1
|
Nardone V, Ruggiero D, Chini MG, Bruno I, Lauro G, Terracciano S, Nebbioso A, Bifulco G, Cappabianca S, Reginelli A. From Bench to Bedside: Translational Approaches to Cardiotoxicity in Breast Cancer, Lung Cancer, and Lymphoma Therapies. Cancers (Basel) 2025; 17:1059. [PMID: 40227572 PMCID: PMC11987928 DOI: 10.3390/cancers17071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Cardiotoxicity represents a critical challenge in cancer therapy, particularly in the treatment of thoracic tumors, such as lung cancer and lymphomas, as well as breast cancer. These malignancies stand out for their high prevalence and the widespread use of cardiotoxic treatments, such as chemotherapy, radiotherapy, and immunotherapy. This work underscores the importance of preclinical models in uncovering the mechanisms of cardiotoxicity and developing targeted prevention and mitigation strategies. In vitro models provide valuable insights into cellular processes, enabling the observation of changes in cell viability and function following exposure to various drugs or ionizing radiation. Complementarily, in vivo animal models offer a broader perspective, allowing for evaluating of both short- and long-term effects and a better understanding of chronic toxicity and cardiac diseases. By integrating these approaches, researchers can identify potential mechanisms of cardiotoxicity and devise effective prevention strategies. This analysis highlights the central role of preclinical models in advancing knowledge of cardiotoxic effects associated with common therapeutic regimens for thoracic and breast cancers.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Dafne Ruggiero
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (I.B.); (G.L.); (S.T.); (G.B.)
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (D.R.); (A.N.); (S.C.); (A.R.)
| |
Collapse
|
2
|
Wang T, Du Z, Zhuo L, Fu X, Zou Q, Yao X. MultiCBlo: Enhancing predictions of compound-induced inhibition of cardiac ion channels with advanced multimodal learning. Int J Biol Macromol 2024; 276:133825. [PMID: 39002900 DOI: 10.1016/j.ijbiomac.2024.133825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Predicting compound-induced inhibition of cardiac ion channels is crucial and challenging, significantly impacting cardiac drug efficacy and safety assessments. Despite the development of various computational methods for compound-induced inhibition prediction in cardiac ion channels, their performance remains limited. Most methods struggle to fuse multi-source data, relying solely on specific dataset training, leading to poor accuracy and generalization. We introduce MultiCBlo, a model that fuses multimodal information through a progressive learning approach, designed to predict compound-induced inhibition of cardiac ion channels with high accuracy. MultiCBlo employs progressive multimodal information fusion technology to integrate the compound's SMILES sequence, graph structure, and fingerprint, enhancing its representation. This is the first application of progressive multimodal learning for predicting compound-induced inhibition of cardiac ion channels, to our knowledge. The objective of this study was to predict the compound-induced inhibition of three major cardiac ion channels: hERG, Cav1.2, and Nav1.5. The results indicate that MultiCBlo significantly outperforms current models in predicting compound-induced inhibition of cardiac ion channels. We hope that MultiCBlo will facilitate cardiac drug development and reduce compound toxicity risks. Code and data are accessible at: https://github.com/taowang11/MultiCBlo. The online prediction platform is freely accessible at: https://huggingface.co/spaces/wtttt/PCICB.
Collapse
Affiliation(s)
- Tao Wang
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325027 Wenzhou, China
| | - Zhenya Du
- Guangzhou Xinhua University, 510520 Guangzhou, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325027 Wenzhou, China.
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, 410012 Changsha, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611730 Chengdu, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, 999078 Macao, China.
| |
Collapse
|
3
|
Daley MC, Moreau M, Bronk P, Fisher J, Kofron CM, Mende U, McMullen P, Choi BR, Coulombe K. In vitro to in vivo extrapolation from 3D hiPSC-derived cardiac microtissues and physiologically based pharmacokinetic modeling to inform next-generation arrhythmia risk assessment. Toxicol Sci 2024; 201:145-157. [PMID: 38897660 PMCID: PMC11347779 DOI: 10.1093/toxsci/kfae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Proarrhythmic cardiotoxicity remains a substantial barrier to drug development as well as a major global health challenge. In vitro human pluripotent stem cell-based new approach methodologies have been increasingly proposed and employed as alternatives to existing in vitro and in vivo models that do not accurately recapitulate human cardiac electrophysiology or cardiotoxicity risk. In this study, we expanded the capacity of our previously established 3D human cardiac microtissue model to perform quantitative risk assessment by combining it with a physiologically based pharmacokinetic model, allowing a direct comparison of potentially harmful concentrations predicted in vitro to in vivo therapeutic levels. This approach enabled the measurement of concentration responses and margins of exposure for 2 physiologically relevant metrics of proarrhythmic risk (i.e. action potential duration and triangulation assessed by optical mapping) across concentrations spanning 3 orders of magnitude. The combination of both metrics enabled accurate proarrhythmic risk assessment of 4 compounds with a range of known proarrhythmic risk profiles (i.e. quinidine, cisapride, ranolazine, and verapamil) and demonstrated close agreement with their known clinical effects. Action potential triangulation was found to be a more sensitive metric for predicting proarrhythmic risk associated with the primary mechanism of concern for pharmaceutical-induced fatal ventricular arrhythmias, delayed cardiac repolarization due to inhibition of the rapid delayed rectifier potassium channel, or hERG channel. This study advances human-induced pluripotent stem cell-based 3D cardiac tissue models as new approach methodologies that enable in vitro proarrhythmic risk assessment with high precision of quantitative metrics for understanding clinically relevant cardiotoxicity.
Collapse
Affiliation(s)
- Mark C Daley
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, United States
| | | | - Peter Bronk
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI 02903, United States
| | | | - Celinda M Kofron
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, United States
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI 02903, United States
| | | | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Kareen Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, United States
| |
Collapse
|
4
|
Doris Tsai HH, Ford LC, Burnett SD, Dickey AN, Wright FA, Chiu WA, Rusyn I. Informing Hazard Identification and Risk Characterization of Environmental Chemicals by Combining Transcriptomic and Functional Data from Human-Induced Pluripotent Stem-Cell-Derived Cardiomyocytes. Chem Res Toxicol 2024; 37:1428-1444. [PMID: 39046974 PMCID: PMC11691792 DOI: 10.1021/acs.chemrestox.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Environmental chemicals may contribute to the global burden of cardiovascular disease, but experimental data are lacking to determine which substances pose the greatest risk. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a high-throughput cardiotoxicity model that is widely used to test drugs and chemicals; however, most studies focus on exploring electro-physiological readouts. Gene expression data may provide additional molecular insights to be used for both mechanistic interpretation and dose-response analyses. Therefore, we hypothesized that both transcriptomic and functional data in human iPSC-derived cardiomyocytes may be used as a comprehensive screening tool to identify potential cardiotoxicity hazards and risks of the chemicals. To test this hypothesis, we performed concentration-response analysis of 464 chemicals from 12 classes, including both pharmaceuticals and nonpharmaceutical substances. Functional effects (beat frequency, QT prolongation, and asystole), cytotoxicity, and whole transcriptome response were evaluated. Points of departure were derived from phenotypic and transcriptomic data, and risk characterization was performed. Overall, 244 (53%) substances were active in at least one phenotype; as expected, pharmaceuticals with known cardiac liabilities were the most active. Positive chronotropy was the functional phenotype activated by the largest number of tested chemicals. No chemical class was particularly prone to pose a potential hazard to cardiomyocytes; a varying proportion (10-44%) of substances in each class had effects on cardiomyocytes. Transcriptomic data showed that 69 (15%) substances elicited significant gene expression changes; most perturbed pathways were highly relevant to known key characteristics of human cardiotoxicants. The bioactivity-to-exposure ratios showed that phenotypic- and transcriptomic-based POD led to similar results for risk characterization. Overall, our findings demonstrate how the integrative use of in vitro transcriptomic and phenotypic data from iPSC-derived cardiomyocytes not only offers a complementary approach for hazard and risk prioritization, but also enables mechanistic interpretation of the in vitro test results to increase confidence in decision-making.
Collapse
Affiliation(s)
- Han-Hsuan Doris Tsai
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Lucie C. Ford
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Sarah D. Burnett
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Allison N. Dickey
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Fred A. Wright
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27603, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
5
|
Jiang T, Ma C, Wang Z, Miao Y. A review of local anesthetic-induced heart toxicity using human induced pluripotent stem cell-derived cardiomyocytes. Mol Cell Probes 2024; 76:101965. [PMID: 38823509 DOI: 10.1016/j.mcp.2024.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Local anesthetic (LA) cardiotoxicity is one of the main health problems in anesthesiology and pain management. This study reviewed the reported LA-induced cardiac toxicity types, risk factors, management, and mechanisms, with attention to the use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in heart toxicity research. Important scientific databases were searched to find relevant articles. We briefly assessed the reported cardiotoxic effects of different types of LA drugs, including ester- and amide-linked LA agents. Furthermore, cardiotoxic effects and clinical manifestations, strategies for preventing and managing LA-induced cardiotoxic effects, pharmacokinetics, pharmacodynamics, and sodium channel dynamics regarding individual variability and genetic influences were discussed in this review. The applications and importance of hiPSC-CMs cellular model for evaluating the cardiotoxic effects of LA drugs were discussed in detail. This review also explored hiPSC-CMs' potential in risk assessment, drug screening, and developing targeted therapies. The main mechanisms underlying LA-induced cardiotoxicity included perturbation in sodium channels, ROS production, and disorders in the immune system response due to the presence of LA drugs. Furthermore, drug-specific characteristics including pharmacokinetics and pharmacodynamics are important determinants after LA drug injection. In addition, individual patient factors such as age, comorbidities, and genetic variability emphasize the need for a personalized approach to mitigate risks and enhance patient safety. The strategies outlined for the prevention and management of LA cardiotoxicity underscore the importance of careful dosing, continuous monitoring, and the immediate availability of resuscitation equipment. This comprehensive review can be used to guide future investigations into better understanding LA cardiac toxicities and improving patient safety.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, 710002, China
| | - Chao Ma
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, 710002, China
| | - Zitong Wang
- Health Science Center, Lanzhou University, Lanzhou, 730000, China
| | - Yi Miao
- Department of Anesthesiology, Xi'an Children's Hospital, Xi'an, 710002, China.
| |
Collapse
|
6
|
Leow JWH, Chan ECY. CYP2J2-mediated metabolism of arachidonic acid in heart: A review of its kinetics, inhibition and role in heart rhythm control. Pharmacol Ther 2024; 258:108637. [PMID: 38521247 DOI: 10.1016/j.pharmthera.2024.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Cytochrome P450 2 J2 (CYP2J2) is primarily expressed extrahepatically and is the predominant epoxygenase in human cardiac tissues. This highlights its key role in the metabolism of endogenous substrates. Significant scientific interest lies in cardiac CYP2J2 metabolism of arachidonic acid (AA), an omega-6 polyunsaturated fatty acid, to regioisomeric bioactive epoxyeicosatrienoic acid (EET) metabolites that show cardioprotective effects including regulation of cardiac electrophysiology. From an in vitro perspective, the accurate characterization of the kinetics of CYP2J2 metabolism of AA including its inhibition and inactivation by drugs could be useful in facilitating in vitro-in vivo extrapolations to predict drug-AA interactions in drug discovery and development. In this review, background information on the structure, regulation and expression of CYP2J2 in human heart is presented alongside AA and EETs as its endogenous substrate and metabolites. The in vitro and in vivo implications of the kinetics of this endogenous metabolic pathway as well as its perturbation via inhibition and inactivation by drugs are elaborated. Additionally, the role of CYP2J2-mediated metabolism of AA to EETs in cardiac electrophysiology will be expounded.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
7
|
Vahidi S, Agah S, Mirzajani E, Asghari Gharakhyli E, Norollahi SE, Rahbar Taramsari M, Babaei K, Samadani AA. microRNAs, oxidative stress, and genotoxicity as the main inducers in the pathobiology of cancer development. Horm Mol Biol Clin Investig 2024; 45:55-73. [PMID: 38507551 DOI: 10.1515/hmbci-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Cancer is one of the most serious leading causes of death in the world. Many eclectic factors are involved in cancer progression including genetic and epigenetic alongside environmental ones. In this account, the performance and fluctuations of microRNAs are significant in cancer diagnosis and treatment, particularly as diagnostic biomarkers in oncology. So, microRNAs manage and control the gene expression after transcription by mRNA degradation, or also they can inhibit their translation. Conspicuously, these molecular structures take part in controlling the cellular, physiological and pathological functions, which many of them can accomplish as tumor inhibitors or oncogenes. Relatively, Oxidative stress is defined as the inequality between the creation of reactive oxygen species (ROS) and the body's ability to detoxify the reactive mediators or repair the resulting injury. ROS and microRNAs have been recognized as main cancer promoters and possible treatment targets. Importantly, genotoxicity has been established as the primary reason for many diseases as well as several malignancies. The procedures have no obvious link with mutagenicity and influence the organization, accuracy of the information, or fragmentation of DNA. Conclusively, mutations in these patterns can lead to carcinogenesis. In this review article, we report the impressive and practical roles of microRNAs, oxidative stress, and genotoxicity in the pathobiology of cancer development in conjunction with their importance as reliable cancer biomarkers and their association with circulating miRNA, exosomes and exosomal miRNAs, RNA remodeling, DNA methylation, and other molecular elements in oncology.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, 37554 Guilan University of Medical Sciences , Rasht, Iran
| | | | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Morteza Rahbar Taramsari
- Department of Forensic Medicine, School of Medicine, 37554 Guilan University of Medical Sciences , Rasht, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Kuang Z, Kong M, Yan N, Ma X, Wu M, Li J. Precision Cardio-oncology: Update on Omics-Based Diagnostic Methods. Curr Treat Options Oncol 2024; 25:679-701. [PMID: 38676836 PMCID: PMC11082000 DOI: 10.1007/s11864-024-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
OPINION STATEMENT Cardio-oncology is an emerging interdisciplinary field dedicated to the early detection and treatment of adverse cardiovascular events associated with anticancer treatment, and current clinical management of anticancer-treatment-related cardiovascular toxicity (CTR-CVT) remains limited by a lack of detailed phenotypic data. However, the promise of diagnosing CTR-CVT using deep phenotyping has emerged with the development of precision medicine, particularly the use of omics-based methodologies to discover sensitive biomarkers of the disease. In the future, combining information produced by a variety of omics methodologies could expand the clinical practice of cardio-oncology. In this review, we demonstrate how omics approaches can improve our comprehension of CTR-CVT deep phenotyping, discuss the positive and negative aspects of available omics approaches for CTR-CVT diagnosis, and outline how to integrate multiple sets of omics data into individualized monitoring and treatment. This will offer a reliable technical route for lowering cardiovascular morbidity and mortality in cancer patients and survivors.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Miao Kong
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ningzhe Yan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Ma
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Sang L, Zhou Z, Luo S, Zhang Y, Qian H, Zhou Y, He H, Hao K. An In Silico Platform to Predict Cardiotoxicity Risk of Anti-tumor Drug Combination with hiPSC-CMs Based In Vitro Study. Pharm Res 2024; 41:247-262. [PMID: 38148384 PMCID: PMC10879352 DOI: 10.1007/s11095-023-03644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
OBJECTIVE Antineoplastic agent-induced systolic dysfunction is a major reason for interruption of anticancer treatment. Although targeted anticancer agents infrequently cause systolic dysfunction, their combinations with chemotherapies remarkably increase the incidence. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide a potent in vitro model to assess cardiovascular safety. However, quantitatively predicting the reduction of ejection fraction based on hiPSC-CMs is challenging due to the absence of the body's regulatory response to cardiomyocyte injury. METHODS Here, we developed and validated an in vitro-in vivo translational platform to assess the reduction of ejection fraction induced by antineoplastic drugs based on hiPSC-CMs. The translational platform integrates drug exposure, drug-cardiomyocyte interaction, and systemic response. The drug-cardiomyocyte interaction was implemented as a mechanism-based toxicodynamic (TD) model, which was then integrated into a quantitative system pharmacology-physiological-based pharmacokinetics (QSP-PBPK) model to form a complete translational platform. The platform was validated by comparing the model-predicted and clinically observed incidence of doxorubicin and trastuzumab-induced systolic dysfunction. RESULTS A total of 33,418 virtual patients were incorporated to receive doxorubicin and trastuzumab alone or in combination. For doxorubicin, the QSP-PBPK-TD model successfully captured the overall trend of systolic dysfunction incidences against the cumulative doses. For trastuzumab, the predicted incidence interval was 0.31-2.7% for single-agent treatment and 0.15-10% for trastuzumab-doxorubicin sequential treatment, covering the observations in clinical reports (0.50-1.0% and 1.5-8.3%, respectively). CONCLUSIONS In conclusion, the in vitro-in vivo translational platform is capable of predicting systolic dysfunction incidence almost merely depend on hiPSC-CMs, which could facilitate optimizing the treatment protocol of antineoplastic agents.
Collapse
Affiliation(s)
- Lan Sang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengying Zhou
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Shizheng Luo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Yicui Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongjie Qian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kun Hao
- State Key Laboratory of Natural Medicines, Jiangsu Province Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Tang X, Liu H, Rao R, Huang Y, Dong M, Xu M, Feng S, Shi X, Wang L, Wang Z, Zhou B. Modeling drug-induced mitochondrial toxicity with human primary cardiomyocytes. SCIENCE CHINA. LIFE SCIENCES 2024; 67:301-319. [PMID: 37864082 DOI: 10.1007/s11427-023-2369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/16/2023] [Indexed: 10/22/2023]
Abstract
Mitochondrial toxicity induced by therapeutic drugs is a major contributor for cardiotoxicity, posing a serious threat to pharmaceutical industries and patients' lives. However, mitochondrial toxicity testing is not incorporated into routine cardiac safety screening procedures. To accurately model native human cardiomyocytes, we comprehensively evaluated mitochondrial responses of adult human primary cardiomyocytes (hPCMs) to a nucleoside analog, remdesivir (RDV). Comparison of their response to human pluripotent stem cell-derived cardiomyocytes revealed that the latter utilized a mitophagy-based mitochondrial recovery response that was absent in hPCMs. Accordingly, action potential duration was elongated in hPCMs, reflecting clinical incidences of RDV-induced QT prolongation. In a screen for mitochondrial protectants, we identified mitochondrial ROS as a primary mediator of RDV-induced cardiotoxicity. Our study demonstrates the utility of hPCMs in the detection of clinically relevant cardiac toxicities, and offers a framework for hPCM-based high-throughput screening of cardioprotective agents.
Collapse
Affiliation(s)
- Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Hong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Rongjia Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Yafei Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Mengqi Dong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Miaomiao Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Shanshan Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China
| | - Zengwu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
- Department of Epidemiology, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, 518020, China.
| |
Collapse
|
11
|
Abstract
Anthracycline-induced cardiotoxicity (AIC) is a serious and common side effect of anthracycline therapy. Identification of genes and genetic variants associated with AIC risk has clinical potential as a cardiotoxicity predictive tool and to allow the development of personalized therapies. In this review, we provide an overview of the function of known AIC genes identified by association studies and categorize them based on their mechanistic implication in AIC. We also discuss the importance of functional validation of AIC-associated variants in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to advance the implementation of genetic predictive biomarkers. Finally, we review how patient-specific hiPSC-CMs can be used to identify novel patient-relevant functional targets and for the discovery of cardioprotectant drugs to prevent AIC. Implementation of functional validation and use of hiPSC-CMs for drug discovery will identify the next generation of highly effective and personalized cardioprotectants and accelerate the inclusion of approved AIC biomarkers into clinical practice.
Collapse
Affiliation(s)
- Romina B Cejas
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| | - Kateryna Petrykey
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Paul W Burridge
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA;
| |
Collapse
|
12
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications—Are We on the Road to Success? Cells 2023; 12:1727. [DOI: https:/doi.org/10.3390/cells12131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
13
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success? Cells 2023; 12:1727. [PMID: 37443761 PMCID: PMC10341347 DOI: 10.3390/cells12131727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
14
|
Leow JWH, Gu Y, Chan ECY. Investigating the relevance of CYP2J2 inhibition for drugs known to cause intermediate to high risk torsades de pointes. Eur J Pharm Sci 2023; 187:106475. [PMID: 37225005 DOI: 10.1016/j.ejps.2023.106475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Cardiac cytochrome P450 2J2 (CYP2J2) metabolizes endogenous polyunsaturated fatty acid, arachidonic acid (AA), to bioactive regioisomeric epoxyeicosatrienoic acid (EET) metabolites. This endogenous metabolic pathway has been postulated to play a homeostatic role in cardiac electrophysiology. However, it is unknown if drugs that cause intermediate to high risk torsades de pointes (TdP) exhibit inhibitory effects against CYP2J2 metabolism of AA to EETs. In this study, we demonstrated that 11 out of 16 drugs screened with intermediate to high risk of TdP as defined by the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative are concurrently reversible inhibitors of CYP2J2 metabolism of AA, with unbound inhibitory constant (Ki,AA,u) values ranging widely from 0.132 to 19.9 µM. To understand the physiological relevancy of Ki,AA,u, the in vivo unbound drug concentration within human heart tissue (Cu,heart) was calculated via experimental determination of in vitro unbound partition coefficient (Kpuu) for 10 CYP2J2 inhibitors using AC16 human ventricular cardiomyocytes as well as literature-derived values of fraction unbound in plasma (fu,p) and plasma drug concentrations in clinical scenarios leading to TdP. Notably, all CYP2J2 inhibitors screened belonging to the high TdP risk category, namely vandetanib and bepridil, exhibited highest Kpuu values of 18.2 ± 1.39 and 7.48 ± 1.16 respectively although no clear relationship between Cu,heart and risk of TdP could eventually be determined. R values based on basic models of reversible inhibition as per FDA guidelines were calculated using unbound plasma drug concentrations (Cu,plasma) and adapted using Cu,heart which suggested that 4 out of 10 CYP2J2 inhibitors with intermediate to high risk of TdP demonstrate greatest potential for clinically relevant in vivo cardiac drug-AA interactions. Our results shed novel insights on the relevance of CYP2J2 inhibition in drugs with risk of TdP. Further studies ascertaining the role of CYP2J2 metabolism of AA in cardiac electrophysiology, characterizing inherent cardiac ion channel activities of drugs with risk of TdP as well as in vivo evidence of drug-AA interactions will be required prior to determining if CYP2J2 inhibition could be an alternative mechanism contributing to drug-induced TdP.
Collapse
Affiliation(s)
- Jacqueline Wen Hui Leow
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543
| | - Yuxiang Gu
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543.
| |
Collapse
|
15
|
Zhou B, Shi X, Tang X, Zhao Q, Wang L, Yao F, Hou Y, Wang X, Feng W, Wang L, Sun X, Wang L, Hu S. Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes. Signal Transduct Target Ther 2022; 7:254. [PMID: 35882831 PMCID: PMC9325714 DOI: 10.1038/s41392-022-01044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/11/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular diseases are the most common cause of death globally. Accurately modeling cardiac homeostasis, dysfunction, and drug response lies at the heart of cardiac research. Adult human primary cardiomyocytes (hPCMs) are a promising cellular model, but unstable isolation efficiency and quality, rapid cell death in culture, and unknown response to cryopreservation prevent them from becoming a reliable and flexible in vitro cardiac model. Combing the use of a reversible inhibitor of myosin II ATPase, (-)-blebbistatin (Bleb), and multiple optimization steps of the isolation procedure, we achieved a 2.74-fold increase in cell viability over traditional methods, accompanied by better cellular morphology, minimally perturbed gene expression, intact electrophysiology, and normal neurohormonal signaling. Further optimization of culture conditions established a method that was capable of maintaining optimal cell viability, morphology, and mitochondrial respiration for at least 7 days. Most importantly, we successfully cryopreserved hPCMs, which were structurally, molecularly, and functionally intact after undergoing the freeze-thaw cycle. hPCMs demonstrated greater sensitivity towards a set of cardiotoxic drugs, compared to human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Further dissection of cardiomyocyte drug response at both the population and single-cell transcriptomic level revealed that hPCM responses were more pronouncedly enriched in cardiac function, whereas hiPSC-CMs responses reflected cardiac development. Together, we established a full set of methodologies for the efficient isolation and prolonged maintenance of functional primary adult human cardiomyocytes in vitro, unlocking their potential as a cellular model for cardiovascular research, drug discovery, and safety pharmacology.
Collapse
Affiliation(s)
- Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Xun Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Le Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongfeng Hou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,18 Jinma Industrial Park, Fangshan District, Beijing, China
| | - Xianqiang Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Feng
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liqing Wang
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China. .,Department of Cardiac Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
17
|
Daley MC, Mende U, Choi BR, McMullen PD, Coulombe KLK. Beyond pharmaceuticals: Fit-for-purpose new approach methodologies for environmental cardiotoxicity testing. ALTEX 2022; 40:103-116. [PMID: 35648122 PMCID: PMC10502740 DOI: 10.14573/altex.2109131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Environmental factors play a substantial role in determining cardiovascular health, but data informing the risks presented by environmental toxicants is insufficient. In vitro new approach methodologies (NAMs) offer a promising approach with which to address the limitations of traditional in vivo and in vitro assays for assessing cardiotoxicity. Driven largely by the needs of pharmaceutical toxicity testing, considerable progress in developing NAMs for cardiotoxicity analysis has already been made. As the scientific and regulatory interest in NAMs for environmental chemicals continues to grow, a thorough understanding of the unique features of environmental cardiotoxicants and their associated cardiotoxicities is needed. Here, we review the key characteristics of as well as important regulatory and biological considerations for fit-for-purpose NAMs for environmental cardiotoxicity. By emphasizing the challenges and opportunities presented by NAMs for environmental cardiotoxicity we hope to accelerate their development, acceptance, and application.
Collapse
Affiliation(s)
- Mark C Daley
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
18
|
Vasileiou PVS, Siasos G, Gorgoulis VG. Molecular biomarkers in cardio-oncology: Where we stand and where we are heading. Bioessays 2022; 44:e2100234. [PMID: 35352831 DOI: 10.1002/bies.202100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Until recently, cardiotoxicity in the setting of a malignant disease was attributed solely to the detrimental effects of chemo- and/or radio-therapy to the heart. On this account, the focus was on the evaluation of well-established cardiac biomarkers for the early detection of myocardial damage. Currently, this view has been revised. Cardiotoxicity is not restricted to a single organ but instead affects the endothelium as a whole. Indeed, it has come into light that not only cancer therapy but also malignant cells per se can impair the cardiovascular system, through a paracrine and endocrine mode of action. Even more intriguingly, a clear interplay between molecular pathways involved in cancer and cardiovascular disease has become prevalent, suggesting a common nominator that governs the pathophysiology of these two entities. Taken together, our strategy in the quest of novel biomarkers in the emerging field of cardio-oncology should be critically reshaped.
Collapse
Affiliation(s)
- Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| |
Collapse
|
19
|
Progress in Bioengineering Strategies for Heart Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073482. [PMID: 35408844 PMCID: PMC8998628 DOI: 10.3390/ijms23073482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
The human heart has the least regenerative capabilities among tissues and organs, and heart disease continues to be a leading cause of mortality in the industrialized world with insufficient therapeutic options and poor prognosis. Therefore, developing new therapeutic strategies for heart regeneration is a major goal in modern cardiac biology and medicine. Recent advances in stem cell biology and biotechnologies such as human pluripotent stem cells (hPSCs) and cardiac tissue engineering hold great promise for opening novel paths to heart regeneration and repair for heart disease, although these areas are still in their infancy. In this review, we summarize and discuss the recent progress in cardiac tissue engineering strategies, highlighting stem cell engineering and cardiomyocyte maturation, development of novel functional biomaterials and biofabrication tools, and their therapeutic applications involving drug discovery, disease modeling, and regenerative medicine for heart disease.
Collapse
|
20
|
Narkar A, Willard JM, Blinova K. Chronic Cardiotoxicity Assays Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs). Int J Mol Sci 2022; 23:ijms23063199. [PMID: 35328619 PMCID: PMC8953833 DOI: 10.3390/ijms23063199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
Cardiomyocytes (CMs) differentiated from human induced pluripotent stem cells (hiPSCs) are increasingly used in cardiac safety assessment, disease modeling and regenerative medicine. A vast majority of cardiotoxicity studies in the past have tested acute effects of compounds and drugs; however, these studies lack information on the morphological or physiological responses that may occur after prolonged exposure to a cardiotoxic compound. In this review, we focus on recent advances in chronic cardiotoxicity assays using hiPSC-CMs. We summarize recently published literature on hiPSC-CMs assays applied to chronic cardiotoxicity induced by anticancer agents, as well as non-cancer classes of drugs, including antibiotics, anti-hepatitis C virus (HCV) and antidiabetic drugs. We then review publications on the implementation of hiPSC-CMs-based assays to investigate the effects of non-pharmaceutical cardiotoxicants, such as environmental chemicals or chronic alcohol consumption. We also highlight studies demonstrating the chronic effects of smoking and implementation of hiPSC-CMs to perform genomic screens and metabolomics-based biomarker assay development. The acceptance and wide implementation of hiPSC-CMs-based assays for chronic cardiotoxicity assessment will require multi-site standardization of assay protocols, chronic cardiac maturity marker reproducibility, time points optimization, minimal cellular variation (commercial vs. lab reprogrammed), stringent and matched controls and close clinical setting resemblance. A comprehensive investigation of long-term repeated exposure-induced effects on both the structure and function of cardiomyocytes can provide mechanistic insights and recapitulate drug and environmental cardiotoxicity.
Collapse
Affiliation(s)
- Akshay Narkar
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - James M. Willard
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Ksenia Blinova
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
21
|
Cooper BL, Posnack NG. Characteristics of Bisphenol Cardiotoxicity: Impaired Excitability, Contractility, and Relaxation. Cardiovasc Toxicol 2022; 22:273-280. [PMID: 35143014 PMCID: PMC9204785 DOI: 10.1007/s12012-022-09719-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Bisphenol a (BPA) is a high production volume chemical that is frequently used to manufacture epoxy resins and polycarbonate plastics. BPA-containing products are now pervasive, and as a result, biomonitoring studies report widespread exposure in > 90% of adults, adolescents, and children. Both epidemiological and experimental studies have reported associations between BPA exposure and adverse cardiovascular health outcomes. With increasing concerns regarding BPA exposure, a few structurally similar bisphenol chemicals have been introduced as replacements, including bisphenol s (BPS) and bisphenol f (BPF). In accordance with the recently established "Key characteristics of cardiovascular toxicants", we reviewed the literature to highlight the immediate effects of bisphenol chemicals on (1) cardiac excitability, and (2) contractility and relaxation. BPA inhibits key cardiac ion channels, impairs cardiac excitability, and acts as a more potent inhibitor as compared to BPF and BPS. Through the inhibition of calcium current, some studies report that bisphenol chemicals can act as negative inotropic agents. Yet, others suggest that low dose exposures may increase contractility and precipitate triggered arrhythmias via the phosphorylation of key calcium handling proteins. Accordingly, we propose additional considerations for future work to comprehensively address the cardiac safety profile of BPA, as compared to replacement chemicals.
Collapse
Affiliation(s)
- Blake L. Cooper
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC 20010, USA,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC 20010, USA,Department of Pharmacology & Physiology, George Washington University, Washington, DC 20037, USA
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, DC, 20010, USA. .,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, 20010, USA. .,Department of Pediatrics, George Washington University, Washington, DC, 20037, USA. .,Department of Pharmacology & Physiology, George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
22
|
Yang H, Stebbeds W, Francis J, Pointon A, Obrezanova O, Beattie KA, Clements P, Harvey JS, Smith GF, Bender A. Deriving waveform parameters from calcium transients in human iPSC-derived cardiomyocytes to predict cardiac activity with machine learning. Stem Cell Reports 2022; 17:556-568. [PMID: 35148844 PMCID: PMC9039838 DOI: 10.1016/j.stemcr.2022.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes have been established to detect dynamic calcium transients by fast kinetic fluorescence assays that provide insights into specific aspects of clinical cardiac activity. However, the precise derivation and use of waveform parameters to predict cardiac activity merit deeper investigation. In this study, we derived, evaluated, and applied 38 waveform parameters in a novel Python framework, including (among others) peak frequency, peak amplitude, peak widths, and a novel parameter, shoulder-tail ratio. We then trained a random forest model to predict cardiac activity based on the 25 parameters selected by correlation analysis. The area under the curve (AUC) obtained for leave-one-compound-out cross-validation was 0.86, thereby replicating the predictions of conventional methods and outperforming fingerprint-based methods by a large margin. This work demonstrates that machine learning is able to automate the assessment of cardiovascular liability from waveform data, reducing any risk of user-to-user variability and bias. An open-source algorithm was developed to derive parameters from waveform data A machine learning model was trained to predict cardiac activity of compounds Three parameters for peak width, height, and shape were found to be most predictive The model can facilitate the assessment of cardiovascular liability
Collapse
Affiliation(s)
- Hongbin Yang
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | | | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Olga Obrezanova
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Graham F Smith
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK; Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
23
|
Pozo MR, Meredith GW, Entcheva E. Human iPSC-Cardiomyocytes as an Experimental Model to Study Epigenetic Modifiers of Electrophysiology. Cells 2022; 11:200. [PMID: 35053315 PMCID: PMC8774228 DOI: 10.3390/cells11020200] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 02/04/2023] Open
Abstract
The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing-HDAC inhibitors (HDACi)-targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.
Collapse
Affiliation(s)
| | | | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA; (M.R.P.); (G.W.M.)
| |
Collapse
|
24
|
Ni X, Yang ZZ, Ye LQ, Han XL, Zhao DD, Ding FY, Ding N, Wu HC, Yu M, Xu GY, Zhao ZA, Lei W, Hu SJ. Establishment of an in vitro safety assessment model for lipid-lowering drugs using same-origin human pluripotent stem cell-derived cardiomyocytes and endothelial cells. Acta Pharmacol Sin 2022; 43:240-250. [PMID: 33686244 PMCID: PMC8724272 DOI: 10.1038/s41401-021-00621-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Cardiovascular safety assessment is vital for drug development, yet human cardiovascular cell models are lacking. In vitro mass-generated human pluripotent stem cell (hPSC)-derived cardiovascular cells are a suitable cell model for preclinical cardiovascular safety evaluations. In this study, we established a preclinical toxicology model using same-origin hPSC-differentiated cardiomyocytes (hPSC-CMs) and endothelial cells (hPSC-ECs). For validation of this cell model, alirocumab, a human antibody against proprotein convertase subtilisin kexin type 9 (PCSK9), was selected as an emerging safe lipid-lowering drug; atorvastatin, a common statin (the most effective type of lipid-lowering drug), was used as a drug with reported side effects at high concentrations, while doxorubicin was chosen as a positive cardiotoxic drug. The cytotoxicity of these drugs was assessed using CCK8, ATP, and lactate dehydrogenase release assays at 24, 48, and 72 h. The influences of these drugs on cardiomyocyte electrophysiology were detected using the patch-clamp technique, while their effects on endothelial function were determined by tube formation and Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake assays. We showed that alirocumab did not affect the cell viability or cardiomyocyte electrophysiology in agreement with the clinical results. Atorvastatin (5-50 μM) dose-dependently decreased cardiovascular cell viability over time, and at a high concentration (50 μM, ~100 times the normal peak serum concentration in clinic), it affected the action potentials of hPSC-CMs and damaged tube formation and Dil-Ac-LDL uptake of hPSC-ECs. The results demonstrate that the established same-origin hPSC-derived cardiovascular cell model can be used to evaluate lipid-lowering drug safety in cardiovascular cells and allow highly accurate preclinical assessment of potential drugs.
Collapse
Affiliation(s)
- Xuan Ni
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Zhuang-zhuang Yang
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Ling-qun Ye
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Xing-long Han
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Dan-dan Zhao
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Feng-yue Ding
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Nan Ding
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Hong-chun Wu
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Miao Yu
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Guang-yin Xu
- grid.263761.70000 0001 0198 0694Institute of Neuroscience, Soochow University, Suzhou, 215123 China
| | - Zhen-ao Zhao
- grid.412026.30000 0004 1776 2036Institute of Microcirculation, Department of Pathophysiology of Basic Medical College, Hebei North University, Zhangjiakou, 075000 China
| | - Wei Lei
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| | - Shi-jun Hu
- grid.263761.70000 0001 0198 0694Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, Suzhou, 215000 China
| |
Collapse
|
25
|
Li W, Han JL, Entcheva E. Protein and mRNA Quantification in Small Samples of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes in 96-Well Microplates. Methods Mol Biol 2022; 2485:15-37. [PMID: 35618896 PMCID: PMC9565115 DOI: 10.1007/978-1-0716-2261-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We describe a method for protein quantification and for mRNA quantification in small sample quantities of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Demonstrated here is how the capillary-based protein detection system Wes™ by ProteinSimple and the Power SYBR™ Green Cells-to-CT™ Kit by Invitrogen can be applied to individual samples in a 96-well microplate format and thus made compatible with high-throughput (HT) cardiomyocyte assays. As an example of the usage, we illustrate that Cx43 protein and GJA1 mRNA levels in hiPSC-CMs are enhanced when the optogenetic actuator, channelrodopsin-2 (ChR2), is genetically expressed in them. Instructions are presented for cell culture and lysate preparations from hiPSC-CMs, along with optimized parameter settings and experimental protocol steps. Strategies to optimize primary antibody concentrations as well as ways for signal normalization are discussed, i.e., antibody multiplexing and total protein assay. The sensitivity of both the Wes and Cells-to-CT kit enables protein and mRNA quantification in a HT format, which is important when dealing with precious small samples. In addition to being able to handle small cardiomyocyte samples, these streamlined and semi-automated processes enable quick mechanistic analysis.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, USA
| | - Julie L Han
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, USA.
| |
Collapse
|
26
|
Gong Y, Yang L, Tang J, Zheng J, Witman N, Jakob P, Tan Y, Liu M, Chen Y, Wang H, Fu W, Wang W. Yohimbine Directly Induces Cardiotoxicity on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cardiovasc Toxicol 2021; 22:141-151. [PMID: 34817810 DOI: 10.1007/s12012-021-09709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
Yohimbine is a highly selective and potent α2-adrenoceptor antagonist, which is usually treated as an adjunction for impotence, as well for weight loss and natural bodybuilding aids. However, it was recently reported that Yohimbine causes myocardial injury and controversial results were reported in the setting of cardiac diseases. Here, we used human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a model system to explore electrophysiologic characterization after exposure to Yohimbine. HiPSC-CMs were differentiated by employment of inhibitory Wnt compounds. For analysis of electrophysiological properties, conventional whole-cell patch-clamp recording was used. Specifically, spontaneous action potentials, pacemaker currents (If), sodium (Na+) channel (INa), and calcium (Ca++) channel currents (ICa) were assessed in hiPSC-CMs after exposure to Yohimbine. HiPSC-CMs expressed sarcomeric-α-actinin and MLC2V proteins, as well as exhibited ventricular-like spontaneous action potential waveform. Yohimbine inhibited frequency of hiPSC-CMs spontaneous action potentials and significantly prolonged action potential duration in a dose-dependent manner. In addition, rest potential, threshold potential, amplitude, and maximal diastolic potential were decreased, whereas APD50/APD90 was prolonged. Yohimbine inhibited the amplitude of INa in low doses (IC50 = 14.2 μM, n = 5) and inhibited ICa in high doses (IC50 = 139.7 μM, n = 5). Whereas Yohimbine did not affect the activation curves, treatment resulted in left shifts in inactivation curves of both Na+ and Ca++ channels. Here, we show that Yohimbine induces direct cardiotoxic effects on spontaneous action potentials of INa and ICa in hiPSC-CMs. Importantly, these effects were not mediated by α2-adrenoceptor signaling. Our results strongly suggest that Yohimbine directly and negatively affects electrophysiological properties of human cardiomyocytes. These findings are highly relevant for potential application of Yohimbine in patients with atrioventricular conduction disorder.
Collapse
Affiliation(s)
- Yiqi Gong
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Tang
- Department of Anesthesiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institute, 17177, Stockholm, Sweden
| | - Philipp Jakob
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Yao Tan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Minglu Liu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Ying Chen
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Fu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China.
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.
| | - Wei Wang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China.
| |
Collapse
|
27
|
Kwok M, Lee C, Li HS, Deng R, Tsoi C, Ding Q, Tsang SY, Leung KT, Yan BP, Poon EN. Remdesivir induces persistent mitochondrial and structural damage in human induced pluripotent stem cell derived cardiomyocytes. Cardiovasc Res 2021; 118:2652-2664. [PMID: 34609482 PMCID: PMC8500104 DOI: 10.1093/cvr/cvab311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Indexed: 01/18/2023] Open
Abstract
AIMS Remdesivir is a prodrug of an adenosine triphosphate analogue and is currently the only drug formally approved for the treatment of hospitalised COVID-19 patients. Nucleoside/nucleotide analogues have been shown to induce mitochondrial damage and cardiotoxicity, and this may be exacerbated by hypoxia, which frequently occurs in severe COVID-19 patients. Although there have been few reports of adverse cardiovascular events associated with remdesivir, clinical data are limited. Here, we investigated whether remdesivir induced cardiotoxicity using an in vitro human cardiac model. METHODS AND RESULTS Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were exposed to remdesivir under normoxic and hypoxic conditions to simulate mild and severe COVID-19 respectively. Remdesivir induced mitochondrial fragmentation, reduced redox potential and suppressed mitochondrial respiration at levels below the estimated plasma concentration under both normoxic and hypoxic conditions. Non-mitochondrial damage such as electrophysiological alterations and sarcomere disarray were also observed. Importantly, some of these changes persisted after the cessation of treatment, culminating in increased cell death. Mechanistically, we found that inhibition of DRP1, a regulator of mitochondrial fission, ameliorated the cardiotoxic effects of remdesivir, showing that remdesivir-induced cardiotoxicity was preventable and excessive mitochondrial fission might contribute to this phenotype. CONCLUSIONS Using an in vitro model, we demonstrated that remdesivir can induce cardiotoxicity in hiPSC-CMs at clinically relevant concentrations. These results reveal previously unknown potential side-effects of remdesivir and highlight the importance of further investigations with in vivo animal models and active clinical monitoring to prevent lasting cardiac damage to patients. TRANSLATIONAL PERSPECTIVE Adult cardiomyocytes have limited ability to regenerate, thus treatment-induced cardiotoxicity can potentially cause irreparable harm. Remdesivir is currently the only FDA approved treatment for COVID-19 but clinical safety data are limited. Using human pluripotent stem cell-derived cardiomyocytes, we revealed that remdesivir induced persistent mitochondrial and structural abnormalities at clinically relevant concentrations. We advise confirmatory experiments in in vivo animal models, investigations of cardioprotective strategies, and closer patient monitoring such that treatment-induced cardiotoxicity does not contribute to the long term sequelae of COVID-19 patients.
Collapse
Affiliation(s)
- Maxwell Kwok
- Department of Medicine and Therapeutics.,Hong Kong Hub of Paediatric Excellence (HK HOPE)
| | - Carrie Lee
- Hong Kong Hub of Paediatric Excellence (HK HOPE).,Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine
| | - Hung Sing Li
- Hong Kong Hub of Paediatric Excellence (HK HOPE).,Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine
| | - Ruixia Deng
- Hong Kong Hub of Paediatric Excellence (HK HOPE).,Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine
| | - Chantelle Tsoi
- Hong Kong Hub of Paediatric Excellence (HK HOPE).,Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine
| | | | - Suk Ying Tsang
- School of Life Sciences State.,State Key Laboratory of Agrobiotechnology.,Key Laboratory for Regenerative Medicine, Ministry of Education.,Institute for Tissue Engineering and Regenerative Medicine, T
| | - Kam Tong Leung
- Hong Kong Hub of Paediatric Excellence (HK HOPE).,Department of Paediatrics
| | - Bryan P Yan
- Department of Medicine and Therapeutics.,Heart and Vascular Institute, The Chinese University of Hong Kong (CUHK), HKSAR, China
| | - Ellen N Poon
- Department of Medicine and Therapeutics.,Hong Kong Hub of Paediatric Excellence (HK HOPE).,Centre for Cardiovascular Genomics and Medicine, Lui Che Woo Institute of Innovative Medicine
| |
Collapse
|
28
|
Zhu J, Yi X, Ding H, Zhong L, Fang L. Integrated Transcriptomics and Reverse Pharmacophore Mapping-based Network Pharmacology to Explore the Mechanisms of Natural Compounds against Doxorubicin-induced Cardiotoxicity. Comb Chem High Throughput Screen 2021; 25:1707-1721. [PMID: 34397328 DOI: 10.2174/1386207324666210816122629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Doxorubicin-induced cardiotoxicity (DIC) has greatly limited the clinical benefits of this frontline drug in oncotherapy. Drug combination with natural compounds (NCs) that possess potency against DIC is considered as a promising intervention strategy. However, the mechanisms of action (MoAs) underlying such drug interactions remain poorly understood. The aim of this study was to systematically pursuit of the molecular mechanisms of NCs against DIC. METHODS First, the gene expression signatures of DIC were characterized from transcriptomics datasets with doxorubicin-treated and untreated cardiomyocytes using differentially expressed gene identification, functional enrichment analysis, and protein-protein interaction network analysis. Secondly, reverse pharmacophore mapping-based network pharmacology was employed to illustrate the MoAs of 82 publicly reported NCs with anti-DIC potency. Cluster analysis based on their enriched pathways was performed to gain systematic insights into the anti-DIC mechanisms of the NCs. Finally, the typical compounds were validated using gene set enrichment analysis (GSEA) of the relevant gene expression profiles from a public gene expression database. RESULTS Based on their anti-DIC MoAs, the 82 NCs could be divided into four groups, which corresponded to ten MoA clusters. GSEA and literature evidence on these compounds were provided to validate the MoAs identified through this bioinformatics analysis. The results suggested that NCs exerted potency against DIC through both common and different MoAs. CONCLUSION This strategy integrating different types of bioinformatics approaches is expected to create new insights for elucidating the MoAs of NCs against DIC.
Collapse
Affiliation(s)
- Junfeng Zhu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiaojiao Yi
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou 310023, China
| | - Haiying Ding
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Like Zhong
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Luo Fang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
29
|
Blanchette AD, Burnett SD, Grimm FA, Rusyn I, Chiu WA. A Bayesian Method for Population-wide Cardiotoxicity Hazard and Risk Characterization Using an In Vitro Human Model. Toxicol Sci 2021; 178:391-403. [PMID: 33078833 DOI: 10.1093/toxsci/kfaa151] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes are an established model for testing potential chemical hazards. Interindividual variability in toxicodynamic sensitivity has also been demonstrated in vitro; however, quantitative characterization of the population-wide variability has not been fully explored. We sought to develop a method to address this gap by combining a population-based iPSC-derived cardiomyocyte model with Bayesian concentration-response modeling. A total of 136 compounds, including 54 pharmaceuticals and 82 environmental chemicals, were tested in iPSC-derived cardiomyocytes from 43 nondiseased humans. Hierarchical Bayesian population concentration-response modeling was conducted for 5 phenotypes reflecting cardiomyocyte function or viability. Toxicodynamic variability was quantified through the derivation of chemical- and phenotype-specific variability factors. Toxicokinetic modeling was used for probabilistic in vitro-to-in vivo extrapolation to derive population-wide margins of safety for pharmaceuticals and margins of exposure for environmental chemicals. Pharmaceuticals were found to be active across all phenotypes. Over half of tested environmental chemicals showed activity in at least one phenotype, most commonly positive chronotropy. Toxicodynamic variability factor estimates for the functional phenotypes were greater than those for cell viability, usually exceeding the generally assumed default of approximately 3. Population variability-based margins of safety for pharmaceuticals were correctly predicted to be relatively narrow, including some below 10; however, margins of exposure for environmental chemicals, based on population exposure estimates, generally exceeded 1000, suggesting they pose little risk at current general population exposures even to sensitive subpopulations. Overall, this study demonstrates how a high-throughput, human population-based, in vitro-in silico model can be used to characterize toxicodynamic population variability in cardiotoxic risk.
Collapse
Affiliation(s)
- Alexander D Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458
| | - Sarah D Burnett
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458
| |
Collapse
|
30
|
Amend N, Worek F, Thiermann H, Wille T. Investigation of cardiac glycosides from oleander in a human induced pluripotent stem cells derived cardiomyocyte model. Toxicol Lett 2021; 350:261-266. [PMID: 34371141 DOI: 10.1016/j.toxlet.2021.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022]
Abstract
The ingestion of Nerium oleander and Thevetia peruviana are common causes for poisoning in Southeast Asia. All parts of the oleander shrub contain cardiac glycosides of the cardenolide type. These glycosides act via inhibition of a Na+/K+-ATPase which might cause severe arrhythmia and subsequent death in oleander-poisoned patients. The current study uses human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CM) in a microelectrode array (MEA) system to assess the cardiac effects of neriifolin, oleandrin, digitoxigenin, peruvoside and thevetin A from the oleander plant. Digoxin was used as established reference compound. All tested compounds showed a corrected field potential duration (FPDc) shortening and was the lowest for 600 nM digitoxigenin with -36.9 ± 1.2 %. Next to the dose-dependent pro-arrhythmic potential, a complete beat arrest of the spontaneously beating hiPSC-CM was observed at a concentration of 300 nM for neriifolin, 600 nM for oleandrin and 1000 nM for digitoxigenin and peruvoside. Thevetin A did not cause arrhythmia up to a final concentration of 1000 nM. Thus, it was possible to establish a cardiac effect rank order of the tested substances: neriifolin > oleandrin > digitoxigenin = peruvoside > digoxin > thevetin A.
Collapse
Affiliation(s)
- N Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, München, Germany
| | - F Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, München, Germany
| | - H Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, München, Germany
| | - T Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, München, Germany.
| |
Collapse
|
31
|
Kerr CM, Richards D, Menick DR, Deleon-Pennell KY, Mei Y. Multicellular Human Cardiac Organoids Transcriptomically Model Distinct Tissue-Level Features of Adult Myocardium. Int J Mol Sci 2021; 22:8482. [PMID: 34445185 PMCID: PMC8395156 DOI: 10.3390/ijms22168482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been widely used for disease modeling and drug cardiotoxicity screening. To this end, we recently developed human cardiac organoids (hCOs) for modeling human myocardium. Here, we perform a transcriptomic analysis of various in vitro hiPSC-CM platforms (2D iPSC-CM, 3D iPSC-CM and hCOs) to deduce the strengths and limitations of these in vitro models. We further compared iPSC-CM models to human myocardium samples. Our data show that the 3D in vitro environment of 3D hiPSC-CMs and hCOs stimulates the expression of genes associated with tissue formation. The hCOs demonstrated diverse physiologically relevant cellular functions compared to the hiPSC-CM only models. Including other cardiac cell types within hCOs led to more transcriptomic similarities to adult myocardium. hCOs lack matured cardiomyocytes and immune cells, which limits a complete replication of human adult myocardium. In conclusion, 3D hCOs are transcriptomically similar to myocardium, and future developments of engineered 3D cardiac models would benefit from diversifying cell populations, especially immune cells.
Collapse
Affiliation(s)
- Charles M. Kerr
- Molecular Cell Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Dylan Richards
- Immunology Translational Sciences, Janssen Research and Development, LLC, Spring House, PA 19477, USA;
| | - Donald R. Menick
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.M.); (K.Y.D.-P.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Kristine Y. Deleon-Pennell
- Division of Cardiology, Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; (D.R.M.); (K.Y.D.-P.)
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 2942, USA
| |
Collapse
|
32
|
Tenreiro MF, Louro AF, Alves PM, Serra M. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med 2021; 6:30. [PMID: 34075050 PMCID: PMC8169890 DOI: 10.1038/s41536-021-00140-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
The adult heart is a vital and highly specialized organ of the human body, with limited capability of self-repair and regeneration in case of injury or disease. Engineering biomimetic cardiac tissue to regenerate the heart has been an ambition in the field of tissue engineering, tracing back to the 1990s. Increased understanding of human stem cell biology and advances in process engineering have provided an unlimited source of cells, particularly cardiomyocytes, for the development of functional cardiac muscle, even though pluripotent stem cell-derived cardiomyocytes poorly resemble those of the adult heart. This review outlines key biology-inspired strategies reported to improve cardiomyocyte maturation features and current biofabrication approaches developed to engineer clinically relevant cardiac tissues. It also highlights the potential use of this technology in drug discovery science and disease modeling as well as the current efforts to translate it into effective therapies that improve heart function and promote regeneration.
Collapse
Affiliation(s)
- Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
33
|
Choudhuri S, Kaur T, Jain S, Sharma C, Asthana S. A review on genotoxicity in connection to infertility and cancer. Chem Biol Interact 2021; 345:109531. [PMID: 34058178 DOI: 10.1016/j.cbi.2021.109531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Genotoxicity has been identified as the main cause of infertility and a variety of cancers. The mechanisms affect the structure, quality of the information or the segregation of DNA and are not inherently correlated with mutagenicity. The concept of genotoxicity, the chemical classes that cause genetic damage and the associated mechanisms of action are discussed here. Hazardous effects of pharmaceuticals, cosmetics, agrochemicals, industrial compounds, food additives, natural toxins and nanomaterials are, in large part, identified by genotoxicity and mutagenicity tests. These are critical and early steps in industrial and regulatory health assessment. Though several in vitro experiments are commonly used and approval by regulatory agencies for commercial licensing of drugs, their accuracy in human predictions for genotoxic and mutagenic effects is frequently questioned. Treatment of real and functional genetic toxicity problems depends in detail on the knowledge of mechanisms of DNA damage in the molecular, subcellular, cellular and tissue or organ system levels. Current strategies for risk assessment of human health need revisions to achieve robust and reliable results for optimizing their effectiveness. Additionally, computerized methods, neo-biomarkers leveraging '-omics' approaches, all of which can provide a convincing genotoxicity evaluation to reduce infertility and cancer risk.
Collapse
Affiliation(s)
- Sharmistha Choudhuri
- Department of Biochemistry, R. G. Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Taruneet Kaur
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sapna Jain
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Chandresh Sharma
- Multidisciplinary Clinical Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| | - Shailendra Asthana
- Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, Haryana, India.
| |
Collapse
|
34
|
A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues. Sci Rep 2021; 11:10228. [PMID: 33986332 PMCID: PMC8119415 DOI: 10.1038/s41598-021-89478-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.
Collapse
|
35
|
Modeling Precision Cardio-Oncology: Using Human-Induced Pluripotent Stem Cells for Risk Stratification and Prevention. Curr Oncol Rep 2021; 23:77. [PMID: 33937943 PMCID: PMC8088904 DOI: 10.1007/s11912-021-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 11/12/2022]
Abstract
Purpose of Review Cardiovascular toxicity is a leading cause of mortality among cancer survivors and has become increasingly prevalent due to improved cancer survival rates. In this review, we synthesize evidence illustrating how common cancer therapeutic agents, such as anthracyclines, human epidermal growth factors receptors (HER2) monoclonal antibodies, and tyrosine kinase inhibitors (TKIs), have been evaluated in cardiomyocytes (CMs) derived from human-induced pluripotent stem cells (hiPSCs) to understand the underlying mechanisms of cardiovascular toxicity. We place this in the context of precision cardio-oncology, an emerging concept for personalizing the prevention and management of cardiovascular toxicities from cancer therapies, accounting for each individual patient’s unique factors. We outline steps that will need to be addressed by multidisciplinary teams of cardiologists and oncologists in partnership with regulators to implement future applications of hiPSCs in precision cardio-oncology. Recent Findings Current prevention of cardiovascular toxicity involves routine screenings and management of modifiable risk factors for cancer patients, as well as the initiation of cardioprotective medications. Despite recent advancements in precision cardio-oncology, knowledge gaps remain and limit our ability to appropriately predict with precision which patients will develop cardiovascular toxicity. Investigations using patient-specific CMs facilitate pharmacological discovery, mechanistic toxicity studies, and the identification of cardioprotective pathways. Studies with hiPSCs demonstrate that patients with comorbidities have more frequent adverse responses, compared to their counterparts without cardiac disease. Further studies utilizing hiPSC modeling should be considered, to evaluate the impact and mitigation of known cardiovascular risk factors, including blood pressure, body mass index (BMI), smoking status, diabetes, and physical activity in their role in cardiovascular toxicity after cancer therapy. Future real-world applications will depend on understanding the current use of hiPSC modeling in order for oncologists and cardiologists together to inform their potential to improve our clinical collaborative practice in cardio-oncology. Summary When applying such in vitro characterization, it is hypothesized that a safety score can be assigned to each individual to determine who has a greater probability of developing cardiovascular toxicity. Using hiPSCs to create personalized models and ultimately evaluate the cardiovascular toxicity of individuals’ treatments may one day lead to more patient-specific treatment plans in precision cardio-oncology while reducing cardiovascular disease (CVD) morbidity and mortality.
Collapse
|
36
|
Verkerk AO, Marchal GA, Zegers JG, Kawasaki M, Driessen AHG, Remme CA, de Groot JR, Wilders R. Patch-Clamp Recordings of Action Potentials From Human Atrial Myocytes: Optimization Through Dynamic Clamp. Front Pharmacol 2021; 12:649414. [PMID: 33912059 PMCID: PMC8072333 DOI: 10.3389/fphar.2021.649414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: Atrial fibrillation (AF) is the most common cardiac arrhythmia. Consequently, novel therapies are being developed. Ultimately, the impact of compounds on the action potential (AP) needs to be tested in freshly isolated human atrial myocytes. However, the frequent depolarized state of these cells upon isolation seriously hampers reliable AP recordings. Purpose: We assessed whether AP recordings from single human atrial myocytes could be improved by providing these cells with a proper inward rectifier K+ current (IK1), and consequently with a regular, non-depolarized resting membrane potential (RMP), through “dynamic clamp”. Methods: Single myocytes were enzymatically isolated from left atrial appendage tissue obtained from patients with paroxysmal AF undergoing minimally invasive surgical ablation. APs were elicited at 1 Hz and measured using perforated patch-clamp methodology, injecting a synthetic IK1 to generate a regular RMP. The injected IK1 had strong or moderate rectification. For comparison, a regular RMP was forced through injection of a constant outward current. A wide variety of ion channel blockers was tested to assess their modulatory effects on AP characteristics. Results: Without any current injection, RMPs ranged from −9.6 to −86.2 mV in 58 cells. In depolarized cells (RMP positive to −60 mV), RMP could be set at −80 mV using IK1 or constant current injection and APs could be evoked upon stimulation. AP duration differed significantly between current injection methods (p < 0.05) and was shortest with constant current injection and longest with injection of IK1 with strong rectification. With moderate rectification, AP duration at 90% repolarization (APD90) was similar to myocytes with regular non-depolarized RMP, suggesting that a synthetic IK1 with moderate rectification is the most appropriate for human atrial myocytes. Importantly, APs evoked using each injection method were still sensitive to all drugs tested (lidocaine, nifedipine, E-4031, low dose 4-aminopyridine, barium, and apamin), suggesting that the major ionic currents of the atrial cells remained functional. However, certain drug effects were quantitatively dependent on the current injection approach used. Conclusion: Injection of a synthetic IK1 with moderate rectification facilitates detailed AP measurements in human atrial myocytes. Therefore, dynamic clamp represents a promising tool for testing novel antiarrhythmic drugs.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Gerard A Marchal
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan G Zegers
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Makiri Kawasaki
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine H G Driessen
- Department of Cardiothoracic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris R de Groot
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Inbody SC, Sinquefield BE, Lewis JP, Horton RE. Biomimetic microsystems for cardiovascular studies. Am J Physiol Cell Physiol 2021; 320:C850-C872. [PMID: 33760660 DOI: 10.1152/ajpcell.00026.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional tissue culture platforms have been around for several decades and have enabled key findings in the cardiovascular field. However, these platforms failed to recreate the mechanical and dynamic features found within the body. Organs-on-chips (OOCs) are cellularized microfluidic-based devices that can mimic the basic structure, function, and responses of organs. These systems have been successfully utilized in disease, development, and drug studies. OOCs are designed to recapitulate the mechanical, electrical, chemical, and structural features of the in vivo microenvironment. Here, we review cardiovascular-themed OOC studies, design considerations, and techniques used to generate these cellularized devices. Furthermore, we will highlight the advantages of OOC models over traditional cell culture vessels, discuss implementation challenges, and provide perspectives on the state of the field.
Collapse
Affiliation(s)
- Shelby C Inbody
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Bridgett E Sinquefield
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Joshua P Lewis
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Renita E Horton
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| |
Collapse
|
38
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
39
|
Lam CK, Wu JC. Clinical Trial in a Dish: Using Patient-Derived Induced Pluripotent Stem Cells to Identify Risks of Drug-Induced Cardiotoxicity. Arterioscler Thromb Vasc Biol 2021; 41:1019-1031. [PMID: 33472401 PMCID: PMC11006431 DOI: 10.1161/atvbaha.120.314695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-induced cardiotoxicity is a significant clinical issue, with many drugs in the market being labeled with warnings on cardiovascular adverse effects. Treatments are often prematurely halted when cardiotoxicity is observed, which limits their therapeutic potential. Moreover, cardiotoxicity is a major reason for abandonment during drug development, reducing available treatment options for diseases and creating a significant financial burden and disincentive for drug developers. Thus, it is important to minimize the cardiotoxic effects of medications that are in use or in development. To this end, identifying patients at a higher risk of developing cardiovascular adverse effects for the drug of interest may be an effective strategy. The discovery of human induced pluripotent stem cells has enabled researchers to generate relevant cell types that retain a patient's own genome and examine patient-specific disease mechanisms, paving the way for precision medicine. Combined with the rapid development of pharmacogenomic analysis, the ability of induced pluripotent stem cell-derivatives to recapitulate patient-specific drug responses provides a powerful platform to identify subsets of patients who are particularly vulnerable to drug-induced cardiotoxicity. In this review, we will discuss the current use of patient-specific induced pluripotent stem cells in identifying populations who are at risk to drug-induced cardiotoxicity and their potential applications in future precision medicine practice. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Chi Keung Lam
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Biological Sciences, University of Delaware, Newark, DE
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
40
|
Barbaglia A, Dipalo M, Melle G, Iachetta G, Deleye L, Hubarevich A, Toma A, Tantussi F, De Angelis F. Mirroring Action Potentials: Label-Free, Accurate, and Noninvasive Electrophysiological Recordings of Human-Derived Cardiomyocytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004234. [PMID: 33410191 PMCID: PMC11468743 DOI: 10.1002/adma.202004234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/15/2020] [Indexed: 05/23/2023]
Abstract
The electrophysiological recording of action potentials in human cells is a long-sought objective due to its pivotal importance in many disciplines. Among the developed techniques, invasiveness remains a common issue, causing cytotoxicity or altering unpredictably cell physiological response. In this work, a new approach for recording intracellular signals of outstanding quality and with noninvasiveness is introduced. By taking profit of the concept of mirror charge in classical electrodynamics, the new proposed device transduces cell ionic currents into mirror charges in a microfluidic chamber, thus realizing a virtual mirror cell. By monitoring mirror charge dynamics, it is possible to effectively record the action potentials fired by the cells. Since there is no need for accessing or interacting with the cells, the method is intrinsically noninvasive. In addition, being based on optical recording, it shows high spatial resolution and high parallelization. As shown through a set of experiments, the presented methodology is an ideal candidate for the next generation devices for the reliable assessment of cardiotoxicity on human-derived cardiomyocytes. More generally, it paves the way toward a new family of in vitro biodevices that will lay a new milestone in the field of electrophysiology.
Collapse
Affiliation(s)
| | - Michele Dipalo
- Istituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | - Giovanni Melle
- Istituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | | | - Lieselot Deleye
- Istituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | | | - Andrea Toma
- Istituto Italiano di TecnologiaVia Morego 30Genova16163Italy
| | | | | |
Collapse
|
41
|
Magdy T, Burridge PW. Use of hiPSC to explicate genomic predisposition to anthracycline-induced cardiotoxicity. Pharmacogenomics 2021; 22:41-54. [PMID: 33448871 PMCID: PMC7923254 DOI: 10.2217/pgs-2020-0104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The anticancer agents of the anthracycline family are commonly associated with the potential to cause severe toxicity to the heart. To solve the question of why particular a patient is predisposed to anthracycline-induced cardiotoxicity (AIC), researchers have conducted numerous pharmacogenomic studies and identified more than 60 loci associated with AIC. To date, none of these identified loci have been developed into US FDA-approved biomarkers for use in routine clinical practice. With advances in the application of human-induced pluripotent stem cell-derived cardiomyocytes, sequencing technologies and genomic editing techniques, variants associated with AIC can now be validated in a human model. Here, we provide a comprehensive overview of known genetic variants associated with AIC from the perspective of how human-induced pluripotent stem cell-derived cardiomyocytes can be used to help better explain the genomic predilection to AIC.
Collapse
Affiliation(s)
- Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
42
|
Uçkan-Çetinkaya D, Haider KH. Induced Pluripotent Stem Cells in Pediatric Research and Clinical Translation. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Abstract
Inherited cardiac arrhythmias contribute substantially to sudden cardiac death in the young. The underlying pathophysiology remains incompletely understood because of the lack of representative study models and the labour-intensive nature of electrophysiological patch clamp experiments. Whereas patch clamp is still considered the gold standard for investigating electrical properties in a cell, optical mapping of voltage and calcium transients has paved the way for high-throughput studies. Moreover, the development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) has enabled the study of patient specific cell lines capturing the full genomic background. Nevertheless, hiPSC-CMs do not fully address the complex interactions between various cell types in the heart. Studies using in vivo models, are therefore necessary. Given the analogies between the human and zebrafish cardiovascular system, zebrafish has emerged as a cost-efficient model for arrhythmogenic diseases. In this review, we describe how hiPSC-CM and zebrafish are employed as models to study primary electrical disorders. We provide an overview of the contemporary electrophysiological phenotyping tools and discuss in more depth the different strategies available for optical mapping. We consider the current advantages and disadvantages of both hiPSC-CM and zebrafish as a model and optical mapping as phenotyping tool and propose strategies for further improvement. Overall, the combination of experimental readouts at cellular (hiPSC-CM) and whole organ (zebrafish) level can raise our understanding of the complexity of inherited cardiac arrhythmia disorders to the next level.
Collapse
|
44
|
Wei L, Li W, Entcheva E, Li Z. Microfluidics-enabled 96-well perfusion system for high-throughput tissue engineering and long-term all-optical electrophysiology. LAB ON A CHIP 2020; 20:4031-4042. [PMID: 32996969 PMCID: PMC7680692 DOI: 10.1039/d0lc00615g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This work demonstrates a novel high-throughput (HT) microfluidics-enabled uninterrupted perfusion system (HT-μUPS) and validates its use with chronic all-optical electrophysiology in human excitable cells. HT-μUPS consists of a soft multichannel microfluidic plate cover which could button on a commercial HT 96-well plate. Herein, we demonstrate the manufacturing process of the system and its usages in acute and chronic all-optical electrophysiological studies of human induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CM) and engineered excitable (spiking HEK) cells. HT-μUPS perfusion maintained functional voltage and calcium responses in iPSC-CM and spiking HEK cells under spontaneous conditions and under optogenetic pacing. Long-term culture with HT-μUPS improved cell viability and optogenetically-tracked calcium responses in spiking HEK cells. The simplicity of this design and its compatibility with HT all-optical electrophysiology can empower cell-based assays for personalized medicine using patient-derived cells.
Collapse
Affiliation(s)
- Lai Wei
- Department of Biomedical Engineering, The George Washington University, Washington DC, USA
- These authors contributed equally: Lai Wei, Weizhen Li
| | - Weizhen Li
- Department of Biomedical Engineering, The George Washington University, Washington DC, USA
- These authors contributed equally: Lai Wei, Weizhen Li
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington DC, USA
- ,
| | - Zhenyu Li
- Department of Biomedical Engineering, The George Washington University, Washington DC, USA
- ,
| |
Collapse
|
45
|
Ovics P, Regev D, Baskin P, Davidor M, Shemer Y, Neeman S, Ben-Haim Y, Binah O. Drug Development and the Use of Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Disease Modeling and Drug Toxicity Screening. Int J Mol Sci 2020; 21:E7320. [PMID: 33023024 PMCID: PMC7582587 DOI: 10.3390/ijms21197320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
: Over the years, numerous groups have employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as a superb human-compatible model for investigating the function and dysfunction of cardiomyocytes, drug screening and toxicity, disease modeling and for the development of novel drugs for heart diseases. In this review, we discuss the broad use of iPSC-CMs for drug development and disease modeling, in two related themes. In the first theme-drug development, adverse drug reactions, mechanisms of cardiotoxicity and the need for efficient drug screening protocols-we discuss the critical need to screen old and new drugs, the process of drug development, marketing and Adverse Drug reactions (ADRs), drug-induced cardiotoxicity, safety screening during drug development, drug development and patient-specific effect and different mechanisms of ADRs. In the second theme-using iPSC-CMs for disease modeling and developing novel drugs for heart diseases-we discuss the rationale for using iPSC-CMs and modeling acquired and inherited heart diseases with iPSC-CMs.
Collapse
Affiliation(s)
- Paz Ovics
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Danielle Regev
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Mor Davidor
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Shunit Neeman
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George’s University of London, London SW17 0RE, UK;
- Cardiology Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| |
Collapse
|
46
|
Li W, Han JL, Entcheva E. Syncytium cell growth increases Kir2.1 contribution in human iPSC-cardiomyocytes. Am J Physiol Heart Circ Physiol 2020; 319:H1112-H1122. [PMID: 32986966 PMCID: PMC7789971 DOI: 10.1152/ajpheart.00148.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable cardiotoxicity testing and personalized medicine. However, their maturity is of concern, including relatively depolarized resting membrane potential and more spontaneous activity compared with adult cardiomyocytes, implicating low or lacking inward rectifier potassium current (Ik1). Here, protein quantification confirms Kir2.1 expression in hiPSC-CM syncytia, albeit several times lower than in adult heart tissue. We find that hiPSC-CM culture density influences Kir2.1 expression at the mRNA level (potassium inwardly rectifying channel subfamily J member 2) and at the protein level and its associated electrophysiology phenotype. Namely, all-optical cardiac electrophysiology and pharmacological treatments reveal reduction of spontaneous and irregular activity and increase in action potential upstroke in denser cultures. Blocking Ik1-like currents with BaCl2 increased spontaneous frequency and blunted action potential upstrokes during pacing in a dose-dependent manner only in the highest-density cultures, in line with Ik1’s role in regulating the resting membrane potential. Our results emphasize the importance of syncytial growth of hiPSC-CMs for more physiologically relevant phenotype and the power of all-optical electrophysiology to study cardiomyocytes in their multicellular setting. NEW & NOTEWORTHY We identify cell culture density and cell-cell contact as an important factor in determining the expression of a key ion channel at the transcriptional and the protein levels, KCNJ2/Kir2.1, and its contribution to the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes. Our results indicate that studies on isolated cells, out of tissue context, may underestimate the cellular ion channel properties being characterized.
Collapse
Affiliation(s)
- Weizhen Li
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Julie L Han
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| |
Collapse
|
47
|
Ryu B, Choi SW, Lee SG, Jeong YH, Kim U, Kim J, Jung CR, Chung HM, Park JH, Kim CY. Development and evaluation of next-generation cardiotoxicity assay based on embryonic stem cell-derived cardiomyocytes. BMB Rep 2020. [PMID: 32336319 PMCID: PMC7473479 DOI: 10.5483/bmbrep.2020.53.8.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In accordance with requirements of the ICH S7B safety pharma-cology guidelines, numerous next-generation cardiotoxicity studies using human stem cell-derived cardiomyocytes (CMs) are being conducted globally. Although several stem cell-derived CMs are being developed for commercialization, there is insufficient research to verify if these CMs can replace animal experiments. In this study, in vitro high-efficiency CMs derived from human embryonic stem cells (hESC-CMs) were compared with Sprague-Dawley rats as in vivo experimental animals, and primary cultured in vitro rat-CMs for cardiotoxicity tests. In vivo rats were administrated with two consecutive injections of 100 mg/kg isoproterenol, 15 mg/kg doxorubicin, or 100 mg/kg nifedipine, while in vitro rat-CMs and hESC-CMs were treated with 5 µM isoproterenol, 5 µM doxorubicin, and 50 µM nifedipine. We have verified the equivalence of hESC-CMs assessments over various molecular biological markers, morphological analysis. Also, we have identified the advantages of hESC-CMs, which can distinguish between species variability, over electrophysiological analysis of ion channels against cardiac damage. Our findings demonstrate the possibility and advantage of high-effi-ciency hESC-CMs as next-generation cardiotoxicity assessment.
Collapse
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Seong Woo Choi
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Seul-Gi Lee
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Young-Hoon Jeong
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hyung-Min Chung
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - C-Yoon Kim
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
48
|
Schmid C, Wohnhaas CT, Hildebrandt T, Baum P, Rast G. Characterization of iCell cardiomyocytes using single-cell RNA-sequencing methods. J Pharmacol Toxicol Methods 2020; 106:106915. [PMID: 32871229 DOI: 10.1016/j.vascn.2020.106915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are being evaluated for their use in pharmacological and toxicological testing, particularly for electrophysiological side effects. However, little is known about the composition of the commercially available iCell cardiomyocyte (Fuijifilm Cellular Dynamics) cultures and the transcriptomic phenotype of individual cells. METHODS We characterized iCell cardiomyocytes (assumed to be a mixture of nodal-, atrial-, and ventricular-like cardiomyocytes together with potential residual non-myocytes) using bulk RNA-sequencing, followed by investigation of cellular heterogeneity using two different single-cell RNA-sequencing platforms. RESULTS Bulk RNA-sequencing identified key cardiac markers (TNNT2, MYL7) as well as fibroblast associated genes (P4HB, VIM), and cardiac ion channels in the iCell cardiomyocyte culture. High-resolution single cell RNA-sequencing demonstrated that both, cardiac and fibroblast-related genes were co-expressed throughout the cell population. This approach resolved two cell clusters within iCell cardiomyocytes. Interestingly, these clusters could not be associated with known cardiac subtypes. However, transcripts of ion channels potentially useful as functional markers for cardiac subtypes were below the detection limits of the single-cell approaches used. Instead, one cluster (10.8% of the cells) is defined by co-expression of cardiac and cell cycle-related genes (e.g. TOP2A). Incorporation of bromodeoxyuridine further confirmed the capability of iCell cardiomyocytes to enter cell cycle. DISCUSSION The co-expression of cardiac related genes with cell cycle or fibroblast related genes may be interpreted either as aberrant or as an immature feature. However, this excludes the presence of a non-cardiomyocyte sub-population and indicates that some cardiomyocytes themselves enter cell cycle.
Collapse
Affiliation(s)
- Christina Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany; Department of Chemistry, Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany.
| | - Christian T Wohnhaas
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany; Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Tobias Hildebrandt
- Computational Biology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany
| | - Patrick Baum
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany.
| | - Georg Rast
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach, Germany.
| |
Collapse
|
49
|
Pálóczi J, Szántai Á, Kobolák J, Bock I, Ruivo E, Kiss B, Gáspár R, Pipis J, Ocsovszki I, Táncos Z, Fehér A, Dinnyés A, Onódi Z, Madonna R, Ferdinandy P, Görbe A. Systematic analysis of different pluripotent stem cell-derived cardiac myocytes as potential testing model for cardiocytoprotection. Vascul Pharmacol 2020; 133-134:106781. [PMID: 32827678 DOI: 10.1016/j.vph.2020.106781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Stem cell-derived cardiac myocytes are potential sources for testing cardiocytoprotective molecules against ischemia/reperfusion injury in vitro. MATERIALS AND METHODS Here we performed a systematic analysis of two different induced pluripotent stem cell lines (iPSC 3.4 and 4.1) and an embryonic stem cell (ESC) line-derived cardiac myocytes at two different developmental stages. Cell viability in simulated ischemia/reperfusion (SI/R)-induced injury and a known cardiocytoprotective NO-donor, S-nitroso-n-acetylpenicillamine (SNAP) was tested. RESULTS After analysis of full embryoid bodies (EBs) and cardiac marker (VCAM and cardiac troponin I) positive cells of three lines at 6 conditions (32 different conditions altogether), we found significant SI/R injury-induced cell death in both full EBs and VCAM+ cardiac cells at later stage of their differentiation. Moreover, full EBs of the iPS 4.1 cell line after oxidative stress induction by SNAP was protected at day-8 samples. CONCLUSION We have shown that 4.1 iPS-derived cardiomyocyte line could serve as a testing platform for cardiocytoprotection.
Collapse
Affiliation(s)
- J Pálóczi
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary
| | - Á Szántai
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary
| | - J Kobolák
- Biotalentum Ltd., Gödöllő, 2100 Hungary
| | - I Bock
- Biotalentum Ltd., Gödöllő, 2100 Hungary
| | - E Ruivo
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary
| | - B Kiss
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary; MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1085 Hungary
| | - R Gáspár
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary
| | - J Pipis
- Pharmahungary Group, Szeged, 6722 Hungary
| | - I Ocsovszki
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary
| | - Z Táncos
- Biotalentum Ltd., Gödöllő, 2100 Hungary
| | - A Fehér
- Biotalentum Ltd., Gödöllő, 2100 Hungary
| | - A Dinnyés
- Biotalentum Ltd., Gödöllő, 2100 Hungary; Molecular Animal Biotechnology Laboratory, Szent István University, Gödöllő, 2100 Hungary
| | - Z Onódi
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1085 Hungary
| | - R Madonna
- Institute of Cardiology, Department of Surgical, Medical and Molecular Pathology and Critical Area Medicine, University of Pisa, 56124 Pisa; Internal Medicine, Cardiology Division, University of Texas Medical School in Houston, Houston, Texas
| | - P Ferdinandy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary; Pharmahungary Group, Szeged, 6722 Hungary; MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1085 Hungary; Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720, Hungary
| | - A Görbe
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720 Hungary; Pharmahungary Group, Szeged, 6722 Hungary; MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, 1085 Hungary; Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720, Hungary.
| |
Collapse
|
50
|
Guns PJD, Guth BD, Braam S, Kosmidis G, Matsa E, Delaunois A, Gryshkova V, Bernasconi S, Knot HJ, Shemesh Y, Chen A, Markert M, Fernández MA, Lombardi D, Grandmont C, Cillero-Pastor B, Heeren RMA, Martinet W, Woolard J, Skinner M, Segers VFM, Franssen C, Van Craenenbroeck EM, Volders PGA, Pauwelyn T, Braeken D, Yanez P, Correll K, Yang X, Prior H, Kismihók G, De Meyer GRY, Valentin JP. INSPIRE: A European training network to foster research and training in cardiovascular safety pharmacology. J Pharmacol Toxicol Methods 2020; 105:106889. [PMID: 32565326 DOI: 10.1016/j.vascn.2020.106889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 02/05/2023]
Abstract
Safety pharmacology is an essential part of drug development aiming to identify, evaluate and investigate undesirable pharmacodynamic properties of a drug primarily prior to clinical trials. In particular, cardiovascular adverse drug reactions (ADR) have halted many drug development programs. Safety pharmacology has successfully implemented a screening strategy to detect cardiovascular liabilities, but there is room for further refinement. In this setting, we present the INSPIRE project, a European Training Network in safety pharmacology for Early Stage Researchers (ESRs), funded by the European Commission's H2020-MSCA-ITN programme. INSPIRE has recruited 15 ESR fellows that will conduct an individual PhD-research project for a period of 36 months. INSPIRE aims to be complementary to ongoing research initiatives. With this as a goal, an inventory of collaborative research initiatives in safety pharmacology was created and the ESR projects have been designed to be complementary to this roadmap. Overall, INSPIRE aims to improve cardiovascular safety evaluation, either by investigating technological innovations or by adding mechanistic insight in emerging safety concerns, as observed in the field of cardio-oncology. Finally, in addition to its hands-on research pillar, INSPIRE will organize a number of summer schools and workshops that will be open to the wider community as well. In summary, INSPIRE aims to foster both research and training in safety pharmacology and hopes to inspire the future generation of safety scientists.
Collapse
Affiliation(s)
- Pieter-Jan D Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Brian D Guth
- Boehringer Ingelheim Pharma GmbH & Co KG, Drug Discovery Sciences, Biberach an der Riss, Germany
| | | | | | | | - Annie Delaunois
- UCB Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine-l'Alleud, Belgium
| | - Vitalina Gryshkova
- UCB Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine-l'Alleud, Belgium
| | | | | | - Yair Shemesh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Markert
- Boehringer Ingelheim Pharma GmbH & Co KG, Drug Discovery Sciences, Biberach an der Riss, Germany
| | | | | | | | - Berta Cillero-Pastor
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, United Kingdom
| | - Matt Skinner
- Vivonics Preclinical Ltd, BioCity, Nottingham, United Kingdom
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Constantijn Franssen
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Paul G A Volders
- Department of Cardiology, CARIM, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | | | - Paz Yanez
- Department of Research Affairs & Innovation, University of Antwerp, Antwerp, Belgium
| | - Krystle Correll
- Safety Pharmacology Society, Reston, Virginia, United States
| | - Xi Yang
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Helen Prior
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | - Gábor Kismihók
- Leibniz Information Centre for Science and Technology, Hannover, Germany; Marie Curie Alumni Association, Brussels, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Valentin
- UCB Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine-l'Alleud, Belgium
| |
Collapse
|