1
|
Zhou H, Liu R, Xu Y, Fan J, Liu X, Chen L, Wei Q. Viscoelastic mechanics of living cells. Phys Life Rev 2025; 53:91-116. [PMID: 40043484 DOI: 10.1016/j.plrev.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 05/18/2025]
Abstract
In cell mechanotransduction, cells respond to external forces or to perceive mechanical properties of their supporting substrates by remodeling themselves. This ability is endowed by modulating cells' viscoelastic properties, which dominates over various complex cellular processes. The viscoelasticity of living cells, a concept adapted from rheology, exhibits substantially spatial and temporal variability. This review aims not only to discuss the rheological properties of cells but also to clarify the complexity of cellular rheology, emphasizing its dependence on both the size scales and time scales of the measurements. Like typical viscoelastic materials, the storage and loss moduli of cells often exhibit robust power-law rheological characteristics with respect to loading frequency. This intrinsic feature is consistent across cell types and is attributed to internal structures, such as cytoskeleton, cortex, cytoplasm and nucleus, all of which contribute to the complexity of cellular rheology. Moreover, the rheological properties of cells are dynamic and play a crucial role in various cellular and tissue functions. In this review, we focus on elucidating time- and size-dependent aspects of cell rheology, the origins of intrinsic rheological properties and how these properties adapt to cellular functions, with the goal of interpretation of rheology into the language of cell biology.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruye Liu
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yizhou Xu
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jierui Fan
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyue Liu
- Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China
| | - Longquan Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Qiang Wei
- State Key Laboratory of Polymer Materials and Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Wu L, Ramirez A, Vo ID, Haglund E, Alvarez JC. Can Electroactive Tracer Molecules Reveal Viscoelastic Structure by Measuring Non-Fickian Diffusion? Angew Chem Int Ed Engl 2025; 64:e202425114. [PMID: 39977278 DOI: 10.1002/anie.202425114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 02/22/2025]
Abstract
We find that viscous and viscoelastic fluids are distinguishable by gauging Non-Fickian diffusion of dissolved electroactive molecules. Typically, such fluids are differentiated by measuring the mean-squared-displacement <Δr2> of embedded tracer particles (~1 μm) diffusing over time (t). From the relationship <Δr2>=6Dtα (D=particle diffusivity), log plots of <Δr2>vs.tα reveal regimes encoded in the slope α. For Fickian diffusion α=1, whereas α<1 and α>1, indicate Non-Fickian sub- and super-diffusion, respectively. Here, we electrolyzed redox reporters as molecular tracers in selected fluids. The current (I) relationship I ∝ ${\propto }$ v1/2 (v=scan-rate) was recast as I2vs.1/tα to introduce α as Non-Fickian quantifier in log plots. When viscosity increased at high concentration of small-molecules, D for the redox reporter declined but α remained constant at ~1 (Fickian). In contrast, both D and α(<1) decreased in viscoelastic hydrogels confirming a molecular sub-diffusive regime. These results agree with particle microrheology on the same fluid types using optical methods that are inapplicable to molecules. By quantifying Non-Fickian diffusion of electroactive molecular tracers, our method can uncover diffusion-structure relationships to identify regulators in neurodegenerative liquid-solid transitions of protein aggregates. Unlike tracer particles, the diffusivity of tracer molecules is controlled by the applied potential and electrode size.
Collapse
Affiliation(s)
- Lei Wu
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main St., Richmond, VA, 23284, USA
| | - Alfonso Ramirez
- Departamento de Quimica, Universidad del Cauca, Popayan, Colombia
| | - Ivy D Vo
- Chemistry Department, University of Hawaii Manoa, 2545 McCarthy Mall, Honolulu, 96822, USA
| | - Ellinor Haglund
- Chemistry Department, University of Hawaii Manoa, 2545 McCarthy Mall, Honolulu, 96822, USA
| | - Julio C Alvarez
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main St., Richmond, VA, 23284, USA
| |
Collapse
|
3
|
Kesenci Y, Boquet-Pujadas A, Unser M, Olivo-Marin JC. Estimation of Stiffness Maps in Deforming Cells Through Optical Flow With Bounded Curvature. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:1400-1415. [PMID: 39514351 DOI: 10.1109/tmi.2024.3494050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The stiffness of cells and of their nuclei is a biomarker of several pathological conditions. Current measurement methods rely on invasive physical probes that yield one or two stiffness values for the whole cell. However, the internal distribution of cells is heterogeneous. We propose a framework to estimate maps of intracellular and intranuclear stiffness inside deforming cells from fluorescent image sequences. Our scheme requires the resolution of two inverse problems. First, we use a novel optical-flow method that penalizes the nuclear norm of the Hessian to favor deformations that are continuous and piecewise linear, which we show to be compatible with elastic models. We then invert these deformations for the relative intracellular stiffness using a novel system of elliptic PDEs. Our method operates in quasi-static conditions and can still provide relative maps even in the absence of knowledge about the boundary conditions. We compare the accuracy of both methods to the state of the art on simulated data. The application of our method to real data of different cell strains allows us to distinguish different regions inside their nuclei.
Collapse
|
4
|
Pei JH, Maes C. Induced friction on a probe moving in a nonequilibrium medium. Phys Rev E 2025; 111:L032101. [PMID: 40247552 DOI: 10.1103/physreve.111.l032101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/11/2025] [Indexed: 04/19/2025]
Abstract
Using a powerful combination of projection-operator method and path-space response theory, we derive the fluctuation dynamics of a slow inertial probe coupled to a steady nonequilibrium medium under the assumption of time-scale separation. The nonequilibrium is realized by external nongradient driving on the medium particles or by their (athermal) active self-propulsion. The resulting friction on the probe is an explicit time correlation for medium observables and is decomposed into two terms: one entropic, proportional to the noise variance as in the Einstein relation for equilibrium media, and a frenetic term that can take both signs. As an illustration, we give the exact expressions for the linear friction coefficient and noise amplitude of a probe in a rotating run-and-tumble medium. We find a transition to absolute negative probe friction as the nonequilibrium medium exhibits sufficient and persistent rotational current. There, the run-away of the probe to high speeds realizes a nonequilibrium-induced acceleration. Simulations show that its speed finally saturates, yielding a symmetric stationary probe-momentum distribution with two peaks.
Collapse
Affiliation(s)
- Ji-Hui Pei
- KU Leuven, Department of Physics and Astronomy, 3000, Belgium
- Peking University, School of Physics, Beijing 100871, China
| | - Christian Maes
- KU Leuven, Department of Physics and Astronomy, 3000, Belgium
| |
Collapse
|
5
|
Ray D, Sinha DK. Dynamic crosstalk between cytoskeletal filaments regulates dorsoventral cytoplasmic mechanics. J Cell Sci 2025; 138:JCS263464. [PMID: 39886815 DOI: 10.1242/jcs.263464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
The cytoplasm exhibits viscoelastic properties, displaying both solid and liquid-like behaviour, and can actively regulate its mechanical attributes. The cytoskeleton is a major regulator among the numerous factors influencing cytoplasmic mechanics. We explore the interdependence of various cytoskeletal filaments and the impact of their density on cytoplasmic viscoelasticity. The heterogeneous distribution of these filaments gives rise to polarised mechanical properties of the cytoplasm along the dorsoventral axis. Actin filament disassembly softens the ventral cytoplasm while stiffening the mid cytoplasm, due to increased vimentin filament assembly. Disruption of microtubules or depletion of vimentin softens both the ventral and mid cytoplasm. Cytochalasin D (Cyto D) treatment results in a localised increase of vimentin assembly in the mid cytoplasm, which is dependent on the cytolinker plectin. Nocodazole treatment has a negligible effect on F-actin distribution but significantly alters the spatial arrangement of vimentin. We demonstrate that Cyto D treatment upregulates vimentin expression via reactive oxygen species-mediated activation of NF-κΒ. This article investigates how different cytoskeletal filaments influence the rheological characteristics of various cytoplasmic regions.
Collapse
Affiliation(s)
- Dipanjan Ray
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Deepak Kumar Sinha
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
6
|
Brizioli M, Escobedo-Sánchez MA, McCall PM, Roichman Y, Trappe V, Gardel ML, Egelhaaf SU, Giavazzi F, Cerbino R. One- and two-particle microrheology of soft materials based on optical-flow image analysis. SOFT MATTER 2025; 21:1373-1381. [PMID: 39865872 PMCID: PMC11770286 DOI: 10.1039/d4sm01390e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
Particle-tracking microrheology probes the rheology of soft materials by accurately tracking an ensemble of embedded colloidal tracer particles. One-particle analysis, which focuses on the trajectory of individual tracers is ideal for homogeneous materials that do not interact with the particles. By contrast, the characterization of heterogeneous, micro-structured materials or those where particles interact directly with the medium requires a two-particle analysis that characterizes correlations between the trajectories of distinct particle pairs. Here, we propose an optical-flow image analysis as an alternative to the tracking-based algorithms to extract one and two-particle microrheology information from video microscopy images acquired using diverse imaging contrast modalities. This technique, termed optical-flow microrheology (OFM), represents a high-throughput, operator-free approach for the characterization of a broad range of soft materials, making microrheology accessible to a wider scientific community.
Collapse
Affiliation(s)
- Matteo Brizioli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via F.lli Cervi 93, 20090 Segrate, Italy.
| | - Manuel A Escobedo-Sánchez
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Patrick M McCall
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Yael Roichman
- J Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Veronique Trappe
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | - Margaret L Gardel
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Fabio Giavazzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, via F.lli Cervi 93, 20090 Segrate, Italy.
| | - Roberto Cerbino
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna 1090, Austria.
| |
Collapse
|
7
|
Bergsma T, Steen A, Kamenz JL, Otto TA, Gallardo P, Veenhoff LM. Imaging-based quantitative assessment of biomolecular condensates in vitro and in cells. J Biol Chem 2025; 301:108130. [PMID: 39725032 PMCID: PMC11803855 DOI: 10.1016/j.jbc.2024.108130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The formation of biomolecular condensates contributes to intracellular compartmentalization and plays an important role in many cellular processes. The characterization of condensates is however challenging, requiring advanced biophysical or biochemical methods that are often less suitable for in vivo studies. A particular need for easily accessible yet thorough methods that enable the characterization of condensates across different experimental systems thus remains. To address this, we present PhaseMetrics, a semi-automated FIJI-based image analysis pipeline tailored for quantifying particle properties from microscopy data. Tested using the FG-domain of yeast nucleoporin Nup100, PhaseMetrics accurately assesses particle properties across diverse experimental setups, including particles formed in vitro in chemically defined buffers or Xenopus egg extracts and cellular systems. Comparing the results with biochemical assays, we conclude that PhaseMetrics reliably detects changes induced by various conditions, including the presence of polyethylene glycol, 1,6-hexanediol, or a salt gradient, as well as the activity of the molecular chaperone DNAJB6b and the protein disaggregase Hsp104. Given the flexibility in its analysis parameters, the pipeline should also apply to other condensate-forming systems, and we show its application in detecting TDP-43 particles. By enabling the accurate representation of the variability within the population and the detection of subtle changes at the single-condensate level, the method complements conventional biochemical assays. Combined, PhaseMetrics is an easily accessible, customizable pipeline that enables imaging-based quantitative assessment of biomolecular condensates in vitro and in cells, providing a valuable addition to the current toolbox.
Collapse
Affiliation(s)
- Tessa Bergsma
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Julia L Kamenz
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Tegan A Otto
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paola Gallardo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Torrino S, Oldham WM, Tejedor AR, Burgos IS, Nasr L, Rachedi N, Fraissard K, Chauvet C, Sbai C, O'Hara BP, Abélanet S, Brau F, Favard C, Clavel S, Collepardo-Guevara R, Espinosa JR, Ben-Sahra I, Bertero T. Mechano-dependent sorbitol accumulation supports biomolecular condensate. Cell 2025; 188:447-464.e20. [PMID: 39591966 PMCID: PMC11761381 DOI: 10.1016/j.cell.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/11/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Condensed droplets of protein regulate many cellular functions, yet the physiological conditions regulating their formation remain largely unexplored. Increasing our understanding of these mechanisms is paramount, as failure to control condensate formation and dynamics can lead to many diseases. Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo. We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol concentrations, but not glucose concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacological and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer-a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions.
Collapse
Affiliation(s)
- Stephanie Torrino
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrés R Tejedor
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Ignacio S Burgos
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Lara Nasr
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Nesrine Rachedi
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Kéren Fraissard
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Chaima Sbai
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Brendan P O'Hara
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Sophie Abélanet
- Université Côte d'Azur, CNRS, INSERM, IPMC, Valbonne, France
| | - Frederic Brau
- Université Côte d'Azur, CNRS, INSERM, IPMC, Valbonne, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, France
| | - Stephan Clavel
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | - Jorge R Espinosa
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.
| |
Collapse
|
9
|
Ding X, Hao H, Elnatan D, Alinaya PN, Kalra S, Kaur A, Kumari S, Holt LJ, Luxton GWG, Starr DA. Giant KASH proteins and ribosomes synergistically establish cytoplasmic biophysical properties in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632479. [PMID: 39829784 PMCID: PMC11741440 DOI: 10.1101/2025.01.10.632479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Understanding how cells control their biophysical properties during development remains a fundamental challenge. While cytoplasmic macromolecular crowding affects multiple cellular processes in single cells, its regulation in living animals remains poorly understood. Using genetically encoded multimeric nanoparticles for in vivo rheology, we discovered that C. elegans tissues maintain distinct cytoplasmic biophysical properties that differ from those observed across diverse systems, including bacteria, yeast species, and cultured mammalian cells. We identified two conserved mechanisms controlling cytoplasmic macromolecular diffusion: ribosome concentration, a known regulator of cytoplasmic crowding, works in concert with a previously unknown function for the giant KASH protein ANC-1 scaffolding the endoplasmic reticulum. These findings reveal mechanisms by which tissues establish and maintain distinct cytoplasmic biophysical properties, with implications for understanding cellular organization across species.
Collapse
Affiliation(s)
- Xiangyi Ding
- Department of Molecular and Cellular Biology, University of California, Davis; Davis, CA, USA
| | - Hongyan Hao
- Department of Molecular and Cellular Biology, University of California, Davis; Davis, CA, USA
| | - Daniel Elnatan
- Department of Molecular and Cellular Biology, University of California, Davis; Davis, CA, USA
| | - Patrick Neo Alinaya
- Department of Molecular and Cellular Biology, University of California, Davis; Davis, CA, USA
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, Davis; Davis, CA, USA
| | - Abby Kaur
- Department of Molecular and Cellular Biology, University of California, Davis; Davis, CA, USA
| | - Sweta Kumari
- Department of Molecular and Cellular Biology, University of California, Davis; Davis, CA, USA
| | - Liam J. Holt
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine; New Yor, NY, USA
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis; Davis, CA, USA
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis; Davis, CA, USA
| |
Collapse
|
10
|
Sinha B, Biswas A, Kaushik S, Soni GV. Cellular and Nuclear Forces: An Overview. Methods Mol Biol 2025; 2881:3-39. [PMID: 39704936 DOI: 10.1007/978-1-0716-4280-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state. These physical alterations of the cell nucleus, through yet-unknown complex steps, elicit physical and functional responses from the chromatin in the form of altered gene expression profiles. This mechanism of force/stress sensing by the cell and then its nuclear response has been shown to play a vital role in maintaining robust cellular homeostasis, controlling gene expression profiles during developmental phases as well as cell differentiation. In the last few years, there has been appreciable progress toward the identification of the molecular players responsible for force sensing. However, the actual sensing mechanism of cell surface-bound force sensors and more importantly cascading of the signals, both physical (via cytosolic force sensing elements such as microtubule and actin framework) as well as chemical (cascade of biochemical signaling from cell surface to nuclear surface and further to the chromatin), inside the cell is poorly understood. In this chapter, we present a review of the currently known molecular players in cellular as well as nuclear force sensing repertoire and their possible mechanistic aspects. We also introduce various biophysical concepts and review some frequently used techniques that are used to describe the force/stress sensing and response of a cell. We hope that this will help in asking clearer questions and designing pointed experiments for better understanding of the force-dependent design principles of the cell surface, nuclear surface, and gene expression.
Collapse
Affiliation(s)
- Bidisha Sinha
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arikta Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Gautam V Soni
- Raman Research Institute, Bangalore, Karnataka, India.
| |
Collapse
|
11
|
Qiu Y, Gao T, Smith BR. Mechanical deformation and death of circulating tumor cells in the bloodstream. Cancer Metastasis Rev 2024; 43:1489-1510. [PMID: 38980581 PMCID: PMC11900898 DOI: 10.1007/s10555-024-10198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
The circulation of tumor cells through the bloodstream is a significant step in tumor metastasis. To better understand the metastatic process, circulating tumor cell (CTC) survival in the circulation must be explored. While immune interactions with CTCs in recent decades have been examined, research has yet to sufficiently explain some CTC behaviors in blood flow. Studies related to CTC mechanical responses in the bloodstream have recently been conducted to further study conditions under which CTCs might die. While experimental methods can assess the mechanical properties and death of CTCs, increasingly sophisticated computational models are being built to simulate the blood flow and CTC mechanical deformation under fluid shear stresses (FSS) in the bloodstream.Several factors contribute to the mechanical deformation and death of CTCs as they circulate. While FSS can damage CTC structure, diverse interactions between CTCs and blood components may either promote or hinder the next metastatic step-extravasation at a remote site. Overall understanding of how these factors influence the deformation and death of CTCs could serve as a basis for future experiments and simulations, enabling researchers to predict CTC death more accurately. Ultimately, these efforts can lead to improved metastasis-specific therapeutics and diagnostics specific in the future.
Collapse
Affiliation(s)
- Yunxiu Qiu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tong Gao
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science, and Engineering, East Lansing, MI, 48824, USA
| | - Bryan Ronain Smith
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
12
|
Korunova E, Sikirzhystki V, Twiss JL, Vasquez P, Shtutman M. Single Particle Tracking of Genetically Encoded Nanoparticles: Optimizing Expression for Cytoplasmic Diffusion Studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623896. [PMID: 39605363 PMCID: PMC11601445 DOI: 10.1101/2024.11.17.623896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Single particle tracking (SPT) is a powerful technique for probing the diverse physical properties of the cytoplasm. Genetically encoded nanoparticles provide an especially convenient tool for such investigations, as they can be expressed and tracked in cells via fluorescence. Among these, 40-nm GEMs provide a unique opportunity to explore the cytoplasm. Their size corresponds to that of ribosomes and big protein complexes, allowing us to investigate the effects of the cytoplasm on the diffusivity of these objects while excluding the influence of chemical interactions during stressful events and pathological conditions. However, it has been shown that cytoplasmic viscosity is tightly regulated and plays a crucial role in maintaining homeostasis during protein synthesis and degradation. Despite this, the effects of GEM expression levels on diffusivity remain largely uncharacterized in mammalian cells. To optimize the GEMs tracking and estimate GEMs-expression effects we constructed dox-inducible GEM expression system and compare with a previously reported constitutive expression system. The optimized level of GEMs expression increases the measured diffusivity from 0.29 ± 0.02 μm2/sec in GEMs-overexpressed cells to 0.35 ± 0.02 μm2/sec; improve homogeneity throughout the cell population; and facilitates particle tracking. We also improved the analyses of GEM diffusivity by applying effective diffusion coefficient while considering the type of motion and assessing the heterogeneity in the type of motion by calculating the standard deviations of particle displacements.
Collapse
Affiliation(s)
- Elizaveta Korunova
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina Columbia, SC 29208, USA
| | - Vitali Sikirzhystki
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina Columbia, SC 29208, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Paula Vasquez
- Department of Mathematics, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina Columbia, SC 29208, USA
| |
Collapse
|
13
|
Kale T, Khatri D, Basu J, Yadav SA, Athale CA. Quantification of cell shape, intracellular flows and transport based on DIC object detection and tracking. J Microsc 2024; 296:162-168. [PMID: 38571482 DOI: 10.1111/jmi.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/17/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Computational image analysis combined with label-free imaging has helped maintain its relevance for cell biology, despite the rapid technical improvements in fluorescence microscopy with the molecular specificity of tags. Here, we discuss some computational tools developed in our lab and their application to quantify cell shape, intracellular organelle movement and bead transport in vitro, using differential interference contrast (DIC) microscopy data as inputs. The focus of these methods is image filtering to enhance image gradients, and combining them with segmentation and single particle tracking (SPT). We demonstrate the application of these methods to Escherichia coli cell length estimation and tracking of densely packed lipid granules in Caenorhabditis elegans one-celled embryos, diffusing beads in solutions of different viscosities and kinesin-driven transport on microtubules. These approaches demonstrate how improvements to low-level image analysis methods can help obtain insights through quantitative cellular and subcellular microscopy.
Collapse
Affiliation(s)
- Tanvi Kale
- Division of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Dhruv Khatri
- Division of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Jashaswi Basu
- Division of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Shivani A Yadav
- Division of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Chaitanya A Athale
- Division of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| |
Collapse
|
14
|
Yang H, Wu X, Ge W, Wang S, Xu Y, Liu H, Liu J, Zhu D. Water/oil interfacial behaviors of soy hull polysaccharide revealed by molecular dynamics simulation and particle tracking microrheology. Int J Biol Macromol 2024; 277:134378. [PMID: 39097048 DOI: 10.1016/j.ijbiomac.2024.134378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/30/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The soy hull polysaccharide (SHP) exhibits excellent interfacial activity and holds potential as an emulsifier for emulsions. To reveal the behavior of SHP at the water/oil (W/O) interface in situ, molecular dynamics (MD) simulations and particle tracking microrheology were used in this study. The results of MD reveal that SHP molecular spontaneously move toward the interface and rhamnogalacturonan-I initiates this movement, while its galacturonic acids on it act as anchors to immobilize the SHP molecules at the W/O interface. Microrheology results suggest that SHP forms microgels at the W/O interface, with the lattices of the microgels continually undergoing dynamic changes. At low concentrations of SHP and short interfacial formation time, the network of the microgels is weak and dominated by viscous properties. However, when SHP reaches 0.75 % and the interfacial formation time is about 60 min, the microgels show perfect elasticity, which is beneficial for stabilizing emulsions.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xueli Wu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Wenfei Ge
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Yan Xu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China.
| | - Jun Liu
- Shandong Yuwang Ecological Food Industry Co. Ltd., Yucheng 251200, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; Grain and Cereal Food Bio-efficient Transformation Engineering Research Center of Liaoning Province, Jinzhou 121013, China
| |
Collapse
|
15
|
Crawford AJ, Forjaz A, Bons J, Bhorkar I, Roy T, Schell D, Queiroga V, Ren K, Kramer D, Huang W, Russo GC, Lee MH, Wu PH, Shih IM, Wang TL, Atkinson MA, Schilling B, Kiemen AL, Wirtz D. Combined assembloid modeling and 3D whole-organ mapping captures the microanatomy and function of the human fallopian tube. SCIENCE ADVANCES 2024; 10:eadp6285. [PMID: 39331707 PMCID: PMC11430475 DOI: 10.1126/sciadv.adp6285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The fallopian tubes play key roles in processes from pregnancy to ovarian cancer where three-dimensional (3D) cellular and extracellular interactions are important to their pathophysiology. Here, we develop a 3D multicompartment assembloid model of the fallopian tube that molecularly, functionally, and architecturally resembles the organ. Global label-free proteomics, innovative assays capturing physiological functions of the fallopian tube (i.e., oocyte transport), and whole-organ single-cell resolution mapping are used to validate these assembloids through a multifaceted platform with direct comparisons to fallopian tube tissue. These techniques converge at a unique combination of assembloid parameters with the highest similarity to the reference fallopian tube. This work establishes (i) an optimized model of the human fallopian tubes for in vitro studies of their pathophysiology and (ii) an iterative platform for customized 3D in vitro models of human organs that are molecularly, functionally, and microanatomically accurate by combining tunable assembloid and tissue mapping methods.
Collapse
Affiliation(s)
- Ashleigh J Crawford
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - André Forjaz
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Isha Bhorkar
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Triya Roy
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - David Schell
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vasco Queiroga
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kehan Ren
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Donald Kramer
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biotechnology, Johns Hopkins Advanced Academic Programs, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wilson Huang
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gabriella C Russo
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Meng-Horng Lee
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tian-Li Wang
- Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark A Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
- Departments of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
| | | | - Ashley L Kiemen
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Denis Wirtz
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
16
|
Ludwig-Husemann A, Schertl P, Shrivastava A, Geckle U, Hafner J, Schaarschmidt F, Willenbacher N, Freudenberg U, Werner C, Lee-Thedieck C. A Multifunctional Nanostructured Hydrogel as a Platform for Deciphering Niche Interactions of Hematopoietic Stem and Progenitor Cells. Adv Healthc Mater 2024; 13:e2304157. [PMID: 38870600 DOI: 10.1002/adhm.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/10/2024] [Indexed: 06/15/2024]
Abstract
For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α4β1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols.
Collapse
Affiliation(s)
- Anita Ludwig-Husemann
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Schertl
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ananya Shrivastava
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Udo Geckle
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Johanna Hafner
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Frank Schaarschmidt
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technical University Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
17
|
Katsuta H, Sokabe M, Hirata H. From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission. Front Cell Dev Biol 2024; 12:1444827. [PMID: 39193363 PMCID: PMC11347286 DOI: 10.3389/fcell.2024.1444827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
The contractile apparatus, stress fiber (SF), is connected to the cell adhesion machinery, focal adhesion (FA), at the termini of SF. The SF-FA complex is essential for various mechanical activities of cells, including cell adhesion to the extracellular matrix (ECM), ECM rigidity sensing, and cell migration. This mini-review highlights the importance of SF mechanics in these cellular activities. Actin-crosslinking proteins solidify SFs by attenuating myosin-driven flows of actin and myosin filaments within the SF. In the solidified SFs, viscous slippage between actin filaments in SFs and between the filaments and the surrounding cytosol is reduced, leading to efficient transmission of myosin-generated contractile force along the SFs. Hence, SF solidification via actin crosslinking ensures exertion of a large force to FAs, enabling FA maturation, ECM rigidity sensing and cell migration. We further discuss intracellular mechanisms for tuning crosslinker-modulated SF mechanics and the potential relationship between the aberrance of SF mechanics and pathology including cancer.
Collapse
Affiliation(s)
- Hiroki Katsuta
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Sokabe
- Human Information Systems Laboratories, Kanazawa Institute of Technology, Hakusan, Japan
| | - Hiroaki Hirata
- Department of Applied Bioscience, Kanazawa Institute of Technology, Hakusan, Japan
| |
Collapse
|
18
|
Watts Moore O, Lewis C, Ross T, Waigh TA, Korabel N, Mendoza C. Extreme heterogeneity in the microrheology of lamellar surfactant gels analyzed with neural networks. Phys Rev E 2024; 110:014603. [PMID: 39161018 DOI: 10.1103/physreve.110.014603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 08/21/2024]
Abstract
The heterogeneity of the viscoelasticity of a lamellar gel network based on cetyl-trimethylammonium chloride and cetostearyl alcohol was studied using particle-tracking microrheology. A recurrent neural network (RNN) architecture was used for estimating the Hurst exponent, H, on small sections of tracks of probe spheres moving with fractional Brownian motion. Thus, dynamic segmentation of tracks via neural networks was used in microrheology and it is significantly more accurate than using mean square displacements (MSDs). An ensemble of 414 particles produces a MSD that is subdiffusive in time, t, with a power law of the form t^{0.74±0.02}, indicating power law viscoelasticity. RNN analysis of the probability distributions of H, combined with detailed analysis of the time-averaged MSDs of individual tracks, revealed diverse diffusion processes belied by the simple scaling of the ensemble MSD, such as caging phenomena, which give rise to the complex viscoelasticity of lamellar gels.
Collapse
|
19
|
Singam A, Bhattacharya C, Park S. Aging-related changes in the mechanical properties of single cells. Heliyon 2024; 10:e32974. [PMID: 38994100 PMCID: PMC11238009 DOI: 10.1016/j.heliyon.2024.e32974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mechanical properties, along with biochemical and molecular properties, play crucial roles in governing cellular function and homeostasis. Cellular mechanics are influenced by various factors, including physiological and pathological states, making them potential biomarkers for diseases and aging. While several methods such as AFM, particle-tracking microrheology, optical tweezers/stretching, magnetic tweezers/twisting cytometry, microfluidics, and micropipette aspiration have been widely utilized to measure the mechanical properties of single cells, our understanding of how aging affects these properties remains limited. To fill this knowledge gap, we provide a brief overview of the commonly used methods to measure single-cell mechanical properties. We then delve into the effects of aging on the mechanical properties of different cell types. Finally, we discuss the importance of studying cellular viscous and viscoelastic properties as well as aging induced by different stressors to gain a deeper understanding of the aging process and aging-related diseases.
Collapse
Affiliation(s)
- Amarnath Singam
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Chandrabali Bhattacharya
- Department of Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
20
|
Guerreiro BM, Dionísio MM, Lima JC, Silva JC, Freitas F. Cryoprotective Polysaccharides with Ordered Gel Structures Induce Ice Growth Anticipation and Survival Enhancement during Cell Cryopreservation. Biomacromolecules 2024; 25:3384-3397. [PMID: 38739855 DOI: 10.1021/acs.biomac.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This work cross-correlated rheological, thermodynamic, and conformational features of several natural polysaccharides to their cryoprotective performance. The basis of cryoprotection of FucoPol, pectin, and agar revealed a causal combination of (i) an emerging sol-gel transition (p = 0.014) at near-hypothermia (4 °C), (ii) noncolligative attenuated supercooling of the kinetic freezing point of water (p = 0.026) supporting ice growth anticipation, and (iii) increased conformational order (p < 0.0001), where helix-/sheet-like features boost cryoprotection. FucoPol, of highest cryoprotective performance, revealed a predominantly helical structure (α/β = 1.5) capable of forming a gel state at 4 °C and the highest degree of supercooling attenuation (TH = 6.2 °C). Ice growth anticipation with gel-like polysaccharides suggests that the gel matrix neutralizes elastic deformations and lethal cell volumetric fluctuations during freezing, thus preventing the loss of homeostasis and increasing post-thaw viability. Ultimately, structured gels capable of attenuated supercooling enable cryoprotective action at the polymer-cell interface, in addition to polymer-ice interactions. This rationale potentiates implementing alternative, biobased, noncytotoxic polymers in cryobiology.
Collapse
Affiliation(s)
- Bruno M Guerreiro
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - M Madalena Dionísio
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - João Carlos Lima
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Jorge Carvalho Silva
- CENIMAT/I3N, Department of Physics, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Filomena Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| |
Collapse
|
21
|
Bergamaschi G, Taris KKH, Biebricher AS, Seymonson XMR, Witt H, Peterman EJG, Wuite GJL. Viscoelasticity of diverse biological samples quantified by Acoustic Force Microrheology (AFMR). Commun Biol 2024; 7:683. [PMID: 38834871 PMCID: PMC11150513 DOI: 10.1038/s42003-024-06367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
In the context of soft matter and cellular mechanics, microrheology - the use of micron-sized particles to probe the frequency-dependent viscoelastic response of materials - is widely used to shed light onto the mechanics and dynamics of molecular structures. Here we present the implementation of active microrheology in an Acoustic Force Spectroscopy setup (AFMR), which combines multiplexing with the possibility of probing a wide range of forces ( ~ pN to ~nN) and frequencies (0.01-100 Hz). To demonstrate the potential of this approach, we perform active microrheology on biological samples of increasing complexity and stiffness: collagen gels, red blood cells (RBCs), and human fibroblasts, spanning a viscoelastic modulus range of five orders of magnitude. We show that AFMR can successfully quantify viscoelastic properties by probing many beads with high single-particle precision and reproducibility. Finally, we demonstrate that AFMR to map local sample heterogeneities as well as detect cellular responses to drugs.
Collapse
Affiliation(s)
- Giulia Bergamaschi
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Kees-Karel H Taris
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Xamanie M R Seymonson
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hannes Witt
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Meneses-Reyes GI, Rodriguez-Bustos DL, Cuevas-Velazquez CL. Macromolecular crowding sensing during osmotic stress in plants. Trends Biochem Sci 2024; 49:480-493. [PMID: 38514274 DOI: 10.1016/j.tibs.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024]
Abstract
Osmotic stress conditions occur at multiple stages of plant life. Changes in water availability caused by osmotic stress induce alterations in the mechanical properties of the plasma membrane, its interaction with the cell wall, and the concentration of macromolecules in the cytoplasm. We summarize the reported players involved in the sensing mechanisms of osmotic stress in plants. We discuss how changes in macromolecular crowding are perceived intracellularly by intrinsically disordered regions (IDRs) in proteins. Finally, we review methods for dynamically monitoring macromolecular crowding in living cells and discuss why their implementation is required for the discovery of new plant osmosensors. Elucidating the osmosensing mechanisms will be essential for designing strategies to improve plant productivity in the face of climate change.
Collapse
Affiliation(s)
- G I Meneses-Reyes
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - D L Rodriguez-Bustos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C L Cuevas-Velazquez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
23
|
Siboni H, Ruseska I, Zimmer A. Atomic Force Microscopy for the Study of Cell Mechanics in Pharmaceutics. Pharmaceutics 2024; 16:733. [PMID: 38931854 PMCID: PMC11207904 DOI: 10.3390/pharmaceutics16060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Cell mechanics is gaining attraction in drug screening, but the applicable methods have not yet become part of the standardized norm. This review presents the current state of the art for atomic force microscopy, which is the most widely available method. The field is first motivated as a new way of tracking pharmaceutical effects, followed by a basic introduction targeted at pharmacists on how to measure cellular stiffness. The review then moves on to the current state of the knowledge in terms of experimental results and supplementary methods such as fluorescence microscopy that can give relevant additional information. Finally, rheological approaches as well as the theoretical interpretations are presented before ending on additional methods and outlooks.
Collapse
Affiliation(s)
- Henrik Siboni
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
- Single Molecule Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Ivana Ruseska
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
| | - Andreas Zimmer
- Pharmaceutical Technology & Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria; (H.S.); (I.R.)
| |
Collapse
|
24
|
Leartprapun N, Zeng Z, Hajjarian Z, Bossuyt V, Nadkarni SK. Laser speckle rheological microscopy reveals wideband viscoelastic spectra of biological tissues. SCIENCE ADVANCES 2024; 10:eadl1586. [PMID: 38718128 PMCID: PMC11078189 DOI: 10.1126/sciadv.adl1586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Viscoelastic transformation of tissue drives aberrant cellular functions and is an early biomarker of disease pathogenesis. Tissues scale a range of viscoelastic moduli, from biofluids to bone. Moreover, viscoelastic behavior is governed by the frequency at which tissue is probed, yielding distinct viscous and elastic responses modulated over a wide frequency band. Existing tools do not quantify wideband viscoelastic spectra in tissues, leaving a vast knowledge gap. We present wideband laser speckle rheological microscopy (WB-SHEAR) that reveals elastic and viscous response over sub-megahertz frequencies previously not investigated in tissue. WB-SHEAR uses an optical, noncontact approach to quantify wideband viscoelastic spectra in specimens spanning a range of moduli from low-viscosity fibrin to highly elastic bone. Via laser scanning, micromechanical imaging is enabled to access wideband viscoelastic spectra in heterogeneous tumor specimens with high spatial resolution (25 micrometers). The ability to interrogate the viscoelastic landscape of diverse biospecimens could transform our understanding of mechanobiological processes in various diseases.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ziqian Zeng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zeinab Hajjarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Veerle Bossuyt
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
25
|
Woolley L, Burbidge A, Vermant J, Christakopoulos F. A microrheological examination of insulin-secreting β-cells in healthy and diabetic-like conditions. SOFT MATTER 2024; 20:3464-3472. [PMID: 38573072 DOI: 10.1039/d3sm01141k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Pancreatic β-cells regulate glucose homeostasis through glucose-stimulated insulin secretion, which is hindered in type-2 diabetes. Transport of the insulin vesicles is expected to be affected by changes in the viscoelastic and transport properties of the cytoplasm. These are evaluated in situ through particle-tracking measurements using a rat insulinoma β-cell line. The use of inert probes assists in decoupling the material properties of the cytoplasm from the active transport through cellular processes. The effect of glucose-stimulated insulin secretion is examined, and the subsequent remodeling of the cytoskeleton, at constant effects of cell activity, is shown to result in reduced mobility of the tracer particles. Induction of diabetic-like conditions is identified to alter the mean-squared displacement of the passive particles in the cytoplasm and diminish its reaction to glucose stimulation.
Collapse
Affiliation(s)
- Lukas Woolley
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Adam Burbidge
- Nestlé Research, Route de Jorat 57, vers-chez-les Blanc, 1000 Lausanne, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| | - Fotis Christakopoulos
- Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
26
|
Lee CLM, Yap PS, Umemura K, Shintani T, Kobayashi K, Hozumi N, Yoshida S. Noninvasive imaging of rat-derived microglia and its reactivity to inflammatory molecules via acoustic impedance microscopy. J Med Ultrason (2001) 2024; 51:29-37. [PMID: 37971564 PMCID: PMC10803564 DOI: 10.1007/s10396-023-01379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Microglia, the brain's immune cells, play important roles in neuronal differentiation, survival, and death. The function of microglia is deeply related to the morphologies; however, it is too complex to observe conventionally and identify the condition of living microglia using optical microscopes. Herein, we proposed a new method to observe living cultured microglia and their reactivity to inflammation via the acoustic impedance mode of a scanning acoustic microscope. METHODS Primary cultured microglia collected from rat pups exposed to acetamiprid, an insecticide, in utero were observed with both acoustic interface impedance mode (C-mode) and transparent three-dimensional impedance mode (B-mode). RESULTS We characterized microglia into four types based on the results obtained from acoustic impedance, cytoskeletal information, and laser confocal imaging. Biphasic acoustic observation using B-mode and C-mode gave us information regarding the dynamic morphologies of living microglia treated with adenosine triphosphate (ATP) (600 μmol/L), which reflects distress signals from inflamed neurons. Acetamiprid exposure induced microglia response even in the neonatal period. ATP stimulus altered the shape and thickness of microglia with a change in the bulk modulus of the cell. Three-dimensional alteration with ATP stimulus could be observed only after biphasic acoustic observation using B-mode and C-mode. This acoustic observation was consistent with confocal observation using anti-Iba-1 and P2Y12 immunocytochemistry. CONCLUSION This study demonstrated the adequacy of using a scanning acoustic microscope in analyzing microglia's shape, motility, and response to inflammation.
Collapse
Affiliation(s)
- Christine Li Mei Lee
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
| | - Pey Shin Yap
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Kiyoshi Umemura
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Taichi Shintani
- Department of Electrical and Electronic Information Engineering, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | | | - Naohiro Hozumi
- Department of Electrical and Electronic Information Engineering, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Sachiko Yoshida
- Department of Applied Chemistry and Life Science, Graduate School of Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
27
|
Mei Y, Feng X, Jin Y, Kang R, Wang X, Zhao D, Ghosh S, Neu CP, Avril S. Cell nucleus elastography with the adjoint-based inverse solver. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107827. [PMID: 37801883 DOI: 10.1016/j.cmpb.2023.107827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND AND OBJECTIVES The mechanics of the nucleus depends on cellular structures and architecture, and impact a number of diseases. Nuclear mechanics is yet rather complex due to heterogeneous distribution of dense heterochromatin and loose euchromatin domains, giving rise to spatially variable stiffness properties. METHODS In this study, we propose to use the adjoint-based inverse solver to identify for the first time the nonhomogeneous elastic property distribution of the nucleus. Inputs of the inverse solver are deformation fields measured with microscopic imaging in contracting cardiomyocytes. RESULTS The feasibility of the proposed method is first demonstrated using simulated data. Results indicate accurate identification of the assumed heterochromatin region, with a maximum relative error of less than 5%. We also investigate the influence of unknown Poisson's ratio on the reconstruction and find that variations of the Poisson's ratio in the range [0.3-0.5] result in uncertainties of less than 15% in the identified stiffness. Finally, we apply the inverse solver on actual deformation fields acquired within the nuclei of two cardiomyocytes. The obtained results are in good agreement with the density maps obtained from microscopy images. CONCLUSIONS Overall, the proposed approach shows great potential for nuclear elastography, with promising value for emerging fields of mechanobiology and mechanogenetics.
Collapse
Affiliation(s)
- Yue Mei
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China; Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Xuan Feng
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Yun Jin
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Rongyao Kang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - XinYu Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Dongmei Zhao
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023, China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116023, China
| | - Soham Ghosh
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States of America; Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO, United States of America; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Stephane Avril
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, F - 42023, Saint-Étienne, France.
| |
Collapse
|
28
|
Arjona MI, Najafi J, Minc N. Cytoplasm mechanics and cellular organization. Curr Opin Cell Biol 2023; 85:102278. [PMID: 37979412 DOI: 10.1016/j.ceb.2023.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
As cells organize spatially or divide, they translocate many micron-scale organelles in their cytoplasm. These include endomembrane vesicles, nuclei, microtubule asters, mitotic spindles, or chromosomes. Organelle motion is powered by cytoskeleton forces but is opposed by viscoelastic forces imparted by the surrounding crowded cytoplasm medium. These resistive forces associated to cytoplasm physcial properties remain generally underappreciated, yet reach significant values to slow down organelle motion or even limit their displacement by springing them back towards their original position. The cytoplasm may also be itself organized in time and space, being for example stiffer or more fluid at certain locations or during particular cell cycle phases. Thus, cytoplasm mechanics may be viewed as a labile module that contributes to organize cells. We here review emerging methods, mechanisms, and concepts to study cytoplasm mechanical properties and their function in organelle positioning, cellular organization and division.
Collapse
Affiliation(s)
- María Isabel Arjona
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France
| | - Javad Najafi
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France; Equipe Labellisée LIGUE Contre le Cancer, France.
| |
Collapse
|
29
|
Chung YC, Tu LC. Interplay of dynamic genome organization and biomolecular condensates. Curr Opin Cell Biol 2023; 85:102252. [PMID: 37806293 DOI: 10.1016/j.ceb.2023.102252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/01/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
After 60 years of chromatin investigation, our understanding of chromatin organization has evolved from static chromatin fibers to dynamic nuclear compartmentalization. Chromatin is embedded in a heterogeneous nucleoplasm in which molecules are grouped into distinct compartments, partitioning nuclear space through phase separation. Human genome organization affects transcription which controls euchromatin formation by excluding inactive chromatin. Chromatin condensates have been described as either liquid-like or solid-like. In this short review, we discuss the dynamic nature of chromatin from the perspective of biomolecular condensates and highlight new live-cell synthetic tools to probe and manipulate chromatin organization and associated condensates.
Collapse
Affiliation(s)
- Yu-Chieh Chung
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Li-Chun Tu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
30
|
Weng S, Devitt CC, Nyaoga BM, Havnen AE, Alvarado J, Wallingford JB. New tools reveal PCP-dependent polarized mechanics in the cortex and cytoplasm of single cells during convergent extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566066. [PMID: 37986924 PMCID: PMC10659385 DOI: 10.1101/2023.11.07.566066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Understanding biomechanics of biological systems is crucial for unraveling complex processes like tissue morphogenesis. However, current methods for studying cellular mechanics in vivo are limited by the need for specialized equipment and often provide limited spatiotemporal resolution. Here we introduce two new techniques, Tension by Transverse Fluctuation (TFlux) and in vivo microrheology, that overcome these limitations. They both offer time-resolved, subcellular biomechanical analysis using only fluorescent reporters and widely available microscopes. Employing these two techniques, we have revealed a planar cell polarity (PCP)-dependent mechanical gradient both in the cell cortex and the cytoplasm of individual cells engaged in convergent extension. Importantly, the non-invasive nature of these methods holds great promise for its application for uncovering subcellular mechanical variations across a wide array of biological contexts. Summary Non-invasive imaging-based techniques providing time-resolved biomechanical analysis at subcellular scales in developing vertebrate embryos.
Collapse
|
31
|
Yuan W, Ding Y, Wang G. Universal contact stiffness of elastic solids covered with tensed membranes and its application in indentation tests of biological materials. Acta Biomater 2023; 171:202-208. [PMID: 37690593 DOI: 10.1016/j.actbio.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
The inherent membrane tension of biological materials could vitally affect their responses to contact loading but is generally ignored in existing indentation analysis. In this paper, the authors theoretically investigate the contact stiffness of axisymmetric indentations of elastic solids covered with thin tensed membranes. When the indentation size decreases to the same order as the ratio of membrane tension to elastic modulus, the contact stiffness accounting for the effect of membrane tension becomes much higher than the prediction of conventional contact theory. An explicit expression is derived for the contact stiffness, which is universal for axisymmetric indentations using indenters of arbitrary convex profiles. On this basis, a simple method of analysis is proposed to estimate the membrane tension and elastic modulus of biological materials from the indentation load-depth data, which is successfully applied to analyze the indentation experiments of cells and lungs. This study might be helpful for the comprehensive assessment of the mechanical properties of soft biological systems. STATEMENT OF SIGNIFICANCE: This paper highlights the crucial effect of the inherent membrane tension on the indentation response of soft biomaterials, which has been generally ignored in existing analysis of experiments. For typical indentation tests on cells and organs, the contact stiffness can be twice or higher than the prediction of conventional contact model. A universal expression of the contact stiffness accounting for the membrane tension effect is derived. On this basis, a simple method of analysis is proposed to abstract the membrane tension of biomaterials from the experimentally recorded indentation load-depth data. With this method, the elasticity of soft biomaterials can be characterized more comprehensively.
Collapse
Affiliation(s)
- Weike Yuan
- Department of Engineering Mechanics, SVL, MMML, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Yue Ding
- Department of Engineering Mechanics, SVL, MMML, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Gangfeng Wang
- Department of Engineering Mechanics, SVL, MMML, Xi'an Jiaotong University, 710049 Xi'an, China.
| |
Collapse
|
32
|
Carney KR, Khan AM, Stam S, Samson SC, Mittal N, Han SJ, Bidone TC, Mendoza MC. Nascent adhesions shorten the period of lamellipodium protrusion through the Brownian ratchet mechanism. Mol Biol Cell 2023; 34:ar115. [PMID: 37672339 PMCID: PMC10846621 DOI: 10.1091/mbc.e23-08-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Directional cell migration is driven by the conversion of oscillating edge motion into lasting periods of leading edge protrusion. Actin polymerization against the membrane and adhesions control edge motion, but the exact mechanisms that determine protrusion period remain elusive. We addressed this by developing a computational model in which polymerization of actin filaments against a deformable membrane and variable adhesion dynamics support edge motion. Consistent with previous reports, our model showed that actin polymerization and adhesion lifetime power protrusion velocity. However, increasing adhesion lifetime decreased the protrusion period. Measurements of adhesion lifetime and edge motion in migrating cells confirmed that adhesion lifetime is associated with and promotes protrusion velocity, but decreased duration. Our model showed that adhesions' control of protrusion persistence originates from the Brownian ratchet mechanism for actin filament polymerization. With longer adhesion lifetime or increased-adhesion density, the proportion of actin filaments tethered to the substrate increased, maintaining filaments against the cell membrane. The reduced filament-membrane distance generated pushing force for high edge velocity, but limited further polymerization needed for protrusion duration. We propose a mechanism for cell edge protrusion in which adhesion strength regulates actin filament polymerization to control the periods of leading edge protrusion.
Collapse
Affiliation(s)
- Keith R. Carney
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Akib M. Khan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Samantha Stam
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Shiela C. Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Nikhil Mittal
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Sangyoon J. Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Tamara C. Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
- Scientific Computing and Imaging Institute, Salt Lake City, UT 84112
| | - Michelle C. Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| |
Collapse
|
33
|
Stanislavsky AA, Weron A. Confined modes of single-particle trajectories induced by stochastic resetting. Phys Rev E 2023; 108:044130. [PMID: 37978668 DOI: 10.1103/physreve.108.044130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Random trajectories of single particles in living cells contain information about the interaction between particles, as well as with the cellular environment. However, precise consideration of the underlying stochastic properties, beyond normal diffusion, remains a challenge as applied to each particle trajectory separately. In this paper, we show how positions of confined particles in living cells can obey not only the Laplace distribution, but the Linnik one. This feature is detected in experimental data for the motion of G proteins and coupled receptors in cells, and its origin is explained in terms of stochastic resetting. This resetting process generates power-law waiting times, giving rise to the Linnik statistics in confined motion, and also includes exponentially distributed times as a limit case leading to the Laplace one. The stochastic process, which is affected by the resetting, can be Brownian motion commonly found in cells. Other possible models producing similar effects are discussed.
Collapse
Affiliation(s)
| | - Aleksander Weron
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
34
|
Janczura J, Magdziarz M, Metzler R. Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation. CHAOS (WOODBURY, N.Y.) 2023; 33:103125. [PMID: 37832518 DOI: 10.1063/5.0158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Modern experiments routinely produce extensive data of the diffusive dynamics of tracer particles in a large range of systems. Often, the measured diffusion turns out to deviate from the laws of Brownian motion, i.e., it is anomalous. Considerable effort has been put in conceiving methods to extract the exact parameters underlying the diffusive dynamics. Mostly, this has been done for unconfined motion of the tracer particle. Here, we consider the case when the particle is confined by an external harmonic potential, e.g., in an optical trap. The anomalous particle dynamics is described by the fractional Ornstein-Uhlenbeck process, for which we establish new estimators for the parameters. Specifically, by calculating the empirical quadratic variation of a single trajectory, we are able to recover the subordination process governing the particle motion and use it as a basis for the parameter estimation. The statistical properties of the estimators are evaluated from simulations.
Collapse
Affiliation(s)
- Joanna Janczura
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marcin Magdziarz
- Faculty of Pure and Applied Mathematics, Hugo Steinhaus Center, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| |
Collapse
|
35
|
Démery V, Gambassi A. Non-Gaussian fluctuations of a probe coupled to a Gaussian field. Phys Rev E 2023; 108:044604. [PMID: 37978697 DOI: 10.1103/physreve.108.044604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
The motion of a colloidal probe in a complex fluid, such as a micellar solution, is usually described by the generalized Langevin equation, which is linear. However, recent numerical simulations and experiments have shown that this linear model fails when the probe is confined and that the intrinsic dynamics of the probe is actually nonlinear. Noting that the kurtosis of the displacement of the probe may reveal the nonlinearity of its dynamics also in the absence confinement, we compute it for a probe coupled to a Gaussian field and possibly trapped by a harmonic potential. We show that the excess kurtosis increases from zero at short times, reaches a maximum, and then decays algebraically at long times, with an exponent which depends on the spatial dimensionality and on the features and correlations of the dynamics of the field. Our analytical predictions are confirmed by numerical simulations of the stochastic dynamics of the probe and the field where the latter is represented by a finite number of modes.
Collapse
Affiliation(s)
- Vincent Démery
- Gulliver, CNRS, ESPCI Paris PSL, 75005 Paris, France and Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Andrea Gambassi
- SISSA-International School for Advanced Studies and INFN, 34136 Trieste, Italy
| |
Collapse
|
36
|
Nakul U, Roy S, Nalupurackal G, Chakraborty S, Siwach P, Goswami J, Edwina P, Bajpai SK, Singh R, Roy B. Studying fluctuating trajectories of optically confined passive tracers inside cells provides familiar active forces. BIOMEDICAL OPTICS EXPRESS 2023; 14:5440. [PMID: 37810271 PMCID: PMC7615170 DOI: 10.1364/boe.499990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
In recent years, there has been a growing interest in studying the trajectories of microparticles inside living cells. Among other things, such studies are useful in understanding the spatio-temporal properties of a cell. In this work, we study the stochastic trajectories of a passive microparticle inside a cell using experiments and theory. Our theory is based on modeling the microparticle inside a cell as an active particle in a viscoelastic medium. The activity is included in our model from an additional stochastic term with non-zero persistence in the Langevin equation describing the dynamics of the microparticle. Using this model, we are able to predict the power spectral density (PSD) measured in the experiment and compute active forces. This caters to the situation where a tracer particle is optically confined and then yields a PSD for positional fluctuations. The low frequency part of the PSD yields information about the active forces that the particle feels. The fit to the model extracts such active force. Thus, we can conclude that trapping the particle does not affect the values of the forces extracted from the active fits if accounted for appropriately by proper theoretical models. In addition, the fit also provides system properties and optical tweezers trap stiffness.
Collapse
Affiliation(s)
- Urvashi Nakul
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Srestha Roy
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Gokul Nalupurackal
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Snigdhadev Chakraborty
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Priyanka Siwach
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Jayesh Goswami
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Privita Edwina
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
- Department of Applied Mechanics, IIT Madras, Chennai 600036, India
| | | | - Rajesh Singh
- Department of Physics, IIT Madras, Chennai 600036, India
| | - Basudev Roy
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| |
Collapse
|
37
|
Kumar R, Dzikonski D, Bekker E, Vornhusen R, Vitali V, Imbrock J, Denz C. Fabrication and mechanical characterization of hydrogel-based 3D cell-like structures. OPTICS EXPRESS 2023; 31:29174-29186. [PMID: 37710723 DOI: 10.1364/oe.496888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
In this article, we demonstrate the fabrication of 3D cell-like structures using a femtosecond laser-based two-photon polymerization technique. By employing poly(ethylene glycol) diacrylate monomers as a precursor solution, we fabricate 3D hemispheres that resemble morphological and biomechanical characteristics of natural cells. We employ an optical tweezers-based microrheology technique to measure the viscoelastic properties of the precursor solutions inside and outside the structures. In addition, we demonstrate the interchangeability of the precursor solution within fabricated structures without impairing the microstructures. The combination of two-photon polymerization and microrheological measurements by optical tweezers demonstrated here represents a powerful toolbox for future investigations into cell mimic and artificial cell studies.
Collapse
|
38
|
Maciel BR, Grimm A, Oelschlaeger C, Schepers U, Willenbacher N. Targeted micro-heterogeneity in bioinks allows for 3D printing of complex constructs with improved resolution and cell viability. Biofabrication 2023; 15:045013. [PMID: 37552974 DOI: 10.1088/1758-5090/acee22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Three-dimensional bioprinting is an evolving versatile technique for biomedical applications. Ideal bioinks have complex micro-environment that mimic human tissue, allow for good printing quality and provide high cell viability after printing. Here we present two strategies for enhancing gelatin-based bioinks heterogeneity on a 1-100µm length scale resulting in superior printing quality and high cell viability. A thorough spatial and micro-mechanical characterization of swollen hydrogel heterogeneity was done using multiple particle tracking microrheology. When poly(vinyl alcohol) is added to homogeneous gelatin gels, viscous inclusions are formed due to micro-phase separation. This phenomenon leads to pronounced slip and superior printing quality of complex 3D constructs as well as high human hepatocellular carcinoma (HepG2) and normal human dermal fibroblast (NHDF) cell viability due to reduced shear damage during extrusion. Similar printability and cell viability results are obtained with gelatin/nanoclay composites. The formation of polymer/nanoclay clusters reduces the critical stress of gel fracture, which facilitates extrusion, thus enhancing printing quality and cell viability. Targeted introduction of micro-heterogeneities in bioinks through micro-phase separation is an effective technique for high resolution 3D printing of complex constructs with high cell viability. The size of the heterogeneities, however, has to be substantially smaller than the desired feature size in order to achieve good printing quality.
Collapse
Affiliation(s)
- Bruna R Maciel
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Alisa Grimm
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Claude Oelschlaeger
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ute Schepers
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norbert Willenbacher
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
39
|
Wolff-Trombini L, Ceripa A, Moreau J, Galinat H, James C, Westbrook N, Allain JM. Microrheology and structural quantification of hypercoagulable clots. BIOMEDICAL OPTICS EXPRESS 2023; 14:4179-4189. [PMID: 37799698 PMCID: PMC10549726 DOI: 10.1364/boe.492669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 10/07/2023]
Abstract
Hypercoagulability is a pathology that remains difficult to explain today in most cases. It is likely due to a modification of the conditions of polymerization of the fibrin, the main clot component. Using passive microrheology, we measured the mechanical properties of clots and correlated them under the same conditions with structural information obtained with confocal microscopy. We tested our approach with known alterations: an excess of fibrinogen and of coagulation Factor VIII. We observed simultaneously a rigidification and densification of the fibrin network, showing the potential of microrheology for hypercoagulability diagnosis.
Collapse
Affiliation(s)
- Laura Wolff-Trombini
- Université de Bordeaux, UMR1034, Inserm, Biology of Cardiovascular Diseases, Pessac, France
| | - Adrien Ceripa
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Palaiseau, France
| | - Julien Moreau
- Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Hubert Galinat
- CHU de Brest, Service d'Hématologie Biologique, Brest, France
| | - Chloe James
- Université de Bordeaux, UMR1034, Inserm, Biology of Cardiovascular Diseases, Pessac, France
- CHU de Bordeaux, Laboratoire d’Hématologie, Pessac, France
| | - Nathalie Westbrook
- Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Jean-Marc Allain
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Palaiseau, France
| |
Collapse
|
40
|
Zbiral B, Weber A, Vivanco MDM, Toca-Herrera JL. Characterization of Breast Cancer Aggressiveness by Cell Mechanics. Int J Mol Sci 2023; 24:12208. [PMID: 37569585 PMCID: PMC10418463 DOI: 10.3390/ijms241512208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In healthy tissues, cells are in mechanical homeostasis. During cancer progression, this equilibrium is disrupted. Cancer cells alter their mechanical phenotype to a softer and more fluid-like one than that of healthy cells. This is connected to cytoskeletal remodeling, changed adhesion properties, faster cell proliferation and increased cell motility. In this work, we investigated the mechanical properties of breast cancer cells representative of different breast cancer subtypes, using MCF-7, tamoxifen-resistant MCF-7, MCF10A and MDA-MB-231 cells. We derived viscoelastic properties from atomic force microscopy force spectroscopy measurements and showed that the mechanical properties of the cells are associated with cancer cell malignancy. MCF10A are the stiffest and least fluid-like cells, while tamoxifen-resistant MCF-7 cells are the softest ones. MCF-7 and MDA-MB-231 show an intermediate mechanical phenotype. Confocal fluorescence microscopy on cytoskeletal elements shows differences in actin network organization, as well as changes in focal adhesion localization. These findings provide further evidence of distinct changes in the mechanical properties of cancer cells compared to healthy cells and add to the present understanding of the complex alterations involved in tumorigenesis.
Collapse
Affiliation(s)
- Barbara Zbiral
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Andreas Weber
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Maria dM. Vivanco
- Cancer Heterogeneity Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain;
| | - José L. Toca-Herrera
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| |
Collapse
|
41
|
Leartprapun N, Zeng Z, Hajjarian Z, Bossuyt V, Nadkarni SK. Speckle rheological spectroscopy reveals wideband viscoelastic spectra of biological tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544037. [PMID: 37333220 PMCID: PMC10274797 DOI: 10.1101/2023.06.08.544037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Mechanical transformation of tissue is not merely a symptom but a decisive driver in pathological processes. Comprising intricate network of cells, fibrillar proteins, and interstitial fluid, tissues exhibit distinct solid-(elastic) and liquid-like (viscous) behaviours that span a wide band of frequencies. Yet, characterization of wideband viscoelastic behaviour in whole tissue has not been investigated, leaving a vast knowledge gap in the higher frequency range that is linked to fundamental intracellular processes and microstructural dynamics. Here, we present wideband Speckle rHEologicAl spectRoScopy (SHEARS) to address this need. We demonstrate, for the first time, analysis of frequency-dependent elastic and viscous moduli up to the sub-MHz regime in biomimetic scaffolds and tissue specimens of blood clots, breast tumours, and bone. By capturing previously inaccessible viscoelastic behaviour across the wide frequency spectrum, our approach provides distinct and comprehensive mechanical signatures of tissues that may provide new mechanobiological insights and inform novel disease prognostication.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Ziqian Zeng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Zeinab Hajjarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Veerle Bossuyt
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Seemantini K. Nadkarni
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
42
|
Lou Y. Appetizer on soft matter physics concepts in mechanobiology. Dev Growth Differ 2023; 65:234-244. [PMID: 37126437 PMCID: PMC11520965 DOI: 10.1111/dgd.12853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Mechanosensing, the active responses of cells to the mechanics on multiple scales, plays an indispensable role in regulating cell behaviors and determining the fate of biological entities such as tissues and organs. Here, I aim to give a pedagogical illustration of the fundamental concepts of soft matter physics that aid in understanding biomechanical phenomena from the scale of tissues to proteins. Examples of up-to-date research are introduced to elaborate these concepts. Challenges in applying physics models to biology have also been discussed for biologists and physicists to meet in the field of mechanobiology.
Collapse
Affiliation(s)
- Yuting Lou
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
43
|
Wu MC, Yu HW, Chen YQ, Ou MH, Serrano R, Huang GL, Wang YK, Lin KH, Fan YJ, Wu CC, Del Álamo JC, Chiou A, Chien S, Kuo JC. Early committed polarization of intracellular tension in response to cell shape determines the osteogenic differentiation of mesenchymal stromal cells. Acta Biomater 2023; 163:287-301. [PMID: 36328121 PMCID: PMC11389728 DOI: 10.1016/j.actbio.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Within the heterogeneous tissue architecture, a comprehensive understanding of how cell shapes regulate cytoskeletal mechanics by adjusting focal adhesions (FAs) signals to correlate with the lineage commitment of mesenchymal stromal cells (MSCs) remains obscure. Here, via engineered extracellular matrices, we observed that the development of mature FAs, coupled with a symmetrical pattern of radial fiber bundles, appeared at the right-angle vertices in cells with square shape. While circular cells aligned the transverse fibers parallel to the cell edge, and moved them centripetally in a counter-clockwise direction, symmetrical bundles of radial fibers at the vertices of square cells disrupted the counter-clockwise swirling and bridged the transverse fibers to move centripetally. In square cells, the contractile force, generated by the myosin IIA-enriched transverse fibers, were concentrated and transmitted outwards along the symmetrical bundles of radial fibers, to the extracellular matrix through FAs, and thereby driving FA organization and maturation. The symmetrical radial fiber bundles concentrated the transverse fibers contractility inward to the linkage between the actin cytoskeleton and the nuclear envelope. The tauter cytoskeletal network adjusted the nuclear-actomyosin force balance to cause nuclear deformability and to increase nuclear translocation of the transcription co-activator YAP, which in turn modulated the switch in MSC commitment. Thus, FAs dynamically respond to geometric cues and remodel actin cytoskeletal network to re-distribute intracelluar tension towards the cell nucleus, and thereby controlling YAP mechanotransduction signaling in regulating MSC fate decision. STATEMENT OF SIGNIFICANCE: We decipher how cellular mechanics is self-organized depending on extracellular geometric features to correlate with mesenchymal stromal cell lineage commitment. In response to geometry constrains on cell morphology, symmetrical radial fiber bundles are assembled and clustered depending on the maturation state of focal adhesions and bridge with the transverse fibers, and thereby establishing the dynamic cytoskeletal network. Contractile force, generated by the myosin-IIA-enriched transverse fibers, is transmitted and dynamically drives the retrograde movement of the actin cytoskeletal network, which appropriately adjusts the nuclear-actomyosin force balance and deforms the cell nucleus for YAP mechano-transduction signaling in regulating mesenchymal stromal cell fate decision.
Collapse
Affiliation(s)
- Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Meng-Hsin Ou
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ricardo Serrano
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guan-Lin Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kung-Hui Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Chang Wu
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan
| | - Juan C Del Álamo
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA; Center for Cardiovascular Biology, University of Washington, School of Medicine, Seattle, WA, 98109, USA; Mechanical Engineering Department, University of Washington, Seattle, WA, 98195, USA
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
44
|
Ulbrich JA, Fernández-Rico C, Rost B, Vialetto J, Isa L, Urbach JS, Dullens RPA. Effect of curvature on the diffusion of colloidal bananas. Phys Rev E 2023; 107:L042602. [PMID: 37198802 DOI: 10.1103/physreve.107.l042602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/22/2023] [Indexed: 05/19/2023]
Abstract
Anisotropic colloidal particles exhibit complex dynamics which play a crucial role in their functionality, transport, and phase behavior. In this Letter, we investigate the two-dimensional diffusion of smoothly curved colloidal rods-also known as colloidal bananas-as a function of their opening angle α. We measure the translational and rotational diffusion coefficients of the particles with opening angles ranging from 0^{∘} (straight rods) to nearly 360^{∘}(closed rings). In particular, we find that the anisotropic diffusion of the particles varies nonmonotonically with their opening angle and that the axis of fastest diffusion switches from the long to the short axis of the particles when α>180^{∘}. We also find that the rotational diffusion coefficient of nearly closed rings is approximately an order of magnitude higher than that of straight rods of the same length. Finally, we show that the experimental results are consistent with slender body theory, indicating that the dynamical behavior of the particles arises primarily from their local drag anisotropy. These results highlight the impact of curvature on the Brownian motion of elongated colloidal particles, which must be taken into account when seeking to understand the behavior of curved colloidal particles.
Collapse
Affiliation(s)
- Justin-Aurel Ulbrich
- Department of Chemistry, Physical and Theoretical Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- Department of Materials, ETH Zürich, 8093 Zurich, Switzerland
| | - Carla Fernández-Rico
- Department of Chemistry, Physical and Theoretical Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- Department of Materials, ETH Zürich, 8093 Zurich, Switzerland
| | - Brian Rost
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| | - Jacopo Vialetto
- Department of Materials, ETH Zürich, 8093 Zurich, Switzerland
| | - Lucio Isa
- Department of Materials, ETH Zürich, 8093 Zurich, Switzerland
| | - Jeffrey S Urbach
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
45
|
Wang X, Chen Y. Langevin picture of anomalous diffusion processes in expanding medium. Phys Rev E 2023; 107:024105. [PMID: 36932587 DOI: 10.1103/physreve.107.024105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
The expanding medium is very common in many different fields, such as biology and cosmology. It brings a nonnegligible influence on particle's diffusion, which is quite different from the effect of an external force field. The dynamic mechanism of a particle's motion in an expanding medium has only been investigated in the framework of a continuous-time random walk. To focus on more diffusion processes and physical observables, we build the Langevin picture of anomalous diffusion in an expanding medium, and conduct detailed analyses in the framework of the Langevin equation. With the help of a subordinator, both subdiffusion process and superdiffusion process in the expanding medium are discussed. We find that the expanding medium with different changing rate (exponential form and power-law form) leads to quite different diffusion phenomena. The particle's intrinsic diffusion behavior also plays an important role. Our detailed theoretical analyses and simulations present a panoramic view of investigating anomalous diffusion in an expanding medium under the framework of the Langevin equation.
Collapse
Affiliation(s)
- Xudong Wang
- School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Yao Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
46
|
Roy S, Vaippully R, Lokesh M, Nalupurackal G, Edwina P, Bajpai S, Roy B. Comparison of translational and rotational modes towards passive rheology of the cytoplasm of MCF-7 cells using optical tweezers. FRONTIERS IN PHYSICS 2023; 10:1099958. [PMID: 36685106 PMCID: PMC7614090 DOI: 10.3389/fphy.2022.1099958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A colloidal particle placed inside the cell cytoplasm is enmeshed within a network of cytoskeletal fibres immersed in the cytosolic fluid. The translational mode is believed to yield different rheological parameters than the rotational mode, given that these modes stretch the fibers differently. We compare the parameters for Michigan Cancer Foundation-7 (MCF-7) cells in this manuscript and find that the results are well comparable to each other. At low values of 0 Hz viscosity, the rotational and translational viscoelasticity matches well. However, discrepancies appear at higher values which may indicate that the cytoskeletal modes involved in rotation and translation of the particle are getting invoked. We also show that the 0 Hz viscosity increases as the cell ages under the conditions of constant room temperature of 25°C on the sample chamber.
Collapse
Affiliation(s)
- Srestha Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Rahul Vaippully
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Muruga Lokesh
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Gokul Nalupurackal
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Privita Edwina
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Saumendra Bajpai
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Basudev Roy
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
47
|
Aifuwa I, Kim BC, Kamat P, Starich B, Agrawal A, Tanrioven D, Luperchio TR, Valencia AMJ, Perestrelo T, Reddy K, Ha T, Philip JM. Senescent stroma induces nuclear deformations in cancer cells via the inhibition of RhoA/ROCK/myosin II-based cytoskeletal tension. PNAS NEXUS 2023; 2:pgac270. [PMID: 36712940 PMCID: PMC9830950 DOI: 10.1093/pnasnexus/pgac270] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
The presence of senescent cells within tissues has been functionally linked to malignant transformations. Here, using tension-gauge tethers technology, particle-tracking microrheology, and quantitative microscopy, we demonstrate that senescent-associated secretory phenotype (SASP) derived from senescent fibroblasts impose nuclear lobulations and volume shrinkage on malignant cells, which stems from the loss of RhoA/ROCK/myosin II-based cortical tension. This loss in cytoskeletal tension induces decreased cellular contractility, adhesion, and increased mechanical compliance. These SASP-induced morphological changes are, in part, mediated by Lamin A/C. These findings suggest that SASP induces defective outside-in mechanotransduction from actomyosin fibers in the cytoplasm to the nuclear lamina, thereby triggering a cascade of biophysical and biomolecular changes in cells that associate with malignant transformations.
Collapse
Affiliation(s)
- Ivie Aifuwa
- Johns Hopkins Physical Sciences - Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Byoung Choul Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Division of Nano-Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Pratik Kamat
- Johns Hopkins Physical Sciences - Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bartholomew Starich
- Johns Hopkins Physical Sciences - Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anshika Agrawal
- Johns Hopkins Physical Sciences - Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Derin Tanrioven
- Johns Hopkins Physical Sciences - Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Teresa R Luperchio
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Angela M Jimenez Valencia
- Johns Hopkins Physical Sciences - Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tania Perestrelo
- Johns Hopkins Physical Sciences - Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen Reddy
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Taekjip Ha
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| | - Jude M Philip
- Johns Hopkins Physical Sciences - Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Niu H, Wang W, Dou Z, Chen X, Chen X, Chen H, Fu X. Multiscale combined techniques for evaluating emulsion stability: A critical review. Adv Colloid Interface Sci 2023; 311:102813. [PMID: 36403408 DOI: 10.1016/j.cis.2022.102813] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Emulsions are multiscale and thermodynamically unstable systems which will undergo various unstable processes over time. The behavior of emulsifier molecules at the oil-water interface and the properties of the interfacial film are very important to the stability of the emulsion. In this paper, we mainly discussed the instability phenomena and mechanisms of emulsions, the effects of interfacial films on the long-term stability of emulsions and summarized a set of systematic multiscale combined methods for studying emulsion stability, including droplet size and distribution, zeta-potential, the continuous phase viscosity, adsorption mass and thickness of the interfacial film, interfacial dilatational rheology, interfacial shear rheology, particle tracking microrheology, visualization technologies of the interfacial film, molecular dynamics simulation and the quantitative evaluation methods of emulsion stability. This review provides the latest research progress and a set of systematic multiscale combined techniques and methods for researchers who are committed to the study of oil-water interface and emulsion stability. In addition, this review has important guiding significances for designing and customizing interfacial films with different properties, so as to obtain emulsion-based delivery systems with varying stability, oil digestibility and bioactive substance utilization.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang 529500, Guangdong, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xianwei Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qiongshan Road, Haikou 571126, PR China.
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
49
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
50
|
Rautaniemi K, John T, Richter M, Huck BC, Zini J, Loretz B, Lehr CM, Vuorimaa-Laukkanen E, Lisitsyna E, Laaksonen T. Intracellular Dynamics of Extracellular Vesicles by Segmented Trajectory Analysis. Anal Chem 2022; 94:17770-17778. [PMID: 36512439 PMCID: PMC9798377 DOI: 10.1021/acs.analchem.2c02928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The analysis of nanoparticle (NP) dynamics in live cell studies by video tracking provides detailed information on their interactions and trafficking in the cells. Although the video analysis is not yet routinely used in NP studies, the equipment suitable for the experiments is already available in most laboratories. Here, we compare trajectory patterns, diffusion coefficients, and particle velocities of NPs in A549 cells with a rather simple experimental setup consisting of a fluorescence microscope and openly available trajectory analysis software. The studied NPs include commercial fluorescent polymeric particles and two subpopulations of PC-3 cell-derived extracellular vesicles (EVs). As bioderived natural nanoparticles, the fluorescence intensities of the EVs limited the recording speed. Therefore, we studied the effect of the recording frame rate and analysis parameters to the trajectory results with bright fluorescent commercial NPs. We show that the trajectory classification and the apparent particle velocities are affected by the recording frame rate, while the diffusion constants stay comparable. The NP trajectory patterns were similar for all NP types and resembled intracellular vesicular transport. Interestingly, the EV movements were faster than the commercial NPs, which contrasts with their physical sizes and may indicate a greater role of the motor proteins in their intracellular transports.
Collapse
Affiliation(s)
- Kaisa Rautaniemi
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720Tampere, Finland,
| | - Thomas John
- Experimental
Physics, Saarland University, 66123Saarbrücken, Germany
| | - Maximilian Richter
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany,Department
of Pharmacy, Saarland University, 66123Saarbrücken, Germany
| | - Benedikt C. Huck
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany,Department
of Pharmacy, Saarland University, 66123Saarbrücken, Germany
| | - Jacopo Zini
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5, 00790Helsinki, Finland
| | - Brigitta Loretz
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8 1, 66123Saarbrücken, Germany,Department
of Pharmacy, Saarland University, 66123Saarbrücken, Germany
| | - Elina Vuorimaa-Laukkanen
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720Tampere, Finland
| | - Ekaterina Lisitsyna
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720Tampere, Finland
| | - Timo Laaksonen
- Chemistry
and Advanced Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720Tampere, Finland,Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, Viikinkaari 5, 00790Helsinki, Finland
| |
Collapse
|