1
|
Wroblewski E, Patel N, Javed A, Mata CP, Chandler-Bostock R, Lekshmi BG, Ulamec SM, Clark S, Phillips SEV, Ranson NA, Twarock R, Stockley PG. Visualizing Viral RNA Packaging Signals in Action. J Mol Biol 2024; 436:168765. [PMID: 39214281 DOI: 10.1016/j.jmb.2024.168765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Here we confirm, using genome-scale RNA fragments in assembly competition assays, that multiple sub-sites (Packaging Signals, PSs) across the 5' two-thirds of the gRNA of Satellite Tobacco Necrosis Virus-1 make sequence-specific contacts to the viral CPs helping to nucleate formation of its T = 1 virus-like particle (VLP). These contacts explain why natural virions only package their positive-sense genomes. Asymmetric cryo-EM reconstructions of these VLPs suggest that interactions occur between amino acid residues in the N-terminal ends of the CP subunits and the gRNA PS loop sequences. The base-paired stems of PSs also act non-sequence-specifically by electrostatically promoting the assembly of CP trimers. Importantly, alterations in PS-CP affinity result in an asymmetric distribution of bound PSs inside VLPs, with fuller occupation of the higher affinity 5' PS RNAs around one vertex, decreasing to an RNA-free opposite vertex within the VLP shell. This distribution suggests that gRNA folding regulates cytoplasmic genome extrusion so that the weakly bound 3' end of the gRNA, containing the RNA polymerase binding site, extrudes first. This probably occurs after cation-loss induced swelling of the CP-shell, weakening contacts between CP subunits. These data reveal for the first time in any virus how differential PS folding propensity and CP affinities support the multiple roles genomes play in virion assembly and infection. The high degree of conservation between the CP fold of STNV-1 and those of the CPs of many other viruses suggests that these aspects of genome function will be widely shared.
Collapse
Affiliation(s)
- Emma Wroblewski
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Abid Javed
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rebecca Chandler-Bostock
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - B G Lekshmi
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom
| | - Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sam Clark
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom
| | - Simon E V Phillips
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Reidun Twarock
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom.
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
2
|
Possibility to Detect Reproducibly some 5-10 Å Conformational Differences
by Conventional Techniques: Physiologically Defined Lattice Transformations
in Bacteriophage T4. ACTA ACUST UNITED AC 2020. [DOI: 10.1017/s0424820100070163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It was demonstrated that during maturation the proteins of the surface
lattice of a virus shell undergo conformational changes on the level of
quarternary structure. The conventional methods of negative stain and
information processing allow for detecting differences between two
conformational states of some 5 Å, although the information on the absolute
structure and its changes are estimated not to be better than 20-30 Å.
Attempts for refining the methods in view of demonstrating tertiary
structure changes of the subunits involved are discussed. The general
biological relevance of these studies are emphasized, particularly in view
of studying control mechanisms operating at the level of gene
products.
Collapse
|
3
|
Mohsen MO, Augusto G, Bachmann MF. The 3Ds in virus-like particle based-vaccines: "Design, Delivery and Dynamics". Immunol Rev 2020; 296:155-168. [PMID: 32472710 PMCID: PMC7496916 DOI: 10.1111/imr.12863] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
Vaccines need to be rationally designed in order be delivered to the immune system for maximizing induction of dynamic immune responses. Virus‐like particles (VLPs) are ideal platforms for such 3D vaccines, as they allow the display of complex and native antigens in a highly repetitive form on their surface and can easily reach lymphoid organs in intact form for optimal activation of B and T cells. Adjusting size and zeta potential may allow investigators to further fine‐tune delivery to lymphoid organs. An additional way to alter vaccine transfer to lymph nodes and spleen may be the formulation with micron‐sized adjuvants that creates a local depot and results in a slow release of antigen and adjuvant. Ideally, the adjuvant in addition stimulates the innate immune system. The dynamics of the immune response may be further enhanced by inclusion of Toll‐like receptor ligands, which many VLPs naturally package. Hence, considering the 3Ds in vaccine development may allow for enhancement of their attributes to tackle complex diseases, not usually amenable to conventional vaccine strategies.
Collapse
Affiliation(s)
- Mona O Mohsen
- Interim Translational Research Institute "iTRI", National Center for Cancer Care & Research (NCCCR), Doha, Qatar.,Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland
| | - Gilles Augusto
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland.,Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin F Bachmann
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland.,Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Mushegian A, Karin EL, Pupko T. Sequence analysis of malacoherpesvirus proteins: Pan-herpesvirus capsid module and replication enzymes with an ancient connection to "Megavirales". Virology 2018; 513:114-128. [PMID: 29065352 PMCID: PMC7172337 DOI: 10.1016/j.virol.2017.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022]
Abstract
The order Herpesvirales includes animal viruses with large double-strand DNA genomes replicating in the nucleus. The main capsid protein in the best-studied family Herpesviridae contains a domain with HK97-like fold related to bacteriophage head proteins, and several virion maturation factors are also homologous between phages and herpesviruses. The origin of herpesvirus DNA replication proteins is less well understood. While analyzing the genomes of herpesviruses in the family Malacohepresviridae, we identified nearly 30 families of proteins conserved in other herpesviruses, including several phage-related domains in morphogenetic proteins. Herpesvirus DNA replication factors have complex evolutionary history: some are related to cellular proteins, but others are closer to homologs from large nucleocytoplasmic DNA viruses. Phylogenetic analyses suggest that the core replication machinery of herpesviruses may have been recruited from the same pool as in the case of other large DNA viruses of eukaryotes.
Collapse
Affiliation(s)
- Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA 22314, USA.
| | - Eli Levy Karin
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
5
|
Affiliation(s)
- Zhen-Gang Wang
- Division of Chemistry and
Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Motwani T, Lokareddy RK, Dunbar CA, Cortines JR, Jarrold MF, Cingolani G, Teschke CM. A viral scaffolding protein triggers portal ring oligomerization and incorporation during procapsid assembly. SCIENCE ADVANCES 2017; 3:e1700423. [PMID: 28782023 PMCID: PMC5529062 DOI: 10.1126/sciadv.1700423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Most double-stranded DNA viruses package genetic material into empty precursor capsids (or procapsids) through a dodecameric portal protein complex that occupies 1 of the 12 vertices of the icosahedral lattice. Inhibiting incorporation of the portal complex prevents the formation of infectious virions, making this step an excellent target for antiviral drugs. The mechanism by which a sole portal assembly is selectively incorporated at the special vertex is unclear. We recently showed that, as part of the DNA packaging process for bacteriophage P22, the dodecameric procapsid portal changes conformation to a mature virion state. We report that preformed dodecameric rings of P22 portal protein, as opposed to portal monomers, incorporate into nascent procapsids, with preference for the procapsid portal conformation. Finally, a novel role for P22 scaffolding protein in triggering portal ring formation from portal monomers is elucidated and validated by incorporating de novo assembled portal rings into procapsids.
Collapse
Affiliation(s)
- Tina Motwani
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Ravi K. Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | - Carmen A. Dunbar
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Juliana R. Cortines
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
- Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Steele JFC, Peyret H, Saunders K, Castells‐Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP. Synthetic plant virology for nanobiotechnology and nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:e1447. [PMID: 28078770 PMCID: PMC5484280 DOI: 10.1002/wnan.1447] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Hadrien Peyret
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | - Keith Saunders
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | | | | | | | | |
Collapse
|
8
|
Kaplan R, Klobušický J, Pandey S, Gracias DH, Menon G. Building polyhedra by self-assembly: theory and experiment. ARTIFICIAL LIFE 2014; 20:409-439. [PMID: 25148546 DOI: 10.1162/artl_a_00144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.
Collapse
|
9
|
Zairi M, Stiege AC, Nhiri N, Jacquet E, Tavares P. The collagen-like protein gp12 is a temperature-dependent reversible binder of SPP1 viral capsids. J Biol Chem 2014; 289:27169-27181. [PMID: 25074929 DOI: 10.1074/jbc.m114.590877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Icosahedral capsids of viruses are lattices of defined geometry and homogeneous size. The (quasi-)equivalent organization of their protein building blocks provides, in numerous systems, the binding sites to assemble arrays of viral polypeptides organized with nanometer precision that protrude from the capsid surface. The capsid of bacterial virus (bacteriophage) SPP1 exposes, at its surface, the 6.6-kDa viral polypeptide gp12 that binds to the center of hexamers of the major capsid protein. Gp12 forms an elongated trimer with collagen-like properties. This is consistent with the fold of eight internal GXY repeats of gp12 to build a stable intersubunit triple helix in a prokaryotic setting. The trimer dissociates and unfolds at near physiological temperatures, as reported for eukaryotic collagen. Its structural organization is reacquired within seconds upon cooling. Interaction with the SPP1 capsid hexamers strongly stabilizes gp12, increasing its Tm to 54 °C. Above this temperature, gp12 dissociates from its binding sites and unfolds reversibly. Multivalent binding of gp12 trimers to the capsid is highly cooperative. The capsid lattice also provides a platform to assist folding and association of unfolded gp12 polypeptides. The original physicochemical properties of gp12 offer a thermoswitchable system for multivalent binding of the polypeptide to the SPP1 capsid surface.
Collapse
Affiliation(s)
- Mohamed Zairi
- Unité de Virologie Moléculaire et Structurale, UPR 3296 CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France
| | - Asita C Stiege
- Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, UPR 2301 CNRS, Centre de Recherche de Gif, Gif-sur-Yvette, France, and
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, UPR 2301 CNRS, Centre de Recherche de Gif, Gif-sur-Yvette, France, and; IMAGIF CTPF and qPCR Platform, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France
| | - Paulo Tavares
- Unité de Virologie Moléculaire et Structurale, UPR 3296 CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France,.
| |
Collapse
|
10
|
Rixon FJ, Schmid MF. Structural similarities in DNA packaging and delivery apparatuses in Herpesvirus and dsDNA bacteriophages. Curr Opin Virol 2014; 5:105-10. [PMID: 24747680 DOI: 10.1016/j.coviro.2014.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/04/2014] [Accepted: 02/08/2014] [Indexed: 11/28/2022]
Abstract
Structural information can inform our understanding of virus origins and evolution. The herpesviruses and tailed bacteriophages constitute two large families of dsDNA viruses which infect vertebrates and prokaryotes respectively. A relationship between these disparate groups was initially suggested by similarities in their capsid assembly and DNA packaging strategies. This relationship has now been confirmed by a range of studies that have revealed common structural features in their capsid proteins, and similar organizations and sequence conservation in their DNA packaging machinery and maturational proteases. This concentration of conserved traits in proteins involved in essential and primordial capsid/packaging functions is evidence that these structures are derived from an ancient, common ancestor and is in sharp contrast to the lack of such evidence for other virus functions.
Collapse
Affiliation(s)
- Frazer J Rixon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Malyutin AG, Dragnea B. Budding pathway in the templated assembly of viruslike particles. J Phys Chem B 2013; 117:10730-6. [PMID: 23947533 DOI: 10.1021/jp405603m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new pathway for the assembly of viral capsid protein around inorganic nanoparticle cores was observed by time-course light scattering and cryo-electron tomography. Gold nanoparticles with an average diameter of 11.3 nm have been used as a template for the assembly of Brome mosaic virus (BMV) capsid protein at different concentrations. At least at low protein concentrations the kinetic features of the scattering and extinction measurements are consistent with the initial rapid formation of large nanoparticle-protein clusters, which subsequently separate into individual viruslike particles (VLPs). The occurrence of multiparticle clusters at short times after mixing nanoparticles and proteins was confirmed by cryo-EM. Cryo-electron tomography of the multiparticle clusters yielded an average surface-to-surface interparticle distance of ∼7.5 nm, equivalent to ∼1.5 times the thickness of a protein shell. We propose a scenario in which VLP generation may take place through monomer exchange between aggregated particles with defect-ridden or incomplete shells, leading to the formation of stable icosahedral shells, which eventually bud off the aggregate. Together with results from previous works, the findings highlight the astonishing versatility of plant virus capsid protein assembly. This previously unknown mechanism for VLP formation has features that may have relevance for the crowded environment characterizing virus factories in the cell.
Collapse
Affiliation(s)
- Andrey G Malyutin
- Department of Chemistry, Indiana University , 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | |
Collapse
|
12
|
Nemecek D, Stepanek J, Thomas GJ. Raman Spectroscopy of Proteins and Nucleoproteins. ACTA ACUST UNITED AC 2013; Chapter 17:Unit17.8. [DOI: 10.1002/0471140864.ps1708s71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniel Nemecek
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda Maryland
- Central European Institute of Technology, Masaryk University Brno Czech Republic
| | - Josef Stepanek
- Charles University in Prague, Faculty of Mathematics and Physics, Institute of Physics Prague Czech Republic
| | - George J. Thomas
- School of Biological Sciences, University of Missouri‐Kansas City Kansas City Missouri
| |
Collapse
|
13
|
Xu F, Zhao C, Li Y, Li J, Deng Y, Shi T. Exploring virus relationships based on virus-host protein-protein interaction network. BMC SYSTEMS BIOLOGY 2011; 5 Suppl 3:S11. [PMID: 22784617 PMCID: PMC3287566 DOI: 10.1186/1752-0509-5-s3-s11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Currently, several systems have been proposed to classify viruses and indicate the relationships between different ones, though each system has its limitations because of the complexity of viral origins and their rapid evolution rate. We hereby propose a new method to explore the relationships between different viruses. Method A new method, which is based on the virus-host protein-protein interaction network, is proposed in this paper to categorize viruses. The distances between 114 human viruses, including 48 HIV-1 and HIV-2 viruses, are estimated according to the protein-protein interaction network between these viruses and humans. Conclusions/significance The results demonstrated that our method can disclose not only relationships consistent with the taxonomic results of currently used systems of classification but also the potential relationships that the current virus classification systems have not revealed. Moreover, the method points to a new direction where the functional relationships between viruses and hosts can be used to explore the virus relationships on a systematic level.
Collapse
Affiliation(s)
- Feng Xu
- The Center for Bioinformatics and Computational Biology and Institute of Biomedical Sciences, School of Life Science, East China Normal University, Shanghai, 200241, China
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.
Collapse
|
15
|
Fu CY, Wang K, Gan L, Lanman J, Khayat R, Young MJ, Jensen GJ, Doerschuk PC, Johnson JE. In vivo assembly of an archaeal virus studied with whole-cell electron cryotomography. Structure 2010; 18:1579-86. [PMID: 21134637 PMCID: PMC3042139 DOI: 10.1016/j.str.2010.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 09/22/2010] [Accepted: 10/01/2010] [Indexed: 01/26/2023]
Abstract
We applied whole-cell electron cryotomography to the archaeon Sulfolobus infected by Sulfolobus turreted icosahedral virus (STIV), which belongs to the PRD1-Adeno lineage of dsDNA viruses. STIV infection induced the formation of pyramid-like protrusions with sharply defined facets on the cell surface. They had a thicker cross-section than the cytoplasmic membrane and did not contain an exterior surface protein layer (S-layer). Intrapyramidal bodies often occupied the volume of the pyramids. Mature virions, procapsids without genome cores, and partially assembled particles were identified, suggesting that the capsid and inner membrane coassemble in the cytoplasm to form a procapsid. A two-class reconstruction using a maximum likelihood algorithm demonstrated that no dramatic capsid transformation occurred upon DNA packaging. Virions tended to form tightly packed clusters or quasicrystalline arrays while procapsids mostly scattered outside or on the edges of the clusters. The study revealed vivid images of STIV assembly, maturation, and particle distribution in cell.
Collapse
Affiliation(s)
- Chi-yu Fu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Kang Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, USA
| | - Lu Gan
- Division of Biology, California Institute of Technology, Pasadena, California, USA
| | - Jason Lanman
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Reza Khayat
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Mark J. Young
- Thermal Biology Institute, Montana State University, Bozeman, Montana, USA
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, Pasadena, California, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, USA
| | | | - John E. Johnson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
16
|
Chang JT, Schmid MF, Haase-Pettingell C, Weigele PR, King JA, Chiu W. Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection. J Mol Biol 2010; 402:731-40. [PMID: 20709082 PMCID: PMC3164490 DOI: 10.1016/j.jmb.2010.07.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/26/2010] [Accepted: 07/29/2010] [Indexed: 01/12/2023]
Abstract
The efficient mechanism by which double-stranded DNA bacteriophages deliver their chromosome across the outer membrane, cell wall, and inner membrane of Gram-negative bacteria remains obscure. Advances in single-particle electron cryomicroscopy have recently revealed details of the organization of the DNA injection apparatus within the mature virion for various bacteriophages, including epsilon15 (ɛ15) and P-SSP7. We have used electron cryotomography and three-dimensional subvolume averaging to capture snapshots of ɛ15 infecting its host Salmonella anatum. These structures suggest the following stages of infection. In the first stage, the tailspikes of ɛ15 attach to the surface of the host cell. Next, ɛ15's tail hub attaches to a putative cell receptor and establishes a tunnel through which the injection core proteins behind the portal exit the virion. A tube spanning the periplasmic space is formed for viral DNA passage, presumably from the rearrangement of core proteins or from cellular components. This tube would direct the DNA into the cytoplasm and protect it from periplasmic nucleases. Once the DNA has been injected into the cell, the tube and portal seals, and the empty bacteriophage remains at the cell surface.
Collapse
Affiliation(s)
- Juan T. Chang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F. Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Peter R. Weigele
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan A. King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Park SH, Marassi FM, Black D, Opella SJ. Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. Biophys J 2010; 99:1465-74. [PMID: 20816058 PMCID: PMC2931714 DOI: 10.1016/j.bpj.2010.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/18/2010] [Accepted: 06/04/2010] [Indexed: 11/16/2022] Open
Abstract
The three-dimensional structure of the membrane-bound form of the major coat protein of Pf1 bacteriophage was determined in phospholipid bilayers using orientation restraints derived from both solid-state and solution NMR experiments. In contrast to previous structures determined solely in detergent micelles, the structure in bilayers contains information about the spatial arrangement of the protein within the membrane, and thus provides insights to the bacteriophage assembly process from membrane-inserted to bacteriophage-associated protein. Comparisons between the membrane-bound form of the coat protein and the previously determined structural form found in filamentous bacteriophage particles demonstrate that it undergoes a significant structural rearrangement during the membrane-mediated virus assembly process. The rotation of the transmembrane helix (Q16-A46) around its long axis changes dramatically (by 160 degrees) to obtain the proper alignment for packing in the virus particles. Furthermore, the N-terminal amphipathic helix (V2-G17) tilts away from the membrane surface and becomes parallel with the transmembrane helix to form one nearly continuous long helix. The spectra obtained in glass-aligned planar lipid bilayers, magnetically aligned lipid bilayers (bicelles), and isotropic lipid bicelles reflect the effects of backbone motions and enable the backbone dynamics of the N-terminal helix to be characterized. Only resonances from the mobile N-terminal helix and the C-terminus (A46) are observed in the solution NMR spectra of the protein in isotropic q > 1 bicelles, whereas only resonances from the immobile transmembrane helix are observed in the solid-state (1)H/(15)N-separated local field spectra in magnetically aligned bicelles. The N-terminal helix and the hinge that connects it to the transmembrane helix are significantly more dynamic than the rest of the protein, thus facilitating structural rearrangement during bacteriophage assembly.
Collapse
Key Words
- 6-o-pc, 1,2-di-o-hexyl-sn-glycero-3-phosphocholine
- 14-o-pc, 1,2-di-o-tetradecyl-sn-glycero-3-phosphocholine
- dc, dipolar coupling
- dhpc, 1,2-dihexanoyl-sn-glycero-3-phosphocholine
- dmpc, 1,2-dimyristoyl-sn-glycero-3-phosphocholine
- dopc, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- dopg, 1,2-dioleoyl-sn-glycerol-3-[phospho-rac-(1-glycerol)]
- csa, chemical shift anisotropy
- hetcor, heteronuclear chemical shift correlation
- hmqc, heteronuclear multiple quantum correlation
- hsqc, heteronuclear single quantum correlation
- ipap, in-phase anti-phase
- noesy, nuclear overhauser effect spectroscopy
- pisa, polar index slant angle
- rdc, residual dipolar coupling
- slf, separated local field
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | | | - David Black
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| |
Collapse
|
18
|
Chuan YP, Fan YY, Lua LHL, Middelberg APJ. Virus assembly occurs following a pH- or Ca2+-triggered switch in the thermodynamic attraction between structural protein capsomeres. J R Soc Interface 2010; 7:409-21. [PMID: 19625304 PMCID: PMC2842788 DOI: 10.1098/rsif.2009.0175] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 06/23/2009] [Indexed: 11/12/2022] Open
Abstract
Viral self-assembly is of tremendous virological and biomedical importance. Although theoretical and crystallographic considerations suggest that controlled conformational change is a fundamental regulatory mechanism in viral assembly, direct proof that switching alters the thermodynamic attraction of self-assembling components has not been provided. Using the VP1 protein of polyomavirus, we report a new method to quantitatively measure molecular interactions under conditions of rapid protein self-assembly. We show, for the first time, that triggering virus capsid assembly through biologically relevant changes in Ca(2+) concentration, or pH, is associated with a dramatic increase in the strength of protein molecular attraction as quantified by the second virial coefficient (B(22)). B(22) decreases from -2.3 x 10(-4) mol ml g(-2) (weak protein-protein attraction) to -2.4 x 10(-3) mol ml g(-2) (strong protein attraction) for metastable and Ca(2+)-triggered self-assembling capsomeres, respectively. An assembly-deficient mutant (VP1CDelta63) is conversely characterized by weak protein-protein repulsion independently of chemical change sufficient to cause VP1 assembly. Concomitant switching of both VP1 assembly and thermodynamic attraction was also achieved by in vitro changes in ammonium sulphate concentration, consistent with protein salting-out behaviour. The methods and findings reported here provide new insight into viral assembly, potentially facilitating the development of new antivirals and vaccines, and will open the way to a more fundamental physico-chemical description of complex protein self-assembly systems.
Collapse
Affiliation(s)
- Yap P. Chuan
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yuan Y. Fan
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Linda H. L. Lua
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- School of Chemical Engineering, Centre for Biomolecular Engineering, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
19
|
Krishna V, Noid WG, Voth GA. The multiscale coarse-graining method. IV. Transferring coarse-grained potentials between temperatures. J Chem Phys 2009; 131:024103. [PMID: 19603966 PMCID: PMC2721766 DOI: 10.1063/1.3167797] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 06/12/2009] [Indexed: 11/14/2022] Open
Abstract
This work develops a method for the construction of multiscale coarse-grained (MS-CG) force fields at different temperatures based on available atomistic data at a given reference temperature. The validity of this theory is demonstrated numerically by applying it to construct MS-CG models of the Lennard-Jones liquid and simple point charge water model systems.
Collapse
Affiliation(s)
- Vinod Krishna
- Department of Chemistry and Center for Biophysical Modeling and Simulation, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | | | | |
Collapse
|
20
|
Kang S, Poliakov A, Sexton J, Renfrow MB, Prevelige PE. Probing conserved helical modules of portal complexes by mass spectrometry-based hydrogen/deuterium exchange. J Mol Biol 2008; 381:772-84. [PMID: 18621389 PMCID: PMC2593103 DOI: 10.1016/j.jmb.2008.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 11/18/2022]
Abstract
The Double-stranded DNA bacteriophage P22 has a ring-shaped dodecameric complex composed of the 84 kDa portal protein subunit that forms the central channel of the phage DNA packaging motor. The overall morphology of the P22 portal complex is similar to that of the portal complexes of Phi29, SPP1, T3, T7 phages and herpes simplex virus. Secondary structure prediction of P22 portal protein and its threading onto the crystal structure of the Phi29 portal complexes suggested that the P22 portal protein complex shares conserved helical modules that were found in the dodecameric interfaces of the Phi29 portal complex. To identify the amino acids involved in intersubunit contacts in the P22 portal ring complexes and validate the threading model, we performed comparative hydrogen/deuterium exchange analysis of monomeric and in vitro assembled portal proteins of P22 and the dodecameric Phi29 portal. Hydrogen/deuterium exchange experiments provided evidence of intersubunit interactions in the P22 portal complex similar to those in the Phi29 portal that map to the regions predicted to be conserved helical modules.
Collapse
Affiliation(s)
- Sebyung Kang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- UAB Biomedical FT-ICR Mass Spectrometry Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Anton Poliakov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jennifer Sexton
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- UAB Biomedical FT-ICR Mass Spectrometry Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Peter E. Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- UAB Biomedical FT-ICR Mass Spectrometry Laboratory, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
21
|
Braga CACA, Carvalho D, Lara FA, Cortines JR, Moore SD, Prevelige PE, Foguel D. An Aggregation-Prone Intermediate Species Is Present in the Unfolding Pathway of the Monomeric Portal Protein of Bacteriophage P22: Implications for Portal Assembly. Biochemistry 2007; 46:7353-64. [PMID: 17542560 DOI: 10.1021/bi700006d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The head of the P22 bacteriophage is interrupted by a unique dodecameric portal vertex that serves as a conduit for the entrance and exit of the DNA. Here, the in vitro unfolding/refolding processes of the portal protein of P22 were investigated at different temperatures (1, 25, and 37 degrees C) through the use of urea and high hydrostatic pressure (HHP) combined with spectroscopic techniques. We have characterized an intermediate species, IU, which forms at 25 degrees C during unfolding or refolding of the portal protein in 2-4 M urea. IU readily forms amorphous aggregates, rendering the folding process irreversible. On the other hand, at 1 degrees C, a two-state process is observed (DeltaGf = -2.2 kcal/mol). When subjected to HHP at 25 or 37 degrees C, the portal monomer undergoes partial denaturation, also forming an intermediate species, which we call IP. IP also tends to aggregate but, differently from IU, aggregates into a ring-like structure as seen by size-exclusion chromatography and electron microscopy. Again, at 1 degrees C the unfolding induced by HHP proved to be reversible, with DeltaGf = -2.4 kcal/mol and DeltaV = 72 mL/mol. Interestingly, at 25 degrees C, the binding of the hydrophobic probe bis-ANS to the native portal protein destabilizes it and completely blocks its aggregation under HHP. These data are relevant to the process by which the portal protein assembles into dodecamers in vivo, since species such as IP must prevail over IU in order to guarantee the proper ring formation.
Collapse
Affiliation(s)
- Carolina A C A Braga
- Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Loveland AN, Nguyen NL, Brignole EJ, Gibson W. The amino-conserved domain of human cytomegalovirus UL80a proteins is required for key interactions during early stages of capsid formation and virus production. J Virol 2006; 81:620-8. [PMID: 17079329 PMCID: PMC1797439 DOI: 10.1128/jvi.01903-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Assembly of many spherical virus capsids is guided by an internal scaffolding protein or group of proteins that are often cleaved and eliminated in connection with maturation and incorporation of the genome. In cytomegalovirus there are at least two proteins that contribute to this scaffolding function; one is the maturational protease precursor (pUL80a), and the other is the assembly protein precursor (pUL80.5) encoded by a shorter genetic element within UL80a. Yeast GAL4 two-hybrid assays established that both proteins contain a carboxyl-conserved domain that is required for their interaction with the major capsid protein (pUL86) and an amino-conserved domain (ACD) that is required for their self-interaction and for their interaction with each other. In the work reported here, we demonstrate that when the ACD is deleted (deltaACD) or disrupted by a point mutation (L47A), the bacterially expressed mutant protein sediments as a monomer during rate-velocity centrifugation, whereas the wild-type protein sediments mainly as oligomers. We also show that the L47A mutation reduces the production of infectious virus by at least 90%, results in the formation of irregular nuclear capsids, gives rise to tube-like structures in the nucleus that resemble the capsid core in cross-section and contain UL80 proteins, slows nuclear translocation of the major capsid protein, and may slow cleavage by the maturational protease. We provide physical corroboration that mutating the ACD disrupts self-interaction of the UL80 proteins and biological support for the proposal that the ACD has a critical role in capsid assembly and production of infectious virus.
Collapse
Affiliation(s)
- Amy N Loveland
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe St., Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
23
|
Exploiting Ligand and Receptor Adaptability in Rational Drug Design Using Dynamics and Structure-Based Strategies. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_2006_087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
24
|
McGeoch DJ, Rixon FJ, Davison AJ. Topics in herpesvirus genomics and evolution. Virus Res 2006; 117:90-104. [PMID: 16490275 DOI: 10.1016/j.virusres.2006.01.002] [Citation(s) in RCA: 372] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 01/04/2006] [Accepted: 01/06/2006] [Indexed: 12/19/2022]
Abstract
Herpesviruses comprise an abundant, widely distributed group of large DNA viruses of humans and other vertebrates, and overall are among the most extensively studied large DNA viruses. Many herpesvirus genome sequences have been determined, and interpreted in terms of gene contents to give detailed views of both ubiquitous and lineage-specific functions. Availability of gene sequences has also enabled evaluations of evolutionary relationships. For herpesviruses of mammals, a robust phylogenetic tree has been constructed, which shows many features characteristic of synchronous development of virus and host lineages over large evolutionary timespans. It has also emerged that three distinct groupings of herpesviruses exist: the first containing viruses with mammals, birds and reptiles as natural hosts; the second containing viruses of amphibians and fish; and the third consisting of a single invertebrate herpesvirus. Within each of the first two groups, the genomes show clear evidence of descent from a common ancestor, but relationships between the three groups are extremely remote. Detailed analyses of capsid structures provide the best evidence for a common origin of the three groups. At a finer level, the structure of the capsid shell protein further suggests an element of common origin between herpesviruses and tailed DNA bacteriophages.
Collapse
Affiliation(s)
- Duncan J McGeoch
- Medical Research Council Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK.
| | | | | |
Collapse
|
25
|
Fu CY, Prevelige PE. Dynamic motions of free and bound O29 scaffolding protein identified by hydrogen deuterium exchange mass spectrometry. Protein Sci 2006; 15:731-43. [PMID: 16522798 PMCID: PMC2242489 DOI: 10.1110/ps.051921606] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the double-stranded DNA containing bacteriophages, hundreds of copies of capsid protein subunits polymerize to form icosahedral shells, called procapsids, into which the viral genome is subsequently packaged to form infectious virions. High assembly fidelity requires the assistance of scaffolding protein molecules, which interact with the capsid proteins to insure proper geometrical incorporation of subunits into the growing icosahedral lattices. The interactions between the scaffolding and capsid proteins are transient and are subsequently disrupted during DNA packaging. Removal of scaffolding protein is achieved either by proteolysis or alternatively by some form of conformational switch that allows it to dissociate from the capsid. To identify the switch controlling scaffolding protein association and release, hydrogen deuterium exchange was applied to Bacillus subtilis phage Ø29 scaffolding protein gp7 in both free and procapsid-bound forms. The H/D exchange experiments revealed highly dynamic and cooperative opening motions of scaffolding molecules in the N-terminal helix-loop-helix (H-L-H) region. The motions can be promoted by destabilizing the hydrophobic contact between two helices. At low temperature where high energy motions were damped, or in a mutant in which the helices were tethered through the introduction of a disulfide bond, this region displayed restricted cooperative opening motions as demonstrated by a switch in the exchange kinetics from correlated EX1 exchange to uncorrelated EX2 exchange. The cooperative opening rate was increased in the procapsid-bound form, suggesting this region might interact with the capsid protein. Its dynamic nature might play a role in the assembly and release mechanism.
Collapse
Affiliation(s)
- Chi-Yu Fu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
26
|
Abstract
Comparative analysis of capsid protein structures in the eukaryote-infecting herpesviruses (Herpesviridae) and the prokaryote-infecting tailed DNA bacteriophages (Caudovirales) revealed a characteristic fold that is restricted to these two virus lineages and is indicative of common ancestry. This fold not only serves as a major architectural element in capsid stability but also enables the conformational flexibility observed during viral assembly and maturation. On the basis of this and other emerging relationships, it seems increasingly likely that the very diverse collection of extant viruses may have arisen from a relatively small number of primordial progenitors.
Collapse
Affiliation(s)
- Matthew L Baker
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
27
|
Lee KK, Tsuruta H, Hendrix RW, Duda RL, Johnson JE. Cooperative reorganization of a 420 subunit virus capsid. J Mol Biol 2005; 352:723-35. [PMID: 16095623 DOI: 10.1016/j.jmb.2005.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 07/05/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
The complex protein capsids of many viruses exhibit dramatic reorganizations at critical stages in their life-cycle. Here, time-resolved solution X-ray scattering was used to study a dynamic, large-scale conformational maturation of the 420 subunit, 13 MDa, icosahedrally symmetric HK97 bacteriophage capsid. Isoscattering points in the time-resolved scattering patterns and singular value decomposition revealed that the expansion occurs as a cooperative, two-state reaction. The analysis demonstrates that the population shift from Prohead-II to Expansion Intermediate I, EI-I (60 A larger than Prohead-II) occurs in minutes, but does not reveal the time required for individual transitions that occur stochastically. Any intermediate forms that may be traversed during this conversion are unstable and do not constitute an appreciable population of the ensemble of particles. In an energetic landscape view, particles must undergo an energy barrier-crossing event in order to successfully convert from Prohead-II to EI-I. This implies that the particles "hop" over the energy barrier stochastically as they individually attain an expansion-active state. Interestingly, systematic deviations from single-exponential kinetics were observed for the population shift. This may indicate that in undergoing the irreversible conversion from Prohead-II to EI-I, particles are subject to a complex energy landscape that links the initial and final particle forms.
Collapse
Affiliation(s)
- Kelly K Lee
- Department of Molecular Biology & Center for Integrative Molecular Biosciences, The Scripps Research Institute, MB-31, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
28
|
Vegge CS, Brøndsted L, Neve H, Mc Grath S, van Sinderen D, Vogensen FK. Structural characterization and assembly of the distal tail structure of the temperate lactococcal bacteriophage TP901-1. J Bacteriol 2005; 187:4187-97. [PMID: 15937180 PMCID: PMC1151708 DOI: 10.1128/jb.187.12.4187-4197.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tail structures of bacteriophages infecting gram-positive bacteria are largely unexplored, although the phage tail mediates the initial interaction with the host cell. The temperate Lactococcus lactis phage TP901-1 of the Siphoviridae family has a long noncontractile tail with a distal baseplate. In the present study, we investigated the distal tail structures and tail assembly of phage TP901-1 by introducing nonsense mutations into the late transcribed genes dit (orf46), tal(TP901-1) (orf47), bppU (orf48), bppL (orf49), and orf50. Transmission electron microscopy examination of mutant and wild-type TP901-1 phages showed that the baseplate consisted of two different disks and that a central tail fiber is protruding below the baseplate. Evaluation of the mutant tail morphologies with protein profiles and Western blots revealed that the upper and lower baseplate disks consist of the proteins BppU and BppL, respectively. Likewise, Dit and Tal(TP901-1) were shown to be structural tail proteins essential for tail formation, and Tal(TP901-1) was furthermore identified as the tail fiber protein by immunogold labeling experiments. Determination of infection efficiencies of the mutant phages showed that the baseplate is fundamental for host infection and the lower disk protein, BppL, is suggested to interact with the host receptor. In contrast, ORF50 was found to be nonessential for tail assembly and host infection. A model for TP901-1 tail assembly, in which the function of eight specific proteins is considered, is presented.
Collapse
Affiliation(s)
- Christina S Vegge
- Department of Food Science, The Royal Veterinary and Agricultural University, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
29
|
Benevides JM, Overman SA, Thomas GJ. Raman Spectroscopy of Proteins. ACTA ACUST UNITED AC 2004; Chapter 17:17.8.1-17.8.35. [DOI: 10.1002/0471140864.ps1708s33] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James M. Benevides
- University of Missouri‐Kansas City School of Biological Sciences Kansas City Missouri
| | - Stacy A. Overman
- University of Missouri‐Kansas City School of Biological Sciences Kansas City Missouri
| | - George J. Thomas
- University of Missouri‐Kansas City School of Biological Sciences Kansas City Missouri
| |
Collapse
|
30
|
Lee KK, Gan L, Tsuruta H, Hendrix RW, Duda RL, Johnson JE. Evidence that a Local Refolding Event Triggers Maturation of HK97 Bacteriophage Capsid. J Mol Biol 2004; 340:419-33. [PMID: 15210344 DOI: 10.1016/j.jmb.2004.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 05/05/2004] [Accepted: 05/05/2004] [Indexed: 11/29/2022]
Abstract
Bacteriophage capsids are a striking example of a robust yet dynamic genome delivery vehicle. Like most phages, HK97 undergoes a conformational maturation that converts a metastable Prohead into the mature Head state. In the case of HK97, maturation involves a significant expansion of the capsid and concomitant cross-linking of capsid subunits. The final state, termed Head-II, is a 600 angstroms diameter icosahedral structure with catenated subunit rings. Cryo-EM, small angle X-ray scattering (SAXS), and biochemical assays were used previously to characterize the initial (Prohead-II) and final states (Head-II) as well as four maturation intermediates. Here we extend the characterization of the acid-induced expansion of HK97 in vitro by monitoring changes in intrinsic fluorescence, circular dichroism (CD), and SAXS. We find that the greatest changes in all observables occur at an early stage of maturation. Upon acidification, fluorescence emissions from HK97 exhibit a blueshift and decrease in intensity. These spectral changes reveal two kinetic phases of the expansion reaction. The early phase exhibits sensitivity to pH, increasing in rate nearly 200-fold when acidification pH is lowered from 4.5 to 3.9. The second, slower phase reported by fluorescence is relatively insensitive to pH. Time-resolved SAXS experiments report an increase in overall particle dimension that parallels the fluorescence changes for the early phase. Native agarose gel assays corroborated this finding. By contrast, probes of CD at far-UV indicate that secondary structural changes precede the early expansion phase reported by SAXS and fluorescence. Based on the crystallographic structure of Head-II and the pseudo-atomic model of Prohead-II, we interpret these changes as reflecting the conversion of subunit N-terminal arms (N-arm) from unstructured polypeptide to the mixture of beta-strand and beta-turn observed in the Head-II crystal structure. Refolding of the N-arm may thus represent the conformational trigger that initiates the irreversible expansion of the phage capsid.
Collapse
Affiliation(s)
- Kelly K Lee
- Department of Molecular Biology and Center for Integrative Molecular Biosciences, The Scripps Research Institute, MB-31, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
31
|
Rodríguez-Casado A, Thomas GJ. Structural roles of subunit cysteines in the folding and assembly of the DNA packaging machine (portal) of bacteriophage P22. Biochemistry 2003; 42:3437-45. [PMID: 12653547 DOI: 10.1021/bi020678m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA packaging machine (portal assembly) of bacteriophage P22 is constructed from 12 copies of a multidomain 725-residue subunit comprising a complex alpha/beta fold. The portal subunit contains four cysteines (Cys 153, Cys 173, Cys 283, and Cys 516), which produce distinctive Raman markers in the spectral interval 2500-2600 cm(-1) originating from S-H bond-stretching vibrations diagnostic of S-H...X hydrogen-bonding interactions. The Raman spectrum is unique in the capability to characterize cysteine sulfhydryl interactions in proteins and shows that portal cysteine environments are significantly altered by assembly (Rodriguez-Casado et al. (2001) Biochemistry 40, 13583-13591). We have employed site-directed mutagenesis, size-exclusion chromatography, and Raman difference spectroscopy to characterize the roles of portal cysteines in subunit folding and dodecamer assembly. The stability of the portal monomer is severely reduced by a Cys --> Ser point mutation introduced at either residue 173 or 516. In the case of C516S, the destabilized monomer still forms portal rings, as visualized by negative-stain electron microscopy, whereas portal ring formation cannot be detected for C173S, which forms aberrant aggregates. The C283S mutant is a hyperstable monomer that is defective in portal ring formation. Interestingly, Cys 283 is suggested by secondary structure homology with the phi29 portal to be within a domain involved in DNA translocation. Conversely, the phenotype of the C153S mutant is close to that of the wild-type protein, implying that the sulfhydryl moiety of Cys 153 is not essential to formation of the native subunit fold and productive assembly dynamics. The present results demonstrate that cysteines of the P22 portal protein span a wide range of sulfhydryl hydrogen-bonding strengths in the wild-type assembly, that three of the four sulfhydryls play key roles in portal protein stability and assembly kinetics, and that substitution of a mutant seryl interaction (O-H...X) for a wild-type cysteinyl interaction (S-H...X) can either stabilize or destabilize the native fold depending upon sequence context.
Collapse
Affiliation(s)
- Arantxa Rodríguez-Casado
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 64110-2499, USA
| | | |
Collapse
|
32
|
Rodríguez-Casado A, Moore SD, Prevelige PE, Thomas GJ. Structure of bacteriophage P22 portal protein in relation to assembly: investigation by Raman spectroscopy. Biochemistry 2001; 40:13583-91. [PMID: 11695906 DOI: 10.1021/bi0110488] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salmonella phage P22, which serves as an assembly paradigm for icosahedral double-stranded DNA viruses, packages its viral genome through a capsid channel (portal) comprising 12 copies of a 725-residue subunit. Secondary and tertiary structures of the portal subunit in monomeric and dodecameric states have been investigated by Raman spectroscopy using a His6-tagged recombinant protein that self-assembles in vitro [Moore, S. D., and Prevelige, P. E., Jr. (2001) J. Biol. Chem. 276, 6779-6788]. The portal protein exhibits Raman secondary structure markers typical of a highly alpha-helical subunit fold that is little perturbed by assembly. On the other hand, Raman markers of subunit side chains change dramatically with assembly, an indication of extensive changes in side chain environments. The cysteinyl Raman signature of the portal consists of a complex pattern of sulfhydryl stretching bands, revealing diverse hydrogen-bonding states for the four S-H groups per subunit (Cys 153, Cys 173, Cys 283, and Cys 516). Upon assembly, the population of strongly hydrogen-bonded S-H groups decreases, while the population of weakly hydrogen-bonded S-H groups increases, implying that specific intrasubunit S-H.X hydrogen bonds must be weakened to effect dodecamer assembly and that the molecular mechanism involves reorganization of subunit domains without appreciable changes in domain conformations. Comparison with other viral protein assemblies suggests an assembly process not requiring metastable intermediates. The recently published X-ray structure of the phi29 portal [Simpson, A. A., et al. (2000) Nature 408, 745-750] shows that residues 125-225 lining the channel surface form alpha-helical modules spaced by short beta-strands and turns; a surprisingly close secondary structure homology is predicted for residues 240-350 of the P22 portal, despite no apparent sequence homology. This motif is proposed as an evolutionarily conserved domain involved in DNA translocation.
Collapse
Affiliation(s)
- A Rodríguez-Casado
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | | | |
Collapse
|
33
|
Baxter MK, Gibson W. Cytomegalovirus basic phosphoprotein (pUL32) binds to capsids in vitro through its amino one-third. J Virol 2001; 75:6865-73. [PMID: 11435566 PMCID: PMC114414 DOI: 10.1128/jvi.75.15.6865-6873.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytomegalovirus (CMV) basic phosphoprotein (BPP) is a component of the tegument. It remains with the nucleocapsid fraction under conditions that remove most other tegument proteins from the virion, suggesting a direct and perhaps tight interaction with the capsid. As a step toward localizing this protein within the molecular structure of the virion and understanding its function during infection, we have investigated the BPP-capsid interaction. In this report we present evidence that the BPP interacts selectively, through its amino one-third, with CMV capsids. Radiolabeled simian CMV (SCMV) BPP, synthesized in vitro, bound to SCMV B-capsids, and C-capsids to a lesser extent, following incubation with either isolated capsids or lysates of infected cells. Human CMV (HCMV) BPP (pUL32) also bound to SCMV capsids, and SCMV BPP likewise bound to HCMV capsids, indicating that the sequence(s) involved is conserved between the two proteins. Analysis of SCMV BPP truncation mutants localized the capsid-binding region to the amino one-third of the molecule--the portion of BPP showing the greatest sequence conservation between the SCMV and HCMV homologs. This general approach may have utility in studying the interactions of other proteins with conformation-dependent binding sites.
Collapse
Affiliation(s)
- M K Baxter
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
34
|
Metzler DE, Metzler CM, Sauke DJ. How Macromolecules Associate. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Zhao KN, Hengst K, Liu WJ, Liu YH, Liu XS, McMillan NA, Frazer IH. BPV1 E2 protein enhances packaging of full-length plasmid DNA in BPV1 pseudovirions. Virology 2000; 272:382-93. [PMID: 10873782 DOI: 10.1006/viro.2000.0348] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied determinants of efficient encapsidation of circular DNA, incorporating a PV early region DNA sequence (nt 584-1978) previously shown to enhance packaging of DNA within papillomavirus (PV)-like particles (VLPs). Insect coelomic cells (Sf-9) and cultured monkey kidney cells (Cos-1) were transfected with an 8-kb reporter plasmid incorporating the putative BPV packaging sequence and infected with BPV1 L1 and L2 recombinant baculovirus or vaccinia virus. Heavy (1.34 g/ml) and light (1.30 g/ml) VLPs were produced, and each packaged some of the input plasmid. In light VLPs, truncated plasmids, which nevertheless incorporated the PV-derived DNA packaging sequence, were more common than full-length plasmids. Packaging efficiency of the plasmid was estimated at 1 plasmid per 10(4) VLPs in both Cos-1 and Sf-9 cells. In each cell type, expression of the BPV1 early region protein E2 in trans doubled the quantity of heavy but not light VLPs and also increased the packaging efficiency of full-length circular plasmids by threefold in heavy VLPs. The resultant pseudovirions incorporated significant amounts of E2 protein. Pseudovirions, comprising plasmids packaged within heavy VLPs, mediated the delivery of packaged plasmid into Cos-1 cells, whereby "infectivity" was blocked by antisera to BPV1 L1, but not antisera to BPV1 E4. We conclude that (a) packaging of DNA within PV L1+L2 pseudovirions is enhanced by BPV1 E2 acting in trans, (b) E2 may be packaged with the pseudovirion, and (c) E2-mediated enhancement of packaging favors 8-kb plasmid incorporation over incorporation of shorter DNA sequences.
Collapse
Affiliation(s)
- K N Zhao
- Centre for Immunology and Cancer Research, University of Queensland, Woolloongabba, Queensland, 4102, Australia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Viruses of the family Herpesviridae are responsible for a diverse set of human diseases. The available treatments are largely ineffective, with the exception of a few drugs for treatment of herpes simplex virus (HSV) infections. For several members of this DNA virus family, advances have been made recently in the biochemistry and structural biology of the essential viral protease, revealing common features that may be possible to exploit in the development of a new class of anti-herpesvirus agents. The herpesvirus proteases have been identified as belonging to a unique class of serine protease, with a Ser-His-His catalytic triad. A new, single domain protein fold has been determined by X-ray crystallography for the proteases of at least three different herpesviruses. Also unique for serine proteases, dimerization has been shown to be required for activity of the cytomegalovirus and HSV proteases. The dimerization requirement seriously impacts methods needed for productive, functional analysis and inhibitor discovery. The conserved functional and catalytic properties of the herpesvirus proteases lead to common considerations for this group of proteases in the early phases of inhibitor discovery. In general, classical serine protease inhibitors that react with active site residues do not readily inactivate the herpesvirus proteases. There has been progress however, with activated carbonyls that exploit the selective nucleophilicity of the active site serine. In addition, screening of chemical libraries has yielded novel structures as starting points for drug development. Recent crystal structures of the herpesvirus proteases now allow more direct interpretation of ligand structure-activity relationships. This review first describes basic functional aspects of herpesvirus protease biology and enzymology. Then we discuss inhibitors identified to date and the prospects for their future development.
Collapse
Affiliation(s)
- L Waxman
- Department of Antiviral Research, Merck Research Laboratories, West Point, PA 19486, USA
| | | |
Collapse
|
37
|
LaPlante SR, Aubry N, Bonneau PR, Cameron DR, Lagacé L, Massariol MJ, Montpetit H, Plouffe C, Kawai SH, Fulton BD, Chen Z, Ni F. Human cytomegalovirus protease complexes its substrate recognition sequences in an extended peptide conformation. Biochemistry 1998; 37:9793-801. [PMID: 9657693 DOI: 10.1021/bi980555v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Substrate hydrolysis by human cytomegalovirus (HCMV) protease is essential to viral capsid assembly. The interaction of HCMV protease and the N-terminal cleavage products of the hydrolysis of R- and M-site oligopeptide substrate mimics (R and M, respectively, which span the P9-P1 positions) was studied by NMR methods. Protease-induced differential line broadening indicated that ligand binding is mediated by the P4-P1 amino acid residues of the peptides. A well-defined extended conformation of R from P1 through P4 when complexed to HCMV protease was evidenced by numerous transferred nuclear Overhauser effect (NOE) correlations for the peptide upon addition of the enzyme. NOE cross-peaks between the P4 and P5 side chains placing these two groups in proximity indicated a deviation from the extended conformation starting at P5. Similar studies carried out for the M peptide also indicated an extended peptide structure very similar to that of R, although the conformation of the P5 glycine could not be established. No obvious variation in structure between bound R and M (notably at P4, where the tyrosine of the R-site has been suggested to play a key role in ligand binding) could be discerned that might explain the observed differences in processing rates between R- and M-sequences. Kinetic studies, utilizing R- and M-site peptide substrates for which the P5 and P4 residues were separately exchanged, revealed that these positions had essentially no influence on the specificity constants (kcat/KM). In sharp contrast, substitution of the P2 residue of an M-site peptide changed its specificity constant to that of an R-site peptide substrate, and vice versa.
Collapse
Affiliation(s)
- S R LaPlante
- Biomolecular NMR Laboratory, Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bonneau PR, Plouffe C, Pelletier A, Wernic D, Poupart MA. Design of fluorogenic peptide substrates for human cytomegalovirus protease based on structure-activity relationship studies. Anal Biochem 1998; 255:59-65. [PMID: 9448842 DOI: 10.1006/abio.1997.2445] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human cytomegalovirus (HCMV) protease is a slow-processing enzyme in vitro and its characterization would be facilitated if more efficiently cleaved substrates were available. Here we describe the development of improved fluorogenic peptide substrates for this protease and demonstrate that its indolent nature can be overcome by appropriate modifications within existing substrates. Prior structure-activity studies have indicated that replacement of the Val-Val-Asn sequence corresponding to the P4-P2 residues of the maturation site of the enzyme by the optimized Tbg-Tbg-Asn(NMe2) sequence conferred significant binding to inhibitors (Tbg, t-butylglycine). Incorporation of this improved sequence in a variety of substrates invariably led to improved kinetic parameters compared to homologues containing the natural sequence only. For example, the substrate o-aminobenzoyl-Tbg-Tbg-Asn (NMe2)-Ala decreases Ser-Ser-Arg-Leu-Tyr(3-NO2)Arg-OH (2) displayed a kcat/K(m) value of 15,940 M-1 s-1 i.e., more than 60-fold greater than that of the equivalent, nonoptimized substrate 1 under identical conditions. This improved sequence also permitted the development of a sensitive 7-amino-4-methylcoumarin fluorogenic substrate 3 which represents the shortest HCMV protease substrate to date. The kinetic and photometric advantages of these various substrates are discussed along with specific applications.
Collapse
Affiliation(s)
- P R Bonneau
- Department of Biological Sciences, Bio-Méga Research Division, Boehringer Ingelheim (Canada) Ltd., Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
39
|
Abstract
Tailed bacteriophages have a common origin and constitute an order with three families, named Caudovirales. Their structured tail is unique. Tailed phages share a series of high-level taxonomic properties and show many facultative features that are unique or rare in viruses, for example, tail appendages and unusual bases. They share with other viruses, especially herpesviruses, elements of morphogenesis and life-style that are attributed to convergent evolution. Tailed phages present three types of lysogeny, exemplified by phages lambda, Mu, and P1. Lysogeny appears as a secondary property acquired by horizontal gene transfer. Amino acid sequence alignments (notably of DNA polymerases, integrases, and peptidoglycan hydrolases) indicate frequent events of horizontal gene transfer in tailed phages. Common capsid and tail proteins have not been detected. Tailed phages possibly evolved from small protein shells with a few genes sufficient for some basal level of productive infection. This early stage can no longer be traced. At one point, this precursor phage became perfected. Some of its features were perfect enough to be transmitted until today. It is tempting to list major present-day properties of tailed phages in the past tense to construct a tentative history of these viruses: 1. Tailed phages originated in the early Precambrian, long before eukaryotes and their viruses. 2. The ur-tailed phage, already a quite evolved virus, had an icosahedral head of about 60 nm in diameter and a long non-contractile tail with sixfold symmetry. The capsid contained a single molecule of dsDNA of about 50 kb, and the tail was probably provided with a fixation apparatus. Head and tail were held together by a connector. a. The particle contained no lipids, was heavier than most viruses to come, and had a high DNA content proportional to its capsid size (about 50%). b. Most of its DNA coded for structural proteins. Morphopoietic genes clustered at one end of the genome, with head genes preceding tail genes. Lytic enzymes were probably coded for. A part of the phage genome was nonessential and possibly bacterial. Were tailed phages general transductants since the beginning? 3. The virus infected its host from the outside, injecting its DNA. Replication involved transcription in several waves and formation of DNA concatemers. Novel phages were released by burst of the infected cell after lysis of host membranes by a peptidoglycan hydrolase (and a holin?). a. Capsids were assembled from a starting point, the connector, and around a scaffold. They underwent an elaborate maturation process involving protein cleavage and capsid expansion. Heads and tails were assembled separately and joined later. b. The DNA was cut to size and entered preformed capsids by a headful mechanism. 4. Subsequently, tailed phages diversified by: a. Evolving contractile or short tails and elongated heads. b. Exchanging genes or gene fragments with other phages. c. Becoming temperate by acquiring an integrase-excisionase complex, plasmid parts, or transposons. d. Acquiring DNA and RNA polymerases and other replication enzymes. e. Exchanging lysin genes with their hosts. f. Losing the ability to form concatemers as a consequence of acquiring transposons (Mu) or proteinprimed DNA polymerases (phi 29). Present-day tailed phages appear as chimeras, but their monophyletic origin is still inscribed in their morphology, genome structure, and replication strategy. It may also be evident in the three-dimensional structure of capsid and tail proteins. It is unlikely to be found in amino acid sequences because constitutive proteins must be so old that relationships were obliterated and most or all replication-, lysogeny-, and lysis-related proteins appear to have been borrowed. However, the sum of tailed phage properties and behavior is so characteristic that tailed phages cannot be confused with other viruses.
Collapse
Affiliation(s)
- H W Ackermann
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| |
Collapse
|
40
|
McKercher G, Bonneau PR, Lagacé L, Thibeault D, Massariol MJ, Krogsrud R, Lawetz C, McDonald PC, Cordingley MG. Improved purification protocol of the HSV-1 protease catalytic domain, using immunoaffinity. Biochem Cell Biol 1997. [DOI: 10.1139/o97-063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The catalytic domain of herpes simplex virus protease was expressed in baculovirus-infected cells and purified in milligram quantities by ion-exchange and size-exclusion chromatography. The usefulness of this material was limited by the presence of a contaminating proteolytic activity, which caused time-dependent degradation of the protease. As a result we decided to explore an alternative approach to purification. Specific monoclonal antibodies were produced and evaluated by surface plasmon resonance as ligands for immunoaffinity chromatography. One monoclonal antibody, 6H4, was chosen for coupling to an affinity support, and the resulting column allowed us to obtain a pure and stable enzyme. Immunoaffinity chromatography of herpes simplex virus type 1 protease resulted in successful elimination of the contaminating protease activity. Moreover the immunoaffinity column permitted the isolation of stable and pure enzyme in a one-column procedure.Key words: herpes virus protease, immunoaffinity chromatography, purification.
Collapse
|
41
|
Bonneau PR, Grand-Maître C, Greenwood DJ, Lagacé L, LaPlante SR, Massariol MJ, Ogilvie WW, O'Meara JA, Kawai SH. Evidence of a conformational change in the human cytomegalovirus protease upon binding of peptidyl-activated carbonyl inhibitors. Biochemistry 1997; 36:12644-52. [PMID: 9376371 DOI: 10.1021/bi970366x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of N-tert-butylacetyl-l-tert-butylglycyl-l-Ngamma, Ngamma-dimethylasparagyl-l-alanyl-derived inhibitors (trifluoromethyl ketone 1, pentafluoroethyl ketone, 2, methyl ketone 3, and alpha-ketoamide 4, with respective KI values of 1.1, 0.1, 2100, and 0.2 microM) of the human cytomegalovirus protease were used to study the effect of binding of peptidyl inhibitors on the intrinsic fluorescence and CD properties of the enzyme. In the presence of saturating concentrations of compounds 1, 2, and 4, an identical blue shift in the fluorescence maximum of the enzyme upon specific tryptophan excitation was observed relative to that of the free protease. In the case of the methyl ketone 3, whose inhibition of the enzyme does not involve formation of a covalent adduct as evidenced by 13C NMR studies of carbonyl-labeled inhibitors, the blue shift in the emission was also observed. For both compounds 1 and 2 which exhibit slow-binding kinetics, the observed rate constants for the slow onset of inhibition of substrate hydrolysis correlate well with the kobs values of the time-dependent change in the emission spectra. Studies employing a double mutant of HCMV protease Ala143Gln/Trp42Phe identified Trp-42 as the principal fluorescence reporter. Taken together with information provided by our recent elucidation of the crystallographic structure of the enzyme [Tong, L., Qian, C., Massariol, M.-J., Bonneau, P. R., Cordingley, M. G., & Lagacé, L. (1996) Nature 383, 272], these observations are consistent with the inhibition of HCMV protease by peptidyl ketones involving a conformational change of the protease. A mechanism involving a kon limited by dehydration of the hydrated species, followed by rapid ligand binding and a conformational change prior to covalent adduct formation, is proposed for activated inhibitors such as 1 and 2.
Collapse
Affiliation(s)
- P R Bonneau
- Department of Biochemistry, Bio-Méga Research Division, Boehringer Ingelheim (Canada) Ltd., Laval, Québec H7S 2G5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Production of an infectious herpes simplex virus (HSV) particle requires sequential progression of maturing virions through a series of complex assembly events. Capsids must be constructed in the nucleus, packaged with the viral genome, and transported to the nuclear periphery. They then bud into the nuclear membrane to acquire an envelope, traffic through the cytoplasm, and are released from the cell. Most of these phenomena are very poorly defined, and no suitable model system has previously been available to facilitate molecular analyses of genomic DNA packaging, capsid envelopment, and intracellular virion trafficking. We report the development of such an assay system for HSV type 1 (HSV-1). Using a reversible temperature-sensitive mutation in capsid assembly, we have developed conditions in which an accumulated population of immature capsids can be rapidly, efficiently, and synchronously chased to maturity. By assaying synchronized scaffold cleavage, DNA packaging, and acquisition of infectivity, we have demonstrated the kinetics with which these events occur. Kinetic and morphological features of intranuclear and extranuclear virion trafficking have similarly been examined by indirect immunofluorescence microscopy and electron microscopy. This system should prove a generally useful tool for the molecular dissection of many late events in HSV-1 biogenesis.
Collapse
Affiliation(s)
- G A Church
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | |
Collapse
|
43
|
Robertson BJ, McCann PJ, Matusick-Kumar L, Preston VG, Gao M. Na, an autoproteolytic product of the herpes simplex virus type 1 protease, can functionally substitute for the assembly protein ICP35. J Virol 1997; 71:1683-7. [PMID: 8995700 PMCID: PMC191231 DOI: 10.1128/jvi.71.2.1683-1687.1997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) protease and its substrate, the assembly protein ICP35, are involved in virion maturation. Both proteins are encoded by a single open reading frame but are translated independently from 3'-coterminal mRNAs of different sizes and are in frame. The herpesvirus shell assembles around an internal scaffold which is subsequently lost during packaging of the viral genome. The scaffold is composed of ICP35, which is the major component, and autoproteolytically processed forms of the viral protease containing sequences common to ICP35 (Nb). In the baculovirus system, HSV-1 intact capsids can be formed in the presence of the protease or ICP35, indicating that the protease may substitute for ICP35 (Thomsen et al., J. Virol. 68:2442-2457, 1994). This is further supported by the fact that ICP35, in contrast to the protease, is not absolutely essential for viral growth. The processed intermediate of the protease analogous to ICP35 is the 388-amino-acid (aa) protein, Na, which is an N-terminal 59-aa extension of the 329-aa ICP35. To directly examine whether Na can functionally substitute for ICP35 during viral replication, we first constructed a mutant virus, Na delta35, in which 35 aa from the N terminus of Na were deleted. Phenotypic analysis of the mutant showed that this deletion had no effect on protease function. The function of Na was further examined by construction of a plasmid expressing Na alone and testing its ability to complement the growth of the mutant Prb virus in the absence of ICP35. Our results demonstrate that Na can functionally substitute for ICP35 during viral replication.
Collapse
Affiliation(s)
- B J Robertson
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492-7660, USA
| | | | | | | | | |
Collapse
|
44
|
Cole JL. Characterization of human cytomegalovirus protease dimerization by analytical centrifugation. Biochemistry 1996; 35:15601-10. [PMID: 8952514 DOI: 10.1021/bi961719f] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human cytomegalovirus, a member of the herpesvirus family, encodes a maturational protease required for processing of the assembly protein and virus replication. The protease is synthesized as a precursor protein that undergoes autoproteolytic cleavage to yield a mature, 28-kDa enzyme. It has recently been demonstrated that mature human cytomegalovirus protease is capable of dimerization and that the dimer is the active species [Darke, P. L., Cole, J. L., Waxman, L., Hall, D. L., Sardana, M. K., & Kuo, L. C. (1996) J. Biol. Chem. 271, 7445-7449; Margosiak, S. A., Vanderpool, D. L., Sisson, W., Pinko, C., & Kan, C.-C. (1996) Biochemistry 35, 5300-5307]. Here, analytical equilibrium and velocity sedimentation measurements were used to define the thermodynamics of protease dimerization. Protease dimerization is well described by a homogeneous, reversible mass-action equilibrium. The apparent molecular weight of the protease decreases at higher protein concentrations, and good global fits to sedimentation equilibrium data require a positive value of the second virial coefficient, indicating that the protein exhibits thermodynamic nonideality. The magnitude of the nonideality is higher than expected on the basis of excluded volume and electrostatic effects and is not very sensitive to salt concentration, as would be expected for electrostatic effects. The dimer dissociation constants are in agreement with the values we previously determined by activity measurements and hydrodynamic techniques. Dimerization is enhanced by addition of glycerol or NaCl. The temperature dependence of the dimerization constant indicates that both delta H degree and delta S degree are negative, which is commonly observed in protein self-association reactions.
Collapse
Affiliation(s)
- J L Cole
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| |
Collapse
|
45
|
Gibson W, Baxter MK, Clopper KS. Cytomegalovirus "missing" capsid protein identified as heat-aggregable product of human cytomegalovirus UL46. J Virol 1996; 70:7454-61. [PMID: 8892863 PMCID: PMC190812 DOI: 10.1128/jvi.70.11.7454-7461.1996] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Capsids of human and simian strains of cytomegalovirus (HCMV and SCMV, respectively) have identified counterparts for all but one of the protein components of herpes simplex virus (HSV) capsids. The open reading frames (ORFs) for the CMV and HSV counterpart proteins are positionally homologous in the two genomes. The HSV capsid protein without a recognized counterpart in CMV is VP19c, a 50-kDa element of the intercapsomeric "triplex." VP19c is encoded by HSV ORF UL38, whose positional homolog in the HCMV genome is UL46. The predicted protein product of HCMV UL4A6, however, has essentially no amino acid sequence similarity to HSV VP19c, is only two-thirds as long, and was not recognized as a component of CMV capsids. To identify and learn more about the protein encoded by HCMV UL46, we have expressed it in insect cells from a recombinant baculovirus and tested for its presence in CMV-infected human cells and virus particles with two UL4A6-specific antipeptide antisera. Results presented here show that this HCMV protein (i) has a size of approximately 30 kDa as expressed in both recombinant baculovirus-infected insect cells and HCMV-infected human cells; (ii) has a homolog in SCMV; (iii) is a capsid component and is present in a 1:2 molar ratio with the minor capsid protein (mCP), encoded by UL85; and (iv) interacts with the mCP, which is also shown to interact with itself as demonstrated by the GAL4 two-hybrid system; and (v) aggregates when heated and does not enter the resolving gel during sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), a characteristic that accounts for it eluding detection until now. We call this protein the mCP-binding protein, and on the basis of the characteristics that it shares with HSV VP19c, we conclude that the HCMV mCP-binding protein is the functional as well as genetic homolog of HSV VP19c.
Collapse
Affiliation(s)
- W Gibson
- Virology Laboratories, Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
46
|
Beaudet-Miller M, Zhang R, Durkin J, Gibson W, Kwong AD, Hong Z. Virus-specific interaction between the human cytomegalovirus major capsid protein and the C terminus of the assembly protein precursor. J Virol 1996; 70:8081-8. [PMID: 8892933 PMCID: PMC190882 DOI: 10.1128/jvi.70.11.8081-8088.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We previously identified a minimal 12-amino-acid domain in the C terminus of the herpes simplex virus type 1 (HSV-1) scaffolding protein which is required for interaction with the HSV-1 major capsid protein. An alpha-helical structure which maximizes the hydropathicity of the minimal domain is required for the interaction. To address whether cytomegalovirus (CMV) utilizes the same strategy for capsid assembly, several glutathione S-transferase fusion proteins to the C terminus of the CMV assembly protein precursor were produced and purified from bacterial cells. The study showed that the glutathione S-transferase fusion containing 16 amino acids near the C-terminal end was sufficient to interact with the major capsid protein. Interestingly, no cross-interaction between HSV-1 and CMV could be detected. Mutation analysis revealed that a three-amino-acid region at the N-terminal side of the central Phe residue of the CMV interaction domain played a role in determining the viral specificity of the interaction. When this region was converted so as to correspond to that of HSV-1, the CMV assembly protein domain lost its ability to interact with the CMV major capsid protein but gained full interaction with the HSV-1 major capsid protein. To address whether the minimal interaction domain of the CMV assembly protein forms an alpha-helical structure similar to that in HSV-1, peptide competition experiments were carried out. The results showed that a cyclic peptide derived from the interaction domain with a constrained (alpha-helical structure competed for interaction with the major capsid protein much more efficiently than the unconstrained linear peptide. In contrast, a cyclic peptide containing an Ala substitution for the critical Phe residue did not compete for the interaction at all. The results of this study suggest that (i) CMV may have developed a strategy similar to that of HSV-1 for capsid assembly; (ii) the minimal interaction motif in the CMV assembly protein requires an alpha-helix for efficient interaction with the major capsid protein; and (iii) the Phe residue in the CMV minimal interaction domain is critical for interaction with the major capsid protein.
Collapse
Affiliation(s)
- M Beaudet-Miller
- Antiviral Chemotherapy, Schering-Plough Research Institute, Kenilworth, New Jersey 07033-0539, USA
| | | | | | | | | | | |
Collapse
|
47
|
Robertson BJ, McCann PJ, Matusick-Kumar L, Newcomb WW, Brown JC, Colonno RJ, Gao M. Separate functional domains of the herpes simplex virus type 1 protease: evidence for cleavage inside capsids. J Virol 1996; 70:4317-28. [PMID: 8676454 PMCID: PMC190364 DOI: 10.1128/jvi.70.7.4317-4328.1996] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) protease (Pra) and related proteins are involved in the assembly of viral capsids and virion maturation. Pra is a serine protease, and the active-site residue has been mapped to amino acid (aa) 129 (Ser). This 635-aa protease, encoded by the UL26 gene, is autoproteolytically processed at two sites, the release (R) site between amino acid residues 247 and 248 and the maturation (M) site between residues 610 and 611. When the protease cleaves itself at both sites, it releases Nb, the catalytic domain (N0), and the C-terminal 25 aa. ICP35, a substrate of the HSV-1 protease, is the product of the UL26.5 gene. As it is translated from a Met codon within the UL26 gene, ICP35 cd are identical to the C-terminal 329-aa sequence of the protease and are trans cleaved at an identical C-terminal site to generate ICP35 e,f and a 25-aa peptide. Only fully processed Pra (N0 and Nb) and ICP35 (ICP35 e,f) are present in B capsids, which are believed to be precursors of mature virions. Using an R-site mutant A247S virus, we have recently shown that this mutant protease retains enzymatic activity but fails to support viral growth, suggesting that the release of N0 is required for viral replication. Here we report that another mutant protease, with an amino acid substitution (Ser to Cys) at the active site, can complement the A247S mutant but not a protease deletion mutant. Cell lines expressing the active-site mutant protease were isolated and shown to complement the A247S mutant at the levels of capsid assembly, DNA packaging, and viral growth. Therefore, the complementation between the R-site mutant and the active-site mutant reconstituted wild-type Pra function. One feature of this intragenic complementation is that following sedimentation of infected-cell lysates on sucrose gradients, both N-terminally unprocessed and processed proteases were isolated from the fractions where normal B capsids sediment, suggesting that proteolytic processing occurs inside capsids. Our results demonstrate that the HSV-1 protease has distinct functional domains and some of these functions can complement in trans.
Collapse
Affiliation(s)
- B J Robertson
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492-7660, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Hong Z, Beaudet-Miller M, Durkin J, Zhang R, Kwong AD. Identification of a minimal hydrophobic domain in the herpes simplex virus type 1 scaffolding protein which is required for interaction with the major capsid protein. J Virol 1996; 70:533-40. [PMID: 8523566 PMCID: PMC189841 DOI: 10.1128/jvi.70.1.533-540.1996] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recent biochemical and genetic studies have demonstrated that an essential step of the herpes simplex virus type 1 capsid assembly pathway involves the interaction of the major capsid protein (VP5) with either the C terminus of the scaffolding protein (VP22a, ICP35) or that of the protease (Pra, product of UL26). To better understand the nature of the interaction and to further map the sequence motif, we expressed the C-terminal 30-amino-acid peptide of ICP35 in Escherichia coli as a glutathione S-transferase fusion protein (GST/CT). Purified GST/CT fusion proteins were then incubated with 35S-labeled herpes simplex virus type 1-infected cell lysates containing VP5. The interaction between GST/CT and VP5 was determined by coprecipitation of the two proteins with glutathione Sepharose beads. Our results revealed that the GST/CT fusion protein specifically interacts with VP5, suggesting that the C-terminal domain alone is sufficient for interaction with VP5. Deletion analysis of the GST/CT binding domain mapped the interaction to a minimal 12-amino-acid motif. Substitution mutations further revealed that the replacement of hydrophobic residues with charged residues in the core region of the motif abolished the interaction, suggesting that the interaction is a hydrophobic one. A chaotropic detergent, 0.1% Nonidet P-40, also abolished the interaction, further supporting the hydrophobic nature of the interaction. Computer analysis predicted that the minimal binding motif could form a strong alpha-helix structure. Most interestingly, the alpha-helix model maximizes the hydropathicity of the minimal domain so that all of the hydrophobic residues are centered around a Phe residue on one side of the alpha-helix. Mutation analysis revealed that the Phe residue is absolutely critical for the binding, since changes to Ala, Tyr, or Trp abrogated the interaction. Finally, in a peptide competition experiment, the C-terminal 25-amino-acid peptide, as well as a minimal peptide derived from the binding motif, competed with GST/CT for interaction with VP5. In addition, a cyclic analog of the minimal peptide which is designed to stabilize an alpha-helical structure competed more efficiently than the minimal peptide. The evidence suggests that the C-terminal end of ICP35 forms an alpha-helical secondary structure, which may bind specifically to a hydrophobic pocket in VP5.
Collapse
Affiliation(s)
- Z Hong
- Antiviral Chemotherapy Department, Schering-Plough Research Institute, Kenilworth, New Jersey 07033-0539, USA
| | | | | | | | | |
Collapse
|
49
|
Matusick-Kumar L, McCann PJ, Robertson BJ, Newcomb WW, Brown JC, Gao M. Release of the catalytic domain N(o) from the herpes simplex virus type 1 protease is required for viral growth. J Virol 1995; 69:7113-21. [PMID: 7474131 PMCID: PMC189631 DOI: 10.1128/jvi.69.11.7113-7121.1995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) protease and its substrate, ICP35, are involved in the assembly of viral capsids and required for efficient viral growth. The full-length protease (Pra) consists of 635 amino acid (aa) residues and is autoproteolytically processed at the release (R) site and the maturation (M) site, releasing the catalytic domain No (VP24), Nb (VP21), and a 25-aa peptide. To understand the biological importance of cleavage at these sites, we constructed several mutations in the cloned protease gene. Transfection assays were performed to determine the functional properties of these mutant proteins by their abilities to complement the growth of the protease deletion mutant m100. Our results indicate that (i) expression of full-length protease is not required for viral replication, since a 514-aa protease molecule lacking the M site could support viral growth; and that (ii) elimination of the R site by changing the residue Ala-247 to Ser abolished viral replication. To better understand the functions that are mediated by proteolytic processing at the R site of the protease, we engineered an HSV-1 recombinant virus containing a mutation at this site. Analysis of the mutant A247S virus demonstrated that (i) the mutant protease retained the ability to cleave at the M site and to trans process ICP35 but failed to support viral growth on Vero cells, demonstrating that release of the catalytic domain No from Pra is required for viral replication; and that (ii) only empty capsid structures were observed by electron microscopy in thin sections of A247S-infected Vero cells, indicating that viral DNA was not encapsidated. Our results demonstrate that processing of ICP35 is not sufficient to support viral replication and provide genetic evidence that the HSV-1 protease has nuclear functions other than enzymatic activity.
Collapse
Affiliation(s)
- L Matusick-Kumar
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492-7660, USA
| | | | | | | | | | | |
Collapse
|
50
|
Trus BL, Homa FL, Booy FP, Newcomb WW, Thomsen DR, Cheng N, Brown JC, Steven AC. Herpes simplex virus capsids assembled in insect cells infected with recombinant baculoviruses: structural authenticity and localization of VP26. J Virol 1995; 69:7362-6. [PMID: 7474170 PMCID: PMC189670 DOI: 10.1128/jvi.69.11.7362-7366.1995] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recently, recombinant baculoviruses have been used to show that expression of six herpes simplex virus type 1 genes results in the formation of capsid-like particles. We have applied cryoelectron microscopy and three-dimensional image reconstruction to establish their structural authenticity to a resolution of approximately 2.7 nm. By comparing capsids assembled with and without the expression of gene UL35, we have confirmed the presence of six copies of its product, VP26 (12 kDa), around each hexon tip. However, VP26 is not present on pentons, indicating that the conformational differences between the hexon and penton states of the major capsid protein, VP5, extend to the VP26 binding site.
Collapse
Affiliation(s)
- B L Trus
- Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-2755, USA
| | | | | | | | | | | | | | | |
Collapse
|