subject Heading (MeSH) and similar terms such as "Obesity," "Obesity, Abdominal," "Time-restricted eating," "Body weight," "Changes in body weight," and others. DATA EXTRACTION We included 30 studies involving a total of 1341 participants. Studies were screened based on titles and abstracts followed by full-text reading, and data were extracted from eligible studies using a pre-established form. All these steps were performed by 2 authors independently and blinded, with discrepancies resolved by a third author. DATA ANALYSIS The results of main findings revealed that, in studies using non-isocaloric controls, the TRE group showed significant reductions in body weight (BW) (mean difference [MD]: -2.82 kg; 95% CI: -3.49, -2.15), fat mass (FM) (MD: -1.36 kg; 95% CI: -2.09, -0.63), and fat-free mass (FFM) (MD: -0.86 kg; 95% CI: -1.23, -0.49). In studies that used isocaloric control strategies, the TRE group showed significant reductions in BW (MD: -1.46 kg; 95% CI: -2.65, -0.26), FM (MD: -1.50 kg; 95% CI: -2.77, -0.24), and FFM (MD: -0.41 kg; 95% CI: -0.79, -0. 03). CONCLUSION TRE yields favorable anthropometric and clinical outcomes, even when intake is isocaloric between the intervention and control groups. This result suggests that circadian effects may enhance the impact of CR on excess weight. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022301594.
Collapse
Affiliation(s)
- Danielle Fernandes-Alves
- Chrononutrition Research Group (Cronutri), School of Medicine, Federal University of Uberlandia, Uberlândia, Minas Gerais 38405-320, Brazil
| | - Gabriela Pereira Teixeira
- Chrononutrition Research Group (Cronutri), School of Medicine, Federal University of Uberlandia, Uberlândia, Minas Gerais 38405-320, Brazil
| | - Kisian Costa Guimarães
- Chrononutrition Research Group (Cronutri), School of Medicine, Federal University of Uberlandia, Uberlândia, Minas Gerais 38405-320, Brazil
| | - Cibele A Crispim
- Chrononutrition Research Group (Cronutri), School of Medicine, Federal University of Uberlandia, Uberlândia, Minas Gerais 38405-320, Brazil
| |
Collapse
|
6
|
Say YH, Nordin MS, Ng ALO. The effects of chrononutrition, chronotype and sleep behavior variabilities on adiposity traits and appetite sensations among students and staff of a Malaysian university. Chronobiol Int 2025:1-14. [PMID: 40293192 DOI: 10.1080/07420528.2025.2495161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
We investigated the association of chrononutrition, sleep behavior, and chronotype with adiposity and appetite sensations among 220 Malaysian adults (M/F = 57/163; aged 22.02 ± 5.19). Meal times, dietary intake, and appetite sensations (before and after meals) were recorded for two weekdays and one weekend. Sleep behavior was tracked objectively via activity wristband, chronotype was assessed by the Morningness-Eveningness Questionnaire, and anthropometrics/body compositions were measured. Overall participants had significantly later breakfast, lunch, eating midpoint, wake up time, sleep duration, compared to weekdays. Those who belonged to the delay eating jetlag group had significantly higher weekday, but lower weekend eating windows. Larger caloric intake later in the day was significantly associated with lower body mass and adiposity. Delay lunch jetlag class was significantly associated with higher waist-hip ratio. Delayed morning and afternoon chrononutrition behaviors were associated with higher hunger and eating thoughts, and lower fullness sensations pre- and post-meals. Morningness was associated with lower satisfaction and fullness sensations post-breakfast, but higher same sensations pre-dinner. In conclusion, larger caloric intake later in the day and advanced lunch jetlag led to lower adiposity, while delayed chrononutrition behaviours were associated with higher pre- and post-meal appetite sensations.
Collapse
Affiliation(s)
- Yee-How Say
- Department of Biomedical Sciences, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Mimi Shamirah Nordin
- Department of Biomedical Sciences, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| | - Alvin Lai Oon Ng
- School of Psychology, Faculty of Medical and Life Sciences, Sunway University, Selangor, Malaysia
| |
Collapse
|
7
|
Hawkins MS, Davis EM, Abebe KZ, McTigue KM, Kim N, Goswami M, Buysse DJ, Chang JC, Levine MD. An internet-assisted sleep, dietary, and physical activity intervention to support weight-loss among postpartum people (Sleep GOALS): Protocol for a pilot randomized controlled trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.25.25324617. [PMID: 40196290 PMCID: PMC11974975 DOI: 10.1101/2025.03.25.25324617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Postpartum weight retention and maternal obesity are associated with short- and long-term maternal morbidity and mortality risk. Most weight-loss interventions among postpartum individuals follow evidence-based lifestyle recommendations but have produced only modest effects and had substantial heterogeneity. We developed a novel internet-assisted weight management intervention for postpartum people that integrates concepts for improving sleep health within a diet and physical activity-focused intervention. We describe the intervention protocol and discuss how the pilot study's findings will inform future development and evaluation. Methods We will recruit 40 postpartum individuals with overweight or obesity from Western Pennsylvania to participate in a single-blind, parallel-arm, randomized controlled trial design. Participants will be randomized at a 1:1 ratio to the Sleep GOALS (Goal-focused Online Access to Lifestyle Support) intervention or education control group. The Sleep GOALS intervention includes interactive lessons addressing sleep, diet, physical activity, behavioral self-monitoring tools, and a lifestyle coach to provide accountability, encouragement, and personalized support. The education control will receive brochures from the American Academy of Sleep Medicine (e.g., sleep hygiene, sleep in women), SNAP education connection (e.g., family-friendly activities, meal planning), and the U.S. Department of Health and Human Services (e.g., physical activity promotion during and after pregnancy). Primary study outcomes include the intervention feasibility (i.e., recruitment, enrollment, attrition rates, intervention engagement) and acceptability (i.e., participant ratings of the intervention delivery, curricula, approach to behavioral self-monitoring, action plans, intervention platform, and coaching). Secondary outcomes include weight loss and retention of pregnancy and postpartum weight gain. Discussion Incorporating a holistic approach that addresses sleep health alongside diet and physical activity, the Sleep GOALS intervention aims to not only facilitate weight loss but also enhance overall maternal well-being. Pilot testing will help us identify and refine factors related to the conduct of the planned larger, definitive trial and estimate the change in secondary outcomes.
Collapse
Affiliation(s)
- Marquis S Hawkins
- University of Pittsburgh, Department of Psychology, Pittsburgh, PA
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA
| | - Esa M Davis
- University of Maryland, School of Medicine, Baltimore, MD
| | - Kaleab Z Abebe
- University of Pittsburgh, Department of Medicine, Pittsburgh, PA
| | | | - Namhyun Kim
- University of Pittsburgh, Department of Epidemiology, Pittsburgh, PA
| | - Mariska Goswami
- University of Pittsburgh, Department of Biology, Pittsburgh, PA
| | - Daniel J Buysse
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, PA
| | - Judy C Chang
- University of Pittsburgh, Department of Obstetrics, Gynecology, and Reproductive Sciences, Pittsburgh, PA
| | - Michele D Levine
- University of Pittsburgh, Department of Psychiatry, Pittsburgh, PA
| |
Collapse
|
8
|
Yu Z, Ueda T. Early Time-Restricted Eating Improves Weight Loss While Preserving Muscle: An 8-Week Trial in Young Women. Nutrients 2025; 17:1022. [PMID: 40290077 PMCID: PMC11945196 DOI: 10.3390/nu17061022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Time-restricted eating (TRE) has gained attention as a novel dietary intervention that restricts the daily eating window, potentially offering improved metabolic health and body composition. Nevertheless, whether early TRE (eTRE) or delayed TRE (dTRE) best enhances resistance training (RT) adaptations remains unclear. Methods: In this 8-week randomized study, 24 healthy young women with limited RT experience were assigned into one of three groups: eTRE (an 8:00 AM-2:00 PM feeding window), dTRE (12:00 PM-6:00 PM), or the control (8:00 AM-8:00 PM). Apart from the timing restrictions, no further dietary guidance was provided. All of the participants performed standardized knee-supported push-ups (4 sets × 10 reps, three sessions/week). The primary outcomes included body weight, the thickness of the triceps brachii long head (measured via ultrasound), and push-up endurance. Results: The eTRE group achieved a significant reduction in body weight (-2.61 ± 1.06 kg; p < 0.001), which surpassed the changes observed in both the dTRE (-1.44 ± 1.12 kg) and control (-0.48 ± 0.64 kg) groups. However, no significant between-group differences emerged for muscle thickness or push-up performance. All groups showed comparable improvements in triceps brachii thickness (a 1.36-1.55 mm increase) and push-up endurance (62-74 additional repetitions). Conclusions: Early TRE (8:00 AM-2:00 PM) appears to be more beneficial than delayed TRE (12:00 PM-6:00 PM) for weight management when combined with RT, yet both TRE regimens result in similar improvements in muscle thickness and endurance. These findings suggest that optimizing meal timing in alignment with circadian rhythms may enhance weight control without hindering muscle adaptations, providing a practical approach for individuals seeking to lose weight while preserving or increasing their muscular fitness. Future research involving larger samples and diverse populations is warranted to confirm these results and clarify the underlying metabolic mechanisms.
Collapse
Affiliation(s)
| | - Takeshi Ueda
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima 739-8524, Japan;
| |
Collapse
|
9
|
Deota S, Pendergast JS, Kolthur-Seetharam U, Esser KA, Gachon F, Asher G, Dibner C, Benitah SA, Escobar C, Muoio DM, Zhang EE, Hotamışlıgil GS, Bass J, Takahashi JS, Rabinowitz JD, Lamia KA, de Cabo R, Kajimura S, Longo VD, Xu Y, Lazar MA, Verdin E, Zierath JR, Auwerx J, Drucker DJ, Panda S. The time is now: accounting for time-of-day effects to improve reproducibility and translation of metabolism research. Nat Metab 2025; 7:454-468. [PMID: 40097742 DOI: 10.1038/s42255-025-01237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
The constant expansion of the field of metabolic research has led to more nuanced and sophisticated understanding of the complex mechanisms that underlie metabolic functions and diseases. Collaborations with scientists of various fields such as neuroscience, immunology and drug discovery have further enhanced the ability to probe the role of metabolism in physiological processes. However, many behaviours, endocrine and biochemical processes, and the expression of genes, proteins and metabolites have daily ~24-h biological rhythms and thus peak only at specific times of the day. This daily variation can lead to incorrect interpretations, lack of reproducibility across laboratories and challenges in translating preclinical studies to humans. In this Review, we discuss the biological, environmental and experimental factors affecting circadian rhythms in rodents, which can in turn alter their metabolic pathways and the outcomes of experiments. We recommend that these variables be duly considered and suggest best practices for designing, analysing and reporting metabolic experiments in a circadian context.
Collapse
Affiliation(s)
- Shaunak Deota
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Frédéric Gachon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Charna Dibner
- Department of Surgery and Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute for Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Deborah M Muoio
- Departments of Medicine and Pharmacology & Cancer Biology, Duke Molecular Physiology Institute, Durham, NC, USA
| | | | - Gökhan S Hotamışlıgil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Katja A Lamia
- Department of Molecular and Cellular Biology and Department of Molecular Medicine, the Scripps Research Institute, La Jolla, CA, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Shingo Kajimura
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| | - Valter D Longo
- Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- AIRC Institute of Molecular Oncology, Italian Foundation for Cancer Research Institute of Molecular Oncology, Milan, Italy
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity and Metabolism and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Wang R, Liao Y, Deng Y, Shuang R. Unraveling the Health Benefits and Mechanisms of Time-Restricted Feeding: Beyond Caloric Restriction. Nutr Rev 2025; 83:e1209-e1224. [PMID: 38954563 DOI: 10.1093/nutrit/nuae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Time-restricted feeding (TRF) is a lifestyle intervention that aims to maintain a consistent daily cycle of feeding and fasting to support robust circadian rhythms. Recently, it has gained scientific, medical, and public attention due to its potential to enhance body composition, extend lifespan, and improve overall health, as well as induce autophagy and alleviate symptoms of diseases like cardiovascular diseases, type 2 diabetes, neurodegenerative diseases, cancer, and ischemic injury. However, there is still considerable debate on the primary factors that contribute to the health benefits of TRF. Despite not imposing strict limitations on calorie intake, TRF consistently led to reductions in calorie intake. Therefore, while some studies suggest that the health benefits of TRF are primarily due to caloric restriction (CR), others argue that the key advantages of TRF arise not only from CR but also from factors like the duration of fasting, the timing of the feeding period, and alignment with circadian rhythms. To elucidate the roles and mechanisms of TRF beyond CR, this review incorporates TRF studies that did not use CR, as well as TRF studies with equivalent energy intake to CR, which addresses the previous lack of comprehensive research on TRF without CR and provides a framework for future research directions.
Collapse
Affiliation(s)
- Ruhan Wang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 43000, China
| | - Yan Deng
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| | - Rong Shuang
- Department of Nutrition Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 43000, China
| |
Collapse
|
11
|
Halder SK, Melkani GC. The Interplay of Genetic Predisposition, Circadian Misalignment, and Metabolic Regulation in Obesity. Curr Obes Rep 2025; 14:21. [PMID: 40024983 PMCID: PMC11872776 DOI: 10.1007/s13679-025-00613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE OF REVIEW This review explores the complex interplay between genetic predispositions to obesity, circadian rhythms, metabolic regulation, and sleep. It highlights how genetic factors underlying obesity exacerbate metabolic dysfunction through circadian misalignment and examines promising interventions to mitigate these effects. RECENT FINDINGS Genome-wide association Studies (GWAS) have identified numerous Single Nucleotide Polymorphisms (SNPs) associated with obesity traits, attributing 40-75% heritability to body mass index (BMI). These findings illuminate critical links between genetic obesity, circadian clocks, and metabolic processes. SNPs in clock-related genes influence metabolic pathways, with disruptions in circadian rhythms-driven by poor sleep hygiene or erratic eating patterns-amplifying metabolic dysfunction. Circadian clocks, synchronized with the 24-h light-dark cycle, regulate key metabolic activities, including glucose metabolism, lipid storage, and energy utilization. Genetic mutations or external disruptions, such as irregular sleep or eating habits, can destabilize circadian rhythms, promoting weight gain and metabolic disorders. Circadian misalignment in individuals with genetic predispositions to obesity disrupts the release of key metabolic hormones, such as leptin and insulin, impairing hunger regulation and fat storage. Interventions like time-restricted feeding (TRF) and structured physical activity offer promising strategies to restore circadian harmony, improve metabolic health, and mitigate obesity-related risks.
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- UAB Nathan Shock Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
12
|
Sagun E, Akyol A, Kaymak C. Chrononutrition in Critical Illness. Nutr Rev 2025; 83:e1146-e1157. [PMID: 38904422 PMCID: PMC11819484 DOI: 10.1093/nutrit/nuae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Circadian rhythms in humans are biological rhythms that regulate various physiological processes within a 24-hour time frame. Critical illness can disrupt the circadian rhythm, as can environmental and clinical factors, including altered light exposure, organ replacement therapies, disrupted sleep-wake cycles, noise, continuous enteral feeding, immobility, and therapeutic interventions. Nonpharmacological interventions, controlling the ICU environment, and pharmacological treatments are among the treatment strategies for circadian disruption. Nutrition establishes biological rhythms in metabolically active peripheral tissues and organs through appropriate synchronization with endocrine signals. Therefore, adhering to a feeding schedule based on the biological clock, a concept known as "chrononutrition," appears to be vitally important for regulating peripheral clocks. Chrononutritional approaches, such as intermittent enteral feeding that includes overnight fasting and consideration of macronutrient composition in enteral solutions, could potentially restore circadian health by resetting peripheral clocks. However, due to the lack of evidence, further studies on the effect of chrononutrition on clinical outcomes in critical illness are needed. The purpose of this review was to discuss the role of chrononutrition in regulating biological rhythms in critical illness, and its impact on clinical outcomes.
Collapse
Affiliation(s)
- Eylul Sagun
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, 06100, Turkey
| | - Asli Akyol
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Hacettepe University, Ankara, 06100, Turkey
| | - Cetin Kaymak
- Gülhane Faculty of Medicine, Department of Anesthesiology and Reanimation, University of Health Sciences, Ankara Training and Research Hospital, Intensive Care Unit, Ankara, 06230, Turkey
| |
Collapse
|
13
|
Godos J, Currenti W, Ferri R, Lanza G, Caraci F, Frias-Toral E, Guglielmetti M, Ferraris C, Lipari V, Carvajal Altamiranda S, Galvano F, Castellano S, Grosso G. Chronotype and Cancer: Emerging Relation Between Chrononutrition and Oncology from Human Studies. Nutrients 2025; 17:529. [PMID: 39940387 PMCID: PMC11819666 DOI: 10.3390/nu17030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Fasting-feeding timing is a crucial pattern implicated in the regulation of daily circadian rhythms. The interplay between sleep and meal timing underscores the importance of maintaining circadian alignment in order to avoid creating a metabolic environment conducive to carcinogenesis following the molecular and systemic disruption of metabolic performance and immune function. The chronicity of such a condition may support the initiation and progression of cancer through a variety of mechanisms, including increased oxidative stress, immune suppression, and the activation of proliferative signaling pathways. This review aims to summarize current evidence from human studies and provide an overview of the potential mechanisms underscoring the role of chrononutrition (including time-restricted eating) on cancer risk. Current evidence shows that the morning chronotype, suggesting an alignment between physiological circadian rhythms and eating timing, is associated with a lower risk of cancer. Also, early time-restricted eating and prolonged nighttime fasting were also associated with a lower risk of cancer. The current evidence suggests that the chronotype influences cancer risk through cell cycle regulation, the modulation of metabolic pathways and inflammation, and gut microbiota fluctuations. In conclusion, although there are no clear guidelines on this matter, emerging evidence supports the hypothesis that the role of time-related eating (i.e., time/calorie-restricted feeding and intermittent/periodic fasting) could potentially lead to a reduced risk of cancer.
Collapse
Affiliation(s)
- Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Walter Currenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
| | | | - Giuseppe Lanza
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Espíritu Santo, Samborondón 0901952, Ecuador
| | - Monica Guglielmetti
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Cinzia Ferraris
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Vivian Lipari
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidad de La Romana, La Romana 22000, Dominican Republic
- Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Stefanía Carvajal Altamiranda
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Universidade Internacional do Cuanza, Cuito EN250, Angola
- Fundación Universitaria Internacional de Colombia, Bogotá 111321, Colombia
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| | - Sabrina Castellano
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (J.G.)
- Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, 95123 Catania, Italy
| |
Collapse
|
14
|
Quang DT, Di Khanh N, Cu LL, Thi Hoa HN, Quynh CVT, Ngoc QP, Thi TB. Partially unraveling mechanistic underpinning and weight loss effects of time-restricted eating across diverse adult populations: A systematic review and meta-analyses of prospective studies. PLoS One 2025; 20:e0314685. [PMID: 39813198 PMCID: PMC11734929 DOI: 10.1371/journal.pone.0314685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025] Open
Abstract
Time-restricted eating (TRE) is a promising and cost-effective dietary approach for weight management. This study aimed to evaluate the effects of TRE on weight loss in three adult populations using pre- and post-intervention analyses while also investigating its underlying mechanism. A systematic search was conducted across four databases (PubMed, Web of Science, Scopus, and the CENTRAL) up until January 28, 2024, specifically focusing on prospective studies that examined the efficacy of TRE in achieving weight loss. A random effects model was employed to conduct meta-analyses, while heterogeneity was assessed using the I2 statistic (PROSPERO: CRD42023439317). The study encompassed 36 selected studies involving 44 effect sizes and 914 participants. The effectiveness of the TRE was found to vary across health conditions, with modest weight loss observed in healthy individuals (pooled effect size -1.04 Kg, 95% CI: -1.42 to -0.65) and more significant weight reduction seen in participants with chronic diseases (pooled effect size -3.33 Kg, 95% CI: -5.05 to -1.62) and overweight/obesity (pooled effect size -4.21 Kg, 95% CI: -5.23 to -3.10). The observed decrease in body weight could be partially attributed to factors influencing energy balance, as evidenced by the significantly lower mean calorie intake at the end of the intervention (1694.71 kcal/day, 95% CI: 1498.57-1890.85) compared to the baseline intake (2000.64 kcal/day, 95% CI: 1830-2172.98), despite the absence of intentional efforts to restrict energy intake by the participants. These findings support the efficacy of this lifestyle intervention for weight loss maintenance and guide the development of its clinical guidelines.
Collapse
Affiliation(s)
- Duc Tran Quang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Vietnam
| | - Nguyen Di Khanh
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Vietnam
| | - Linh Le Cu
- College of Health Sciences, VinUniveristy, Hanoi, Vietnam
| | | | - Chi Vu Thi Quynh
- School of Medicine and Pharmacy, The University of Danang, Danang, Vietnam
| | - Quang Phan Ngoc
- The Center Service For Technology Science Of Medi-Phar, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | | |
Collapse
|
15
|
Rebello CJ, Zhang D, Anderson JC, Bowman RF, Peeke PM, Greenway FL. From starvation to time-restricted eating: a review of fasting physiology. Int J Obes (Lond) 2025; 49:43-48. [PMID: 39369112 DOI: 10.1038/s41366-024-01641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
We have long known that subjects with obesity who fast for several weeks survive. Calculations that assume the brain can only use glucose indicated that all carbohydrate and protein sources would be consumed by the brain within several weeks yet subjects with obesity who fasted for several weeks survived. This anomaly led to the determination of the metabolic role of ketone bodies. Subsequent studies transformed our understanding of ketone bodies and illustrated the value of challenging the norm and adapting theory to evidence. Although prolonged fasting is no longer a treatment for obesity, the early studies of starvation provided valuable insights about macronutrient metabolism and ketone body adaptations that fasting elicits. Intermittent fasting and its variants such as time-restricted eating are fasting models that are far less regimented than starvation and severe calorie restriction; yet they produce metabolic benefits. The mechanisms that produce the metabolic changes that intermittent fasting elicits are relatively unknown. In this article, we review the physiology of starvation, starvation adaptation diets, diet-induced ketosis, and intermittent fasting. Understanding the premise and physiology that these regimens induce is necessary to draw parallels and provoke thoughts on the mechanisms underlying the metabolic benefits of intermittent fasting and its variants.
Collapse
Affiliation(s)
- Candida J Rebello
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Dachuan Zhang
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Joseph C Anderson
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | | | - Frank L Greenway
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
16
|
Kleckner AS, Kleckner IR, Renn CL, Rosenblatt PY, Ryan AS, Zhu S. Dietary Composition, Meal Timing, and Cancer-Related Fatigue: Insights From the Women's Healthy Eating and Living Study. Cancer Nurs 2025; 48:19-30. [PMID: 38032743 PMCID: PMC11136880 DOI: 10.1097/ncc.0000000000001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
BACKGROUND Cancer-related fatigue is difficult to treat, and dietary interventions are promising yet underused. OBJECTIVE We explored associations between dietary patterns and fatigue, and the effect of a dietary intervention versus control on fatigue using Women's Healthy Eating and Living study data, plus mediators and moderators of the intervention effect. METHODS The Women's Healthy Eating and Living study was a randomized controlled trial among early-stage breast cancer survivors. The 4-year intervention encouraged fruits, vegetables, fiber, and 15% to 20% calories from fat. Fatigue outcomes included a 9-item energy scale and a single-item tiredness question. Dietary quality was estimated using a modified Healthy Eating Index (24-hour dietary recall) and serum carotenoid concentrations. Nutrient timing was obtained from 4-day food logs. RESULTS Among 2914 total participants, lower body mass index was associated with less tiredness and more energy at baseline ( P < .001 for both). Earlier start and end times for daily eating windows were associated with less tiredness ( P = .014 and P = .027, respectively) and greater energy ( P = .006 and P = .102, respectively). The intervention did not lead to improvements in fatigue on average ( P > .125). However, the intervention was more effective for participants who were younger, had fewer comorbidities, and did not have radiation treatment. Mediators included increases in serum carotenoids, increases in the modified Healthy Eating Index, and weight loss/maintenance. CONCLUSION Diet quality and earlier eating windows were associated with less fatigue. IMPLICATIONS FOR PRACTICE Programs that encourage high diet quality and a morning meal and discourage nighttime eating should be tested for efficacy in reducing cancer-related fatigue in survivorship.
Collapse
Affiliation(s)
- Amber S Kleckner
- Author Affiliations: Department of Pain and Translational Symptom Science (Drs A. Kleckner, I. Kleckner, and Renn) and Department of Organizational Systems and Adult Health (Dr Zhu), University of Maryland School of Nursing; Department of Hematology and Oncology (Dr Rosenblatt) and Department of Medicine (Dr Ryan), University of Maryland School of Medicine; Baltimore Geriatric Research Education Clinical Center (Dr Ryan); and Greenebaum Comprehensive Cancer Center (Drs A. Kleckner, I. Kleckner, Rosenblatt, and Ryan), Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
17
|
Bakhsh J, Salvy SJ, Vidmar AP. Intermittent fasting as a treatment for obesity in young people: a scoping review. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:39. [PMID: 39744147 PMCID: PMC11685102 DOI: 10.1038/s44324-024-00041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025]
Abstract
Intermittent fasting focuses on the timing of eating rather than diet quality or energy intake, with evidence supporting its effects on weight loss and improvements in cardiometabolic outcomes in adults with obesity. However, there is limited evidence for its feasibility and efficacy in young people. To address this, a scoping review was conducted to examine intermittent fasting regimens in individuals aged 10 to 25 for the treatment of obesity focusing on methodology, intervention parameters, outcomes, adherence, feasibility, and efficacy. Due to the paucity of evidence in this age group, to adequately assess feasibility and adherence, all published studies of intermittent fasting in this age category, regardless of weight status and treatment intention, were included in the review. The review included 34 studies (28 interventional studies and 6 observational studies) with 893 participants aged 12 to 25. Interventions varied with 9 studies in cohorts with obesity utilizing intermittent fasting as an obesity treatment. Thirteen studies utilized 8-h time-restricted eating. Primary outcomes included cardiometabolic risk factors (7/28), anthropometric measurements (7/28), body composition (5/28), muscular performance (4/28), feasibility (1/28), and others (4/28). All 9 studies conducted in young people with obesity reported some degree of weight loss, although the comparator groups varied significantly. This review underscores the various utilizations of intermittent fasting in this age group and highlights its potential in treating obesity. However, the findings emphasize the need for rigorous studies with standardized frameworks for feasibility to ensure comparability and determine intermittent fasting's practicality in this age group depending on the treatment outcome of interest.
Collapse
Affiliation(s)
- Jomanah Bakhsh
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA USA
- Children’s Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism, Los Angeles, CA USA
| | - Sarah-Jeanne Salvy
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Alaina P. Vidmar
- Children’s Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism, Los Angeles, CA USA
| |
Collapse
|
18
|
Carrasco-Querol N, Cabricano-Canga L, Bueno Hernández N, Martín-Borràs C, Gonçalves AQ, Vila-Martí A, Ribot B, Solà J, Valls-Llobet C, Caballol Angelats R, Montesó-Curto P, Castro Blanco E, Pozo Ariza M, Carreres Rey S, Pla Pagà L, Dearos Sanchís M, Fernández-Sáez J, Dalmau Llorca MR, Aguilar Martín C. Effectiveness of the SYNCHRONIZE + Brief Intervention in Improving Mediterranean Diet Adherence, Nutritional Quality and Intake Pattern in Persons with Fibromyalgia and Chronic Fatigue Syndrome. Nutrients 2024; 17:11. [PMID: 39796445 PMCID: PMC11723387 DOI: 10.3390/nu17010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Multidisciplinary lifestyle interventions are being researched to treat fibromyalgia. However, the impact of nutrition as a key treatment component is little studied. This study aimed to evaluate the effectiveness of the SYNCHRONIZE + lifestyle multidisciplinary intervention in improving adherence to the Mediterranean diet, nutrition quality and dietary intake pattern in persons with fibromyalgia and chronic fatigue syndrome. METHODS A pragmatic randomized clinical trial was conducted in primary care. Data were collected using the 17-item energy-restricted Mediterranean Adherence Screener (er-MEDAS), the food frequency questionnaire (sFFQ) and the 24 h recall questionnaire (24 HR), in addition to chrono-nutritional, anthropometric, and body composition data, at baseline and 3-, 6-, and 12- month follow-up visits, and statistically analyzed. RESULTS A total of 158 participants were evaluated. Results showed the effectiveness of the intervention in improving adherence to the Mediterranean diet. The adherence depended on the group-time interaction being positive and significant at 3 and 6 months post-intervention in the INT group and on the participant age and educational level. Specifically, the intake of legumes, fruits, vegetables, nuts and blue fish was increased, while the intake of sweets and pastries, butter and cream and red and processed meat was reduced. Furthermore, the intake of chips and candies was also reduced, and the consumption of fermented food (yogurts, cheese, kefir) increased. Thus, general diet quality improved. Interestingly, the intake of key nutrients such as protein and iron increased. Furthermore, the number of night eaters was decreased significantly. Muscle mass index was also improved in the intervention group. These results were maintained in the medium to long term. CONCLUSION SYNCHRONIZE + is a brief, low-cost, multidisciplinary intervention effective in improving adherence to the Mediterranean diet and improving nutritional and dietary intake patterns in persons with fibromyalgia and chronic fatigue syndrome. Further evaluation of the effect on quality of life and symptoms is needed.
Collapse
Affiliation(s)
- Noèlia Carrasco-Querol
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (E.C.B.); (M.P.A.); (J.F.-S.); (C.A.M.)
| | - Lorena Cabricano-Canga
- EAP Dreta Eixample, CAP Roger de Flor, C/Roger de Flor 194, 08013 Barcelona, Spain;
- Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Nerea Bueno Hernández
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (E.C.B.); (M.P.A.); (J.F.-S.); (C.A.M.)
| | - Carme Martín-Borràs
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (E.C.B.); (M.P.A.); (J.F.-S.); (C.A.M.)
- Servei d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain; (R.C.A.); (P.M.-C.); (S.C.R.); (L.P.P.); (M.R.D.L.)
- Departament d’Activitat Física i Fisioteràpia, EUSES Terres de l’Ebre, Universitat Rovira i Virgili (URV), 43500 Tortosa, Spain
| | - Alessandra Queiroga Gonçalves
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (E.C.B.); (M.P.A.); (J.F.-S.); (C.A.M.)
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 08007 Barcelona, Spain
| | - Anna Vila-Martí
- Research Group M3O—Methodology, Methods, Models and Outcomes, Departament Ciències de la Salut Bàsiques, Facultat de Ciències de la Salut i el Benestar, Centre for Health and Social Care Research (CESS), Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain; (A.V.-M.); (B.R.); (J.S.)
| | - Blanca Ribot
- Research Group M3O—Methodology, Methods, Models and Outcomes, Departament Ciències de la Salut Bàsiques, Facultat de Ciències de la Salut i el Benestar, Centre for Health and Social Care Research (CESS), Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain; (A.V.-M.); (B.R.); (J.S.)
| | - Judit Solà
- Research Group M3O—Methodology, Methods, Models and Outcomes, Departament Ciències de la Salut Bàsiques, Facultat de Ciències de la Salut i el Benestar, Centre for Health and Social Care Research (CESS), Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain; (A.V.-M.); (B.R.); (J.S.)
| | - Carme Valls-Llobet
- Centro de Analisis y Programas Sanitarios (CAPS), 08010 Barcelona, Spain;
| | - Rosa Caballol Angelats
- Servei d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain; (R.C.A.); (P.M.-C.); (S.C.R.); (L.P.P.); (M.R.D.L.)
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 08007 Barcelona, Spain
| | - Pilar Montesó-Curto
- Servei d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain; (R.C.A.); (P.M.-C.); (S.C.R.); (L.P.P.); (M.R.D.L.)
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 08007 Barcelona, Spain
- Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Elisabet Castro Blanco
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (E.C.B.); (M.P.A.); (J.F.-S.); (C.A.M.)
| | - Macarena Pozo Ariza
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (E.C.B.); (M.P.A.); (J.F.-S.); (C.A.M.)
| | - Sandra Carreres Rey
- Servei d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain; (R.C.A.); (P.M.-C.); (S.C.R.); (L.P.P.); (M.R.D.L.)
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 08007 Barcelona, Spain
| | - Laura Pla Pagà
- Servei d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain; (R.C.A.); (P.M.-C.); (S.C.R.); (L.P.P.); (M.R.D.L.)
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 08007 Barcelona, Spain
| | - Mònica Dearos Sanchís
- Unitat d’Endocrinologia i Nutrició, Hospital de Tortosa Verge de la Cinta, Institut Català de la Salut (ICS), 43500 Tortosa, Spain;
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital de Tortosa Verge de la Cinta, Institut Català de la Salut (ICS), 43500 Tortosa, Spain
| | - José Fernández-Sáez
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (E.C.B.); (M.P.A.); (J.F.-S.); (C.A.M.)
- Departament d’Infermeria, Facultat d’Infermeria, Universitat Rovira i Virgili (URV), Campus Terres de l’Ebre, 43500 Tortosa, Spain
| | - M. Rosa Dalmau Llorca
- Servei d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain; (R.C.A.); (P.M.-C.); (S.C.R.); (L.P.P.); (M.R.D.L.)
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 08007 Barcelona, Spain
| | - Carina Aguilar Martín
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (E.C.B.); (M.P.A.); (J.F.-S.); (C.A.M.)
- Unitat d’Avaluació i Recerca, Direcció d’Atenció Primària Terres de l’Ebre i Gerència Territorial Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain
| |
Collapse
|
19
|
Rathomi HS, Katzenellenbogen J, Mavaddat N, Woods K, Thompson SC. Time-Restricted Eating in Real-World Healthcare Settings: Utilisation and Short-Term Outcomes Evaluation. Nutrients 2024; 16:4426. [PMID: 39771048 PMCID: PMC11677662 DOI: 10.3390/nu16244426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Time-restricted eating (TRE) shows promise for managing weight and metabolic issues, yet its application in real-world healthcare settings remains underexplored. This study aims to assess the real-world utilisation and short-term outcomes of TRE in clinical practice. METHODS This observational study used a retrospective chart review of 271 adults who attended a metabolic specialist clinic between 2019 and 2023. Descriptive statistics and multivariable logistic regression were used to identify factors associated with TRE adoption, while paired sample t-tests evaluated changes in outcomes among those who received TRE advice. RESULTS Among the 271 patients, 76% were female, 90% Caucasian, and 94% overweight/obese. Of all patients, 47.2% received TRE advice, mainly using the 16:8 method, alongside additional dietary guidance for 60% of patients. Working status and baseline metabolic profiles were the only factors significantly associated with TRE adoption. Among those who followed TRE, 81% experienced modest but significant reductions in weight (-1.2 kg, p < 0.01), BMI (-0.4 kg/m2, p < 0.01), and waist circumference (-3.7 cm, p < 0.01). CONCLUSIONS This study highlights TRE as a feasible and practical dietary strategy for improving metabolic health in healthcare settings. However, further research and improved data capture are needed to explore long-term adherence, potential adverse effects, and the effectiveness of TRE across diverse patient populations.
Collapse
Affiliation(s)
- Hilmi S. Rathomi
- School of Population and Global Health, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Medicine, Universitas Islam Bandung, Bandung 40116, Indonesia
| | - Judith Katzenellenbogen
- School of Population and Global Health, University of Western Australia, Crawley, WA 6009, Australia
| | - Nahal Mavaddat
- UWA Medical School, University of Western Australia, Crawley, WA 6009, Australia
| | - Kirsty Woods
- Metabolic Health Solutions, Bentley, WA 6102, Australia
| | - Sandra C. Thompson
- Western Australian Centre for Rural Health, University of Western Australia, Geraldton, WA 6530, Australia
- School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
20
|
Pescari D, Mihuta MS, Bena A, Stoian D. Quantitative analysis of the caloric restriction versus isocaloric diets models based on macronutrients composition: impacts on body weight regulation, anthropometric, and bioimpedance parameters in women with obesity. Front Nutr 2024; 11:1493954. [PMID: 39726871 PMCID: PMC11670075 DOI: 10.3389/fnut.2024.1493954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Obesity is a growing public health issue, especially among young adults, with long-term management strategies still under debate. This prospective study compares the effects of caloric restriction and isocaloric diets with different macronutrient distributions on body composition and anthropometric parameters in obese women during a 12-week weight loss program, aiming to identify the most effective dietary strategies for managing obesity-related health outcomes. Methods A certified clinical nutritionist assigned specific diets over a 12-week period to 150 participants, distributed as follows: hypocaloric diets-low-energy diet (LED, 31 subjects) and very low-energy diet (VLED, 13 subjects); isocaloric diets with macronutrient distribution-low-carbohydrate diet (LCD, 48 subjects), ketogenic diet (KD, 23 subjects), and high-protein diet (HPD, 24 subjects); and isocaloric diet without macronutrient distribution-time-restricted eating (TRE, 11 subjects). Participants were dynamically monitored using anthropometric parameters: body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) and bioelectrical impedance analysis (BIA) using the TANITA Body Composition Analyzer BC-418 MA III (T5896, Tokyo, Japan) at three key intervals-baseline, 6 weeks, and 12 weeks. The following parameters were evaluated: body weight, basal metabolic rate (BMR), percentage of total body fat, trunk fat, muscle mass, fat-free mass, and hydration status. Results All diets led to weight loss, but differences emerged over time. The TRE model resulted in significantly less weight loss compared to LED at the final follow-up (6.30 kg, p < 0.001), similar to the VLED (4.69 kg, p < 0.001). Isocaloric diets with varied macronutrient distributions showed significant weight loss compared to LED (p < 0.001). The KD reduced waist circumference at both 6 and 12 weeks (-4.08 cm, p < 0.001), while significant differences in waist-to-hip ratio reduction were observed across diet groups at 12 weeks (p = 0.01). Post-hoc analysis revealed significant fat mass differences at 12 weeks, with HPD outperforming IF (p = 0.01) and VLED (p = 0.003). LCD reduced trunk fat at 6 weeks (-2.36%, p = 0.001) and 12 weeks (-3.79%, p < 0.001). HPD increased muscle mass at 12 weeks (2.95%, p = 0.001), while VLED decreased it (-2.02%, p = 0.031). TRE showed a smaller BMR reduction at 12 weeks compared to LED. Conclusion This study highlights the superior long-term benefits of isocaloric diets with macronutrients distribution over calorie-restrictive diets in optimizing weight, BMI, body composition, and central adiposity.
Collapse
Affiliation(s)
- Denisa Pescari
- Department of Doctoral Studies, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
| | - Monica Simina Mihuta
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
| | - Andreea Bena
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Endocrinology, Second Department of Internal Medicine, Victor Babeș University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Dana Stoian
- Center for Molecular Research in Nephrology and Vascular Disease, Victor Babeș University of Medicine and Pharmacy, Timisoara, Romania
- Discipline of Endocrinology, Second Department of Internal Medicine, Victor Babeș University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
21
|
Leng H, Thijs T, Desmet L, Vanotti G, Farhadipour M, Depoortere I. Time-Restricted Feeding Reinforces Gut Rhythmicity by Restoring Rhythms in Intestinal Metabolism in a Jetlag Mouse Model. Cell Mol Gastroenterol Hepatol 2024; 19:101440. [PMID: 39667578 PMCID: PMC11830358 DOI: 10.1016/j.jcmgh.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND & AIMS Circadian disturbances result in adverse health effects, including gastrointestinal symptoms. We investigated which physiological pathways in jejunal mucosa were disrupted during chronic jetlag and prevented during time-restricted feeding (TRF). Enteroids from Bmal1+/+ and Bmal1-/- mice were used to replicate the processes that were affected by chronic jetlag and rescued by TRF. METHODS C57BL/6J male mice were subjected to chronic jetlag or night-TRF for 4 weeks. An around-the-clock bulk-RNA sequencing study was performed on the jejunal mucosa. Bmal1+/+ and Bmal1-/- mouse enteroids were generated to study the jejunal epithelial clock dependency of rhythmic jejunal processes. RESULTS Chronic jetlag disrupted the rhythmicity of jejunal clock genes and the jejunal transcriptome, which was partially rescued by TRF. Genes whose rhythm was altered by chronic jetlag but prevented by TRF were primarily associated with nutrient transport, lipid metabolism, ketogenesis, and cellular organization. In vivo, chronic jetlag caused a phase shift in the rhythmic accumulation of neutral lipids and induced a diurnal rhythm in the number of crypt epithelial cells, both of which were prevented by TRF. In vitro, enteroids replicated the in vivo rhythmic accumulation of neutral lipids in a clock-dependent manner, whereas the rhythm of S phase proliferation was ultradian in both genotypes of enteroids. CONCLUSIONS This pioneering transcriptomic study demonstrates that TRF acts as a robust entrainer during chronic jetlag, realigning disturbances in the circadian clock and the transcriptome involved in metabolic functions in the jejunal mucosa. Enteroids can replicate the rhythmic accumulation of neutral lipids dependent on the jejunal epithelial clock, enabling these functions to be studied in vitro.
Collapse
Affiliation(s)
- Hui Leng
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Theo Thijs
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Louis Desmet
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Guillaume Vanotti
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Mona Farhadipour
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.
| |
Collapse
|
22
|
Das S, Khan R, Banerjee S, Ray S, Ray S. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol 2024; 61:10115-10137. [PMID: 38702566 DOI: 10.1007/s12035-024-04178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Rajni Khan
- National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, Hajipur, 844102, Bihar, India
| | - Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
23
|
Dai Z, Lee SY, Sharma S, Ullah S, Tan ECK, Brodaty H, Schutte AE, Sachdev PS. A systematic review of diet and medication use among centenarians and near-centenarians worldwide. GeroScience 2024; 46:6625-6639. [PMID: 38967696 PMCID: PMC11493889 DOI: 10.1007/s11357-024-01247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
Centenarians represent a phenomenon of successful aging. This systematic review aimed to understand lifestyles and health practices, focusing on diet and medication use for healthy longevity in community-based adults 95 years or over. Medline, CINAHL, Scopus, and gray literature were searched from 1 January 2000 to 10 December 2022. Study quality was assessed using the Modified Newcastle-Ottawa Scale (mNOS). Pooled prevalence [%; 95% confidence interval] for categorical variables and pooled mean for continuous variables were estimated for demographics, weight status, lifestyle factors, medications, and health conditions. Of 3392 records screened, 34 studies were included in the review, and 71% (24/34) met the 6/8 criteria in mNOS. Centenarians/near-centenarians' ages ranged from 95 to 118 years, with 75% (71-78%) female and 78% (68-88%) living in rural areas. They had an overall healthy lifestyle: current smoking (7%; 5-9%), drinking (23%; 17-30%), normal weight (52%; 42-61%), overweight (14%; 8-20%), physical activity (23%; 20-26%), and sleep satisfaction (68%; 65-72%). Diet averaged 59.6% carbohydrate, 18.5% protein, and 29.3% fat; over 60% consumed a diverse diet, and < 20% preferred salty food, contributing to lower mortality risks and functional decline. About half used antihypertensives (49%; 14-84%) or other cardiovascular drugs (48%; 24-71%), with an average of 4.6 medications. Common health issues included impaired basic activities of daily living (54%; 33-74%), hypertension (43%; 21-65%), and dementia (41%; 23-59%). The findings of this systemic review underscore the pivotal role of dietary practice and weight management in healthcare strategies to promote healthy ageing. It also recognises rural living styles and sleep hygiene as potential factors contributing to healthy longevity.
Collapse
Affiliation(s)
- Zhaoli Dai
- School of Population Health, Faculty of Medicine and Health, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia.
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- UNSW Ageing Futures Institute, University of New South Wales (UNSW Sydney), Sydney, NSW, Australia.
| | - Sue Yi Lee
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Srishti Sharma
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Shahid Ullah
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | - Edwin C K Tan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
| | - Aletta E Schutte
- School of Population Health, Faculty of Medicine and Health, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
- The George Institute for Global Health, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales (UNSW Sydney), Sydney, NSW, Australia
| |
Collapse
|
24
|
Zhou Y, Guo X, Liu Z, Sun D, Liang Y, Shen H, Li X, Mu J, Liu J, Cao G, Chen M. 6-week time-restricted eating improves body composition, maintains exercise performance, without exacerbating eating disorder in female DanceSport dancers. J Int Soc Sports Nutr 2024; 21:2369613. [PMID: 38904148 PMCID: PMC11195454 DOI: 10.1080/15502783.2024.2369613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Despite the high risk of eating disorder (ED)-related attitudes and behaviors among female dancers, targeted scientific dietary regimens are currently inadequate. Time-restricted eating (TRE), a popular intermittent fasting protocol, has been shown to be effective in enhancing body composition and exercise performance in athletes. In this study, TRE was employed as a dietary regimen to improve body composition and exercise performance and address ED attitudes and behaviors in DanceSport dancers. METHODS Twenty female DanceSport dancers were recruited and divided into two groups: TRE (n = 10) and normal diet (ND) (n = 10). The TRE group consumed their self-selected necessary energy intake exclusively between 11 a.m. and 7 p.m. (utilizing a 16-hour fasting and 8-hour eating window) for 6 weeks, while the ND group maintained their regular dieting patterns. The consumption of water, black tea, or coffee without added sugar or milk was not restricted. Physical activity and calorie intake were systematically recorded during the TRE intervention. Body composition, aerobic and anaerobic performance, and ED attitudes and behaviors were assessed before and after the TRE intervention. The trial was registered in the Chinese Clinical Trial Registry under the identifier ChiCTR2200063780. RESULTS The fixed effects tests (p < 0.0001) and estimates for the intercept (p < 0.0001) of hunger level indicated a noticeable effect on the initial state of hunger during TRE. No significant differences were observed in ED attitudes or behaviors (p > 0.05). TRE resulted in a reduction in hip circumference (p = 0.039), fat mass (kg) (p = 0.0004), and body fat percentage (p = 0.0005), with no significant decrease in fat-free mass (p > 0.05). No significant improvement was observed in aerobic performance (p > 0.05). The average power (AP) (p = 0.01) and AP/Body weight ratio (p = 0.003) significantly increased. Additionally, the power drop decreased significantly (p = 0.019). Group-by-time interactions were observed for fat mass (kg) (p = 0.01), body fat percentage (p = 0.035), and AP/Body weight (p = 0.020). CONCLUSION TRE can be considered a feasible nutritional strategy for DanceSport dancers, facilitating improvements in body composition without compromising aerobic and anaerobic exercise performance or exacerbating ED attitudes and behaviors. Moreover, TRE may facilitate more favorable physiological adaptations, potentially contributing to improved exercise performance.
Collapse
Affiliation(s)
- Yanbing Zhou
- Beijing Sport University, School of Art, Beijing, China
| | - Xian Guo
- Beijing Sport University, Sport Science School, Beijing, China
- Beijing Sport University, Beijing Sports Nutrition Engineering Research Center, Beijing, China
| | - Zeyao Liu
- Beijing Municipal Bureau of Sports, Beijing Lucheng Sports Technical School, Beijing, China
| | - Dan Sun
- Beijing Sport University, Competitive Sport School, Beijing, China
| | - Yujie Liang
- Beijing Sport University, School of Art, Beijing, China
| | - Hong Shen
- Beijing Sport University, School of Art, Beijing, China
| | - Xinxin Li
- Beijing Sport University, Sport Science School, Beijing, China
| | - Jinhao Mu
- Beijing Sport University, Sport Science School, Beijing, China
| | - Jingying Liu
- Beijing Sport University, Sport Science School, Beijing, China
| | - Guoxia Cao
- Beijing Sport University, Sport Science School, Beijing, China
| | - Mengmeng Chen
- Beijing Sport University, Sport Science School, Beijing, China
| |
Collapse
|
25
|
Alvarado-Tapias E, Maya-Miles D, Albillos A, Aller R, Ampuero J, Andrade RJ, Arechederra M, Aspichueta P, Banales JM, Blas-García A, Caparros E, Cardoso Delgado T, Carrillo-Vico A, Claria J, Cubero FJ, Díaz-Ruiz A, Fernández-Barrena MG, Fernández-Iglesias A, Fernández-Veledo S, Francés R, Gallego-Durán R, Gracia-Sancho J, Irimia M, Lens S, Martínez-Chantar ML, Mínguez B, Muñoz-Hernández R, Nogueiras R, Ramos-Molina B, Riveiro-Barciela M, Rodríguez-Perálvarez ML, Romero-Gómez M, Sabio G, Sancho-Bru P, Ventura-Cots M, Vidal S, Gahete MD. Proceedings of the 5th Meeting of Translational Hepatology, organized by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502207. [PMID: 38723772 DOI: 10.1016/j.gastrohep.2024.502207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 11/30/2024]
Abstract
This is the summary report of the 5th Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH) and held in Seville, Spain, in October 2023. The meeting aimed to provide an update on the latest advances in the field of basic and translational hepatology, covering different molecular, cellular, and pathophysiological aspects of the most relevant clinical challenges in liver pathologies. This includes the identification of novel biomarkers and diagnostic tools, the understanding of the relevance of immune response and inflammation in liver diseases, the characterization of current medical approaches to reverse liver diseases, the incorporation of novel molecular insights through omics techniques, or the characterization of the impact of toxic and metabolic insults, as well as other organ crosstalk, in liver pathophysiology.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Santa Creu I Sant Pau, Institut de Recerca Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Douglas Maya-Miles
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain.
| | - Agustin Albillos
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal/Universidad de Alcalá/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rocio Aller
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Spain; Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Spain; Gastroenterology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Javier Ampuero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Raul J Andrade
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Maria Arechederra
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Patricia Aspichueta
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Jesus M Banales
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), Ikerbasque, Donostia-San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ana Blas-García
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Esther Caparros
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Teresa Cardoso Delgado
- Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Joan Claria
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain; University of Barcelona, Spain
| | - Francisco Javier Cubero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Maite G Fernández-Barrena
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Spain
| | - Anabel Fernández-Iglesias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Francés
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rocío Gallego-Durán
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Jordi Gracia-Sancho
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Manuel Irimia
- Universitat Pompeu Fabra (UPF), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
| | - Sabela Lens
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Liver Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - María Luz Martínez-Chantar
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Mínguez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rocío Muñoz-Hernández
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mar Riveiro-Barciela
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel L Rodríguez-Perálvarez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain; Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Cordoba, Spain
| | - Manuel Romero-Gómez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Spain; Centro Nacional de Investigaciones Oncologicas (CNIO), Organ Crosstalk in Metabolic Diseases, Madrid, Spain
| | - Pau Sancho-Bru
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Meritxell Ventura-Cots
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Center for Liver Diseases, Pittsburgh Liver Research Center, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Vidal
- Group of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Manuel D Gahete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Molecular Hepatology Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Spain; Reina Sofia University Hospital, Cordoba, Spain.
| |
Collapse
|
26
|
Gu W, Tian Z, Hou W, Yang Y, Ma Y, Song Y, Wang H, Sun C. The association of 24-hour behavior rhythms with stroke among American adults with prediabetes/diabetes: evidence from NHANES 2011-2014. BMC Public Health 2024; 24:3265. [PMID: 39587492 PMCID: PMC11587646 DOI: 10.1186/s12889-024-20691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 11/10/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Emerging evidence suggests that circadian rhythms play a role in the regulation of cardiovascular diseases (CVDs). We aim to examine the relationship between the 24-hour behavior rhythms (activity-rest and feeding-fasting rhythms) and stroke. METHODS The study included 3201 adult participants with prediabetes/diabetes from the National Health and Nutrition Examination Survey (NHANES) 2011-2014. The 24-hour behavior rhythm indices were calculated using data from accelerometer wearable device and dietary recall for two nonconsecutive days. Six indices were calculated including interdaily stability (IS), intradaily variability (IV), relative amplitude (RA), average activity during the least active continuous 5-hour period (L5), Average activity during the most active continuous 10-hour period (M10) which reflects the activity-rest rhythm, and feeding rhythm score which reflects the feeding-fasting rhythm. These continuous variables were divided into quintiles for logistic regression models. RESULTS Comparing participants in quintile 1, those in quintile 5 of IS and RA exhibited a lower odds of stroke. Conversely, participants in quintile 5 of IV, L5, and L5 start time demonstrated a higher odds of stroke. Furthermore, participants in quintile 5 of feeding rhythm score had a significantly lower odds of stroke. The associations of IV and feeding rhythm score with stroke were more pronounced in participants with diabetes compared to those with prediabetes/diabetes. No significant associations were observed between other 24-hour behavior rhythms and stroke. CONCLUSIONS Overall, this study highlights a significant association between 24-hour behavior rhythm and stroke in American adults with prediabetes/diabetes.
Collapse
Affiliation(s)
- Wenbo Gu
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, Heilongjiang, China
| | - Zhen Tian
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, Heilongjiang, China
| | - Wanying Hou
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, Heilongjiang, China
| | - Yi Yang
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, Heilongjiang, China
| | - Yifan Ma
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, Heilongjiang, China
| | - Yuhua Song
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, Heilongjiang, China
| | - Haixin Wang
- Department of Postgraduate, Third Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, the National Key Discipline, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
27
|
Alasmari AA, Alhussain MH, Al-Khalifah AS, Alshiban NM, Alharthi R, Alyami NM, Alodah HS, Alahmed MF, Aljahdali BA, BaHammam AS. Ramadan fasting model modulates biomarkers of longevity and metabolism in male obese and non-obese rats. Sci Rep 2024; 14:28731. [PMID: 39567585 PMCID: PMC11579461 DOI: 10.1038/s41598-024-79557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
The health advantages of Ramadan fasting, a time-restricted eating from dawn to dusk, have garnered attention. Nevertheless, prior observational studies have found inconsistent findings because of challenges regulating variables such as sleep patterns, dietary habits, and physical activity. This study sought to investigate the impact of the Ramadan fasting model (RFM) on longevity and metabolic biomarkers in obese and non-obese rats. For 12 weeks, 48 male Wistar albino rats were separated into two groups and fed either a standard or a high-fat diet (HFD). During the final four weeks, rats in each group were separated into four subgroups to investigate the effect of RFM with/without training (on Treadmill) or glucose administration on the biomarkers of interest. The HFD groups subjected to RFM had significantly lower Insulin-like growth factor 1 (IGF-1) and mechanistic target of rapamycin (mTOR) serum, whereas AMPK, anti-inflammatory, and antioxidative stress serum levels were significantly higher. All groups reported decreased serum levels of Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) compared to the HFD control group. Furthermore, the Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) results indicated a significant elevation in the TP53 gene expression in groups subjected to RFM. The data indicate that RFM can improve longevity and metabolic biomarkers and reduce pro-inflammation and oxidative stress. Also, RFM improves anti-inflammatory and antioxidant markers in HFD-induced obese rats.
Collapse
Affiliation(s)
- Abeer Abdallah Alasmari
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maha H Alhussain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulrahman Saleh Al-Khalifah
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noura Mohammed Alshiban
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rawan Alharthi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hesham S Alodah
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Alahmed
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bayan A Aljahdali
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S BaHammam
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Yan B, Caton SJ, Buckland NJ. Exploring factors influencing late evening eating and barriers and enablers to changing to earlier eating patterns in adults with overweight and obesity. Appetite 2024; 202:107646. [PMID: 39179110 DOI: 10.1016/j.appet.2024.107646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Late evening eating is a potential risk factor for overconsumption and weight gain. However, there is limited qualitative research investigating the complex factors that influence late evening eating in adults living with obesity. Identifying the factors that influence late evening eating can inform interventions to reduce late evening eating and associated health risks. Therefore, this study aimed to: i) explore factors that contribute to eating late, and ii) apply the Capability, Opportunity, and Motivation Behaviour (COM-B) model to understand the barriers and enablers to changing to earlier food intake timings in UK adults who report eating late. Semi-structured interviews with seventeen participants [32.47 ± 6.65 years; 34.68 ± 7.10 kg/m2; 71% female (n = 12); 41% White (n = 7)] investigated reasons for late evening eating and the potential barriers and enablers to changing to earlier eating patterns. Thematic analysis identified four main contributors to late evening eating: 1) internal signals (e.g., feeling hungry in the evening); 2) external and situational factors (e.g., work schedules and the food-rich environment); 3) social factors (e.g., interactions with family) and 4) behavioural and emotional factors (e.g., personal preferences and negative feelings in the evening). Time constraints and work schedules were identified as main barriers to changing to earlier eating patterns. Whereas, having high motivation (e.g., contentment with eating earlier in the evening) and interpersonal support were identified as main enablers to eating earlier. This study provides in-depth insights into the psychological, social, and environmental factors contributing to late evening eating. The findings highlight potential targets for future interventions to facilitate earlier eating times in individuals at risk of overweight and obesity.
Collapse
Affiliation(s)
- Bixuan Yan
- Department of Psychology, University of Sheffield, ICOSS Building, S1 4DP, United Kingdom.
| | - Samantha J Caton
- Sheffield Centre for Health and Related Research (SCHARR), School of Medicine and Population Health, University of Sheffield, 30 Regent St, Sheffield S1 4DA, United Kingdom
| | - Nicola J Buckland
- Department of Psychology, University of Sheffield, ICOSS Building, S1 4DP, United Kingdom
| |
Collapse
|
29
|
Moraes RCM, Roth JR, Mao H, Crawley SR, Xu BP, Watson JC, Melkani GC. Apolipoprotein E Induces Lipid Accumulation Through Dgat2 That Is Prevented with Time-Restricted Feeding in Drosophila. Genes (Basel) 2024; 15:1376. [PMID: 39596576 PMCID: PMC11594465 DOI: 10.3390/genes15111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Apolipoprotein E (ApoE) is the leading genetic risk factor for late-onset Alzheimer's disease (AD), which is the leading cause of dementia worldwide. Most people have two ApoE-ε3 (ApoE3) alleles, while ApoE-ε2 (ApoE2) is protective from AD, and ApoE-ε4 (ApoE4) confers AD risk. How these alleles modulate AD risk is not clearly defined, and ApoE's role in lipid metabolism is also not fully known. Lipid droplets increase in AD. However, how ApoE contributes to lipid accumulation in the brain remains unknown. Methods: Here, we use Drosophila to study the effects of ApoE alleles on lipid accumulation in the brain and muscle in a cell-autonomous and non-cell-autonomous manner. Results: We report that pan-neuronal expression of each ApoE allele induces lipid accumulation specifically in the brain, but not in the muscle. However, this was not the case when expressed with muscle-specific drivers. ApoE2- and ApoE3-induced lipid accumulation is dependent on the expression of Dgat2, a key regulator of triacylglycerol production, while ApoE4 still induces lipid accumulation even with knock-down of Dgat2. Additionally, we find that implementation of time-restricted feeding (TRF), a dietary intervention in which food access only occurs in the active period (day), prevents ApoE-induced lipid accumulation in the brain of flies and modulates lipid metabolism genes. Conclusions: Altogether, our results demonstrate that ApoE induces lipid accumulation in the brain, that ApoE4 is unique in causing lipid accumulation independent of Dgat2, and that TRF prevents ApoE-induced lipid accumulation. These results support the idea that lipid metabolism is critical in AD, and that TRF could be a promising therapeutic approach to prevent ApoE-associated dysfunction in lipid metabolism.
Collapse
Affiliation(s)
- Ruan C. M. Moraes
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jonathan R. Roth
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hailey Mao
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Savannah R. Crawley
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brittney P. Xu
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John C. Watson
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Girish C. Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Nathan Shock Center, 1300 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
30
|
Hoosen F, Pico ML, Goedecke JH, Dave JA, Quist JS, Færch K, Grunnet LG, de Villiers A, Aagaard-Hansen J, Mendham AE. Development and feasibility testing of a time-restricted eating intervention for women living with overweight/obesity and HIV in a resource-limited setting of South Africa. BMC Public Health 2024; 24:2768. [PMID: 39390498 PMCID: PMC11465697 DOI: 10.1186/s12889-024-20228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Human Immunodeficiency Virus (HIV) and type 2 diabetes (T2D) are amongst the leading causes of death in South Africa. The preferred first-line anti-retroviral treatment contains dolutegravir (DTG), shown to increase body weight, may compound the already high rates of obesity and associated risk for T2D. South Africa has widespread food insecurity, making traditional dietary strategies difficult to implement. Time-restricted eating (TRE) may be an appropriate intervention in resource-limited communities. METHODS This article outlines the development and feasibility testing of a TRE intervention to inform the design of a TRE randomised controlled trial in women (20-45 years old) living with overweight/obesity and HIV, receiving DTG-based treatment from a resource-limited community in Cape Town, South Africa. Factors influencing TRE adoption were identified using the Capability, Opportunity, Motivation - Behaviour model and the Theoretical Domains Framework, combining in-depth interviews (IDIs) and focus group discussions. Participants from the IDIs went on to participate in a single arm 4-week TRE pilot trial where feasibility was explored in terms of reach, acceptability, applicability, and implementation integrity. An iterative, thematic analysis approach was employed to analyse the qualitative data. RESULTS Participants included 33 isiXhosa-speaking women (mean age 37.1 years, mean BMI 35.9 kg/m2). Thematic analysis identified psychological capability (knowledge of fasting), social influences (cultural preferences, family support), and reflective motivation (awareness of weight, health impact, motivation for TRE) as key factors influencing adoption of TRE for weight management. In a 4-week TRE pilot trial (n = 12), retention was 100%. Positive outcomes perceived included improved energy, appetite control and weight loss. TRE was perceived as acceptable, easy, and enjoyable. Family support facilitated adherence, while habitual and social eating and drinking practices were barriers. Compliance was high, aided by self-selected eating times, reminders, and weekly calls. Recommendations included the incorporation of dietary education sessions and text messages to provide additional support and reminders. CONCLUSIONS This study indicates that TRE is a feasible weight management strategy in women living with overweight/obesity and HIV, receiving DTG-based treatment in a resource-limited community. These findings will ensure that the forthcoming TRE randomised controlled trial is adapted and optimised to the local South African context.
Collapse
Affiliation(s)
- Fatima Hoosen
- Division of Physiological Sciences, Sports Science Institute of South Africa, Department of Human Biology, Faculty of Health Sciences, Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), University of Cape Town, Boundary Road, Newlands, Cape Town, 7700, South Africa.
| | - Majken L Pico
- Steno Diabetes Center Copenhagen, Capital Region, Borgmester Ib Juuls Vej 83, Herlev, 2730, Denmark
| | - Julia H Goedecke
- Division of Physiological Sciences, Sports Science Institute of South Africa, Department of Human Biology, Faculty of Health Sciences, Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), University of Cape Town, Boundary Road, Newlands, Cape Town, 7700, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Francie Van Zijl Drive, Parowvallei, Cape Town, 7505, South Africa
| | - Joel A Dave
- Division of Endocrinology, Department of Medicine, University of Cape Town, J Floor, Groote Schuur Hospital, Old Main Building, ObservatoryCape Town, 7925, South Africa
| | - Jonas S Quist
- Steno Diabetes Center Copenhagen, Capital Region, Borgmester Ib Juuls Vej 83, Herlev, 2730, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Copenhagen N, 2200, Denmark
- School of Psychology, University of Leeds, Leeds, LS2 9JT, UK
| | - Kristine Færch
- Steno Diabetes Center Copenhagen, Capital Region, Borgmester Ib Juuls Vej 83, Herlev, 2730, Denmark
| | - Louise G Grunnet
- Steno Diabetes Center Copenhagen, Capital Region, Borgmester Ib Juuls Vej 83, Herlev, 2730, Denmark
| | - Anniza de Villiers
- Division of Physiological Sciences, Sports Science Institute of South Africa, Department of Human Biology, Faculty of Health Sciences, Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), University of Cape Town, Boundary Road, Newlands, Cape Town, 7700, South Africa
| | - Jens Aagaard-Hansen
- Steno Diabetes Center Copenhagen, Capital Region, Borgmester Ib Juuls Vej 83, Herlev, 2730, Denmark
- South African Medical Research Council Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Private Bag X3, Wits, Johannesburg, 2050, South Africa
| | - Amy E Mendham
- Division of Physiological Sciences, Sports Science Institute of South Africa, Department of Human Biology, Faculty of Health Sciences, Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), University of Cape Town, Boundary Road, Newlands, Cape Town, 7700, South Africa
- Riverland Academy of Clinical Excellence, Riverland Mallee Coorong Local Health Network, Riverland General Hospital, 10 Maddern Street, Berri, South Australia, 5343, Australia
| |
Collapse
|
31
|
Xie Y, Zhou K, Shang Z, Bao D, Zhou J. The Effects of Time-Restricted Eating on Fat Loss in Adults with Overweight and Obese Depend upon the Eating Window and Intervention Strategies: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3390. [PMID: 39408357 PMCID: PMC11478505 DOI: 10.3390/nu16193390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Time-restricted eating (TRE) is a circadian rhythm-based intermittent fasting intervention that has been used to treat obesity. However, the efficacy and safety of TRE for fat loss have not been comprehensively examined and the influences of TRE characteristics on such effects are unknown. This systematic review and meta-analysis comprehensively characterized the efficacy and safety of TRE for fat loss in adults with overweight and obese, and it explored the influence of TRE characteristics on this effect. METHODS A search strategy based on the PICOS principle was used to find relevant publications in seven databases. The outcomes were body composition, anthropometric indicators, and blood lipid metrics. Twenty publications (20 studies) with 1288 participants, covering the period from 2020 to 2024, were included. RESULTS Compared to the control group, TRE safely and significantly reduced body fat percentage, fat mass, lean mass, body mass, BMI, and waist circumference (MDpooled = -2.14 cm, 95% CI = -2.88~-1.40, p < 0.001), and increased low-density lipoprotein (LDL) (MDpooled = 2.70, 95% CI = 0.17~5.22, p = 0.037), but it did not alter the total cholesterol, high-density lipoprotein, and triglycerides (MDpooled = -1.09~1.20 mg/dL, 95% CI -4.31~5.47, p > 0.05). Subgroup analyses showed that TRE only or TRE-caloric restriction with an eating window of 6 to 8 h may be appropriate for losing body fat and overall weight. CONCLUSIONS This work provides moderate to high evidence that TRE is a promising dietary strategy for fat loss. Although it may potentially reduce lean mass and increase LDL, these effects do not pose significant safety concerns. This trial was registered with PROSPERO as CRD42023406329.
Collapse
Affiliation(s)
- Yixun Xie
- College of Education, Beijing Sport University, Beijing 100084, China;
| | - Kaixiang Zhou
- College of Physical Education and Health Science, Chongqing Normal University, Chongqing 401331, China;
| | - Zhangyuting Shang
- College of Physical Education and Health Management, Chongqing University of Education, Chongqing 400065, China;
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Junhong Zhou
- Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
32
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
33
|
Skarstad HMS, Haganes KL, Sujan MAJ, Gellein TM, Johansen MK, Salvesen KÅ, Hawley JA, Moholdt T. A randomized feasibility trial of time-restricted eating during pregnancy in people with increased risk of gestational diabetes. Sci Rep 2024; 14:22476. [PMID: 39341847 PMCID: PMC11439041 DOI: 10.1038/s41598-024-72913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Time-restricted eating (TRE) is a nutritional intervention that confines the daily time-window for energy intake. TRE reduces fasting glucose concentrations in non-pregnant individuals, but whether this eating protocol is feasible and effective for glycemic control in pregnancy is unknown. The aim of this randomized controlled trial was to investigate the adherence to and effect of a 5-week TRE intervention (maximum 10 h daily eating window) among pregnant individuals at risk of gestational diabetes mellitus (GDM), compared with a usual-care control group. Participants underwent 2-h oral glucose tolerance tests and estimation of body composition, before and after the intervention. Interstitial glucose levels were continuously measured, and adherence rates and ratings of hunger were recorded daily. Thirty of 32 participants completed the trial. Participants allocated to TRE reduced their daily eating window from 12.3 (SD 1.3) to 9.9 (SD 1.0) h, but TRE did not affect glycemic measures, blood pressure, or body composition, compared with the control group. TRE increased hunger levels in the evening, but not in the morning, and induced only small changes in dietary intake. Adhering to a 5-week TRE intervention was feasible for pregnant individuals with increased risk of GDM but had no effect on cardiometabolic outcomes.
Collapse
Affiliation(s)
- Hanna M S Skarstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kamilla L Haganes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Obstetrics and Gynecology, St. Olav's hospital, Trondheim, Norway
| | - Md Abu Jafar Sujan
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Obstetrics and Gynecology, St. Olav's hospital, Trondheim, Norway
| | - Trine M Gellein
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mariell K Johansen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kjell Å Salvesen
- Department of Obstetrics and Gynecology, St. Olav's hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - John A Hawley
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Obstetrics and Gynecology, St. Olav's hospital, Trondheim, Norway.
| |
Collapse
|
34
|
Chaix A, Lin T, Ramms B, Cutler RG, Le T, Lopez C, Miu P, Pinto AFM, Saghatelian A, Playford MP, Mehta NN, Mattson MP, Gordts P, Witztum JL, Panda S. Time-Restricted Feeding Reduces Atherosclerosis in LDLR KO Mice but Not in ApoE Knockout Mice. Arterioscler Thromb Vasc Biol 2024; 44:2069-2087. [PMID: 39087348 PMCID: PMC11409897 DOI: 10.1161/atvbaha.124.320998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Dyslipidemia increases cardiovascular disease risk, the leading cause of death worldwide. Under time-restricted feeding (TRF), wherein food intake is restricted to a consistent window of <12 hours, weight gain, glucose intolerance, inflammation, dyslipidemia, and hypercholesterolemia are all reduced in mice fed an obesogenic diet. LDLR (low-density lipoprotein receptor) mutations are a major cause of familial hypercholesterolemia and early-onset cardiovascular disease. METHODS We subjected benchmark preclinical models, mice lacking LDLR-knockout or ApoE knockout to ad libitum feeding of an isocaloric atherogenic diet either ad libitum or 9 hours TRF for up to 13 weeks and assessed disease development, mechanism, and global changes in hepatic gene expression and plasma lipids. In a regression model, a subset of LDLR-knockout mice were ad libitum fed and then subject to TRF. RESULTS TRF could significantly attenuate weight gain, hypercholesterolemia, and atherosclerosis in mice lacking the LDLR-knockout mice under experimental conditions of both prevention and regression. In LDLR-knockout mice, increased hepatic expression of genes mediating β-oxidation during fasting is associated with reduced VLDL (very-low-density lipoprotein) secretion and lipid accumulation. Additionally, increased sterol catabolism coupled with fecal loss of cholesterol and bile acids contributes to the atheroprotective effect of TRF. Finally, TRF alone or combined with a cholesterol-free diet can reduce atherosclerosis in LDLR-knockout mice. However, mice lacking ApoE, which is an important protein for hepatic lipoprotein reuptake do not respond to TRF. CONCLUSIONS In a preclinical animal model, TRF is effective in both the prevention and regression of atherosclerosis in LDLR knockout mice. The results suggest TRF alone or in combination with a low-cholesterol diet can be a lifestyle intervention for reducing cardiovascular disease risk in humans.
Collapse
Affiliation(s)
- Amandine Chaix
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Terry Lin
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Bastian Ramms
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Roy G. Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA. 21224
| | - Tiffani Le
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Catherine Lopez
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Phuong Miu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Antonio F. M. Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD, USA. 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States. 21205
| | - Philip Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Joseph L. Witztum
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA. 92093
| | - Satchidananda Panda
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Lead contact
| |
Collapse
|
35
|
McCullough ML, Masters M, Hartman TJ, Flanders WD, Playdon MC, Elahy V, Hodge RA, Teras LR, Wang Y, Patel AV. Length of Overnight Fasting and 6-year Weight Change in the Cancer Prevention Study-3. J Nutr 2024; 154:2834-2842. [PMID: 39025333 DOI: 10.1016/j.tjnut.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Longer overnight fasting (ONF) is a potential strategy for weight control. Although promising, the evidence from large population-based studies is limited. OBJECTIVES To examine the association of self-reported ONF duration with 3- and 6-y weight change in the American Cancer Society's Cancer Prevention Study-3 prospective cohort. METHODS United States adult Cancer Prevention Study-3 participants completed a 24-h validated meal and snack timing and frequency grid (weekday and weekend) in 2015, from which weighted ONF hours were calculated. Participants reported body weight in 2015, 2018, and 2021. Three- and 6-y weight change (kg, and % body weight) were assessed. RESULTS Among 104,420 mostly female (78.5%) participants aged 52.7 ± 9.5 (standard deviation) y followed for 6 y, a 1-h increase in ONF length was associated with a small but statistically significant reduction in weight gain over 3- and 6-y periods [multivariable-adjusted mean difference in % body weight = -0.02, 95% confidence interval (CI): -0.05, -0.00, P = 0.03 and -0.04, 95% CI: -0.07, -0.01, P < 0.01, respectively]. The mean difference of 6-y % reduction in weight gain was slightly greater among individuals with overweight (-0.05, 95% CI: -0.10, 0.00, P = 0.05) and obesity (-0.06, 95% CI: -0.12, 0.01, P = 0.08) compared with those with healthy body mass index (-0.03, 95% CI:-0.07, 0.01, P = 0.13) or underweight (0.16, 95% CI: -0.04, 0.36, P = 0.13, Pinteraction < 0.0001). Stronger associations were observed among those ≤55 y than 56+ (P < 0.001), and those with higher waist circumference (Pinteraction < 0.0001) but not by sex or earlier/later fasting period. CONCLUSIONS Longer ONF was associated with slightly lower body weight in adult males and females over 6 y that was stronger among those with overweight or obesity, higher waist circumference, and those aged ≤55 y. The magnitude of weight change, although in the hypothesized direction, suggests that prolonged ONF may have modest impact on weight control over time.
Collapse
Affiliation(s)
- Marjorie L McCullough
- Department of Population Science, American Cancer Society, Atlanta, GA, United States.
| | - Matthew Masters
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Terryl J Hartman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States; Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - W Dana Flanders
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, and Cancer Control and Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Valeria Elahy
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Rebecca A Hodge
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Lauren R Teras
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Ying Wang
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| |
Collapse
|
36
|
Bailey CP, Boyd P, Shams-White MM, Czajkowski SM, Nebeling L, Reedy J, O’Connor SG. Time-Restricted Eating in Community-Dwelling Adults: Correlates of Adherence and Discontinuation in a Cross-Sectional Online Survey Study. J Acad Nutr Diet 2024; 124:1029-1040. [PMID: 38110176 PMCID: PMC11180216 DOI: 10.1016/j.jand.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Time-restricted eating (TRE), a type of intermittent fasting in which all daily calories are consumed within a window of ≤12 hours, is hypothesized to promote long-term weight management because of its relative simplicity. OBJECTIVE This study reports correlates of adherence among community-dwelling adults currently or formerly following a TRE dietary strategy. DESIGN A 25-minute cross-sectional online survey was developed, including questions about TRE perceptions, behaviors, motivators and drivers, and demographics. The survey was administered in February 2021 via Prolific, an online platform for sample recruitment and survey dissemination. PARTICIPANTS Eligibility criteria included US adult ages 18+ who currently or formerly (past 3 months) followed TRE (ie, consumed all daily calories within a window of ≤12 hours) for a minimum of 1 week. STATISTICAL ANALYSES χ2 tests and analysis of covariance (ANCOVA; adjusting for sex and age) compared responses between current and former followers. RESULTS Current followers (n = 296, mean [SD]: 34.2 ± 12.2y) were older than former followers (n = 295, mean [SD]: 31.1 ± 10.9 y) and practiced TRE for longer (median: 395 vs 90 days, P < 0.001). Current followers reported more success with meeting TRE goals (P ≤ 0.015), were less likely to report TRE concerns (P < 0.001), and more likely to report TRE satisfaction (P < 0.001). Four TRE motivators were more important among current (vs former) followers: weight maintenance, health (not weight), improved sleep, and preventing disease (P ≤ 0.017); weight loss was more important among former (vs current) followers (P = 0.003). Among adherence drivers, ability to work from home and the impact of COVID-19 were reported as more helpful for TRE adherence among current compared with former followers (P ≤ 0.028). CONCLUSIONS TRE motivators and drivers differed between current and former followers; interventions tailored to individuals' preferences and circumstances may benefit TRE adherence.
Collapse
Affiliation(s)
- Caitlin P. Bailey
- The George Washington University Milken Institute School of Public Health, Washington, D.C., USA | Behavioral Research Program, Division of Cancer Control & Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Patrick Boyd
- Division of Cancer Control & Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Marissa M. Shams-White
- Division of Cancer Control & Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Susan M. Czajkowski
- Division of Cancer Control & Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Linda Nebeling
- Division of Cancer Control & Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jill Reedy
- Division of Cancer Control & Population Sciences, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Sydney G. O’Connor
- Office of Behavioral and Social Sciences Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Selingardi SDA, Ribeiro SMLT, Freitas SND, Pimenta FAP, Machado-Coelho GLL, Oliveira FLPD, Neto RMDN, Menezes-Júnior LAAD. Temporal patterns of food consumption and their association with cardiovascular risk in rotating shift workers. Clin Nutr ESPEN 2024; 62:95-101. [PMID: 38901954 DOI: 10.1016/j.clnesp.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE We aimed to evaluate the association of temporal patterns of food consumption with cardiovascular disease (CVD) risk. METHODS This cross-sectional study included male rotating shift workers in an iron ore extraction company. Data on food consumption was collected using a 24 h recall, applied by trained interviewers. The variables for temporal patterns of food consumption were: eating window, eating at night, number of meals and omission of breakfast. CVD-risk was measured by calculating the Framingham coronary heart disease risk score (FCRS), and classified as low risk or intermediate to high risk. Descriptive, univariate and multivariate logistic regression analyses examined the association between variables related to temporal patterns of food consumption and CVD-risk. RESULTS The study assessed 208 workers, the majority with 20-34 years (45.1%), non-white (77.2%), and 5 years or more in shift work (76.0%). Most participants had a feeding window exceeding 12 h (63.9%), consumed meals until 10 p.m. (68.1%), had five or more meals per day (54.8%), and did not skip breakfast (86.5%). Regarding CVD-risk, 43.8% of the participants were classified with intermediate to high risk for CVD. In the multivariate model, a feeding window (OR: 2.32; 95%CI: 1.01-5.35), eating after 10 p.m. (OR: 3.31; 95%CI: 1.01-11.0), and skipping breakfast (OR: 2.58; 95%CI: 1.07-6.19) increased the likelihood of intermediate to high CVD-risk. Conversely, having five or more meals per day decreased the odds (OR: 0.27; 95%CI: 0.08-0.92). CONCLUSION Eating window longer than 12 h, eating after 10 p.m., less than four meals a day and omission of breakfast, are associated with cardiovascular risk in shift workers.
Collapse
Affiliation(s)
| | | | | | | | - George Luiz Lins Machado-Coelho
- Post-graduate Program in Health and Nutrition, Nutrition School, Federal University of Ouro Preto. Ouro Preto, Minas Gerais, Brazil; Medical School, Federal University of Minas Gerais. Ouro Preto, Minas Gerais, Brazil
| | | | | | - Luiz Antônio Alves de Menezes-Júnior
- School of Nutrition, Federal University of Ouro Preto. Ouro Preto, Minas Gerais, Brazil; Post-graduate Program in Health and Nutrition, Nutrition School, Federal University of Ouro Preto. Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
38
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
39
|
Schrader LA, Ronnekleiv-Kelly SM, Hogenesch JB, Bradfield CA, Malecki KM. Circadian disruption, clock genes, and metabolic health. J Clin Invest 2024; 134:e170998. [PMID: 39007272 PMCID: PMC11245155 DOI: 10.1172/jci170998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
A growing body of research has identified circadian-rhythm disruption as a risk factor for metabolic health. However, the underlying biological basis remains complex, and complete molecular mechanisms are unknown. There is emerging evidence from animal and human research to suggest that the expression of core circadian genes, such as circadian locomotor output cycles kaput gene (CLOCK), brain and muscle ARNT-Like 1 gene (BMAL1), period (PER), and cyptochrome (CRY), and the consequent expression of hundreds of circadian output genes are integral to the regulation of cellular metabolism. These circadian mechanisms represent potential pathophysiological pathways linking circadian disruption to adverse metabolic health outcomes, including obesity, metabolic syndrome, and type 2 diabetes. Here, we aim to summarize select evidence from in vivo animal models and compare these results with epidemiologic research findings to advance understanding of existing foundational evidence and potential mechanistic links between circadian disruption and altered clock gene expression contributions to metabolic health-related pathologies. Findings have important implications for the treatment, prevention, and control of metabolic pathologies underlying leading causes of death and disability, including diabetes, cardiovascular disease, and cancer.
Collapse
Affiliation(s)
| | - Sean M Ronnekleiv-Kelly
- Molecular and Environmental Toxicology Center and
- Department of Surgery, Division of Surgical Oncology, School of Medicine and Public Health, University of Wisconsin, Madison Wisconsin, USA
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Kristen Mc Malecki
- Molecular and Environmental Toxicology Center and
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Division of Environmental and Occupational Health Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
40
|
Bakhsh JA, Vidmar AP, Salvy SJ. Intermittent Fasting in Youth: A Scoping Review. RESEARCH SQUARE 2024:rs.3.rs-4524102. [PMID: 39011109 PMCID: PMC11247931 DOI: 10.21203/rs.3.rs-4524102/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Intermittent fasting (IF) focuses on the timing of eating rather than diet quality or energy intake, with evidence supporting its effects on weight loss and cardiometabolic outcomes in adults. However, there is limited evidence for its efficacy in adolescents and emerging adults. To address this, a scoping review examined IF regimens in individuals aged 10 to 25, focusing on methodology, intervention parameters, outcomes, adherence, feasibility, and efficacy. The review included 39 studies with 731 participants aged 15 to 25. Methodologies varied, with 18 studies on time-restricted eating and others requiring caloric restriction. Primary outcomes included cardiometabolic risk factors (11/29), body composition (9/29), anthropometric measurements (8/29), and feasibility (2/29). Most studies reported significant weight loss. This review underscores IF's potential in treating obesity in this age group but highlights the need for rigorous studies with standardized frameworks for feasibility to ensure comparability and determine IF's practicality in this age group.
Collapse
Affiliation(s)
- Jomanah A Bakhsh
- Department of Population and Public Health Sciences, University of Southern California
| | - Alaina P Vidmar
- Children's Hospital Los Angeles and Keck School of Medicine of USC, Department of Pediatrics, Center for Endocrinology, Diabetes and Metabolism
| | | |
Collapse
|
41
|
Stretton B, Kovoor J, Gupta A, Bacchi S. Around the clock: Circadian considerations for surgical prehabilitation. Chronobiol Int 2024; 41:1081-1083. [PMID: 38963281 DOI: 10.1080/07420528.2024.2374862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Affiliation(s)
- Brandon Stretton
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Central Adelaide Local Health Network, Royal Adelaide Hospital, Adelaide, Australia
| | - Joshua Kovoor
- Department of Surgery, Ballarat Base Hospital, Ballarat, Australia
| | - Aashray Gupta
- Department of Cardiothoracic Surgery, Royal North Shore Hospital, St Leonards, Australia
| | - Stephen Bacchi
- Department of Medicine and Research, Lyell McEwin Hospital Northern Adelaide Local Health Network, Adelaide, South Australia, Australia
| |
Collapse
|
42
|
Kang Y, Kang M, Lim H. Age-specific association between meal-skipping patterns and the risk of hyperglycemia in Korean adults: a national cross-sectional study using the KNHANES data. BMC Public Health 2024; 24:1697. [PMID: 38918764 PMCID: PMC11201090 DOI: 10.1186/s12889-024-18762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/02/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Glucose metabolism regulation is influenced by age and meal skipping, although research on their interplay with hyperglycemia remains limited. This study aims to explore the intricate relationship between meal-skipping patterns and hyperglycemia risk across distinct age groups in South Korean adults. METHODS Utilizing data from the Korea National Health and Nutrition Examination Surveys (KNHANES) conducted from 2013 to 2020, comprising 28,530 individuals aged 19 years and older, this study employed multivariable logistic regression models to examine the associations between meal-skipping patterns and the risk of hyperglycemia. RESULTS Meal-skipping patterns were categorized into three groups: no skipping (NS), skipping breakfast (SB), and skipping dinner (SD). Age groups were defined as "young" (aged 19-44), "middle-aged" (aged 45-64), and "elderly" adults (over 65 years old). Among "young" adults, SB was associated with a 1.33-fold higher risk of hyperglycemia (OR = 1.33, 95% CI = 1.14-1.54) compared to NS. Conversely, in "elderly" adults, SD was linked to a 0.49-fold reduced risk (95% CI = 0.29-0.82) when compared to NS. Additionally, we observed that the Korean Health Eating Index (KHEI) scores, representing the quality of diet on a scale of 0 to 100, were consistently lower in SB compared to NS across all age groups. Intriguingly, specifically among the "elderly" group, this score was higher in SD compared to NS (p < 0.001). CONCLUSIONS This study demonstrates age-specific variations in the association between meal-skipping patterns and the risk of hyperglycemia.
Collapse
Affiliation(s)
- Yeonji Kang
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Minji Kang
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 17104, Republic of Korea.
- Research Institute of Medical Nutrition, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
43
|
Świątkiewicz I, Nuszkiewicz J, Wróblewska J, Nartowicz M, Sokołowski K, Sutkowy P, Rajewski P, Buczkowski K, Chudzińska M, Manoogian ENC, Taub PR, Woźniak A. Feasibility and Cardiometabolic Effects of Time-Restricted Eating in Patients with Metabolic Syndrome. Nutrients 2024; 16:1802. [PMID: 38931157 PMCID: PMC11206952 DOI: 10.3390/nu16121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic syndrome (MetS) and a prolonged daily eating window (EW) are associated with circadian rhythm disruption and increased cardiometabolic risk. Misalignment between circadian timing system and daily rhythms of food intake adversely impacts metabolic regulatory mechanisms and cardiovascular function. Restricting the daily EW by imposing an eating-fasting cycle through time-restricted eating (TRE) can restore robust circadian rhythms, support cellular metabolism, and improve cardiometabolic health. The aim of this study was to assess a feasibility of 12-week TRE intervention with self-selected 10 h EW and effects of TRE on EW duration, cardiometabolic outcomes, daily rhythms of behavior, and wellbeing in Polish patients with MetS and EW ≥ 14 h/day. Dietary intake was monitored with a validated myCircadianClock application (mCC app). Adherence to TRE defined as the proportion of days recorded with mCC app in which participants satisfied 10-h TRE was the primary outcome. A total of 26 patients (aged 45 ± 13 years, 62% women, 3.3 ± 0.5 MetS criteria, EW 14 ± 1.5 h/day) were enrolled. Coexistence of increased waist circumference (WC) (96% of patients), elevated fasting plasma glucose (FPG) (77%), and elevated blood pressure (BP) (69%) was the most common MetS pattern (50%). TRE intervention (mean duration of 81.6 ± 12.6 days) led to reducing daily EW by 28% (p < 0.0001). Adherence to TRE was 87 ± 13%. Adherence to logging food intake on mCC app during TRE was 70 ± 27%. Post TRE, a decrease in body weight (2%, 1.7 ± 3.6 kg, p = 0.026), body mass index (BMI) (1%, 0.5 ± 1.2 kg/m2, p = 0.027), WC (2%, 2.5 ± 3.9 cm, p = 0.003), systolic BP (4%, 4.8 ± 9.0 mmHg, p = 0.012), FPG (4%, 3.8 ± 6.9 mg/dL, p = 0.037), glycated hemoglobin (4%, 0.2 ± 0.4%, p = 0.011), mean fasting glucose level from continuous glucose monitor (CGM) (4%, 4.0 ± 6.1 mg/dL, p = 0.002), and sleepiness score (25%, 1.9 ± 3.2 points, p = 0043) were observed. A significant decrease in body weight (2%), BMI (2%), WC (3%), mean CGM fasting glucose (6%), sleepiness score (27%), and depression score (60%) was found in patients with mean post-TRE EW ≤ 10 h/day (58% of total), and not in patients with EW > 10 h/day. Adherence to TRE was higher in patients with post-TRE EW ≤ 10 h/day vs. patients with EW > 10 h/day (94 ± 6% vs. 77 ± 14%, p = 0.003). Our findings indicate that 10-h TRE was feasible in the European MetS population. TRE resulted in reducing daily EW and improved cardiometabolic outcomes and wellbeing in patients with MetS and prolonged EW. Use of the mCC app can aid in implementing TRE. This pilot clinical trial provides exploratory data that are a basis for a large-scale randomized controlled trial to determine the efficacy and sustainability of TRE for reducing cardiometabolic risks in MetS populations. Further research is needed to investigate the mechanisms of TRE effects, including its impact on circadian rhythm disruption.
Collapse
Affiliation(s)
- Iwona Świątkiewicz
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA 92037, USA;
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Collegium Medicum, Nicolaus Copernicus University, 85-092 Bydgoszcz, Poland; (J.N.); (J.W.); (K.S.); (P.S.); (A.W.)
| | - Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Collegium Medicum, Nicolaus Copernicus University, 85-092 Bydgoszcz, Poland; (J.N.); (J.W.); (K.S.); (P.S.); (A.W.)
| | - Małgorzata Nartowicz
- Clinical Nutrition Team, Oncology Center—Professor Franciszek Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Kamil Sokołowski
- Department of Medical Biology and Biochemistry, Collegium Medicum, Nicolaus Copernicus University, 85-092 Bydgoszcz, Poland; (J.N.); (J.W.); (K.S.); (P.S.); (A.W.)
| | - Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Collegium Medicum, Nicolaus Copernicus University, 85-092 Bydgoszcz, Poland; (J.N.); (J.W.); (K.S.); (P.S.); (A.W.)
| | - Paweł Rajewski
- Center for Obesity and Metabolic Disorders Treatment, 85-676 Bydgoszcz, Poland;
- Faculty of Health Sciences, University of Health Sciences in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Krzysztof Buczkowski
- Department of Family Medicine, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland;
| | - Małgorzata Chudzińska
- Department of Nutrition and Dietetics, Collegium Medicum, Nicolaus Copernicus University, 85-626 Bydgoszcz, Poland;
| | - Emily N. C. Manoogian
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - Pam R. Taub
- Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA 92037, USA;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Collegium Medicum, Nicolaus Copernicus University, 85-092 Bydgoszcz, Poland; (J.N.); (J.W.); (K.S.); (P.S.); (A.W.)
| |
Collapse
|
44
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
45
|
Park J, Nang JH, Cho S, Chung KJ, Kim KH. Chronic Mealtime Shift Disturbs Metabolic and Urinary Functions in Mice: Effects of Daily Antioxidant Supplementation. Int Neurourol J 2024; 28:115-126. [PMID: 38956771 PMCID: PMC11222825 DOI: 10.5213/inj.2448144.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Through their biological clocks, organisms on this rotating planet can coordinate physiological processes according to the time of the day. However, the prevalence of circadian rhythm disorders has increased in modern society with the growing number of shift workers, elevating the risk of various diseases. In this study, we employed a mouse model to investigate the effects of urinary rhythm disturbances resulting from dietary changes commonly experienced by night shift workers. METHODS We established 3 groups based on feeding time and the use of restricted feeding: ad libitum, daytime, and early nighttime feeding. We then examined the urinary rhythm in each group. In addition to the bladder rhythm, we investigated changes in mRNA patterns within the tissues constituting the bladder. Additionally, we assessed the urination rhythm in Per1 and Per2 double-knockout mice and evaluated whether the injection of antioxidants modified the impact of mealtime shift on urination rhythm in wild-type mice. RESULTS Our study revealed that a shift in mealtime significantly impacted the circadian patterns of water intake and urinary excretion. In Per2::Luc knock-in mouse bladders cultured ex vivo, this shift increased the amplitude of Per2 oscillation and delayed its acrophases by several hours. Daily supplementation with antioxidants did not influence the mealtime shift-induced changes in circadian patterns of water intake and urinary excretion, nor did it affect the modified Per2 oscillation patterns in the cultured bladder. However, in aged mice, antioxidants partially restored the urinary rhythm. CONCLUSION A shift in mealtime meaningfully impacted the urination rhythm in mice, regardless of the presence of circadian clock genes.
Collapse
Affiliation(s)
- Jihyun Park
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Korea
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Korea
| | - Jun-Ho Nang
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Sehyung Cho
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung Jin Chung
- Department of Urology, Gachon University Gil Medical Center, Gachon Univesity School of Medicine, Incheon, Korea
| | - Khae Hawn Kim
- Department of Urology, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| |
Collapse
|
46
|
de Oliveira Melo NC, Cuevas-Sierra A, Souto VF, Martínez JA. Biological Rhythms, Chrono-Nutrition, and Gut Microbiota: Epigenomics Insights for Precision Nutrition and Metabolic Health. Biomolecules 2024; 14:559. [PMID: 38785965 PMCID: PMC11117887 DOI: 10.3390/biom14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Circadian rhythms integrate a finely tuned network of biological processes recurring every 24 h, intricately coordinating the machinery of all cells. This self-regulating system plays a pivotal role in synchronizing physiological and behavioral responses, ensuring an adaptive metabolism within the environmental milieu, including dietary and physical activity habits. The systemic integration of circadian homeostasis involves a balance of biological rhythms, each synchronically linked to the central circadian clock. Central to this orchestration is the temporal dimension of nutrient and food intake, an aspect closely interwoven with the neuroendocrine circuit, gut physiology, and resident microbiota. Indeed, the timing of meals exerts a profound influence on cell cycle regulation through genomic and epigenetic processes, particularly those involving gene expression, DNA methylation and repair, and non-coding RNA activity. These (epi)genomic interactions involve a dynamic interface between circadian rhythms, nutrition, and the gut microbiota, shaping the metabolic and immune landscape of the host. This research endeavors to illustrate the intricate (epi)genetic interplay that modulates the synchronization of circadian rhythms, nutritional signaling, and the gut microbiota, unravelling the repercussions on metabolic health while suggesting the potential benefits of feed circadian realignment as a non-invasive therapeutic strategy for systemic metabolic modulation via gut microbiota. This exploration delves into the interconnections that underscore the significance of temporal eating patterns, offering insights regarding circadian rhythms, gut microbiota, and chrono-nutrition interactions with (epi)genomic phenomena, thereby influencing diverse aspects of metabolic, well-being, and quality of life outcomes.
Collapse
Affiliation(s)
| | - Amanda Cuevas-Sierra
- Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food, CSIC-UAM, 28049 Madrid, Spain;
| | - Vitória Felício Souto
- Department of Nutrition at the Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (N.C.d.O.M.); (V.F.S.)
| | - J. Alfredo Martínez
- Precision Nutrition Program, Research Institute on Food and Health Sciences IMDEA Food, CSIC-UAM, 28049 Madrid, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centre of Medicine and Endocrinology, University of Valladolid, 47002 Valladolid, Spain
| |
Collapse
|
47
|
Jaffe SN, McGlinchey EL. Time restricted eating and depression: a psychological perspective. Int J Food Sci Nutr 2024; 75:344-347. [PMID: 38329088 DOI: 10.1080/09637486.2024.2313981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Affiliation(s)
- Shalom N Jaffe
- School of Psychology and Counseling, Fairleigh Dickinson University, Teaneck, NJ, USA
| | - Eleanor L McGlinchey
- School of Psychology and Counseling, Fairleigh Dickinson University, Teaneck, NJ, USA
| |
Collapse
|
48
|
Wilhelmi de Toledo F, Grundler F, Mesnage R. World's Longest Medically Documented Repeated Fasting History in a 92 Years Old Man Who Fasted 21 Days Yearly for 45 Years: A Case Report. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:487-491. [PMID: 38411687 DOI: 10.1089/jicm.2023.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Case presentation: Scientific documentation on lifelong repeated cycles of long-term fasting doesn't exist. We report the case of a 92-year-old man who fasted 3 weeks yearly for 45 years. Results: Body weight and clinical parameters showed cyclic variations, returning to baseline after food reintroduction. Biological age analysis indicated that the patient was 5.9 years younger than his chronological age. Mental and physical health tests documented the absence of frailty, that the patient could function independently, had excellent cognitive functions, and a good mobility. Conclusion: It can be reasonably assumed that this subject have had protective effects from his yearly fasting.
Collapse
Affiliation(s)
| | | | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Überlingen, Germany
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| |
Collapse
|
49
|
Speksnijder EM, Bisschop PH, Siegelaar SE, Stenvers DJ, Kalsbeek A. Circadian desynchrony and glucose metabolism. J Pineal Res 2024; 76:e12956. [PMID: 38695262 DOI: 10.1111/jpi.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Esther M Speksnijder
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Sarah E Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Qiu Z, Huang EYZ, Li Y, Xiao Y, Fu Y, Du J, Kan J. Beneficial effects of time-restricted fasting on cardiovascular disease risk factors: a meta-analysis. BMC Cardiovasc Disord 2024; 24:210. [PMID: 38627656 PMCID: PMC11020908 DOI: 10.1186/s12872-024-03863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Cardiovascular disease continues to be a leading cause of mortality worldwide, highlighting the need to explore innovative approaches to improve cardiovascular health outcomes. Time-restricted fasting (TRF) is a dietary intervention that involves limiting the time window for food consumption. It has gained attention for its potential benefits on metabolic health and weight management. This study aims to investigate the impact of TRF on key risk factors, including body weight, glucose metabolism, blood pressure, and lipid profile. METHODS We conducted a systematic search in five databases (Scopus, Embase, PubMed, Cochrane, and Web of Science) for relevant studies up to January 2023. After applying inclusion criteria, 12 studies were eligible for analysis. Quality assessment was conducted using the ROB-2.0 tool and ROBINS-I. Risk of bias was mapped using Revman 5.3, and data analysis included Hartung-Knapp adjustment using R 4.2.2. RESULTS The group that underwent the TRF intervention exhibited a significant decrease in body weight (SMD: -0.22; 95%CI: -0.41, -0.04; P < 0.05) and fat mass (SMD: -0.19; 95%CI: -0.36, -0.02; P < 0.05), while maintaining lean mass (SMD: -0.09; 95%CI: -0.08, 0.26; P > 0.05). CONCLUSION TRF has shown potential as a treatment strategy for reducing total body weight by targeting adipose tissue, with potential improvements in cardiometabolic function.
Collapse
Affiliation(s)
- Zhengqi Qiu
- Faculty of Medicine, Macau University of Science and Technology, Avenida WaiLong, Taipa, 999078, Macau, China
| | | | - Yufei Li
- Faculty of Medicine, Macau University of Science and Technology, Avenida WaiLong, Taipa, 999078, Macau, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida WaiLong, Taipa, 999078, Macau, China
| | - Yancheng Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China.
| |
Collapse
|