1
|
Khandayataray P, Murthy MK. Exploring the nexus: Sleep disorders, circadian dysregulation, and Alzheimer's disease. Neuroscience 2025; 574:21-41. [PMID: 40189132 DOI: 10.1016/j.neuroscience.2025.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/10/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
We reviewed the connections among Alzheimer's disease (AD), sleep deprivation, and circadian rhythm disorders. Evidence is mounting that disrupted sleep and abnormal circadian rhythms are not merely symptoms of AD, but are also involved in accelerating the disease. Amyloid-beta (Aβ) accumulates, a feature of AD, and worsens with sleep deprivation because glymphatic withdrawal is required to clear toxic proteins from the brain. In addition, disturbances in circadian rhythm can contribute to the induction of neuroinflammation and oxidative stress, thereby accelerating neurodegenerative processes. While these interactions are bidirectional, Alzheimer's pathology further disrupts sleep and circadian function in a vicious cycle that worsens cognitive decline, which is emphasized in the review. The evidence that targeting sleep and circadian mechanisms may serve as therapeutic strategies for AD was strengthened by this study through the analysis of the molecular and physiological pathways. Further work on this nexus could help unravel the neurobiological mechanisms common to the onset of Alzheimer's and disrupted sleep and circadian regulation, which could result in earlier intervention to slow or prevent the onset of the disease.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab 140401, India.
| |
Collapse
|
2
|
Wang L, Liu T, Zhang W, Liu H, Qi Y, Li M. BMAL1-downregulation drives PANoptosis and the osteogenic differentiation impairment of PDLSCs by ERK/AP-1 signaling pathway. J Periodontol 2025. [PMID: 40259757 DOI: 10.1002/jper.24-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/24/2024] [Accepted: 12/21/2024] [Indexed: 04/23/2025]
Abstract
BACKGROUND One strategy to delay bone loss in periodontitis involves maintaining the osteogenic differentiation function of periodontal ligament stem cells (PDLSCs). The core circadian gene BMAL1 influences the fate of mesenchymal stem cells and is essential for regulating pyroptosis, apoptosis, and necroptosis. PANoptosis, a novel form of programmed cell death, simultaneously activates all 3 pathways. This study focuses on the role of BMAL1, the process of PANoptosis, and the osteogenic impairment of PDLSCs. METHODS A mouse periodontitis model was established to evaluate the expression of BMAL1 and osteogenic factors. We stimulated PDLSCs with lipopolysaccharide (LPS) and used a Western blot to detect PANoptosis-related factors. Osteogenic factors in PDLSCs were assessed using real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, alkaline phosphatase, and alizarin red staining. The expression of ERK pathway proteins was examined by immunofluorescence and Western blot to investigate how BMAL1 regulates PANoptosis under inflammatory conditions. RESULTS Treatment with LPS leads to the downregulation of BMAL1 expression, which subsequently induces RIPK1-PANoptosome-mediated PANoptosis in PDLSCs, impairing their osteogenic differentiation function. Inhibition of the RIPK1-PANoptosome with Nec-1S improved the expression of osteogenic differentiation-related genes and proteins. Overexpression of BMAL1 using the synthetic ligand SR1078 alleviated these detrimental effects. Inhibition of the ERK pathway with U0126 reduced the expression of its downstream target AP-1, effectively reversing the impact of BMAL1 on PANoptosis. CONCLUSIONS The downregulation of BMAL1 triggers PANoptosis in PDLSCs, leading to impaired osteogenic function under inflammatory conditions. This study provides new insights into the pathogenesis of periodontitis and suggests novel targets for its prevention and treatment. PLAIN LANGUAGE SUMMARY Periodontitis is a chronic inflammatory condition of the oral cavity marked by the destruction of periodontal attachment and resorption of alveolar bone. One strategy to delay alveolar bone loss in periodontitis involves maintaining the osteogenic differentiation function of periodontal ligament stem cells (PDLSCs). The circadian rhythm influences the fate of mesenchymal stem cells, with the core circadian gene BMAL1 playing a crucial role in regulating pyroptosis, apoptosis, and necroptosis. PANoptosis is a novel form of programmed cell death, encompassing pyroptosis, apoptosis, and necroptosis, which may play a role in regulating the osteogenic activity of PDLSCs. Our study aims to detect the role of PANoptosis of PDLSCs in periodontitis and elucidate the underlying relationship between BMAL1 and PANoptosis. We found that treatment with lipopolysaccharide leads to the downregulation of BMAL1 expression, which subsequently induces RIPK1-PANoptosome-mediated PANoptosis in PDLSCs, impairing their osteogenic differentiation function. Notably, inhibition of the RIPK1-PANoptosome improved the expression of osteogenic differentiation-related genes and proteins. Mechanistic exploration revealed that BMAL1 downregulation induces PANoptosis in PDLSCs through the ERK/AP-1 signaling pathway. This study highlights the potential therapeutic targets for mitigating bone loss in periodontitis.
Collapse
Affiliation(s)
- Luxu Wang
- School of Stomatology, Jinzhou Medical University, Jinzhou, China
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Ting Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Weidong Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuping Qi
- Department of Oral Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Minqi Li
- School of Stomatology, Jinzhou Medical University, Jinzhou, China
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
- School of Clinical Medicine, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Cai Y, Huang G, Ren M, Zhang X, Yan T, Zhu L. Identification of preventive biomarkers associated with circadian rhythms in traumatic brain injury-mediated depression: Expression of SERPINE1 protein and bioinformatics analysis. Int J Biol Macromol 2025; 310:143229. [PMID: 40246101 DOI: 10.1016/j.ijbiomac.2025.143229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/15/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Traumatic brain injury (TBI) represents the leading cause of trauma-related mortality, with depression being the most common psychiatric condition following TBI. Although disruptions in circadian rhythms and clock genes have been linked to both conditions, their precise regulatory mechanisms remain unclear. Identifying circadian rhythm-related genes is critical for the prevention and diagnosis of TBI and depression. This study employs Mendelian Randomization (MR) analysis to establish a positive correlation between TBI and depression. Using Weighted Gene Co-expression Network Analysis (WGCNA) on Gene Expression Omnibus (GEO) datasets derived from TBI and depression tissue samples, we identified 99 shared genes functionally linked to circadian rhythms. Furthermore, machine learning algorithms and Receiver Operating Characteristic (ROC) curve analysis identified SERPINE1 as a key diagnostic biomarker for both TBI and depression. In vivo and in vitro experiments further demonstrated that TBI often triggers the development of depression. Suppressing SERPINE1 expression reduced Claudin-1 and BDNF protein levels, alleviating TBI and depressive symptoms. Our findings indicate that SERPINE1 overexpression, which is positively correlated with neutrophil levels, may increase the risk of depression following TBI by disrupting circadian rhythms. This positions SERPINE1 as a critical predictive and diagnostic biomarker for TBI-mediated depression.
Collapse
Affiliation(s)
- Yawen Cai
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China; School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Guiqin Huang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Menghui Ren
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Xiaoyu Zhang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Tianhua Yan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China.
| | - Lingpeng Zhu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| |
Collapse
|
4
|
Antoneli F, Golubitsky M, Jin J, Stewart I. Homeostasis in input-output networks: Structure, Classification and Applications. Math Biosci 2025; 384:109435. [PMID: 40222590 DOI: 10.1016/j.mbs.2025.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 02/10/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
Homeostasis is concerned with regulatory mechanisms, present in biological systems, where some specific variable is kept close to a set value as some external disturbance affects the system. Many biological systems, from gene networks to signaling pathways to whole tissue/organism physiology, exhibit homeostatic mechanisms. In all these cases there are homeostatic regions where the variable is relatively to insensitive external stimulus, flanked by regions where it is sensitive. Mathematically, the notion of homeostasis can be formalized in terms of an input-output function that maps the parameter representing the external disturbance to the output variable that must be kept within a fairly narrow range. This observation inspired the introduction of the notion of infinitesimal homeostasis, namely, the derivative of the input-output function is zero at an isolated point. This point of view allows for the application of methods from singularity theory to characterize infinitesimal homeostasis points (i.e. critical points of the input-output function). In this paper we review the infinitesimal approach to the study of homeostasis in input-output networks. An input-output network is a network with two distinguished nodes 'input' and 'output', and the dynamics of the network determines the corresponding input-output function of the system. This class of dynamical systems provides an appropriate framework to study homeostasis and several important biological systems can be formulated in this context. Moreover, this approach, coupled to graph-theoretic ideas from combinatorial matrix theory, provides a systematic way for classifying different types of homeostasis (homeostatic mechanisms) in input-output networks, in terms of the network topology. In turn, this leads to new mathematical concepts, such as, homeostasis subnetworks, homeostasis patterns, homeostasis mode interaction. We illustrate the usefulness of this theory with several biological examples: biochemical networks, chemical reaction networks (CRN), gene regulatory networks (GRN), Intracellular metal ion regulation and so on.
Collapse
Affiliation(s)
- Fernando Antoneli
- Centro de Bioinformática Médica, Universidade Federal de São Paulo, Edifício de Pesquisas 2, São Paulo, 04039-032, SP, Brazil.
| | - Martin Golubitsky
- Department of Mathematics, The Ohio State University, 231 W 18th Ave, Columbus, 43210, OH, USA.
| | - Jiaxin Jin
- Department of Mathematics, University of Louisiana at Lafayette, 217 Maxim Doucet Hall, Lafayette, 43210, LA, USA.
| | - Ian Stewart
- Mathematics Institute, University of Warwick, Zeeman Building, Coventry CV4 7AL, UK.
| |
Collapse
|
5
|
Licker M, Ellenberger C. Impact of the Circadian Rhythm and Seasonal Changes on the Outcome of Cardiovascular Interventions. J Clin Med 2025; 14:2570. [PMID: 40283400 PMCID: PMC12028144 DOI: 10.3390/jcm14082570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The activities of living beings fluctuate according to seasonal changes and circadian rhythms. The interaction of organisms with their environment, notably weather conditions and night-day cycles, modulate homeostatic mechanisms and influence physiological responses in stressful situations. In humans, it is well established that cardiovascular events such as myocardial infarction, stroke and acute heart failure more frequently occur in winter than in summer season (non-tropical regions) and in the morning than in the evening. While the effects of cardiovascular medications vary during the day, the influence of circadian rhythms on the outcomes of invasive interventions is the subject of conflicting debates. This paper analyzes the impact of seasonal variability and circadian rhythms on physiological responses and the occurrence of complications in cardiac surgery and interventional cardiology.
Collapse
Affiliation(s)
- Marc Licker
- Department of Cardiovascular & Thoracic Anaesthesia and Critical Care, University Hospital of Martinique, F-97200 Fort de France, France;
- Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christoph Ellenberger
- Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Department of Acute Medicine, University Hospital of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
6
|
Shanmugam DAS, Balaraman AD, Kar A, Franco A, Balaji BAC, Meenakumari S, Praveenkumar PK, Gayathri R, Ganesan VK, Kumar MV, Senthilkumar K, Shanthi B. Mini review: Bidirectional Regulation of Circadian Rhythm by Suprachiasmatic Nucleus and Nuclear Receptors in Female Mammals. J Circadian Rhythms 2025; 23:4. [PMID: 40225034 PMCID: PMC11987856 DOI: 10.5334/jcr.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
The anterior region of the hypothalamus accommodates a bilateral structure called the suprachiasmatic nucleus (SCN), which controls, modulates, and perpetuates the homeostasis of circadian rhythm and sleep hormone release. These SCN have a predominance over multitudinous peripheral tissues like the uterus, liver, intestine, pancreas, endocrine system, immune system, reproductive system, and cardiovascular system. This peripheral clock acts as a pacemaker for circadian rhythm timing, which regulates crucial metabolic pathways and organizes numerous activities in the female reproductive network of mammals. The circadian CLOCK genes are expressed in various reproductive organs. The CLOCK, BMAL1, CRY, and PER genes harmonize the balance and manifestation of nuclear receptors (NRs) expression, and the other way round, NRs regulate these circadian genes. Several NRs, in particular estrogen, progesterone, androgen, and PPARs, nurture the ovary and uterus. Bidirectional coordination between SCN and NRs maintains the circadian rhythm of the hypothalamic-pituitary-gonadal (HPG) axis of the female reproductive organs.
Collapse
Affiliation(s)
- Dharani Abirama Sundari Shanmugam
- Department of Endocrinology, Dr. ALM. PG. Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai – 600113, Tamil Nadu, India
| | - Ashwini Devi Balaraman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur – 603202, Tamil Nadu, India
| | - Abhijit Kar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur – 603202, Tamil Nadu, India
| | - Abishek Franco
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur – 603202, Tamil Nadu, India
| | | | - S. Meenakumari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur – 603202, Tamil Nadu, India
| | - P. K. Praveenkumar
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Tk – 602117, Tamil Nadu, India
| | - R. Gayathri
- Department of Biotechnology, St Joseph’s College of Engineering, Old Mahabalipuram Road, Kamaraj Nagar, Semmancheri, Chennai – 600119, Tamil Nadu, India
| | - Vinoth Kumar Ganesan
- Department of Health Research (DHR-ICMR), Multi-Disciplinary Research Unit (MRU), Rangaraya Medical College, Kakinada – 533003, Andhra Pradesh, India
| | - Merugumolu Vijay Kumar
- Department of Pharmacology, Dayananda Sagar University, Bengaluru – 560078, Karnataka, India
| | - K. Senthilkumar
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - B. Shanthi
- Department of Biotechnology, JAASB Institute and Research Academia, Valasaravakkam, Chennai – 600087, Tamil Nadu, India
| |
Collapse
|
7
|
Khoshnevis S, Smolensky MH, Haghayegh S. Circadian attributes of neurological and psychiatric disorders as basis for their medication chronotherapy. Adv Drug Deliv Rev 2025:115576. [PMID: 40187645 DOI: 10.1016/j.addr.2025.115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
This review focuses on (i) 24 h patterns in the symptom intensity of common neurologic and psychiatric disorders and (ii) medications prescribed for their management that have a recommended administration time or schedule, presumably to potentiate desired and minimize undesired effects and by definition qualify them as chronotherapies. Predictable-in-time patterning of symptoms is exhibited by many neurologic - headaches, multiple sclerosis, neurogenic orthostatic hypotension, neuropathic pain, Parkinson's disease, epileptic seizure, attention deficit hyperactivity, Alzheimer's disease - and psychiatric - eating, depressive, obsessive-compulsive, post-traumatic stress, anxiety, and panic - disorders, due either to circadian rhythms of disease pathophysiology or inadequacies of medication-delivery systems. Circadian disruption and circadian misalignment of the sleep-wake and other 24 h rhythms plus late chronotype are characteristic of many of these disorders, suggesting involvement in the mechanisms or consequence of their pathology or as an adverse effect of therapy, especially when administered at an inappropriate biological time. The Prescribers' Digital Reference, a compendium of all prescription medications approved for marketing in the US, reveals 65 of them are utilized to manage neurologic and psychiatric disorders by a recommended specified time-of-day or an asymmetrical interval or strength of dose schedule, presumably to optimize beneficial and minimize adverse effects, thereby qualifying them as chronotherapies. Overall, the contents of this review are intended to inform the development of future chronotherapies that incorporate state-of-the-art drug-delivery systems to improve management of neurologic and psychiatric disorders and associated circadian malalignment and disruption.
Collapse
Affiliation(s)
- Sepideh Khoshnevis
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Michael H Smolensky
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Internal Medicine, Division of Cardiology, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shahab Haghayegh
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, MA, United States; Harvard Medical School, Boston, MA, United States; Broad Institute, Cambridge, MA, United States
| |
Collapse
|
8
|
Chen Q, Wang W, Fang W, Qin L, Wang J, Huang X, Pan S, Zheng R. Generation of Myeloid-Specific Bmal1 Knockout Mice and Identification of Bmal1-Regulated Ferroptosis in Macrophages. Genesis 2025; 63:e70014. [PMID: 40197722 DOI: 10.1002/dvg.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Circadian clocks have a fundamental role in many physiological processes. Bmal1 (basic helix-loop-helix ARNT like 1) is a central master circadian clock gene. The global Bmal1 knockout mice were shown to have a loss of circadian rhythms, acceleration of aging, and shortened life span. However, global Bmal1 knockout mice did not exactly reflect the Bmal1 function in specific cell or tissue types. To address the importance of circadian rhythms in macrophages, we generated myeloid-specific Bmal1 knockout mice. The efficacy of Bmal1 gene deletion in macrophages was identified at DNA, transcription, protein levels, and function. In contrast to global Bmal1 knockout mice, Bmal1flox/flox and Bmal1mye-/- mice did not exhibit aging phenotypes. However, the deletion of Bmal1 resulted in a loss of rhythmic expression of the circadian genes in macrophages. RNA-Seq revealed that Bmal1 regulated the expression of cell death-related genes in macrophages. Furthermore, these genes have been identified as clock-controlled genes in rhythmic cell models, and Bmal1 controlled the rhythmic expression of these genes in macrophages. Finally, Bmal1 inhibited RSL3-induced ferroptosis in macrophages through Phgdh. In summary, the model of myeloid-specific Bmal1 knockout mice was successfully constructed, providing a tool for the study of the roles of Bmal1 in macrophages and the peripheral circadian clock. Meanwhile, Bmal1 regulates ferroptosis in macrophages.
Collapse
Affiliation(s)
- Qing Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenyi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weijun Fang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sha Pan
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruijuan Zheng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Ding L, Liu J, Zhou L, Zhang Q, Liu J, Xiao X. Maternal high-fat diet alters the transcriptional rhythm in white adipose tissue of adult offspring. J Nutr Biochem 2025; 138:109843. [PMID: 39826765 DOI: 10.1016/j.jnutbio.2025.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
A maternal high-fat diet (HFD) deteriorates the long-term metabolic health of offspring. Circadian rhythms are crucial for regulating metabolism. However, the impact of maternal HFD on the circadian clock in white adipose tissue (WAT) remains unexplored. This study aimed to identify transcriptional rhythmic alterations in inguinal WAT of adult male offspring induced by maternal HFD. To this end, female mice were fed an HFD and their male offspring were raised on a standard chow diet until 16 weeks of age. Transcriptome was performed and the data was analyzed using CircaCompare. The results showed that maternal HFD before and throughout pregnancy significantly altered the circadian rhythm of inguinal WAT while slightly modifying the WAT clock in adult male offspring. Specifically, maternal HFD contributed to gaining rhythmicity of Cry2, resulted in the elevated amplitude of Nr1d2, and led to increased midline estimating statistic of rhythm (MESOR) of Clock and Nr1d2. Furthermore, maternal HFD changed the rhythmic pattern of metabolic genes, such as Pparγ, Hacd2, and Acsl1, which are significantly enriched in metabolic regulation pathways. In conclusion, a maternal HFD before and throughout pregnancy altered the circadian rhythm of inguinal WAT in adult offspring. These alterations may play a significant role in disturbing metabolic homeostasis, potentially leading to metabolic dysfunction in adult male offspring.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Natsume O, Nishimura N, Shimizu T, Fujimoto K. Night-to-Day Ratio of Excreted Urinary Sodium Concentration Using Spot Urine in Older Adults With Nocturnal Polyuria. Neurourol Urodyn 2025; 44:716-721. [PMID: 39916521 DOI: 10.1002/nau.25670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 04/25/2025]
Abstract
BACKGROUND The diurnal rhythm in water and solute diuresis is known to be disturbed in older adults with nocturia due to nocturnal polyuria. We estimated the prevalence of increased natriuresis in nocturia due to nocturnal polyuria by comparing individuals with and without nocturnal polyuria. METHODS We calculated the night-to-day ratio of excreted urinary sodium and potassium concentrations adjusted for urinary creatinine concentration and urinary osmolality using spot urine samples collected at 2 PM (daytime) and 6 AM (nighttime) and compared results among controls with nocturia and paitents with nocturia with and without nocturnal polyuria. RESULTS Among 83 patients aged 50 to 86 years, the mean night-to-day ratio of excreted urinary sodium and potassium concentrations in the nocturia group with nocturnal polyuria (n = 40) was 2.5, which was significantly higher (p = 0.034) than those in the control group (n = 23; 0.7) and the nocturia group without nocturnal polyuria (n = 20; 0.9). After adjustment for age, no difference in potassium and urinary osmolality existed among groups. Thirteen patients (33%) in the nocturia group with nocturnal polyuria showed increased natriuresis when a 2.0 night-to-day ratio of excreted urinary sodium was applied as a cut-off for increased natriuresis, whereas only 3 (7%) patients in the combined groups without nocturnal polyuria had increased natriuresis (p = 0.005). CONCLUSIONS One-third of patients with nocturia due to nocturnal polyuria had increased natriuresis. Assessment of a night-to-day ratio of excreted urinary sodium using spot urine samples could facilitate a better understanding of the underlying pathophysiology and optimal management of nocturnal polyuria.
Collapse
Affiliation(s)
- Osamu Natsume
- Department of Urology, Uda City Hospital, Uda, Japan
| | | | - Takuto Shimizu
- Department of Urology, Nara Medical University, Kashihara, Japan
| | | |
Collapse
|
11
|
Akyel YK, Seyhan NO, Gül Ş, Çelik M, Taşkın AC, Selby CP, Sancar A, Kavakli IH, Okyar A. The impact of circadian rhythm disruption on oxaliplatin tolerability and pharmacokinetics in Cry1 -/-Cry2 -/- mice under constant darkness. Arch Toxicol 2025; 99:1417-1429. [PMID: 39903276 PMCID: PMC11968489 DOI: 10.1007/s00204-025-03968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Circadian rhythms, the 24-h oscillations of biological activities guided by the molecular clock, play a pivotal role in regulating various physiological processes in organisms. The intricate relationship between the loss of circadian rhythm and its influence on the tolerability and pharmacokinetic properties of anticancer drugs is poorly understood. In our study, we investigated the effects of oxaliplatin, a commonly used anticancer drug, on Cry1-/- and Cry2-/- mice (Cry DKO mice) under darkness conditions, where they exhibit free-running phenotype. We administered oxaliplatin at a dosage of 12 mg/kg/day at two distinct circadian times, CT8 and CT16, under constant darkness conditions to Cry DKO mice and their wild type littermates. Our results revealed a striking disparity in oxaliplatin tolerance between Cry DKO mice and their wild-type counterparts. Oxaliplatin exhibited severe toxicity in Cry DKO mice at both CT8 and CT16, in contrast to the wild type mice. Pharmacokinetic analyses suggested that such toxicity was a result of high concentrations of oxaliplatin in the serum and liver of Cry DKO mice after repeated dose injections. To understand the molecular basis of such intolerance, we performed RNA-seq studies using mouse livers. Our findings from the RNA-seq analysis highlighted the substantial impact of circadian rhythm disruption on gene expression, particularly affecting genes involved in detoxification and xenobiotic metabolism, such as the Gstm gene family. This dysregulation in detoxification pathways in Cry DKO mice likely contributes to the increased toxicity of oxaliplatin. In conclusion, our study highlights the crucial role of an intact molecular clock in dictating the tolerability of oxaliplatin. These findings emphasize the necessity of considering circadian rhythms in the administration of anticancer drugs, providing valuable insights into optimizing treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Yasemin Kubra Akyel
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116, Beyazit-Istanbul, Türkiye
| | - Narin Ozturk Seyhan
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116, Beyazit-Istanbul, Türkiye
| | - Şeref Gül
- Biotechnology Division, Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Türkiye
| | - Melis Çelik
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Türkiye
| | - Ali Cihan Taşkın
- Department of Laboratory Animal Science, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
- Translational Medicine Research Center, Experimental Animals Laboratory, Koc University, Istanbul, Türkiye
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Türkiye.
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Türkiye.
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, TR-34116, Beyazit-Istanbul, Türkiye.
| |
Collapse
|
12
|
Tice AL, Lee C, Hickner RC, Steiner JL. Scheduled Exercise Partially Offsets Alcohol-Induced Clock Dysfunction in Skeletal Muscle and Liver of Female Mice. J Biol Rhythms 2025; 40:208-228. [PMID: 39924857 DOI: 10.1177/07487304241312461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Binge and chronic alcohol intake impair skeletal muscle and liver circadian clocks. Scheduled exercise is suggested to protect against circadian misalignment, like that induced by alcohol. It was tested whether scheduled, voluntary daily wheel running would protect the gastrocnemius and liver clocks against alcohol-induced perturbations. Female C57BL6/Hsd mice were assigned to 1 of 4 groups: control-sedentary (CON SED, n = 26), control-exercise (CON EX, n = 28), alcohol-sedentary (ETOH SED, n = 27), or alcohol-exercise (ETOH EX, n = 25). Exercise mice were granted access to running wheels for 2 h/day (ZT13-15) while ETOH mice consumed alcohol-containing liquid diet for 6 weeks. Tissues were collected every 4 h starting at ZT12 from 4-5 mice/group and were used for RNA/cDNA/RT-PCR (gastrocnemius and liver) and Western blotting (gastrocnemius). A second cohort of mice were weaned off alcohol, given regular chow, and continued daily exercise (2 h/day) for ~2 weeks. Then, all mice (EX and SED) were given 24-h wheel access for 1 week to assess cyclic running behaviors during abstinence. While alcohol differentially disrupted muscle and liver clocks in sedentary mice, differences between exercised groups were minimized. BMAL1 protein expression increased in the nuclear-enriched fraction in the gastrocnemius of both exercise groups compared to both sedentary groups. In the second cohort, wheel running was increased in ETOH EX compared to ETOH SED in the dark cycle. In the light cycle, ETOH mice ran less than CON mice, and EX mice ran less than SED mice despite all mice receiving chow diet and no EtOH. Overall, scheduled wheel running partially offset the alcohol-induced perturbations in the muscle and liver clock while ETOH and EX both influenced the timing of subsequent activity after the dietary intervention ended.
Collapse
Affiliation(s)
- Abigail L Tice
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
| | - Choogon Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida
| | - Robert C Hickner
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Jennifer L Steiner
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
13
|
Otani T, Miyake T, Ota T, Yarimizu D, Nakagawa Y, Murai I, Okamura H, Hasegawa E, Doi M. Identification of angiotensin II-responsive circadian clock gene expression in adrenal zona glomerulosa cells and human adrenocortical H295R cells. Front Endocrinol (Lausanne) 2025; 16:1525844. [PMID: 40206597 PMCID: PMC11978646 DOI: 10.3389/fendo.2025.1525844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
The mammalian circadian timing system is organized in a hierarchy, with the master clock residing in the suprachiasmatic nucleus (SCN) of the hypothalamus and subsidiary peripheral clocks in peripheral tissues. Because of the diversity of peripheral tissues and cell-types in the body, the existence of autonomous clock and identification of its potential entrainment signals need to be empirically defined on a cell type-by-cell type basis. In this study, we characterized the basic circadian clock properties of the adrenal zona glomerulosa cells, or ZG cells. Using isolated adrenal explants from Per2Luc mice, dissociated ZG cells from Per2-dluc rats, and a related human adrenocortical cell line H295R, we showed that ZG cells possess genetically-encoded, self-sustained and cell-autonomous circadian clock. As to the potential entrainment signals, angiotensin II (Ang II) caused phase-dependent phase-shifts of adrenal ZG cells in cultured slices. Ang II treatment also drove initiation (or reset) of circadian clock gene expression in H295R cells with associated immediate up-regulation of PER1 and E4BP4 mRNA expression. We found that the type I Ang II receptor blocker CV11974, one of the most widely used clinical drugs for hypertensive diseases, caused attenuation of the phase resetting of H295R cells. Our in vitro data provide a basis to understand and argue for the adrenal gland ZG cells as a component of autonomous and entrainable peripheral clocks.
Collapse
Affiliation(s)
- Tomohiro Otani
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takahito Miyake
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takumi Ota
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Yarimizu
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yuuki Nakagawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Iori Murai
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Division of Physiology and Neurobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Emi Hasegawa
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Ning G, Li BN, Wu H, Shi RB, Peng AJ, Wang HY, Zhou X. Regulation of testosterone synthesis by circadian clock genes and its research progress in male diseases. Asian J Androl 2025:00129336-990000000-00298. [PMID: 40101130 DOI: 10.4103/aja20258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025] Open
Abstract
ABSTRACT The circadian clock is an important internal time regulatory system for a range of physiological and behavioral rhythms within living organisms. Testosterone, as one of the most critical sex hormones, is essential for the development of the reproductive system, maintenance of reproductive function, and the overall health of males. The secretion of testosterone in mammals is characterized by distinct circadian rhythms and is closely associated with the regulation of circadian clock genes. Here we review the central and peripheral regulatory mechanisms underlying the influence of circadian clock genes upon testosterone synthesis. We also examined the specific effects of these genes on the occurrence, development, and treatment of common male diseases, including late-onset hypogonadism, erectile dysfunction, male infertility, and prostate cancer.
Collapse
Affiliation(s)
- Gang Ning
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Bo-Nan Li
- Affiliated Changsha Hospital of Hunan Normal University, Changsha 410023, China
| | - Hui Wu
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruo-Bing Shi
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - A-Jian Peng
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao-Yu Wang
- The First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| |
Collapse
|
15
|
Lu Z, Zhen Q, Liang Q, Bian C, Sun W, Lv H, Tian C, Zhao X, Guo X. Roles of Gut Microbiota Metabolites and Circadian Genes in the Improvement of Glucose and Lipid Metabolism in KKAy Mice by Theabrownin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5260-5273. [PMID: 40040491 DOI: 10.1021/acs.jafc.4c10332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Theabrownin (TB), a prominent pigment in fermented dark tea, exhibits beneficial effects on adiposity reduction. Our study revealed that TB derived from Fu brick tea significantly lowered fasting blood glucose levels and insulin resistance in obese/diabetic KKAy mice. Furthermore, TB demonstrated potent anti-inflammatory effects in the liver, adipose tissue, and intestines, as well as enhancing intestinal integrity. Additionally, TB was found to inhibit hepatic gluconeogenesis and promote fatty acid oxidation. Notably, TB altered gut metabolites, particularly l-palmitoylcarnitine, which showed an elevation in serum, liver, and adipose tissue following TB intervention. l-Palmitoylcarnitine reduced gluconeogenesis in primary hepatocytes and decreased lipid deposition in both primary hepatocytes and 3T3-L1 adipocytes in vitro. However, these effects were abolished when the circadian gene Period 3 (Per3) was knocked down. Our findings suggest that l-palmitoylcarnitine may play a crucial role in improving TB-mediated glucose homeostasis and lipid metabolism by regulating Per3.
Collapse
Affiliation(s)
- Zhongting Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Qingcai Zhen
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Qijian Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Chunyong Bian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Wenyue Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Huifang Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Cuixia Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Xiulan Zhao
- Department of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012 China
| |
Collapse
|
16
|
Halder SK, Melkani GC. The Interplay of Genetic Predisposition, Circadian Misalignment, and Metabolic Regulation in Obesity. Curr Obes Rep 2025; 14:21. [PMID: 40024983 PMCID: PMC11872776 DOI: 10.1007/s13679-025-00613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE OF REVIEW This review explores the complex interplay between genetic predispositions to obesity, circadian rhythms, metabolic regulation, and sleep. It highlights how genetic factors underlying obesity exacerbate metabolic dysfunction through circadian misalignment and examines promising interventions to mitigate these effects. RECENT FINDINGS Genome-wide association Studies (GWAS) have identified numerous Single Nucleotide Polymorphisms (SNPs) associated with obesity traits, attributing 40-75% heritability to body mass index (BMI). These findings illuminate critical links between genetic obesity, circadian clocks, and metabolic processes. SNPs in clock-related genes influence metabolic pathways, with disruptions in circadian rhythms-driven by poor sleep hygiene or erratic eating patterns-amplifying metabolic dysfunction. Circadian clocks, synchronized with the 24-h light-dark cycle, regulate key metabolic activities, including glucose metabolism, lipid storage, and energy utilization. Genetic mutations or external disruptions, such as irregular sleep or eating habits, can destabilize circadian rhythms, promoting weight gain and metabolic disorders. Circadian misalignment in individuals with genetic predispositions to obesity disrupts the release of key metabolic hormones, such as leptin and insulin, impairing hunger regulation and fat storage. Interventions like time-restricted feeding (TRF) and structured physical activity offer promising strategies to restore circadian harmony, improve metabolic health, and mitigate obesity-related risks.
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Girish C Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- UAB Nathan Shock Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
17
|
Tofani GSS, Clarke G, Cryan JF. I "Gut" Rhythm: the microbiota as a modulator of the stress response and circadian rhythms. FEBS J 2025; 292:1454-1479. [PMID: 39841560 PMCID: PMC11927059 DOI: 10.1111/febs.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Modern habits are becoming more and more disruptive to health. As our days are often filled with circadian disruption and stress exposures, we need to understand how our responses to these external stimuli are shaped and how their mediators can be targeted to promote health. A growing body of research demonstrates the role of the gut microbiota in influencing brain function and behavior. The stress response and circadian rhythms, which are essential to maintaining appropriate responses to the environment, are known to be impacted by the gut microbiota. Gut microbes have been shown to alter the host's response to stress and modulate circadian rhythmicity. Although studies demonstrated strong links between the gut microbiota, circadian rhythms and the stress response, such studies were conducted in an independent manner not conducive to understanding the interface between these factors. Due to the interconnected nature of the stress response and circadian rhythms, in this review we explore how the gut microbiota may play a role in regulating the integration of stress and circadian signals in mammals and the consequences for brain health and disease.
Collapse
Affiliation(s)
- Gabriel S S Tofani
- APC Microbiome, University College Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome, University College Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome, University College Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Ireland
| |
Collapse
|
18
|
Huang H, Hou J, Liao Y, Yu J, Xi B. Exposure to nanoplastics exacerbates light pollution hazards to mammalian. ENVIRONMENT INTERNATIONAL 2025; 197:109338. [PMID: 39983414 DOI: 10.1016/j.envint.2025.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Environmental light pollution adversely affects brain function, disturbing circadian rhythms and negatively impacting human health. Nanoplastics (NPs) pollution is pervasive in the human environment, and their minuscule size facilitates entry into the body, particularly invading brain and compromising its functionality. However, whether NPs infiltrate rhythm-regulated brain regions and disrupt circadian rhythms in organisms remains unclear. Our study demonstrates that exposure to NPs in mice perturbs normal circadian rhythms. Specifically, NPs invade the suprachiasmatic nucleus (SCN), affecting the circadian clock genes network and altering the regular oscillations of core clock genes. Exposure to NPs renders the intrinsic rhythms more susceptible to disruption by light pollution, resulting in more pronounced disorder to metabolism, immune regulation, and brain function. This work is the first to investigate the combined effects of ambient light pollution and NPs pollution on mammalian health, and our findings suggest that NPs amplify the health impacts of light pollution. These findings also highlight that efforts to mitigate human health risks from environmental pollutants should begin to consider the synergistic effects of various classes of pollutants.
Collapse
Affiliation(s)
- Haipeng Huang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 210061, China
| | - Jiaqi Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yilie Liao
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Republic of Singapore
| | - Jing Yu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 210061, China
| | - Beidou Xi
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
19
|
Nakamaru E, Seki K, Shirahata Y, Adachi M, Sakabe N, Matsuo T, Tsukamoto D, Takamatsu N. Periodic expression of Per1 gene is restored in chipmunk liver during interbout arousal in mammalian hibernation. Sci Rep 2025; 15:4403. [PMID: 39948130 PMCID: PMC11825846 DOI: 10.1038/s41598-025-87299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Circadian rhythms play an important role in many physiological processes. We have previously reported that no periodic fluctuation in the Bmal1 mRNA is observed in the liver of the chipmunk, a mammalian hibernator, in the hibernation season, suggesting that peripheral circadian clocks are not functional during hibernation. In contrast, the Per2 mRNA levels are transiently increased by elevated body temperature during interbout arousal and showed periodic fluctuations in the hibernation season, suggesting that periodic expression of the Per2 mRNA may be restored during interbout arousal. In the present study, we analyzed Per1 gene expression in the chipmunk liver. The Per1 mRNA showed circadian fluctuations with a peak during the late sleep period in the non-hibernation season and periodic fluctuations with a peak during the early interbout arousal in the hibernation season. In both the non-hibernation and hibernation seasons, Per1 gene expression was phase-advanced relative to Per2 gene expression, and the phase relationship between the two genes was maintained, suggesting that for some genes, periodic gene expression, similar to circadian expression in the non-hibernation season, may be restored during interbout arousal. Interestingly, Per1 gene transcription was differentially activated by BMAL1 in the non-hibernation season and possibly by CREB1 in the hibernation season.
Collapse
Affiliation(s)
- Erina Nakamaru
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Kota Seki
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Yuiho Shirahata
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Megumi Adachi
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Nene Sakabe
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Takuya Matsuo
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Daisuke Tsukamoto
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan.
| | - Nobuhiko Takamatsu
- Laboratory of Molecular Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| |
Collapse
|
20
|
Fang Y, Xu Q, Xu J, Wang H. An association between average daily sleep duration and gallstones in US adults. Sci Rep 2025; 15:4573. [PMID: 39915625 PMCID: PMC11802856 DOI: 10.1038/s41598-025-89157-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Despite extensive research on the impact of health factors and sleep, the specific association between average daily sleep duration and the prevalence of gallstones in adults has not been thoroughly investigated. This study analyzes data from 7,441 individuals from the NHANES 2017-2020 dataset, using exclusion criteria to refine the participant pool. Employing multivariate logistic regression and subgroup analyses while controlling for potential confounders, we assessed the association between average daily sleep duration and the prevalence of gallstones. Our results revealed a statistically significant inverse association (OR = 0.92; 95% CI: 0.86, 0.99; p = 0.0236). This association was consistent across various demographic and health-related subgroups. Interestingly, the inflection points were observed among middle-aged adults (40-60 years) and individuals with diabetes. These findings could inform public health strategies on sleep management, potentially aiding in the prevention of gallstones within these populations.
Collapse
Affiliation(s)
- Yong Fang
- Affiliated XiaoShan Hospital of WenZhou Medical University (XiaoShan District First People's Hospital), No. 199, ShiXin South Road, XiaoShan District, HangZhou, 311200, ZheJiang Province, China
| | - Qiuyuan Xu
- Affiliated XiaoShan Hospital of WenZhou Medical University (XiaoShan District First People's Hospital), No. 199, ShiXin South Road, XiaoShan District, HangZhou, 311200, ZheJiang Province, China
| | - Jia Xu
- Affiliated XiaoShan Hospital of WenZhou Medical University (XiaoShan District First People's Hospital), No. 199, ShiXin South Road, XiaoShan District, HangZhou, 311200, ZheJiang Province, China
| | - HaiHua Wang
- Affiliated XiaoShan Hospital of WenZhou Medical University (XiaoShan District First People's Hospital), No. 199, ShiXin South Road, XiaoShan District, HangZhou, 311200, ZheJiang Province, China.
| |
Collapse
|
21
|
Han G, Li D, Zhang H, Li C, Yang L, Ma T, Wang X, Ma B, Wu X, Tao Y, Wang Z, Wang A, Chao HW, Jin Y, Chen H. A Transcriptomic Dataset of Liver Tissues from Global and Liver-Specific Bmal1 Knockout Mice. Sci Data 2025; 12:199. [PMID: 39900971 PMCID: PMC11790919 DOI: 10.1038/s41597-025-04545-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
The circadian clock regulates various physiological processes in mammals. The core circadian clock gene Bmal1 is crucial for maintaining the oscillations of the circadian clock system by controlling the rhythmic expression of numerous circadian clock-controlled genes. To explore the transcriptional changes associated with Bmal1 deletion in liver tissues, we collected liver tissues from global and liver-specific Bmal1 knockout mice, along with their respective control groups, at two circadian time points (CT2 and CT14) and used them for transcriptome sequencing analysis. Genotyping, locomotor activity analysis, and comprehensive quality control analyses, including base quality scores, GC content, and mapping rates, confirmed the high quality of sequencing data. Differential expression analysis and RT-qPCR validation confirmed the reliability and validity of the dataset. These data offer a valuable resource for researchers investigating the role of BMAL1 in liver physiology, pathology, and the broader field of circadian biology.
Collapse
Affiliation(s)
- Guohao Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuerong Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bairong Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodie Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Tao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ziang Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Aihua Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
22
|
Pourabdi R, Shahidi F, Tabandeh MR, Salehpour M. Aerobic exercise timing affects mitochondrial dynamics and insulin resistance by regulating the circadian clock protein expression and NAD +-SIRT1-PPARα-MFN2 pathway in the skeletal muscle of high-fat-diet-induced diabetes mice. J Physiol Biochem 2025; 81:199-214. [PMID: 39715985 DOI: 10.1007/s13105-024-01066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/04/2024] [Indexed: 12/25/2024]
Abstract
The circadian clock regulates mitochondrial function and affects time-dependent metabolic responses to exercise. The present study aimed to determine the effects of aerobic exercise timing at the light-dark phase on the proteins expression of the circadian clock, mitochondrial dynamics, and, NAD+-SIRT1-PPARα axis in skeletal muscle of high-fat diet-induced diabetic mice. In this experimental study, thirty male mice were randomly assigned into two groups based on time: the early light phase, ZT3, and the early dark phase, ZT15, and three groups at each time: (1) Healthy Control (HC), (2) Diabetic Control (DC), and (3) Diabetic + Exercise (DE). Diabetes was induced by 5 weeks of feeding with a high-fat diet and Streptozotocin injection. Following confirmation of diabetes, animals underwent treadmill running at ZT3 and ZT15 for eight-weeks (5 days, 60-80 min, 50-60%Vmax). The expression of proteins of muscle aryl-hydrocarbon receptor nuclear translocator-like-1 (BMAL1), period-2 (PER2), mitofusin-2 (MFN2), dynamin-related proteins-1 (DRP-1), glucose transporter (GLUT4), sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-alpha (PPARα), and nicotinamide adenine dinucleotide (NAD+) level were analyzed in gastrocnemius muscle at both exercise times. The results showed that aerobic exercise at both times reversed the dysregulation of the diabetes-induced skeletal muscle clock by increasing the BMAL1 and PER2 protein levels. Aerobic exercise, especially at ZT15 compared to ZT3, increased GLUT4-mediated glucose uptake, and improved the diabetes-induced imbalance of mitochondrial fusion-fission by a significant increase in MFN2 protein level. Moreover, time-dependent aerobic exercise only at ZT15 increased the SIRT1 and PPARα protein levels and reduced diabetes-induced hyperglycemia. However, the aerobic exercise timing could not restore the attenuation of diabetes-induced NAD+ levels and DRP-1 protein. Our findings demonstrated that the synchronization of aerobic exercise with the circadian rhythm of NAD+-SIRT1 may boost MFN2-mediated mitochondrial fusion by activating the BMAL1-PER2-SIRT1-PPARα axis in the skeletal muscle of diabetic mice and be more effective in facilitating glycemic control and insulin resistance.
Collapse
Affiliation(s)
- Raha Pourabdi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | - Fereshteh Shahidi
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojtaba Salehpour
- Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
23
|
Duan X, Liu H, Hu X, Yu Q, Kuang G, Liu L, Zhang S, Wang X, Li J, Yu D, Huang J, Wang T, Lin Z, Xiong N. Insomnia in Parkinson's Disease: Causes, Consequences, and Therapeutic Approaches. Mol Neurobiol 2025; 62:2292-2313. [PMID: 39103716 PMCID: PMC11772535 DOI: 10.1007/s12035-024-04400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Sleep disorders represent prevalent non-motor symptoms in Parkinson's disease (PD), affecting over 90% of the PD population. Insomnia, characterized by difficulties in initiating and maintaining sleep, emerges as the most frequently reported sleep disorder in PD, with prevalence rates reported from 27 to 80% across studies. Insomnia not only significantly impacts the quality of life of PD patients but is also associated with cognitive impairment, motor disabilities, and emotional deterioration. This comprehensive review aims to delve into the mechanisms underlying insomnia in PD, including neurodegenerative changes, basal ganglia beta oscillations, and circadian rhythms, to gain insights into the neural pathways involved. Additionally, the review explores the risk factors and comorbidities associated with insomnia in PD, providing valuable insights into its management. Special attention is given to the challenges faced by healthcare providers in delivering care to PD patients and the impact of caregiving roles on patients' quality of life. Overall, this review provides a comprehensive understanding of insomnia in PD and highlights the importance of addressing this common sleep disorder in PD patients.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Duke Kunshan University, No. 8 Duke Avenue, Kunshan, 215316, Jiangsu, China
| | - Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyu Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinwei Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Guiying Kuang
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Long Liu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Shurui Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Danfang Yu
- Department of Neurology, Wuhan Red Cross Hospital, 392 Hongkong Road, Wuhan, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
24
|
Song Z, Yan M, Zhang S, Hu B, Qing X, Shao Z, Chen S, Lv X, Liu H. Implications of circadian disruption on intervertebral disc degeneration: The mediating role of sympathetic nervous system. Ageing Res Rev 2025; 104:102633. [PMID: 39701186 DOI: 10.1016/j.arr.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
The circadian clock orchestrates a broad spectrum of physiological processes, crucially modulating human biology across an approximate 24-hour cycle. The circadian disturbances precipitated by modern lifestyle contribute to the occurrence of low back pain (LBP), mainly ascribed to intervertebral disc degeneration (IVDD). The intervertebral disc (IVD) exhibits rhythmic physiological behaviors, with fluctuations in osmotic pressure and hydration levels that synchronized with the diurnal cycle of activity and rest. Over recent decades, advanced molecular biology techniques have shed light on the association between circadian molecules and IVD homeostasis. The complex interplay between circadian rhythm disruption and IVDD is becoming increasingly evident, with the sympathetic nervous system (SNS) emerging as a potential mediator. Synchronized with circadian rhythm through suprachiasmatic nucleus, the SNS regulates diverse physiological functions and metabolic processes, profoundly influences the structural and functional integrity of the IVD. This review synthesizes the current understanding of circadian regulation and sympathetic innervation of the IVD, highlighting advancements in the comprehension of their interactions. We elucidate the impact of circadian system on the physiological functions of IVD through the SNS, advocating for the adoption of chronotherapy as a brand-new and effective strategy to ameliorate IVDD and alleviate LBP.
Collapse
Affiliation(s)
- Zongmian Song
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Miaoheng Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuo Zhang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Binwu Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
25
|
Aleixo B, Yoon S, Mendes JFF, Goltsev AV. Modeling of Jet Lag and Searching for an Optimal Light Treatment. J Biol Rhythms 2025; 40:36-61. [PMID: 39851077 DOI: 10.1177/07487304241306851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The role of the hierarchical organization of the suprachiasmatic nucleus (SCN) in its functioning, jet lag, and the light treatment of jet lag remains poorly understood. Using the core-shell model, we mimic collective behavior of the core and shell populations of the SCN oscillators in transient states after rapid traveling east and west. The existence of a special region of slow dynamical states of the SCN oscillators can explain phenomena such as the east-west asymmetry of jet lag, instances when entrainment to an advance is via delay shifts, and the dynamics of jet lag recovery time. If jet lag brings the SCN state into this region, it will take a long time to leave it and restore synchronization among oscillators. We show that the population of oscillators in the core responds quickly to a rapid phase shift of the light-dark cycle, in contrast to the shell, which responds slowly. A slow recovery of the synchronization among the shell oscillators in transient states may strongly affect reentrainment in peripheral tissues and behavioral rhythms. We discuss the relationship between molecular, electrical, and behavioral rhythms. We also describe how light pulses affect the SCN and analyze the efficiency of the light treatment in facilitating the adaptation of the SCN to a new time zone. Light pulses of a moderate duration and intensity reduce the recovery time after traveling east, but not west. However, long duration and high intensity of light pulses are more detrimental than beneficial for speeding up reentrainment. The results of the core-shell model are compared with experimental data and other biologically motivated models of the SCN.
Collapse
Affiliation(s)
- Beatriz Aleixo
- Department of Physics and i3n, University of Aveiro, Aveiro, Portugal
| | - Sooyeon Yoon
- Department of Physics and i3n, University of Aveiro, Aveiro, Portugal
| | - José F F Mendes
- Department of Physics and i3n, University of Aveiro, Aveiro, Portugal
| | - Alexander V Goltsev
- Department of Physics and i3n, University of Aveiro, Aveiro, Portugal
- Ioffe Physical-Technical Institute, St. Petersburg, Russia
| |
Collapse
|
26
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
27
|
Kim MH, Kim TJ, Shin JW. Changes in delayed sleep patterns and related clinical factors in a social restriction environment. Chronobiol Int 2025; 42:297-305. [PMID: 39936460 DOI: 10.1080/07420528.2025.2460655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
We aimed to investigate which factors, including socioenvironmental factors and emotional regulation, were associated with pronounced delayed sleep patterns during the COVID-19 social restriction. We evaluated 744 adults aged 20-65 y using a web-based survey with a self-reported questionnaire in May 2022. Based on the survey, we estimated the mid-sleep time on free days corrected for oversleeping on free days (MSFsc) and social jet lag (SJL). We determined delayed sleep patterns using ΔMSFsc, which was defined as the difference between MSFsc during the pre- and mid-pandemic. The high-risk group for delayed sleep patterns (H-DSP) group was younger with evening person and had more severe insomnia, depression with rumination, and smartphone addiction (p < 0.05). Logistic regression revealed that stronger tendencies to express emotions and rumination were independent risk factors associated with a pronounced pattern of delayed sleep during the pandemic. In the H-DPS group, SJL increased even more during the pandemic. In socially restricted environments, emotion regulation significantly affects the severity of delayed sleep patterns, and people with H-DSP also had more disrupted circadian rhythms. Therefore, active education of sleep hygiene and emotional support with psychological interventions are needed in socially restricted environments.
Collapse
Affiliation(s)
- Min Hye Kim
- Department of Neurology, Ajou University Hospital, Suwon, Republic of Korea
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung-Won Shin
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
28
|
Tir S, Foster RG, Peirson SN. Evaluation of the Digital Ventilated Cage® system for circadian phenotyping. Sci Rep 2025; 15:3674. [PMID: 39880968 PMCID: PMC11779816 DOI: 10.1038/s41598-025-87530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC®, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber. Home cage activity in C57BL/6J mice was recorded under a range of lighting conditions, along with circadian clock-deficient cryptochrome-deficient mice (Cry1-/-, Cry2-/- double knockout). C57BL/6J mice exhibited a 24 h period under light/dark conditions, with a free-running period of 23.5 h under constant dark, and period lengthening under constant light. Animals displayed expected phase shifting responses to jet-lag and nocturnal light pulses. Sex differences in circadian parameters and phase shifting responses were also observed. Cryptochrome-deficient mice showed subtle changes in activity under light/dark conditions and were arrhythmic under constant dark, as expected. Our results show the suitability of the DVC system for circadian behavioural screens, accurately detecting circadian period, circadian disruption, phase shifts and mice with clock defects. We provide an evaluation of the strengths and limitations of this method, highlighting how the use of the DVC for studying circadian rhythms depends upon the research requirements of the end user.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
29
|
Huang Q, Hu B, Zhang P, Yuan Y, Yue S, Chen X, Liang J, Tang Z, Zhang B. Neuroscience of cancer: unraveling the complex interplay between the nervous system, the tumor and the tumor immune microenvironment. Mol Cancer 2025; 24:24. [PMID: 39825376 PMCID: PMC11740516 DOI: 10.1186/s12943-024-02219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
The study of the multifaceted interactions between neuroscience and cancer is an emerging field with significant implications for understanding tumor biology and the innovation in therapeutic approaches. Increasing evidence suggests that neurological functions are connected with tumorigenesis. In particular, the peripheral and central nervous systems, synapse, neurotransmitters, and neurotrophins affect tumor progression and metastasis through various regulatory approaches and the tumor immune microenvironment. In this review, we summarized the neurological functions that affect tumorigenesis and metastasis, which are controlled by the central and peripheral nervous systems. We also explored the roles of neurotransmitters and neurotrophins in cancer progression. Moreover, we examined the interplay between the nervous system and the tumor immune microenvironment. We have also identified drugs that target the nervous system for cancer treatment. In this review we present the work supporting that therapeutic agent targeting the nervous system could have significant potential to improve cancer therapy.
Collapse
Affiliation(s)
- Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bai Hu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| |
Collapse
|
30
|
Pang B, Bai Y, Chen Y, Zhang S, Xu Z, Li C, Nie Z, Liu H, Guo Z, Ling J, Mei L. Circadian rhythm disruptions exacerbate inner ear damage in a murine endolymphatic hydrops model. FASEB J 2025; 39:e70310. [PMID: 39781606 DOI: 10.1096/fj.202402445r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Meniere's disease (MD) is an inner ear disease characterized by endolymphatic hydrops (EH). Maintaining a regular daily routine is crucial for MD patients. However, the relationship between circadian rhythms and MD remains unclear. Therefore, we investigated the effect of circadian rhythm on endolymphatic hydrops and its underlying mechanisms. Mice with endolymphatic hydrops were subjected to chronic jet lag (CJL) conditions to simulate the MD patients under circadian rhythm disruptions. We assessed whether this disruption would exacerbate inner ear damage with endolymphatic hydrops. RNA-seq of the inner ear and bioinformatic analysis were performed. Then, the expression of PER2, AQP2, AQP4, AQP5, and BDNF were assessed, and the morphological changes were evaluated in the inner ear. Our findings showed circadian rhythm disruption affected the cochlear internal clock genes in the inner ear, particularly in mice with EH. EH mice under CJL conditions exhibited exacerbated hearing impairment and an increased severity of EH. GO enrichment analysis revealed that the regulation of fluid homeostasis and neurotransmitter release at synapses were significantly enriched. Disruption of circadian rhythms disturbed the expression pattern of PER2, reduced BDNF levels, and affected the expression of aquaporins in the cochlea. Moreover, the disruption of circadian rhythm compromised inner hair cell synapses and auditory nerve fibers. This study indicated that disruption of circadian rhythms may exacerbate inner ear damage in endolymphatic hydrops mice by affecting the aquaporins and compromising synapses and auditory nerves in the inner ear. BDNF and PER2 may play a central role in these pathophysiological processes.
Collapse
Affiliation(s)
- Bo Pang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijiang Bai
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongjia Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhang Xu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenglong Li
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zequn Nie
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heng Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zihang Guo
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Ling
- Medical Functional Experiment Center, Xiangya School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lingyun Mei
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, Hunan, China
- National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Hong S, Lee DB, Yoon DW, Yoo SL, Kim J. The Effect of Sleep Disruption on Cardiometabolic Health. Life (Basel) 2025; 15:60. [PMID: 39860000 PMCID: PMC11766988 DOI: 10.3390/life15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Sleep disruption has emerged as a significant public health concern with profound implications for metabolic health. This review synthesizes current evidence demonstrating the intricate relationships between sleep disturbances and cardiometabolic dysfunction. Epidemiological studies have consistently demonstrated that insufficient sleep duration (<7 h) and poor sleep quality are associated with increased risks of obesity, type 2 diabetes, and cardiovascular disease. The underlying mechanisms are multifaceted, involving the disruption of circadian clock genes, alterations in glucose and lipid metabolism, the activation of inflammatory pathways, and the modulation of the gut microbiome. Sleep loss affects key metabolic regulators, including AMPK signaling and disrupts the secretion of metabolic hormones such as leptin and ghrelin. The latest evidence points to the role of sleep-induced changes in the composition and function of gut microbiota, which may contribute to metabolic dysfunction through modifications in the intestinal barrier and inflammatory responses. The NLRP3 inflammasome and NF-κB signaling pathways have been identified as crucial mediators linking sleep disruption to metabolic inflammation. An understanding of these mechanisms has significant implications for public health and clinical practice, suggesting that improving sleep quality could be an effective strategy for preventing and treating cardiometabolic disorders in modern society.
Collapse
Affiliation(s)
- SeokHyun Hong
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Da-Been Lee
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
| | - Dae-Wui Yoon
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Seung-Lim Yoo
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| | - Jinkwan Kim
- Sleep Medicine Institute, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea; (S.H.); (D.-B.L.); (S.-L.Y.)
- Department of Biomedical Laboratory Science, College of Health Science, Jungwon University, Goesan-gun 28204, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
32
|
Huo Y, Gao Y, Li B, Zhang P, Liu H, Wang G, Pang C, Wang Y, Bai L. Analysis of how melatonin-upregulated clock genes PER2 and CRY2 alleviate rheumatoid arthritis-associated interstitial lung disease. Eur J Pharmacol 2025; 986:177136. [PMID: 39551335 DOI: 10.1016/j.ejphar.2024.177136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Melatonin (Mel) serves as the central regulator for maintaining circadian rhythms and plays a crucial role not only in controlling the rhythmic clock, but also in several functional domains such as immunomodulation and anti-inflammation. In this study, we explored the clinical relevance of Mel and rheumatoid arthritis comorbid with interstitial lung disease (RA-ILD), and its potential therapeutic effects on arthropathy and pulmonary fibrosis (PF) in mice with collagen-induced arthritis (CIA). The results demonstrated that low serum levels of Mel were correlated with disease activity and severity of PF in RA-ILD patients. In addition, Mel was potentially efficacious in alleviating arthritis, bone destruction, and PF in a mouse model of CIA. Meanwhile, we observed that in lung tissues, the circadian-clock genes (CCGs) period circadian regulator 2 (PER2) and cryptochrome circadian regulator 2 (CRY2) were predominantly expressed in epithelial cells (ECs), and the regulation of their expression in ECs was closely correlated with Mel-mediated suppression of inflammatory responses and a significant reduction in macrophagic inflammatory activity. These results implied that Mel and its associated CCGs might play important regulatory roles in RA-ILD and its associated pathological processes.
Collapse
Affiliation(s)
- Yinping Huo
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Yajie Gao
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China
| | - Bingle Li
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Peiyao Zhang
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Huiyang Liu
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China
| | - Guan Wang
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Chunyan Pang
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China
| | - Yongfu Wang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China.
| | - Li Bai
- The Central Lab, the First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Inner Mongolia Autoimmune Key Laboratory, Baotou, 014010, China.
| |
Collapse
|
33
|
Soengas JL, Comesaña S, Blanco AM, Conde-Sieira M. Feed Intake Regulation in Fish: Implications for Aquaculture. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2025; 33:8-60. [DOI: 10.1080/23308249.2024.2374259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- José L. Soengas
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Ayelén M. Blanco
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
34
|
Soliz-Rueda JR, López-Fernández-Sobrino R, Schellekens H, Bravo FI, Suárez M, Mulero M, Muguerza B. Clock system disruption in male Fischer 344 rats fed cafeteria diet and administered sweet treats at different times: The zeitgeber role of grape seed flavanols. Biofactors 2025; 51:e70000. [PMID: 39832727 DOI: 10.1002/biof.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Current lifestyles include calorie-dense diets and late-night food intake, which can lead to circadian misalignment. Our group recently demonstrated that sweet treats before bedtime alter the clock system in healthy rats, increasing metabolic risk factors. Therefore, we aimed to assess the impact of the sweet treat consumption time on the clock system in rats fed a cafeteria diet (CAF). Moreover, since flavanols have demonstrated beneficial effects in metabolic disorders and clock gene modulation, we also investigated whether these phenolic compounds can restore the circadian disruption caused by these altered dietary patterns. For this, 64 Fisher rats were fed CAF for 9 weeks. In the last 4 weeks, animals were daily administered a low dose of sugar (160 mg/kg) as a sweet treat at 8 a.m. (ZT0) or 8 p.m. (ZT12). Two other groups received 25 mg/kg of grape seed flavanols in addition to sweet treats. Finally, the animals were sacrificed at different time points (9 a.m., 3 p.m., 9 p.m., and 3 a.m.). The results showed that metabolic and circadian disturbances by CAF may be influenced by the time of sugar administration, slightly reinforcing the alterations in diurnal rhythmicity of serum biochemical parameters, hormones, and hypothalamic genes with bedtime snacking. Flavanols improved metabolic health and restored the oscillation of biochemical parameters, hormones, and clock and appetite-signaling genes, showing greater effects at ZT12. These results highlight the importance of meal timing in influencing physiological and metabolic outcomes, even under calorie-dense diets. Moreover, they also suggest the zeitgeber role of flavanols, modulating the clock system and contributing to an improved metabolic profile under different feeding pattern conditions.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Raúl López-Fernández-Sobrino
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
| | - Harriët Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Francisca Isabel Bravo
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Manuel Suárez
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Miquel Mulero
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Begoña Muguerza
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Wei W, Fang J, Yang B, Cui C, Wei J, Xue Y. Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats. Korean J Pain 2025; 38:14-28. [PMID: 39711250 PMCID: PMC11695256 DOI: 10.3344/kjp.24244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Background Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats. Methods M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats being measured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model. Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 and IKBα inflammatory signaling pathways. Results The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 and IKBα. Conclusions Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia and affecting NF-kB p65 and IKBα signaling pathways.
Collapse
Affiliation(s)
- Wei Wei
- School of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Jun Fang
- School of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Baozhong Yang
- Department of Anesthesiology, Taiyuan Central Hospital, Taiyuan, China
| | - Chenlong Cui
- School of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Jiacheng Wei
- School of Anesthesia, Shanxi Medical University, Shanxi, China
| | - Yating Xue
- School of Anesthesia, Shanxi Medical University, Shanxi, China
| |
Collapse
|
36
|
Rebello CJ, Zhang D, Anderson JC, Bowman RF, Peeke PM, Greenway FL. From starvation to time-restricted eating: a review of fasting physiology. Int J Obes (Lond) 2025; 49:43-48. [PMID: 39369112 DOI: 10.1038/s41366-024-01641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
We have long known that subjects with obesity who fast for several weeks survive. Calculations that assume the brain can only use glucose indicated that all carbohydrate and protein sources would be consumed by the brain within several weeks yet subjects with obesity who fasted for several weeks survived. This anomaly led to the determination of the metabolic role of ketone bodies. Subsequent studies transformed our understanding of ketone bodies and illustrated the value of challenging the norm and adapting theory to evidence. Although prolonged fasting is no longer a treatment for obesity, the early studies of starvation provided valuable insights about macronutrient metabolism and ketone body adaptations that fasting elicits. Intermittent fasting and its variants such as time-restricted eating are fasting models that are far less regimented than starvation and severe calorie restriction; yet they produce metabolic benefits. The mechanisms that produce the metabolic changes that intermittent fasting elicits are relatively unknown. In this article, we review the physiology of starvation, starvation adaptation diets, diet-induced ketosis, and intermittent fasting. Understanding the premise and physiology that these regimens induce is necessary to draw parallels and provoke thoughts on the mechanisms underlying the metabolic benefits of intermittent fasting and its variants.
Collapse
Affiliation(s)
- Candida J Rebello
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Dachuan Zhang
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Joseph C Anderson
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | | | - Frank L Greenway
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
37
|
Wang Z, Wang S, Bi Y, Boiti A, Zhang S, Vallone D, Lan X, Foulkes NS, Zhao H. Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock. PLoS Genet 2025; 21:e1011545. [PMID: 39777894 PMCID: PMC11750094 DOI: 10.1371/journal.pgen.1011545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/21/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways. Our previous work has revealed that light-induced gene transcription is a key step in the entrainment of the circadian clock as well as enabling the more general adaptation of zebrafish cells to sunlight exposure. However, considerable evidence points to post-transcriptional regulatory mechanisms, notably microRNAs (miRNAs), playing an essential role in shaping dynamic changes in mRNA levels. Therefore, does light directly impact the function of miRNAs? Are there light-regulated miRNAs and if so, which classes of mRNA do they target? To address these questions, we performed a complete sequencing analysis of light-induced changes in the zebrafish transcriptome, encompassing small non-coding RNAs as well as mRNAs. Importantly, we identified sets of light-regulated miRNAs, with many regulatory targets representing light-inducible mRNAs including circadian clock genes and genes involved in redox homeostasis. We subsequently focused on the light-responsive miR-204-3-3p and miR-430a-3p which are predicted to regulate the expression of cryptochrome genes (cry1a and cry1b). Luciferase reporter assays validated the target binding of miR-204-3-3p and miR-430a-3p to the 3'UTRs of cry1a and cry1b, respectively. Furthermore, treatment with mimics and inhibitors of these two miRNAs significantly affected the dynamic expression of their target genes but also other core clock components (clock1a, bmal1b, per1b, per2, per3), as well as the rhythmic locomotor activity of zebrafish larvae. Thus, our identification of light-responsive miRNAs reveals new intricacy in the multi-level regulation of the circadian clockwork by light.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Shuang Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Yi Bi
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Alessandra Boiti
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Daniela Vallone
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| |
Collapse
|
38
|
Hbaieb MA, Charfeddine S, Driss T, Bosquet L, Dugué B, Makni A, Turki M, Abid L, Hammouda O. Endothelial Dysfunction in Acute Myocardial Infarction: A Complex Association With Sleep Health, Traditional Cardiovascular Risk Factors and Prognostic Markers. Clin Cardiol 2025; 48:e70080. [PMID: 39871651 PMCID: PMC11773158 DOI: 10.1002/clc.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Endothelial function (EndFx) is a core component of cardiovascular (CV) health and cardioprotection following acute myocardial infarction (AMI) treated with primary percutaneous coronary intervention (PCI). HYPOTHESIS AMI patients experience endothelial dysfunction (EndDys), associated with traditional CV risk factors and sleep patterns. EndFx may also predict short and mid-term outcomes. METHODS EndFx was assessed in 63 patients (56.2 ± 7.6 years) using the Endothelium Quality Index (EQI). Sleep quality and quantity were evaluated using objective (actigraphy) and subjective (Pittsburgh Sleep Quality Index questionnaire) measures. Cardiorespiratory fitness was quantified through the 6-min walking test. Cardiac function was assessed using the left ventricular ejection fraction. RESULTS Following AMI, patients tended to experience EndDys (EQI = 1.4 ± 0.7). A severe EndDys was observed in 23.8% of patients (n = 15), while a mild EndDys was present in 63.49% (n = 40). Furthermore, EndDys was significantly associated with traditional CV risk factors (i.e., low physical activity level [12.8%], age [-4.2%], and smoking [-0.7%]) (R2 adjusted = 0.50, p < 0.001). Patients with EndDys had poor sleep quality (p = 0.001) and sleep efficiency (p = 0.016) compared to healthy persons. Patients with severe EndDys exhibited lower cardiorespiratory fitness compared to those with healthy EndFx (p = 0.017). Furthermore, during a follow-up period (nearly 4 months) following PCI, major adverse cardiac events were observed in four patients with severe EndDys. CONCLUSIONS Our results emphasize the importance of adequate sleep and an active lifestyle, notably physical activity practice, as modifiable elements to enhance EndFx, which is regarded as a predictive tool following AMI. However, other factors remain to be elucidated as predictors of CV risk. TRIAL REGISTRATION The study protocol was registered in the Pan African Clinical Trial Registry under the trial ID: PACTR202208834230748.
Collapse
Affiliation(s)
- Mohamed Ali Hbaieb
- Laboratory "Mobilité, Vieillissement, Exercise (MOVE) (UR20296)", Faculty of Sport SciencesUniversity of PoitiersPoitiersFrance
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of MedicineUniversity of SfaxSfaxTunisia
- High Institute of Sport and Physical EducationUniversity of SfaxSfaxTunisia
| | - Salma Charfeddine
- Cardiology Research Unit, Hédi Chaker University Hospital, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Tarak Driss
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2), Faculty of Sport SciencesParis Nanterre UniversityNanterreFrance
| | - Laurent Bosquet
- Laboratory "Mobilité, Vieillissement, Exercise (MOVE) (UR20296)", Faculty of Sport SciencesUniversity of PoitiersPoitiersFrance
| | - Benoit Dugué
- Laboratory "Mobilité, Vieillissement, Exercise (MOVE) (UR20296)", Faculty of Sport SciencesUniversity of PoitiersPoitiersFrance
| | - Ahmed Makni
- High Institute of Sport and Physical EducationUniversity of SfaxSfaxTunisia
| | - Mouna Turki
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of MedicineUniversity of SfaxSfaxTunisia
| | - Leila Abid
- High Institute of Sport and Physical EducationUniversity of SfaxSfaxTunisia
| | - Omar Hammouda
- Research Laboratory, Molecular Bases of Human Pathology, LR19ES13, Faculty of MedicineUniversity of SfaxSfaxTunisia
- Cardiology Research Unit, Hédi Chaker University Hospital, Faculty of MedicineUniversity of SfaxSfaxTunisia
| |
Collapse
|
39
|
Soliz-Rueda JR, Cuesta-Marti C, O'Mahony SM, Clarke G, Schellekens H, Muguerza B. Gut microbiota and eating behaviour in circadian syndrome. Trends Endocrinol Metab 2025; 36:15-28. [PMID: 39095231 DOI: 10.1016/j.tem.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Eating behaviour and circadian rhythms are closely related. The type, timing, and quantity of food consumed, and host circadian rhythms, directly influence the intestinal microbiota, which in turn impacts host circadian rhythms and regulates food intake beyond homeostatic eating. This Opinion discusses the impact of food intake and circadian disruptions induced by an obesogenic environment on gut-brain axis signalling. We also explore potential mechanisms underlying the effects of altered gut microbiota on food intake behaviour and circadian rhythmicity. Understanding the crosstalk between gut microbiota, circadian rhythms, and unhealthy eating behaviour is crucial to addressing the obesity epidemic, which remains one of the biggest societal challenges of our time.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, Cork, Ireland.
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain; Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| |
Collapse
|
40
|
Zhang Z, Xue P, Bendlin BB, Zetterberg H, De Felice F, Tan X, Benedict C. Melatonin: A potential nighttime guardian against Alzheimer's. Mol Psychiatry 2025; 30:237-250. [PMID: 39128995 PMCID: PMC11649572 DOI: 10.1038/s41380-024-02691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
In the context of the escalating global health challenge posed by Alzheimer's disease (AD), this comprehensive review considers the potential of melatonin in both preventive and therapeutic capacities. As a naturally occurring hormone and robust antioxidant, accumulating evidence suggests melatonin is a compelling candidate to consider in the context of AD-related pathologies. The review considers several mechanisms, including potential effects on amyloid-beta and pathologic tau burden, antioxidant defense, immune modulation, and regulation of circadian rhythms. Despite its promise, several gaps need to be addressed prior to clinical translation. These include conducting additional randomized clinical trials in patients with or at risk for AD dementia, determining optimal dosage and timing, and further determining potential side effects, particularly of long-term use. This review consolidates existing knowledge, identifies gaps, and suggests directions for future research to better understand the potential of melatonin for neuroprotection and disease mitigation within the landscape of AD.
Collapse
Affiliation(s)
- Zefan Zhang
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| | - Pei Xue
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Barbara B Bendlin
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Fernanda De Felice
- Centre for Neurosciences Studies, Departments of Biomedical and Molecular Sciences, and Psychiatry, Queen's University, Kingston, ON, K7L 3N6, Canada
- D'Or Institute for Research and Education, Rio de Janeiro RJ, 22281-100, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro RJ, Brazil
| | - Xiao Tan
- Department of Big Data in Health Science, Zhejiang University School of Public Health and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
41
|
Muronets VI, Kudryavtseva SS, Kurochkina LP, Leisi EV, Stroylova YY, Schmalhausen EV. Factors Affecting Pathological Amyloid Protein Transformation: From Post-Translational Modifications to Chaperones. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S164-S192. [PMID: 40164158 DOI: 10.1134/s0006297924604003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 04/02/2025]
Abstract
The review discusses the influence of various factors (e.g., post-translational modifications and chaperones) on the pathological transformation of amyloidogenic proteins involved in the onset and development of neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and spongiform encephalopathies of various origin with special focus on the role of α-synuclein, prion protein, and, to a lesser extent, beta-amyloid peptide. The factors investigated by the authors of this review are discussed in more detail, including posttranslational modifications (glycation and S-nitrosylation), cinnamic acid derivatives and dendrimers, and chaperonins (eukaryotic, bacterial, and phage). A special section is devoted to the role of the gastrointestinal microbiota in the pathogenesis of amyloid neurodegenerative diseases, in particular, its involvement in the transformation of infectious prions and possibly other proteins capable of prion-like transmission of amyloidogenic diseases.
Collapse
Affiliation(s)
- Vladimir I Muronets
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, Kazan, 420008, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sofiya S Kudryavtseva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia P Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeniia V Leisi
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yulia Yu Stroylova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
42
|
Postnova S, Sanz-Leon P. Sleep and circadian rhythms modeling: From hypothalamic regulatory networks to cortical dynamics and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:37-58. [PMID: 39864931 DOI: 10.1016/b978-0-323-90918-1.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics. Physiology-based mathematical models have successfully explained the mechanisms underpinning dynamics at specific scales and are a useful tool to investigate interactions across multiple scales. They can help answer questions such as how do electroencephalographic (EEG) features relate to subthalamic neuron activity? Or how are local cortical dynamics regulated by the homeostatic and circadian mechanisms? In this chapter, we review two types of models that are well-positioned to consider such interactions. Part I of the chapter focuses on the subthalamic sleep regulatory networks and a model of arousal dynamics capable of predicting sleep, circadian rhythms, and cognitive outputs. Part II presents a model of corticothalamic circuits, capable of predicting spatial and temporal EEG features. We then discuss existing approaches and unsolved challenges in developing unified multiscale models.
Collapse
Affiliation(s)
- Svetlana Postnova
- School of Physics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia; Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie Park, NSW, Australia; Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.
| | - Paula Sanz-Leon
- School of Physics, Faculty of Science, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
43
|
Xue Q, Wang R, Zhu-Ge R, Guo L. Research progresses on the effects of heavy metals on the circadian clock system. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:721-727. [PMID: 37572029 DOI: 10.1515/reveh-2022-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 06/12/2023] [Indexed: 08/14/2023]
Abstract
Environmental pollution with heavy metals is widespread, thus increasing attention has been paid to their toxic effects. Recent studies have suggested that heavy metals may influence the expression of circadian clock genes. Almost all organs and tissues exhibit circadian rhythms. The normal circadian rhythm of an organism is maintained by the central and peripheral circadian clock. Thus, circadian rhythm disorders perturb normal physiological processes. Here, we review the effects of heavy metals, including manganese, copper, cadmium, and lead, on four core circadian clock genes, i.e., ARNTL, CLOCK, PER, and CRY genes.
Collapse
Affiliation(s)
- Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Ruijian Zhu-Ge
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
44
|
Halabian A, Radahmadi M. The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review. Rev Neurosci 2024; 35:933-958. [PMID: 39520288 DOI: 10.1515/revneuro-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024]
Abstract
Variations in day length, or photoperiodism, whether natural or artificial light, significantly impact biological, physiological, and behavioral processes within the brain. Both natural and artificial light sources are environmental factors that significantly influence brain functions and mental well-being. Photoperiodism is a phenomenon, occurring either over a 24 h cycle or seasonally and denotes all biological responses of humans and animals to these fluctuations in day and night length. Conversely, artificial light occurrence refers to the presence of light during nighttime hours and/or its absence during the daytime (unnaturally long and short days, respectively). Light at night, which is a form of light pollution, is prevalent in many societies, especially common in certain emergency occupations. Moreover, individuals with certain mental disorders, such as depression, often exhibit a preference for darkness over daytime light. Nevertheless, disturbances in light patterns can have negative consequences, impacting brain performance through similar mechanisms albeit with varying degrees of severity. Furthermore, changes in day length lead to alterations in the activity of receptors, proteins, ion channels, and molecular signaling pathways, all of which can impact brain health. This review aims to summarize the mechanisms by which day length influences brain functions through neural circuits, hormonal systems, neurochemical processes, cellular activity, and even molecular signaling pathways.
Collapse
Affiliation(s)
- Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western, Ontario, N6A 3K7 London, ON, Canada
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, 48455 Isfahan University of Medical Sciences , 81746-73461 Isfahan, Iran
| |
Collapse
|
45
|
Woodie LN, Alberto AJ, Krusen BM, Melink LC, Lazar MA. Genetic synchronization of the brain and liver molecular clocks defend against chrono-metabolic disease. Proc Natl Acad Sci U S A 2024; 121:e2417678121. [PMID: 39665757 DOI: 10.1073/pnas.2417678121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Nearly every cell of the body contains a circadian clock mechanism that is synchronized with the light-entrained clock in the suprachiasmatic nucleus (SCN). Desynchrony between the SCN and the external environment leads to metabolic dysfunction in shift workers. Similarly, mice with markedly shortened endogenous period due to the deletion of circadian REV-ERBα/β nuclear receptors in the SCN (SCN DKO) exhibit increased sensitivity to diet-induced obesity (DIO) on a 24 h light:dark cycle while mice with REV-ERBs deleted in hepatocytes (HepDKO) display exacerbated hepatosteatosis in response to a high-fat diet. Here, we show that inducing deletion of hepatocyte REV-ERBs in SCN DKO mice (Hep-SCN DDKO) rescued the exacerbated DIO and hepatic triglyceride accumulation, without affecting the shortened behavioral period. These findings suggest that metabolic disturbances due to environmental desynchrony with the central clock are due to effects on peripheral clocks which can be mitigated by matching peripheral and central clock periods even in a desynchronous environment. Thus, maintaining synchrony within an organism, rather than between endogenous and exogenous clocks, may be a viable target for the treatment of metabolic disorders associated with circadian disruption.
Collapse
Affiliation(s)
- Lauren N Woodie
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Ahren J Alberto
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Brianna M Krusen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Lily C Melink
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
46
|
Zuo M, Kramer A, Mönke G, Sciesielski LK, Dame C. Circadian clock activity in human umbilical vein endothelial cells of preterm and term neonates. Pediatr Res 2024:10.1038/s41390-024-03705-3. [PMID: 39672824 DOI: 10.1038/s41390-024-03705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND During mammalian gestation, fetal circadian rhythms are thought to be mainly controlled by maternal signals. In humans, the initiation and activity of central and peripheral circadian clocks is largely unknown. This study aimed to elucidate the developmental clock properties in human umbilical vein endothelial cells (HUVECs). METHODS HUVECs were obtained from (a) preterm infants, subgrouped according to birth weight or gestational age classification, and (b) term infants (in total: n = 60). In vitro clock activity was determined by using live bioluminescence recording of a luciferase reporter gene under circadian control over 120 h. In addition, core clock and clock-associated gene expression were quantified using NanoString technology. RESULTS Peripheral clock activity was detected, regardless of prematurity and birth weight classification. The mean period, amplitude, and phase of circadian oscillations were not significantly associated with gestational age or birth weight classification. CONCLUSIONS Peripheral clock activity can be demonstrated in HUVECs from both preterm and term infants without significant developmental differences in the period, amplitude, and phase of oscillations. This model may be useful to identify perturbation factors of proper development and entrainment of neonatal circadian clock activity. IMPACT We established a model system for analyzing the peripheral clock in preterm and term HUVECs. In HUVECs, the peripheral clock exhibits functional in vitro activity independent of gestational age or birth weight categories. In this model system, neither significant developmental differences exist in the period, amplitude, and phase, nor in the expression of circadian core clock and clock-associated genes. Entrainment and proper function of the circadian clock deserve attention in neonatal intensive care.
Collapse
Affiliation(s)
- Meilan Zuo
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Achim Kramer
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gregor Mönke
- Ernst Strüngmann Institute for Neuroscience, Frankfurt/Main, Germany
| | - Lina K Sciesielski
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christof Dame
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
47
|
Guzmán-Acevedo ÁR, Caba-Flores MD, Viveros-Contreras R, Meza-Alvarado JE. Orchiectomy Decreases Locomotor Activity and Delays the Expression of the Clock Protein PER1 in the Suprachiasmatic Nucleus in Rabbits. Animals (Basel) 2024; 14:3570. [PMID: 39765474 PMCID: PMC11672421 DOI: 10.3390/ani14243570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
The suprachiasmatic nucleus (SCN) is the master regulator of the circadian system, modulating the daily timing of physiological and behavioral processes in mammals. While SCN synchronization is primarily driven by environmental light signals, sex hormones, particularly androgens, have a crucial role in regulating behavioral and reproductive processes to align with daily or seasonal cycles. SCN cell populations express receptors for sex steroid hormones, contributing to circadian synchronization mechanisms. Specifically, the activation of androgen receptors in the SCN has been shown to modulate clock gene expression and influence circadian rhythms. Rabbits, widely used in experimental research, exhibit unique behavioral patterns, including plasticity in circadian typology and seasonal variations in testosterone secretion. In this study, we explored, in male rabbits, the effect of castration on the daily pattern of locomotor activity and the expression of the clock protein PERIOD 1 (PER1) in the SCN. Our results show that castration significantly reduces daily locomotor activity and PER1 expression in the SCN. Moreover, a 4 h delay in the acrophase of PER1 expression was observed. We conclude that androgens have an important role in SCN synchronization mechanisms, contributing to the organization of physiological and behavioral events in this species.
Collapse
Affiliation(s)
| | - Mario Daniel Caba-Flores
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 64460, Nuevo León, Mexico;
| | - Rubi Viveros-Contreras
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa 91090, Veracruz, Mexico;
| | | |
Collapse
|
48
|
Leng H, Thijs T, Desmet L, Vanotti G, Farhadipour M, Depoortere I. Time-Restricted Feeding Reinforces Gut Rhythmicity by Restoring Rhythms in Intestinal Metabolism in a Jetlag Mouse Model. Cell Mol Gastroenterol Hepatol 2024; 19:101440. [PMID: 39667578 PMCID: PMC11830358 DOI: 10.1016/j.jcmgh.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND & AIMS Circadian disturbances result in adverse health effects, including gastrointestinal symptoms. We investigated which physiological pathways in jejunal mucosa were disrupted during chronic jetlag and prevented during time-restricted feeding (TRF). Enteroids from Bmal1+/+ and Bmal1-/- mice were used to replicate the processes that were affected by chronic jetlag and rescued by TRF. METHODS C57BL/6J male mice were subjected to chronic jetlag or night-TRF for 4 weeks. An around-the-clock bulk-RNA sequencing study was performed on the jejunal mucosa. Bmal1+/+ and Bmal1-/- mouse enteroids were generated to study the jejunal epithelial clock dependency of rhythmic jejunal processes. RESULTS Chronic jetlag disrupted the rhythmicity of jejunal clock genes and the jejunal transcriptome, which was partially rescued by TRF. Genes whose rhythm was altered by chronic jetlag but prevented by TRF were primarily associated with nutrient transport, lipid metabolism, ketogenesis, and cellular organization. In vivo, chronic jetlag caused a phase shift in the rhythmic accumulation of neutral lipids and induced a diurnal rhythm in the number of crypt epithelial cells, both of which were prevented by TRF. In vitro, enteroids replicated the in vivo rhythmic accumulation of neutral lipids in a clock-dependent manner, whereas the rhythm of S phase proliferation was ultradian in both genotypes of enteroids. CONCLUSIONS This pioneering transcriptomic study demonstrates that TRF acts as a robust entrainer during chronic jetlag, realigning disturbances in the circadian clock and the transcriptome involved in metabolic functions in the jejunal mucosa. Enteroids can replicate the rhythmic accumulation of neutral lipids dependent on the jejunal epithelial clock, enabling these functions to be studied in vitro.
Collapse
Affiliation(s)
- Hui Leng
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Theo Thijs
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Louis Desmet
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Guillaume Vanotti
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Mona Farhadipour
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center in Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.
| |
Collapse
|
49
|
Mansingh S, Maier G, Delezie J, Westermark PO, Ritz D, Duchemin W, Santos G, Karrer‐Cardel B, Steurer SA, Albrecht U, Handschin C. More than the clock: distinct regulation of muscle function and metabolism by PER2 and RORα. J Physiol 2024; 602:6373-6402. [PMID: 38850551 PMCID: PMC11607892 DOI: 10.1113/jp285585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
Circadian rhythms, governed by the dominant central clock, in addition to various peripheral clocks, regulate almost all biological processes, including sleep-wake cycles, hormone secretion and metabolism. In certain contexts, the regulation and function of the peripheral oscillations can be decoupled from the central clock. However, the specific mechanisms underlying muscle-intrinsic clock-dependent modulation of muscle function and metabolism remain unclear. We investigated the outcome of perturbations of the primary and secondary feedback loops of the molecular clock in skeletal muscle by specific gene ablation of Period circadian regulator 2 (Per2) and RAR-related orphan receptor alpha (Rorα), respectively. In both models, a dampening of core clock gene oscillation was observed, while the phase was preserved. Moreover, both loops seem to be involved in the homeostasis of amine groups. Highly divergent outcomes were seen for overall muscle gene expression, primarily affecting circadian rhythmicity in the PER2 knockouts and non-oscillating genes in the RORα knockouts, leading to distinct outcomes in terms of metabolome and phenotype. These results highlight the entanglement of the molecular clock and muscle plasticity and allude to specific functions of different clock components, i.e. the primary and secondary feedback loops, in this context. The reciprocal interaction between muscle contractility and circadian clocks might therefore be instrumental to determining a finely tuned adaptation of muscle tissue to perturbations in health and disease. KEY POINTS: Specific perturbations of the primary and secondary feedback loop of the molecular clock result in specific outcomes on muscle metabolism and function. Ablation of Per2 (primary loop) or Rorα (secondary loop) blunts the amplitude of core clock genes, in absence of a shift in phase. Perturbation of the primary feedback loop by deletion of PER2 primarily affects muscle gene oscillation. Knockout of RORα and the ensuing modulation of the secondary loop results in the aberrant expression of a large number of non-clock genes and proteins. The deletion of PER2 and RORα affects muscle metabolism and contractile function in a circadian manner, highlighting the central role of the molecular clock in modulating muscle plasticity.
Collapse
Affiliation(s)
| | | | | | - Pål O. Westermark
- Leibniz‐Institut für NutztierbiologieInstitut für Genetik und BiometrieDummerstorfGermany
| | - Danilo Ritz
- Biozentrum, University of BaselBaselSwitzerland
| | - Wandrille Duchemin
- sciCORE Center for Scientific ComputingUniversity of BaselBaselSwitzerland
| | - Gesa Santos
- Biozentrum, University of BaselBaselSwitzerland
| | | | | | - Urs Albrecht
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | | |
Collapse
|
50
|
Hasenmajer V, Sbardella E, Sciarra F, Simeoli C, Pivonello C, Ceccato F, Pofi R, Minnetti M, Rizzo F, Ferrari D, Bonaventura I, Barbagallo F, Giannetta E, Alunni Fegatelli D, Conia S, Navigli R, Arnaldi G, Scaroni C, Pivonello R, Gianfrilli D, Venneri MA, Isidori AM. Circadian clock disruption impairs immune oscillation in chronic endogenous hypercortisolism: a multi-level analysis from a multicentre clinical trial. EBioMedicine 2024; 110:105462. [PMID: 39612654 PMCID: PMC11647478 DOI: 10.1016/j.ebiom.2024.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/18/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Glucocorticoids (GC) are potent entrainers of the circadian clock. However, their effects on biological rhythms in chronic human exposure have yet to be studied. Endogenous hypercortisolism (Cushing's Syndrome, CS) is a rare condition in which circadian disruption is sustained by a tumorous source of GC excess, offering the unique opportunity to investigate GC's chronic effects in vivo. METHODS In a 12-month prospective case-control multicentre trial, the daily fluctuations in the number of circulating peripheral blood mononuclear cells (PBMCs) and the time-specific expression of clock-related genes were analysed in a cohort of 68 subjects, 34 affected by CS and 34 matched controls. Cosinor mixed effects model, rhythmicity algorithms and machine learning techniques were applied to the multi-level dataset. FINDINGS Multiple, 5-point daily sampling revealed profound changes in the levels, amplitude, and rhythmicity of several PBMC populations during active CS, only partially restored after remission. Clock gene analyses in isolated PBMCs showed a significant flattening of circadian oscillation of CLOCK, PER1, PER2, PER3, and TIMELESS expression. In active CS, all methods confirmed a loss of rhythmicity of those genes which were circadian in the PBMCs of controls. Most, but not all, genes regained physiological oscillation after remission. Machine learning revealed that while combined time-course sets of clock genes were highly effective in separating patients from controls, immune profiling was efficient even as single time points. INTERPRETATION In conclusion, the oscillation of circulating immune cells is profoundly altered in patients with CS, representing a convergence point of circadian rhythm disruption and metabolic and steroid hormone imbalances. Machine learning techniques proved the superiority of immune profiling over parameters such as cortisol, anthropometric and metabolic variables, and circadian gene expression analysis to identify CS activity. FUNDING The research leading to these results has received funding from the European Union in the context of the National Recovery and Resilience Plan, Investment PE8 - Project Age-It: "Ageing Well in an Ageing Society". This resource was co-financed by the Next Generation EU [DM 1557 11.10.2022], the PRecisiOn Medicine to Target Frailty of Endocrine-metabolic Origin (PROMETEO) project (NET-2018-12365454) by the Italian Ministry of Health, and through internal funding to Sapienza University of Rome.
Collapse
Affiliation(s)
- Valeria Hasenmajer
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Francesca Sciarra
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Chiara Simeoli
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Claudia Pivonello
- Dipartimento di Sanità Pubblica, Università Federico II di Napoli, Naples, Italy
| | - Filippo Ceccato
- Endocrinology, Dep of Medicine, DIMED, University-Hospital of Padova, Padua, Italy; Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy
| | - Riccardo Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Marianna Minnetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Flavio Rizzo
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Davide Ferrari
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Ilaria Bonaventura
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Federica Barbagallo
- Department of Medicine and Surgery, Kore University of Enna, 94100, Enna, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Danilo Alunni Fegatelli
- Department of Public Health and Infectious Disease, "Sapienza" University of Rome, Rome, Italy
| | - Simone Conia
- Sapienza NLP, Department of Computer, Control and Management Engineering, "Sapienza" University of Rome, Rome, Italy
| | - Roberto Navigli
- Sapienza NLP, Department of Computer, Control and Management Engineering, "Sapienza" University of Rome, Rome, Italy
| | - Giorgio Arnaldi
- Departement of Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), Palermo University, 90127, Palermo, Italy
| | - Carla Scaroni
- Endocrinology, Dep of Medicine, DIMED, University-Hospital of Padova, Padua, Italy; Endocrine Disease Unit, University-Hospital of Padova, Padova, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy; Centre for Rare Diseases (Endo-ERN Accredited), Policlinico Umberto I, Rome, Italy.
| |
Collapse
|