1
|
Robert C, Prista von Bonhorst F, Dupont G, Gonze D, De Decker Y. Role of tristability in the robustness of the differentiation mechanism. PLoS One 2025; 20:e0316666. [PMID: 40106426 PMCID: PMC11922266 DOI: 10.1371/journal.pone.0316666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/14/2024] [Indexed: 03/22/2025] Open
Abstract
During cell differentiation, identical pluripotent cells undergo a specification process marked by changes in the expression of key genes, regulated by transcription factors that can inhibit the transcription of a competing gene or activate their own transcription. This specification is orchestrated by gene regulatory networks (GRNs), encompassing transcription factors, biochemical reactions, and signalling cascades. Mathematical models for these GRNs have been proposed in various contexts, to replicate observed robustness in differentiation properties. This includes reproducible proportions of differentiated cells with respect to parametric or stochastic noise and the avoidance of transitions between differentiated states. Understanding the GRN components controlling these features is crucial. Our study thoroughly explored an extended version of the Toggle Switch model with auto-activation loops. This model represents cells evolving from common progenitors in one out of two fates (A or B, bistable regime) or, additionally, remaining in their progenitor state (C, tristable regime). Such a differentiation into populations with three distinct cell fates is observed during blastocyst formation in mammals, where inner cell mass cells can remain in that state or differentiate into epiblast cells or primitive endoderm. Systematic analysis revealed that the existence of a stable non-differentiated state significantly impacts the GRN's robustness against parametric variations and stochastic noise. This state reduces the sensitivity of cell populations to parameters controlling key gene expression asymmetry and prevents cells from making transitions after acquiring a new identity. Stochastic noise enhances robustness by decreasing sensitivity to initial expression levels and helping the system escape from the non-differentiated state to differentiated cell fates, making the differentiation more efficient.
Collapse
Affiliation(s)
- Corentin Robert
- Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Didier Gonze
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Yannick De Decker
- Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Bonavina G, Mamillapalli R, Krikun G, Zhou Y, Gawde N, Taylor HS. Bone marrow mesenchymal stem cell-derived exosomes shuttle microRNAs to endometrial stromal fibroblasts that promote tissue proliferation /regeneration/ and inhibit differentiation. Stem Cell Res Ther 2024; 15:129. [PMID: 38693588 PMCID: PMC11064399 DOI: 10.1186/s13287-024-03716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/04/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Human bone marrow-derived stem cells (hBMDSCs) are well characterized mediators of tissue repair and regeneration. An increasing body of evidence indicates that these cells exert their therapeutic effects largely through their paracrine actions rather than clonal expansion and differentiation. Here we studied the role of microRNAs (miRNAs) present in extracellular vesicles (EVs) from hBMDSCs in tissue regeneration and cell differentiation targeting endometrial stromal fibroblasts (eSF). METHODS Extracellular vesicles (EVs) are isolated from hBMDSCs, characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) techniques. Extracted total RNA from EVs was subjected to RNA seq analysis. Transfection and decidualization studies were carried out in endometrial stromal fibroblasts (eSF). Gene expression was analyzed by qRTPCR. Unpaired t-test with Welch's correction was used for data analysis between two groups. RESULTS We identified several microRNAs (miRNAs) that were highly expressed, including miR-21-5p, miR-100-5p, miR-143-3p and let7. MiR-21 is associated with several signaling pathways involved in tissue regeneration, quiescence, cellular senescence, and fibrosis. Both miR-100-5p and miR-143-3p promoted cell proliferation. MiR-100-5p specifically promoted regenerative processes by upregulating TGF-ß3, VEGFA, MMP7, and HGF. MiR-100-5p blocked differentiation or decidualization as evidenced by morphologic changes and downregulation of decidualization mediators including HOXA10, IGFBP1, PRL, PR-B, and PR. CONCLUSION EVs delivered to tissues by hBMDSCs contain specific miRNAs that prevent terminal differentiation and drive repair and regeneration. Delivery of microRNAs is a novel treatment paradigm with the potential to replace BMDSCs in cell-free regenerative therapies.
Collapse
Affiliation(s)
- Giulia Bonavina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA.
| | - Graciela Krikun
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Yuping Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Nimisha Gawde
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, 06510, New Haven, CT, USA
| |
Collapse
|
4
|
Bueno C, García-Bernal D, Martínez S, Blanquer M, Moraleda JM. The nuclei of human adult stem cells can move within the cell and generate cellular protrusions to contact other cells. Stem Cell Res Ther 2024; 15:32. [PMID: 38321563 PMCID: PMC10848534 DOI: 10.1186/s13287-024-03638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The neuronal transdifferentiation of adult bone marrow cells (BMCs) is still considered an artifact based on an alternative explanation of experimental results supporting this phenomenon obtained over decades. However, recent studies have shown that following neural induction, BMCs enter an intermediate cellular state before adopting neural-like morphologies by active neurite extension and that binucleated BMCs can be formed independent of any cell fusion events. These findings provide evidence to reject the idea that BMC neural transdifferentiation is merely an experimental artifact. Therefore, understanding the intermediate states that cells pass through during transdifferentiation is crucial given their potential application in regenerative medicine and disease modelling. METHODS In this study, we examined the functional significance of the variety of morphologies and positioning that cell nuclei of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can adopt during neural-like differentiation using live-cell nuclear fluorescence labelling, time-lapse microscopy, and confocal microscopy analysis. RESULTS Here, we showed that after neural induction, hBM-MSCs enter an intermediate cellular state in which the nuclei are able to move within the cells, switching shapes and positioning and even generating cellular protrusions as they attempt to contact the cells around them. These findings suggest that changes in nuclear positioning occur because human cell nuclei somehow sense their environment. In addition, we showed the process of direct interactions between cell nuclei, which opens the possibility of a new level of intercellular interaction. CONCLUSIONS The present study advances the understanding of the intermediate stage through which hBM-MSCs pass during neural transdifferentiation, which may be crucial to understanding the mechanisms of these cell conversion processes and eventually harness them for use in regenerative medicine. Importantly, our study provides for the first time evidence that the nuclei of hBM-MSC-derived intermediate cells somehow sense their environment, generating cellular protrusions to contact other cells. In summary, human mesenchymal stromal cells could not only help to increase our understanding of the mechanisms underlying cellular plasticity but also facilitate the exact significance of nuclear positioning in cellular function and in tissue physiology.
Collapse
Affiliation(s)
- Carlos Bueno
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain.
| | - David García-Bernal
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
- Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550, San Juan, Alicante, Spain
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, 28029, Madrid, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010, Alicante, Spain
| | - Miguel Blanquer
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| | - José M Moraleda
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| |
Collapse
|
5
|
Nanotechnology for Manipulating Cell Plasticity. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
6
|
Bueno C, Blanquer M, García-Bernal D, Martínez S, Moraleda JM. Binucleated human bone marrow-derived mesenchymal cells can be formed during neural-like differentiation with independence of any cell fusion events. Sci Rep 2022; 12:20615. [PMID: 36450873 PMCID: PMC9712539 DOI: 10.1038/s41598-022-24996-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/23/2022] [Indexed: 12/09/2022] Open
Abstract
Although it has been reported that bone marrow-derived cells (BMDCs) can transdifferentiate into neural cells, the findings are considered unlikely. It has been argued that the rapid neural transdifferentiation of BMDCs reported in culture studies is actually due to cytotoxic changes induced by the media. While transplantation studies indicated that BMDCs can form new neurons, it remains unclear whether the underlying mechanism is transdifferentiation or BMDCs-derived cell fusion with the existing neuronal cells. Cell fusion has been put forward to explain the presence of gene-marked binucleated neurons after gene-marked BMDCs transplantation. In the present study, we demostrated that human BMDCs can rapidly adopt a neural-like morphology through active neurite extension and binucleated human BMDCs can form with independence of any cell fusion events. We also showed that BMDCs neural-like differentiation involves the formation of intermediate cells which can then redifferentiate into neural-like cells, redifferentiate back to the mesenchymal fate or even repeatedly switch lineages without cell division. Furthermore, we have discovered that nuclei from intermediate cells rapidly move within the cell, adopting different morphologies and even forming binucleated cells. Therefore, our results provide a stronger basis for rejecting the idea that BMDCs neural transdifferentiation is merely an artefact.
Collapse
Affiliation(s)
- Carlos Bueno
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Miguel Blanquer
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain ,grid.10586.3a0000 0001 2287 8496Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Salvador Martínez
- grid.26811.3c0000 0001 0586 4893Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550 San Juan, Alicante, Spain
| | - José M. Moraleda
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
7
|
Rinkevich B, Ballarin L, Martinez P, Somorjai I, Ben‐Hamo O, Borisenko I, Berezikov E, Ereskovsky A, Gazave E, Khnykin D, Manni L, Petukhova O, Rosner A, Röttinger E, Spagnuolo A, Sugni M, Tiozzo S, Hobmayer B. A pan-metazoan concept for adult stem cells: the wobbling Penrose landscape. Biol Rev Camb Philos Soc 2022; 97:299-325. [PMID: 34617397 PMCID: PMC9292022 DOI: 10.1111/brv.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022]
Abstract
Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Loriano Ballarin
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Pedro Martinez
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaAv. Diagonal 643Barcelona08028Spain
- Institut Català de Recerca i Estudis Avançats (ICREA)Passeig Lluís Companys 23Barcelona08010Spain
| | - Ildiko Somorjai
- School of BiologyUniversity of St AndrewsSt Andrews, FifeKY16 9ST, ScotlandUK
| | - Oshrat Ben‐Hamo
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Ilya Borisenko
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center GroningenAntonius Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Alexander Ereskovsky
- Department of Embryology, Faculty of BiologySaint‐Petersburg State UniversityUniversity Embankment, 7/9Saint‐Petersburg199034Russia
- Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), Aix Marseille University, CNRS, IRD, Avignon UniversityJardin du Pharo, 58 Boulevard Charles LivonMarseille13007France
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesUlitsa Vavilova, 26Moscow119334Russia
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques MonodParisF‐75006France
| | - Denis Khnykin
- Department of PathologyOslo University HospitalBygg 19, Gaustad Sykehus, Sognsvannsveien 21Oslo0188Norway
| | - Lucia Manni
- Department of BiologyUniversity of PadovaVia Ugo Bassi 58/BPadova35121Italy
| | - Olga Petukhova
- Collection of Vertebrate Cell CulturesInstitute of Cytology, Russian Academy of SciencesTikhoretsky Ave. 4St. Petersburg194064Russia
| | - Amalia Rosner
- Israel Oceanographic & Limnological ResearchNational Institute of OceanographyPOB 9753, Tel ShikmonaHaifa3109701Israel
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN)Nice06107France
- Université Côte d'Azur, Federative Research Institute – Marine Resources (IFR MARRES)28 Avenue de ValroseNice06103France
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine OrganismsStazione Zoologica Anton DohrnVilla ComunaleNaples80121Italy
| | - Michela Sugni
- Department of Environmental Science and Policy (ESP)Università degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Stefano Tiozzo
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV)06234 Villefranche‐sur‐MerVillefranche sur MerCedexFrance
| | - Bert Hobmayer
- Institute of Zoology and Center for Molecular Biosciences, University of InnsbruckTechnikerstrInnsbruck256020Austria
| |
Collapse
|
8
|
Endo T, Kadoya K, Suzuki T, Suzuki Y, Terkawi MA, Kawamura D, Iwasaki N. Mature but not developing Schwann cells promote axon regeneration after peripheral nerve injury. NPJ Regen Med 2022; 7:12. [PMID: 35091563 PMCID: PMC8799715 DOI: 10.1038/s41536-022-00205-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Since Schwann cells (SCs) support axonal growth at development as well as after peripheral nerve injury (PNI), developing SCs might be able to promote axon regeneration after PNI. The purpose of the current study was to elucidate the capability of developing SCs to induce axon regeneration after PNI. SC precursors (SCPs), immature SCs (ISCs), repair SCs (RSCs) from injured nerves, and non-RSCs from intact nerves were tested by grafting into acellular region of rat sciatic nerve with crush injury. Both of developing SCs completely failed to support axon regeneration, whereas both of mature SCs, especially RSCs, induced axon regeneration. Further, RSCs but not SCPs promoted neurite outgrowth of adult dorsal root ganglion neurons. Transcriptome analysis revealed that the gene expression profiles were distinctly different between RSCs and SCPs. These findings indicate that developing SCs are markedly different from mature SCs in terms of functional and molecular aspects and that RSC is a viable candidate for regenerative cell therapy for PNI.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan.
| | - Tomoaki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuki Suzuki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| | - Daisuke Kawamura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
9
|
Nanotechnology for Manipulating Cell Plasticity. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_21-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
10
|
Shi L, Kong R, Li Z, Zhao H, Ma R, Bai G, Li J, Li Z. Identification of a new allele of O-fucosyltransferase 1 involved in Drosophila intestinal stem cell regulation. Biol Open 2021; 10:272697. [PMID: 34731235 PMCID: PMC8576262 DOI: 10.1242/bio.058910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/08/2021] [Indexed: 01/12/2023] Open
Abstract
Adult stem cells are critical for the maintenance of tissue homeostasis. However, how the proliferation and differentiation of intestinal stem cells (ISCs) are regulated remains not fully understood. Here, we find a mutant, stum 9-3, affecting the proliferation and differentiation of Drosophila adult ISCs in a forward genetic screen for factors regulating the proliferation and differentiation ISCs. stum 9-3 acts through the conserved Notch signaling pathway, upstream of the S2 cleavage of the Notch receptor. Interestingly, the phenotype of stum 9-3 mutant is not caused by disruption of stumble (stum), where the p-element is inserted. Detailed mapping, rescue experiments and mutant characterization show that stum 9-3 is a new allele of O-fucosyltransferase 1 (O-fut1). Our results indicate that unexpected mutants with interesting phenotype could be recovered in forward genetic screens using known p-element insertion stocks. Summary: A mutant, stum 9-3, affecting the proliferation and differentiation of Drosophila adult intestinal stem cells (ISCs) was identified in a forward genetic screen for factors regulating the proliferation and differentiation ISCs. stum 9-3 acts through the Notch signaling pathway. Detailed mapping, rescue experiments and characterization show that stum 9-3 is not a stumble mutant where the p-element is inserted, but a new allele of O-fucosyltransferase 1 (O-fut1).
Collapse
Affiliation(s)
- Lin Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhengran Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guang Bai
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jing Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
11
|
Sahoo DP, Van Winkle LJ, Díaz de la Garza RI, Dubrovsky JG. Interkingdom Comparison of Threonine Metabolism for Stem Cell Maintenance in Plants and Animals. Front Cell Dev Biol 2021; 9:672545. [PMID: 34557481 PMCID: PMC8454773 DOI: 10.3389/fcell.2021.672545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/11/2021] [Indexed: 01/12/2023] Open
Abstract
In multicellular organisms, tissue generation, maintenance, and homeostasis depend on stem cells. Cellular metabolic status is an essential component of different differentiated states, from stem to fully differentiated cells. Threonine (Thr) metabolism has emerged as a critical factor required to maintain pluripotent/multipotent stem cells in both plants and animals. Thus, both kingdoms conserved or converged upon this fundamental feature of stem cell function. Here, we examine similarities and differences in Thr metabolism-dependent mechanisms supporting stem cell maintenance in these two kingdoms. We then consider common features of Thr metabolism in stem cell maintenance and predict and speculate that some knowledge about Thr metabolism and its role in stem cell function in one kingdom may apply to the other. Finally, we outline future research directions to explore these hypotheses.
Collapse
Affiliation(s)
- Debee Prasad Sahoo
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lon J. Van Winkle
- Department of Biochemistry, Midwestern University, Downers Grove, IL, United States
- Department of Medical Humanities, Rocky Vista University, Parker, CO, United States
| | | | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
12
|
Wartalski K, Gorczyca G, Wiater J, Tabarowski Z, Duda M. Porcine ovarian cortex-derived putative stem cells can differentiate into endothelial cells in vitro. Histochem Cell Biol 2021; 156:349-362. [PMID: 34269874 PMCID: PMC8550686 DOI: 10.1007/s00418-021-02016-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
Endothelial cells (ECs), the primary component of the vasculature, play a crucial role in neovascularization. However, the number of endogenous ECs is inadequate for both experimental purposes and clinical applications. Porcine ovarian putative stem cells (poPSCs), although not pluripotent, are characterized by great plasticity. Therefore, this study aimed to investigate whether poPSCs have the potential to differentiate into cells of endothelial lineage. poPSCs were immunomagnetically isolated from postnatal pig ovaries based on the presence of SSEA-4 protein. Expression of mesenchymal stem cells (MSCs) markers after pre-culture, both at the level of mRNA: ITGB1, THY, and ENG and corresponding protein: CD29, CD90, and CD105 were significantly higher compared to the control ovarian cortex cells. To differentiate poPSCs into ECs, inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied. After 14 days, poPSC differentiation into ECs was confirmed by immunofluorescence staining for vascular endothelial cadherin (VECad) and vascular endothelial growth factor receptor-2 (VEGFR-2). Semi-quantitative WB analysis of these proteins confirmed their high abundance. Additionally, qRT-PCR showed that mRNA expression of corresponding marker genes: CDH5, KDR was significantly higher compared with undifferentiated poPSCs. Finally, EC functional status was confirmed by the migration test that revealed that they were capable of positive chemotaxis, while tube formation assay demonstrated their ability to develop capillary networks. In conclusion, our results provided evidence that poPSCs may constitute the MSC population in the ovary and confirmed that they might be a potential source of ECs for tissue engineering.
Collapse
Affiliation(s)
- Kamil Wartalski
- Faculty of Medicine, Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034, Krakow, Poland
| | - Gabriela Gorczyca
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Endocrinology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland
| | - Jerzy Wiater
- Faculty of Medicine, Department of Histology, Jagiellonian University Medical College, Kopernika 7 Street, 31-034, Krakow, Poland
| | - Zbigniew Tabarowski
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Experimental Hematology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland
| | - Małgorzata Duda
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Endocrinology, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387, Krakow, Poland.
| |
Collapse
|
13
|
Differentiation of human adult-derived stem cells towards a neural lineage involves a dedifferentiation event prior to differentiation to neural phenotypes. Sci Rep 2021; 11:12034. [PMID: 34103613 PMCID: PMC8187441 DOI: 10.1038/s41598-021-91566-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Although it has been reported that mesenchymal stem cells isolated from adult tissues can be induced to overcome their mesenchymal fate and transdifferentiate into neural cells, the findings and their interpretation have been challenged. The main argument against this process is that the cells rapidly adopt neuron-like morphologies through retraction of the cytoplasm rather than active neurite extension. In this study, we examined the sequence of biological events during neural differentiation of human periodontal ligament-derived stem cells (hPDLSCs), human bone marrow-derived stem cells (hBMSCs) and human dental pulp-derived stem cells (hDPSCs) by time-lapse microscopy. We have demonstrated that hPDLSCs, hBMSCs and hDPSCs can directly differentiate into neuron-like cells without passing through a mitotic stage and that they shrink dramatically and change their morphology to that of neuron-like cells through active neurite extension. Furthermore, we observed micronuclei movement and transient cell nuclei lobulation concurrent to in vitro neurogenesis from hBMSCs and hDPSCs. Our results demonstrate that the differentiation of hPDLSCs, hBMSCs and hDPSCs towards a neural lineage occurs through a dedifferentiation step followed by differentiation to neural phenotypes, and therefore we definitively confirm that the rapid acquisition of the neural phenotype is via a differentiation trait.
Collapse
|
14
|
Effect of Biomedical Materials in the Implementation of a Long and Healthy Life Policy. Processes (Basel) 2021. [DOI: 10.3390/pr9050865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This paper is divided into seven main parts. Its purpose is to review the literature to demonstrate the importance of developing bioengineering and global production of biomaterials to care for the level of healthcare in the world. First, the general description of health as a universal human value and assumptions of a long and healthy life policy is presented. The ethical aspects of the mission of medical doctors and dentists were emphasized. The coronavirus, COVID-19, pandemic has had a significant impact on health issues, determining the world’s health situation. The scope of the diseases is given, and specific methods of their prevention are discussed. The next part focuses on bioengineering issues, mainly medical engineering and dental engineering, and the need for doctors to use technical solutions supporting medicine and dentistry, taking into account the current stage Industry 4.0 of the industrial revolution. The concept of Dentistry 4.0 was generally presented, and a general Bioengineering 4.0 approach was suggested. The basics of production management and the quality loop of the product life cycle were analyzed. The general classification of medical devices and biomedical materials necessary for their production was presented. The paper contains an analysis of the synthesis and characterization of biomedical materials supporting medicine and dentistry, emphasizing additive manufacturing methods. Numerous examples of clinical applications supported considerations regarding biomedical materials. The economic conditions for implementing various biomedical materials groups were supported by forecasts for developing global markets for biomaterials, regenerative medicine, and tissue engineering. In the seventh part, recapitulation and final remarks against the background of historical retrospection, it was emphasized that the technological processes of production and processing of biomedical materials and the systematic increase in their global production are a determinant of the implementation of a long and healthy policy.
Collapse
|
15
|
Liu Y, Lou WPK, Fei JF. The engine initiating tissue regeneration: does a common mechanism exist during evolution? CELL REGENERATION (LONDON, ENGLAND) 2021; 10:12. [PMID: 33817749 PMCID: PMC8019671 DOI: 10.1186/s13619-020-00073-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
A successful tissue regeneration is a very complex process that requires a precise coordination of many molecular, cellular and physiological events. One of the critical steps is to convert the injury signals into regeneration signals to initiate tissue regeneration. Although many efforts have been made to investigate the mechanisms triggering tissue regeneration, the fundamental questions remain unresolved. One of the major obstacles is that the injury and the initiation of regeneration are two highly coupled processes and hard to separate from one another. In this article, we review the major events occurring at the early injury/regeneration stage in a range of species, and discuss the possible common mechanisms during initiation of tissue regeneration.
Collapse
Affiliation(s)
- Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; Institute for Brain Research and Rehabilitation, South China Normal University, 510631, Guangzhou, China
| | - Wilson Pak-Kin Lou
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Ji-Feng Fei
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, Guangzhou, China.
| |
Collapse
|
16
|
Carvalho VS, Rissino JD, Nagamachi CY, Pieczarka JC, Noronha RCR. Isolation and establishment of skin-derived and mesenchymal cells from south American bat Artibeus planirostris (Chiroptera - Phyllostomidae). Tissue Cell 2021; 71:101507. [PMID: 33592503 DOI: 10.1016/j.tice.2021.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/24/2022]
Abstract
Animal models represent a crucial tool for biological research, so the establishment of new cultures is fundamental for the discovery of new therapies and the understanding of mechanisms of cell development in the most diverse animals. Here, we report the successful establishment of two new primary cell cultures derived from a South American bat (Artibeus planirostris). The establishment of a new bat culture can help in the investigation of new zoonoses since bats have been proposed as carriers of these diseases. We evaluated the chromosomal stability of cells from different passages. Primary cultures were collected from ear tissues and bone marrow of A. planirostris. Cultures were expanded, and osteogenic and adipogenic inductions were conducted for 21 days. For osteogenic differentiation, the medium was supplemented with 0.1 μM dexamethasone, 3 mM β-glycerophosphate, and 10 μM L-ascorbic acid 2-phosphate. For adipogenic differentiation, the medium was supplemented with 5 μM rosiglitazone, 0.4 μM insulin, 0.1 mM indomethacin, and 0.1 μM dexamethasone. After the induction period, the cells were stained with Alizarin Red to assess osteogenic differentiation and Oil Red O to assess adipogenic differentiation. We observed the appearance of lipid droplets in adipocytes and the extracellular deposition of calcium matrix by osteocytes, indicating that bone marrow-derived cells and skin-derived cells of A. planirostris could successfully differentiate into these lineages. Also, the number of chromosomes remained stable for both primary cultures during passages 2, 4, 6, and 8.
Collapse
Affiliation(s)
- Vinícius S Carvalho
- Laboratório De Citogenética, Centro De Estudos Avançados Em Biodiversidade, Instituto De Ciências Biológicas, Universidade Federal Do Pará, Campus Guamá, Rua Augusto Corrêa, nº 01, Guamá, CEP 66075-900, Belém, Pará, Brazil
| | - Jorge D Rissino
- Laboratório De Citogenética, Centro De Estudos Avançados Em Biodiversidade, Instituto De Ciências Biológicas, Universidade Federal Do Pará, Campus Guamá, Rua Augusto Corrêa, nº 01, Guamá, CEP 66075-900, Belém, Pará, Brazil
| | - Cleusa Y Nagamachi
- Laboratório De Citogenética, Centro De Estudos Avançados Em Biodiversidade, Instituto De Ciências Biológicas, Universidade Federal Do Pará, Campus Guamá, Rua Augusto Corrêa, nº 01, Guamá, CEP 66075-900, Belém, Pará, Brazil
| | - Julio C Pieczarka
- Laboratório De Citogenética, Centro De Estudos Avançados Em Biodiversidade, Instituto De Ciências Biológicas, Universidade Federal Do Pará, Campus Guamá, Rua Augusto Corrêa, nº 01, Guamá, CEP 66075-900, Belém, Pará, Brazil
| | - Renata C R Noronha
- Laboratório De Citogenética, Centro De Estudos Avançados Em Biodiversidade, Instituto De Ciências Biológicas, Universidade Federal Do Pará, Campus Guamá, Rua Augusto Corrêa, nº 01, Guamá, CEP 66075-900, Belém, Pará, Brazil.
| |
Collapse
|
17
|
Udalamaththa VL, Kaluarachchi A, Wijeratne S, Udagama PV. Therapeutic uses of post-partum tissue-derived mesenchymal stromal cell secretome. Indian J Med Res 2020; 152:541-552. [PMID: 34145093 PMCID: PMC8224162 DOI: 10.4103/ijmr.ijmr_1450_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
Human post-partum tissue mesenchymal stromal cells (hPPT-MSCs) are widely used in research to investigate their differentiation capabilities and therapeutic effects as potential agents in cell-based therapy. This is ascribed to the advantages offered by the use of MSCs isolated from hPPT over other MSC sources. A paradigm shift in related research is evident that focuses on the secretome of the human MSCs (hMSCs), as therapeutic effects of hMSCs are attributed more so to their secreted growth factors, cytokines and chemokines and to the extracellular vesicles (EVs), all of which are components of the hMSC secretome. Positive therapeutic effects of the hPPT-MSC secretome have been demonstrated in diseases related to skin, kidney, heart, nervous system, cartilage and bones, that have aided fast recovery by replacing damaged, non-functional tissues, via differentiating and regenerating cells. Although certain limitations such as short half -life of the secretome components and irregular secreting patterns exist in secretome therapy, these issues are successfully addressed with the use of cutting-edge technologies such as genome editing and recombinant cytokine treatment. If the current limitations can be successfully overcome, the hPPT-MSC secretome including its EVs may be developed into a cost-effective therapeutic agent amenable to be used against a wide range of diseases/disorders.
Collapse
Affiliation(s)
| | - Athula Kaluarachchi
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Preethi Vidya Udagama
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
18
|
Perego MGL, Galli N, Nizzardo M, Govoni A, Taiana M, Bresolin N, Comi GP, Corti S. Current understanding of and emerging treatment options for spinal muscular atrophy with respiratory distress type 1 (SMARD1). Cell Mol Life Sci 2020; 77:3351-3367. [PMID: 32123965 PMCID: PMC11104977 DOI: 10.1007/s00018-020-03492-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) with respiratory distress type 1 (SMARD1) is an autosomal recessive motor neuron disease that is characterized by distal and proximal muscle weakness and diaphragmatic palsy that leads to respiratory distress. Without intervention, infants with the severe form of the disease die before 2 years of age. SMARD1 is caused by mutations in the IGHMBP2 gene that determine a deficiency in the encoded IGHMBP2 protein, which plays a critical role in motor neuron survival because of its functions in mRNA processing and maturation. Although it is rare, SMARD1 is the second most common motor neuron disease of infancy, and currently, treatment is primarily supportive. No effective therapy is available for this devastating disease, although multidisciplinary care has been an essential element of the improved quality of life and life span extension in these patients in recent years. The objectives of this review are to discuss the current understanding of SMARD1 through a summary of the presently known information regarding its clinical presentation and pathogenesis and to discuss emerging therapeutic approaches. Advances in clinical care management have significantly extended the lives of individuals affected by SMARD1 and research into the molecular mechanisms that lead to the disease has identified potential strategies for intervention that target the underlying causes of SMARD1. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to halt or possibly prevent neurodegenerative disease in SMARD1 patients. The recent approval of the first gene therapy approach for SMA associated with mutations in the SMN1 gene may be a turning point for the application of this strategy for SMARD1 and other genetic neurological diseases.
Collapse
Affiliation(s)
- Martina G L Perego
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Noemi Galli
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Monica Nizzardo
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessandra Govoni
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Michela Taiana
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Nereo Bresolin
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giacomo P Comi
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Stefania Corti
- Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
19
|
Zhu Q, Lu P. Stem Cell Transplantation for Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:71-97. [PMID: 33105496 DOI: 10.1007/978-981-15-4370-8_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuronal degeneration disease, in which the death of motor neurons causes lost control of voluntary muscles. The consequence is weakness of muscles with a wide range of disabilities and eventually death. Most patients died within 5 years after diagnosis, and there is no cure for this devastating neurodegenerative disease up to date. Stem cells, including non-neural stem cells and neural stem cells (NSCs) or neural progenitor cells (NPCs), are very attractive cell sources for potential neuroprotection and motor neuron replacement therapy which bases on the idea that transplant-derived and newly differentiated motor neurons can replace lost motor neurons to re-establish voluntary motor control of muscles in ALS. Our recent studies show that transplanted NSCs or NPCs not only survive well in injured spinal cord, but also function as neuronal relays to receive regenerated host axonal connection and extend their own axons to host for connectivity, including motor axons in ventral root. This reciprocal connection between host neurons and transplanted neurons provides a strong rationale for neuronal replacement therapy for ALS to re-establish voluntary motor control of muscles. In addition, a variety of new stem cell resources and the new methodologies to generate NSCs or motor neuron-specific progenitor cells have been discovered and developed. Together, it provides the basis for motor neuron replacement therapy with NSCs or NPCs in ALS.
Collapse
Affiliation(s)
- Qiang Zhu
- Ludwig Institute, University of California - San Diego, La Jolla, CA, USA
| | - Paul Lu
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA. .,Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Talukdar S, Das SK, Pradhan AK, Emdad L, Windle JJ, Sarkar D, Fisher PB. MDA-9/Syntenin (SDCBP) Is a Critical Regulator of Chemoresistance, Survival and Stemness in Prostate Cancer Stem Cells. Cancers (Basel) 2019; 12:cancers12010053. [PMID: 31878027 PMCID: PMC7017101 DOI: 10.3390/cancers12010053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Despite some progress, treating advanced prostate cancer remains a major clinical challenge. Recent studies have shown that prostate cancer can originate from undifferentiated, rare, stem cell-like populations within the heterogeneous tumor mass, which play seminal roles in tumor formation, maintenance of tumor homeostasis and initiation of metastases. These cells possess enhanced propensity toward chemoresistance and may serve as a prognostic factor for prostate cancer recurrence. Despite extensive studies, selective targeted therapies against these stem cell-like populations are limited and more detailed experiments are required to develop novel targeted therapeutics. We now show that MDA-9/Syntenin/SDCBP (MDA-9) is a critical regulator of survival, stemness and chemoresistance in prostate cancer stem cells (PCSCs). MDA-9 regulates the expression of multiple stem-regulatory genes and loss of MDA-9 causes a complete collapse of the stem-regulatory network in PCSCs. Loss of MDA-9 also sensitizes PCSCs to multiple chemotherapeutics with different modes of action, such as docetaxel and trichostatin-A, suggesting that MDA-9 may regulate multiple drug resistance. Mechanistically, MDA-9-mediated multiple drug resistance, stemness and survival are regulated in PCSCs through activation of STAT3. Activated STAT3 regulates chemoresistance in PCSCs through protective autophagy as well as regulation of MDR1 on the surface of the PCSCs. We now demonstrate that MDA-9 is a critical regulator of PCSC survival and stemness via exploiting the inter-connected STAT3 and c-myc pathways.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (S.K.D.); (A.K.P.); (L.E.); (J.J.W.); (D.S.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-628-3506 or +1-804-628-3336; Fax: +1-804-827-1124
| |
Collapse
|
21
|
Bueno C, Martínez-Morga M, Martínez S. Non-proliferative neurogenesis in human periodontal ligament stem cells. Sci Rep 2019; 9:18038. [PMID: 31792338 PMCID: PMC6888846 DOI: 10.1038/s41598-019-54745-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/15/2019] [Indexed: 12/16/2022] Open
Abstract
Understanding the sequence of events from undifferentiated stem cells to neuron is not only important for the basic knowledge of stem cell biology, but also for therapeutic applications. In this study we examined the sequence of biological events during neural differentiation of human periodontal ligament stem cells (hPDLSCs). Here, we show that hPDLSCs-derived neural-like cells display a sequence of morphologic development highly similar to those reported before in primary neuronal cultures derived from rodent brains. We observed that cell proliferation is not present through neurogenesis from hPDLSCs. Futhermore, we may have discovered micronuclei movement and transient cell nuclei lobulation coincident to in vitro neurogenesis. Morphological analysis also reveals that neurogenic niches in the adult mouse brain contain cells with nuclear shapes highly similar to those observed during in vitro neurogenesis from hPDLSCs. Our results provide additional evidence that it is possible to differentiate hPDLSCs to neuron-like cells and suggest the possibility that the sequence of events from stem cell to neuron does not necessarily requires cell division from stem cell.
Collapse
Affiliation(s)
- Carlos Bueno
- Instituto de Neurociencias de Alicante (UMH-CSIC), San Juan, Alicante, 03550, Spain.
| | - Marta Martínez-Morga
- Department of Human Anatomy and Institute of Biomedical Research (IMIB), University of Murcia, Faculty of Medicine, Murcia, 30800, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante (UMH-CSIC), San Juan, Alicante, 03550, Spain
| |
Collapse
|
22
|
Gorabi AM, Kiaie N, Barreto GE, Read MI, Tafti HA, Sahebkar A. The Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in Treatment of Neurodegenerative Diseases. Mol Neurobiol 2019; 56:8157-8167. [PMID: 31197655 DOI: 10.1007/s12035-019-01663-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
Neurologic complications are commonly regarded as irreversible impairments that stem from limited potential of regeneration of the central nervous system (CNS). On the other side, the regenerative potential of stem cells has been evaluated in basic research, as well as in preclinical studies. Mesenchymal stem cells (MSCs) have been regarded as candidate cell sources for therapeutic purposes of various neurological disorders, because of their self-renewal ability, plasticity in differentiation, neurotrophic characteristics, and immunomodulatory properties. Exosomes are extracellular vesicles which can deliver biological information over long distances and thereby influencing normal and abnormal processes in cells and tissues. The therapeutic capacity of exosomes relies on the type of cell, as well as on the physiological condition of a given cell. Therefore, based on tissue type and physiological condition of CNS, exosomes may function as contributors or suppressors of pathological conditions in this tissue. When it comes to the therapeutic viewpoint, the most promising cellular source of exosomes is considered to be MSCs. The aim of this review article is to discuss the current knowledge around the potential of stem cells and MSC-derived exosomes in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Morgayn I Read
- Department of Pharmacology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Tehran, Iran.
- School of Medicine, Mashhad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
LSD1/KDM1A, a Gate-Keeper of Cancer Stemness and a Promising Therapeutic Target. Cancers (Basel) 2019; 11:cancers11121821. [PMID: 31756917 PMCID: PMC6966601 DOI: 10.3390/cancers11121821] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
A new exciting area in cancer research is the study of cancer stem cells (CSCs) and the translational implications for putative epigenetic therapies targeted against them. Accumulating evidence of the effects of epigenetic modulating agents has revealed their dramatic consequences on cellular reprogramming and, particularly, reversing cancer stemness characteristics, such as self-renewal and chemoresistance. Lysine specific demethylase 1 (LSD1/KDM1A) plays a well-established role in the normal hematopoietic and neuronal stem cells. Overexpression of LSD1 has been documented in a variety of cancers, where the enzyme is, usually, associated with the more aggressive types of the disease. Interestingly, recent studies have implicated LSD1 in the regulation of the pool of CSCs in different leukemias and solid tumors. However, the precise mechanisms that LSD1 uses to mediate its effects on cancer stemness are largely unknown. Herein, we review the literature on LSD1's role in normal and cancer stem cells, highlighting the analogies of its mode of action in the two biological settings. Given its potential as a pharmacological target, we, also, discuss current advances in the design of novel therapeutic regimes in cancer that incorporate LSD1 inhibitors, as well as their future perspectives.
Collapse
|
24
|
Ma H, Zhao H, Liu F, Zhao H, Kong R, Shi L, Wei M, Li Z. Heparan sulfate negatively regulates intestinal stem cell proliferation in Drosophila adult midgut. Biol Open 2019; 8:bio047126. [PMID: 31628141 PMCID: PMC6826283 DOI: 10.1242/bio.047126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022] Open
Abstract
Tissue homeostasis is maintained by differentiated progeny of residential stem cells. Both extrinsic signals and intrinsic factors play critical roles in the proliferation and differentiation of adult intestinal stem cells (ISCs). However, how extrinsic signals are transduced into ISCs still remains unclear. Here, we find that heparan sulfate (HS), a class of glycosaminoglycan (GAG) chains, negatively regulates progenitor proliferation and differentiation to maintain midgut homeostasis under physiological conditions. Interestingly, HS depletion in progenitors results in inactivation of Decapentaplegic (Dpp) signaling. Dpp signal inactivation in progenitors resembles HS-deficient intestines. Ectopic Dpp signaling completely rescued the defects caused by HS depletion. Taken together, these data demonstrate that HS is required for Dpp signaling to maintain midgut homeostasis. Our results provide insight into the regulatory mechanisms of how extrinsic signals are transduced into stem cells to regulate their proliferation and differentiation.
Collapse
Affiliation(s)
- Hubing Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huiqing Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fuli Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hang Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruiyan Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lin Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Min Wei
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
25
|
Harvey A, Caretti G, Moresi V, Renzini A, Adamo S. Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency and Maintenance. Stem Cell Reports 2019; 13:573-589. [PMID: 31597110 PMCID: PMC6830055 DOI: 10.1016/j.stemcr.2019.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
The environment surrounding stem cells has the ability to elicit profound, heritable epigenetic changes orchestrated by multiple epigenetic mechanisms, which can be modulated by the level of specific metabolites. In this review, we highlight the significance of metabolism in regulating stem cell homeostasis, cell state, and differentiation capacity, using metabolic regulation of embryonic and adult muscle stem cells as examples, and cast light on the interaction between cellular metabolism and epigenetics. These new regulatory networks, based on the dynamic interplay between metabolism and epigenetics in stem cell biology, are important, not only for understanding tissue homeostasis, but to determine in vitro culture conditions which accurately support normal cell physiology.
Collapse
Affiliation(s)
- Alexandra Harvey
- School of BioSciences, University of Melbourne, Parkville, VIC 2010, Australia
| | - Giuseppina Caretti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Viviana Moresi
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy.
| | - Alessandra Renzini
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy
| | - Sergio Adamo
- Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome and Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
26
|
Todoric J, Karin M. The Fire within: Cell-Autonomous Mechanisms in Inflammation-Driven Cancer. Cancer Cell 2019; 35:714-720. [PMID: 31085174 DOI: 10.1016/j.ccell.2019.04.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/24/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory cells are important for tumor initiation and promotion, providing cancer cells with cytokines that enhance cell proliferation and survival. Although malignant epithelial cells were traditionally considered to be on the receiving end of these microenvironmental interactions, recent studies show that epithelial cells can undergo inflammatory reprogramming on their own. Such epigenetic switches are often triggered by chronic tissue injury and play important roles in tissue repair. By converting terminally differentiated cells that harbor even a single oncogenic mutation to a less differentiated state with a higher proliferative potential, cell-autonomous inflammation is an important contributor to tumor initiation.
Collapse
Affiliation(s)
- Jelena Todoric
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Abstract
Mitochondria are customarily acknowledged as the powerhouse of the cell by virtue of their indispensable role in cellular energy production. In addition, it plays an important role in pluripotency, differentiation, and reprogramming. This review describes variation in the stem cells and their mitochondrial heterogeneity. The mitochondrial variation can be described in terms of structure, function, and subcellular distribution. The mitochondria cristae development status and their localization patterns determine the oxygen consumption rate and ATP production which is a central controller of stem cell maintenance and differentiation. Generally, stem cells show spherical, immature mitochondria with perinuclear distribution. Such mitochondria are metabolically less energetic and low polarized. Moreover, mostly glycolytic energy production is found in pluripotent stem cells with a variation in naïve stem cells which perform oxidative phosphorylation (OXPHOS). This article also describes the structural and functional journey of mitochondria during development. Future insight into underlying mechanisms associated with such alternation in mitochondria of stem cells during embryonic stages could uncover mitochondrial adaptability on cellular demands. Moreover, investigating the importance of mitochondria in pluripotency maintenance might unravel the cause of mitochondrial diseases, aging, and regenerative therapies.
Collapse
|
28
|
Adult Cardiac Stem Cell Aging: A Reversible Stochastic Phenomenon? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5813147. [PMID: 30881594 PMCID: PMC6383393 DOI: 10.1155/2019/5813147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Abstract
Aging is by far the dominant risk factor for the development of cardiovascular diseases, whose prevalence dramatically increases with increasing age reaching epidemic proportions. In the elderly, pathologic cellular and molecular changes in cardiac tissue homeostasis and response to injury result in progressive deteriorations in the structure and function of the heart. Although the phenotypes of cardiac aging have been the subject of intense study, the recent discovery that cardiac homeostasis during mammalian lifespan is maintained and regulated by regenerative events associated with endogenous cardiac stem cell (CSC) activation has produced a crucial reconsideration of the biology of the adult and aged mammalian myocardium. The classical notion of the adult heart as a static organ, in terms of cell turnover and renewal, has now been replaced by a dynamic model in which cardiac cells continuously die and are then replaced by CSC progeny differentiation. However, CSCs are not immortal. They undergo cellular senescence characterized by increased ROS production and oxidative stress and loss of telomere/telomerase integrity in response to a variety of physiological and pathological demands with aging. Nevertheless, the old myocardium preserves an endogenous functionally competent CSC cohort which appears to be resistant to the senescent phenotype occurring with aging. The latter envisions the phenomenon of CSC ageing as a result of a stochastic and therefore reversible cell autonomous process. However, CSC aging could be a programmed cell cycle-dependent process, which affects all or most of the endogenous CSC population. The latter would infer that the loss of CSC regenerative capacity with aging is an inevitable phenomenon that cannot be rescued by stimulating their growth, which would only speed their progressive exhaustion. The resolution of these two biological views will be crucial to design and develop effective CSC-based interventions to counteract cardiac aging not only improving health span of the elderly but also extending lifespan by delaying cardiovascular disease-related deaths.
Collapse
|
29
|
Kaneko T, Gu B, Sone PP, Zaw SYM, Murano H, Zaw ZCT, Okiji T. Dental Pulp Tissue Engineering Using Mesenchymal Stem Cells: a Review with a Protocol. Stem Cell Rev Rep 2018; 14:668-676. [PMID: 29804171 DOI: 10.1007/s12015-018-9826-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that can be isolated from human and animal sources such as rats. Recently, an in vivo protocol for pulp tissue engineering using implantation of bone marrow MSCs into rat pulpotomized molars was established by our research group. This coronal pulp regeneration model showed almost complete regeneration/healing with dentin bridge formation when the cavity was sealed with mineral trioxide aggregate (MTA) to create a biocompatible seal of the pulp. This method is a powerful tool for elucidating the processes of dental pulp tissue regeneration following implantation of MSCs. In the present review, we discuss the literature in the field of dental pulp tissue engineering using MSCs including dental pulp stem cells and stem cells from exfoliated deciduous teeth. In addition, we present a brief step-by-step protocol of the coronal pulp regeneration model focusing on the implantation of rat bone marrow MSCs, biodegradable scaffolds, and hydrogels in pulpotomized rat molars. The protocol may lay the foundation for studies aiming at defining further histological and molecular mechanism of the rat pulp tissue engineering.
Collapse
Affiliation(s)
- Tomoatsu Kaneko
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan.
| | - Bin Gu
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Phyo Pyai Sone
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Su Yee Myo Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Hiroki Murano
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Zar Chi Thein Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| |
Collapse
|
30
|
Subbarao RB, Shivakumar SB, Choe YH, Son YB, Lee HJ, Ullah I, Jang SJ, Ock SA, Lee SL, Rho GJ. CD105 + Porcine Endometrial Stromal Mesenchymal Stem Cells Possess Differentiation Potential Toward Cardiomyocyte-Like Cells and Insulin-Producing β Cell-Like Cells In Vitro. Reprod Sci 2018; 26:669-682. [PMID: 29986624 DOI: 10.1177/1933719118786461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porcine mesenchymal stem cells (MSCs) are similar to human MSCs, hence considered a valuable model for assessing potential for cell therapy. Porcine adipose-derived MSCs (AD-MSCs) and endometrial stromal MSCs (EMSCs) displayed fibroblast-like morphology and were positive for MSC markers CD73, CD90, and CD105 and negative for hematopoietic markers CD34 and CD45. The EMSCs had similar or slightly higher growth rate compared to AD-MSCs, and similar percentage of cells of both EMSCs and AD-MSCs were at G0/G1 and G2/M phases; however, EMSCs had significantly ( P < .05) higher percentage of cells at S phase of cell cycle than AD-MSCs. Transdifferentiation ability to cardiomyocyte-like cells was confirmed in differentiated cells by the expression of lineage-specific marker genes such as DES, ACTA2, cTnT, and ACTC1 by real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, cardiomyocyte-specific protein markers cTnT and ACTC1 were expressed in completely differentiated cells. Endodermal differentiation capacity of EMSCs to pancreatic β cell-like cells was evident with the changes in morphology and the expression of β-cell-specific marker genes such as PDX1, GLUT2, SST, NKX6.1, PAX4, and NGN3 as analyzed by RT-qPCR. The differentiated cells secreted insulin and C-peptide upon glucose challenge and also they expressed insulin, PDX1, PAX4, NGN3, and GLUT2 at protein level as assessed by immunostaining confirming the successful differentiation to β cell-like cells. Porcine EMSCs possess all the characteristics of MSCs and are suitable model for studying molecular mechanisms of cellular differentiation.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sharath Belame Shivakumar
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choe
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Ullah
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Si-Jung Jang
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-A Ock
- 2 Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sung-Lim Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.,3 Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
31
|
Sandquist EJ, Essner JJ, Sakaguchi DS. Xenotransplantation of adult hippocampal neural progenitors into the developing zebrafish for assessment of stem cell plasticity. PLoS One 2018; 13:e0198025. [PMID: 29795671 PMCID: PMC5967829 DOI: 10.1371/journal.pone.0198025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/12/2018] [Indexed: 12/26/2022] Open
Abstract
Adult stem cells are considered multipotent, restricted to differentiate into a few tissue-specific cell types. With the advent of technologies which can dedifferentiate and transdifferentiate cell types, assumptions about the process of cell fate determination must be reconsidered, including the role of extrinsic versus intrinsic factors. To determine the plasticity of adult neural progenitors, rat hippocampal progenitor cells were xenotransplanted into embryonic zebrafish. These animals allow for easy detection of transplanted cells due to their external development and transparency at early stages. Adult neural progenitors were observed throughout the zebrafish for the duration of the experiment (at least five days post-transplantation). While the majority of transplanted cells were observed in the central nervous system, a large percentage of cells were located in superficial tissues. However, approximately one-third of these cells retained neural morphology and expression of the neuronal marker, Class III β-tubulin, indicating that the transplanted adult neural progenitors did not adapt alternate fates. A very small subset of cells demonstrated unique, non-neural flattened morphology, suggesting that adult neural progenitors may exhibit plasticity in this model, though at a very low rate. These findings demonstrate that the developing zebrafish may be an efficient model to explore plasticity of a variety of adult stem cell types and the role of external factors on cell fate.
Collapse
Affiliation(s)
- Elizabeth J. Sandquist
- Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (EJS); (DSS)
| | - Jeffrey J. Essner
- Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Donald S. Sakaguchi
- Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Neuroscience Program, Iowa State University, Ames, Iowa, United States of America
- * E-mail: (EJS); (DSS)
| |
Collapse
|
32
|
Cytotherapy using stromal cells: Current and advance multi-treatment approaches. Biomed Pharmacother 2017; 97:38-44. [PMID: 29080456 DOI: 10.1016/j.biopha.2017.10.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Accepted: 10/23/2017] [Indexed: 01/13/2023] Open
Abstract
The research in stem cells gives a proper information about basic mechanisms of human development and differentiation. The use of stem cells in new medicinal therapies includes treatment of different conditions such as spinal cord injury, diabetes mellitus, Parkinsonism, and cardiac disorders. These cells exhibit two unique properties: self-renewal and differentiation. The major stem cells been used for approximately about 10-14 years for cellular therapy are mesenchymal stem cells. Mesenchymal stem cells can individualize into many lineage, i.e. into both mesenchymal and non-mesenchymal lineage, such as into osteoblasts, chondrocytes, myocytes, adipocytes, neurons, etc. This review focuses on the history, types of stem cells and their targets and mechanisms of mesenchymal stem cells. Mesenchymal stem cells are the significant futuristic carrier for treating diseases associated not only with regeneration but also immunomodulation.
Collapse
|
33
|
Kaveh K. Stem Cell Evolutionary Dynamics of Differentiation and Plasticity. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
|
35
|
|
36
|
Abstract
Stem cells, especially neural stem cells (NSCs), are a very attractive cell source for potential reconstruction of injured spinal cord though either neuroprotection, neural regeneration, remyelination, replacement of lost neural cells, or reconnection of disrupted axons. The later have great potential since recent studies demonstrate long-distance growth and connectivity of axons derived from transplanted NSCs after spinal cord injury (SCI). In addition, transplanted NSCs constitute a permissive environment for host axonal regeneration and serve as new targets for host axonal connection. This reciprocal connection between grafted neurons and host neurons constitutes a neuronal relay formation that could restore functional connectivity after SCI.
Collapse
|
37
|
Lucaciu O, Crisan B, Crisan L, Baciut M, Soritau O, Bran S, Biris AR, Hurubeanu L, Hedesiu M, Vacaras S, Kretschmer W, Dirzu N, Campian RS, Baciut G. In quest of optimal drug-supported and targeted bone regeneration in the cranio facial area: a review of techniques and methods. Drug Metab Rev 2016; 47:455-69. [PMID: 26689239 DOI: 10.3109/03602532.2015.1124889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Craniofacial bone structures are frequently and extensively affected by trauma, tumors, bone infections and diseases, age-related degeneration and atrophy, as well as congenital malformations and developmental anomalies. Consequently, severe encumbrances are imposed on both patients and healthcare systems due to the complex and lengthy treatment duration. The search for alternative methods to bone transplantation, grafting and the use of homologous or heterologous bone thus responds to one of the most significant problems in human medicine. This review focuses on the current consensus of bone-tissue engineering in the craniofacial area with emphasis on drug-induced stem cell differentiation and induced bone regeneration.
Collapse
Affiliation(s)
- Ondine Lucaciu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Bogdan Crisan
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Liana Crisan
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Mihaela Baciut
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Olga Soritau
- b "Ion Chiricuta" Oncological Institute , Cluj-Napoca , Romania
| | - Simion Bran
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Alexandru Radu Biris
- c National Institute for Research and Development of Isotopic and Molecular Technologies , Cluj-Napoca , Romania
| | - Lucia Hurubeanu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Mihaela Hedesiu
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Sergiu Vacaras
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | | | - Noemi Dirzu
- e Technical University of Cluj-Napoca , Cluj-Napoca , Romania
| | - Radu Septimiu Campian
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| | - Grigore Baciut
- a Department of Maxillofacial Surgery and Oral Implantology , "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca , Romania
| |
Collapse
|
38
|
Chang HK, Kim PH, Cho HM, Yum SY, Choi YJ, Son Y, Lee D, Kang I, Kang KS, Jang G, Cho JY. Inducible HGF-secreting Human Umbilical Cord Blood-derived MSCs Produced via TALEN-mediated Genome Editing Promoted Angiogenesis. Mol Ther 2016; 24:1644-54. [PMID: 27434585 PMCID: PMC5113099 DOI: 10.1038/mt.2016.120] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) promote therapeutic angiogenesis to cure serious vascular disorders. However, their survival period and cytokine-secretory capacity are limited. Although hepatocyte growth factor (HGF) can accelerate the rate of angiogenesis, recombinant HGF is limited because of its very short half-life (<3–5 minutes). Thus, continuous treatment with HGF is required to obtain an effective therapeutic response. To overcome these limitations, we produced genome-edited MSCs that secreted HGF upon drug-specific induction. The inducible HGF expression cassette was integrated into a safe harbor site in an MSC chromosome using the TALEN system, resulting in the production of TetOn-HGF/human umbilical cord blood-derived (hUCB)-MSCs. Functional assessment of the TetOn-HGF/hUCB-MSCs showed that they had enhanced mobility upon the induction of HGF expression. Moreover, long-term exposure by doxycycline (Dox)-treated TetOn-HGF/hUCB-MSCs enhanced the anti-apoptotic responses of genome-edited MSCs subjected to oxidative stress and improved the tube-formation ability. Furthermore, TetOn-HGF/hUCB-MSCs encapsulated by arginine-glycine-aspartic acid (RGD)-alginate microgel induced to express HGF improved in vivo angiogenesis in a mouse hindlimb ischemia model. This study showed that the inducible HGF-expressing hUCB-MSCs are competent to continuously express and secrete HGF in a controlled manner. Thus, the MSCs that express HGF in an inducible manner are a useful therapeutic modality for the treatment of vascular diseases requiring angiogenesis.
Collapse
Affiliation(s)
- Hyun-Kyung Chang
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Pyung-Hwan Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,Current address: Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, South Korea
| | - Hyun-Min Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Soo-Young Yum
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Young-Jin Choi
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - YeonSung Son
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - DaBin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - InSung Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Goo Jang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
39
|
Castagnola A, Jurat-Fuentes JL. Intestinal regeneration as an insect resistance mechanism to entomopathogenic bacteria. CURRENT OPINION IN INSECT SCIENCE 2016; 15:104-10. [PMID: 27436739 PMCID: PMC4957658 DOI: 10.1016/j.cois.2016.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 06/06/2023]
Abstract
The intestinal epithelium of insects is exposed to xenobiotics and entomopathogens during the feeding developmental stages. In these conditions, an effective enterocyte turnover mechanism is highly desirable to maintain integrity of the gut epithelial wall. As in other insects, the gut of lepidopteran larvae have stem cells that are capable of proliferation, which occurs during molting and pathogenic episodes. While much is known on the regulation of gut stem cell division during molting, there is a current knowledge gap on the molecular regulation of gut healing processes after entomopathogen exposure. Relevant information on this subject is emerging from studies of the response to exposure to insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) as model intoxicants. In this work we discuss currently available data on the molecular cues involved in gut stem cell proliferation, insect gut healing, and the implications of enhanced healing as a potential mechanism of resistance against Bt toxins.
Collapse
Affiliation(s)
- Anaïs Castagnola
- Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
40
|
Lim DA, Alvarez-Buylla A. The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018820. [PMID: 27048191 DOI: 10.1101/cshperspect.a018820] [Citation(s) in RCA: 431] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large population of neural stem/precursor cells (NSCs) persists in the ventricular-subventricular zone (V-SVZ) located in the walls of the lateral brain ventricles. V-SVZ NSCs produce large numbers of neuroblasts that migrate a long distance into the olfactory bulb (OB) where they differentiate into local circuit interneurons. Here, we review a broad range of discoveries that have emerged from studies of postnatal V-SVZ neurogenesis: the identification of NSCs as a subpopulation of astroglial cells, the neurogenic lineage, new mechanisms of neuronal migration, and molecular regulators of precursor cell proliferation and migration. It has also become evident that V-SVZ NSCs are regionally heterogeneous, with NSCs located in different regions of the ventricle wall generating distinct OB interneuron subtypes. Insights into the developmental origins and molecular mechanisms that underlie the regional specification of V-SVZ NSCs have also begun to emerge. Other recent studies have revealed new cell-intrinsic molecular mechanisms that enable lifelong neurogenesis in the V-SVZ. Finally, we discuss intriguing differences between the rodent V-SVZ and the corresponding human brain region. The rapidly expanding cellular and molecular knowledge of V-SVZ NSC biology provides key insights into postnatal neural development, the origin of brain tumors, and may inform the development regenerative therapies from cultured and endogenous human neural precursors.
Collapse
Affiliation(s)
- Daniel A Lim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, Department of Neurological Surgery, University of California, San Francisco, California 94143
| |
Collapse
|
41
|
Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche. Stem Cells Int 2016; 2016:5736059. [PMID: 27195011 PMCID: PMC4853949 DOI: 10.1155/2016/5736059] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/27/2016] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.
Collapse
|
42
|
Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 2016; 17:413-25. [PMID: 26979497 DOI: 10.1038/nrm.2016.24] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biologists have long been intrigued by the possibility that cells can change their identity, a phenomenon known as cellular plasticity. The discovery that terminally differentiated cells can be experimentally coaxed to become pluripotent has invigorated the field, and recent studies have demonstrated that changes in cell identity are not limited to the laboratory. Specifically, certain adult cells retain the capacity to de-differentiate or transdifferentiate under physiological conditions, as part of an organ's normal injury response. Recent studies have highlighted the extent to which cell plasticity contributes to tissue homeostasis, findings that have implications for cell-based therapy.
Collapse
|
43
|
Katano M, Ema M, Nakachi Y, Mizuno Y, Hirasaki M, Suzuki A, Ueda A, Nishimoto M, Takahashi S, Okazaki Y, Okuda A. Forced expression of Nanog or Esrrb preserves the ESC status in the absence of nucleostemin expression. Stem Cells 2016; 33:1089-101. [PMID: 25522312 PMCID: PMC4409032 DOI: 10.1002/stem.1918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 11/04/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Abstract
Nucleostemin (NS) is a nucleolar GTP-binding protein that is involved in a plethora of functions including ribosomal biogenesis and maintenance of telomere integrity. In addition to its expression in cancerous cells, the NS gene is expressed in stem cells including embryonic stem cells (ESCs). Previous knockdown and knockout studies have demonstrated that NS is important to preserve the self-renewality and high expression levels of pluripotency marker genes in ESCs. Here, we found that forced expression of Nanog or Esrrb, but not other pluripotency factors, resulted in the dispensability of NS expression in ESCs. However, the detrimental phenotypes of ESCs associated with ablation of NS expression were not mitigated by forced expression of Rad51 or a nucleolar localization-defective NS mutant that counteracts the damage associated with loss of NS expression in other NS-expressing cells such as neural stem/progenitor cells. Thus, our results indicate that NS participates in preservation of the viability and integrity of ESCs, which is distinct from that in other NS-expressing cells. Stem Cells2015;33:1089–1101
Collapse
Affiliation(s)
- Miyuki Katano
- Division of Developmental Biology, Saitama Medical University, Yamane, Hidaka, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
We have witnessed a rapid expansion of in vitro characterization and differentiation of adipose-derived stem cells, with increasing translation to both in vivo models and a breadth of clinical specialties. However, an appreciation of the truly heterogeneous nature of this unique stem cell group has identified a need to more accurately delineate subpopulations by any of a host of methods, to include functional properties or surface marker expression. Cells selected for improved proliferative, differentiative, angiogenic or ischemia-resistant properties are but a few attributes that could prove beneficial for targeted treatments or therapies. Optimizing cell culture conditions to permit re-introduction to patients is critical for clinical translation.
Collapse
Affiliation(s)
- Kavan S Johal
- Blond McIndoe Laboratories, Institute of Inflammation & Repair, School of Medicine, University of Manchester, M13 9PT, UK
| | | | | |
Collapse
|
45
|
Vanoli F, Rinchetti P, Porro F, Parente V, Corti S. Clinical and molecular features and therapeutic perspectives of spinal muscular atrophy with respiratory distress type 1. J Cell Mol Med 2015; 19:2058-66. [PMID: 26095024 PMCID: PMC4568910 DOI: 10.1111/jcmm.12606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy with respiratory distress (SMARD1) is an autosomal recessive neuromuscular disease caused by mutations in the IGHMBP2 gene, encoding the immunoglobulin μ-binding protein 2, leading to motor neuron degeneration. It is a rare and fatal disease with an early onset in infancy in the majority of the cases. The main clinical features are muscular atrophy and diaphragmatic palsy, which requires prompt and permanent supportive ventilation. The human disease is recapitulated in the neuromuscular degeneration (nmd) mouse. No effective treatment is available yet, but novel therapeutical approaches tested on the nmd mouse, such as the use of neurotrophic factors and stem cell therapy, have shown positive effects. Gene therapy demonstrated effectiveness in SMA, being now at the stage of clinical trial in patients and therefore representing a possible treatment for SMARD1 as well. The significant advancement in understanding of both SMARD1 clinical spectrum and molecular mechanisms makes ground for a rapid translation of pre-clinical therapeutic strategies in humans.
Collapse
Affiliation(s)
- Fiammetta Vanoli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Rinchetti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Porro
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Parente
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
46
|
Subbarao RB, Ullah I, Kim EJ, Jang SJ, Lee WJ, Jeon RH, Kang D, Lee SL, Park BW, Rho GJ. Characterization and evaluation of neuronal trans-differentiation with electrophysiological properties of mesenchymal stem cells isolated from porcine endometrium. Int J Mol Sci 2015; 16:10934-51. [PMID: 26006231 PMCID: PMC4463684 DOI: 10.3390/ijms160510934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Endometrial stromal cells (EMSCs) obtained from porcine uterus (n = 6) were positive for mesenchymal stem cell markers (CD29, CD44 and CD90), and negative for epithelial marker CD9 and hematopoietic markers CD34, CD45 analyzed by flow cytometry. Further the cells were positive for expression of mesenchymal markers, CD105, CD140b, and CD144 by PCR. Pluripotent markers OCT4, SOX2, and NANOG were positively expressed in EMSCs analyzed by Western blotting and PCR. Further, differentiation into adipocytes and osteocytes was confirmed by cytochemical staining and lineage specific gene expression by quantitative realtime-PCR. Adipocyte (FABP, LPL, AP2) and osteocyte specific genes (ON, BG, RUNX2) in differentiated EMSCs showed significant (p < 0.05) increase in expression compared to undifferentiated control cells. Neurogenic transdifferentiation of EMSCs exhibited distinctive dendritic morphology with axon projections and neuronal specific genes, NFM, NGF, MBP, NES, B3T and MAP2 and proteins, B3T, NFM, NGF, and TRKA were positively expressed in neuronal differentiated cells. Functional analysis of neuronal differentiated EMSCs displayed voltage-dependence and kinetics for transient outward K+ currents (Ito), at holding potential of -80 mV, Na+ currents and during current clamp, neuronal differentiated EMSCs was more negative than that of control EMSCs. Porcine EMSCs is a suitable model for studying molecular mechanism of transdifferentiation, assessment of electrophysiological properties and their efficiency during in vivo transplantation.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Won-Jae Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Ryoung Hoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju 660-751, Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
47
|
Leite CF, Almeida TR, Lopes CS, Dias da Silva VJ. Multipotent stem cells of the heart-do they have therapeutic promise? Front Physiol 2015; 6:123. [PMID: 26005421 PMCID: PMC4424849 DOI: 10.3389/fphys.2015.00123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/06/2015] [Indexed: 01/26/2023] Open
Abstract
The last decade has brought a comprehensive change in our view of cardiac remodeling processes under both physiological and pathological conditions, and cardiac stem cells have become important new players in the general mainframe of cardiac homeostasis. Different types of cardiac stem cells show different capacities for differentiation into the three major cardiac lineages: myocytes, endothelial cells and smooth muscle cells. Physiologically, cardiac stem cells contribute to cardiac homeostasis through continual cellular turnover. Pathologically, these cells exhibit a high level of proliferative activity in an apparent attempt to repair acute cardiac injury, indicating that these cells possess (albeit limited) regenerative potential. In addition to cardiac stem cells, mesenchymal stem cells represent another multipotent cell population in the heart; these cells are located in regions near pericytes and exhibit regenerative, angiogenic, antiapoptotic, and immunosuppressive properties. The discovery of these resident cardiac stem cells was followed by a number of experimental studies in animal models of cardiomyopathies, in which cardiac stem cells were tested as a therapeutic option to overcome the limited transdifferentiating potential of hematopoietic or mesenchymal stem cells derived from bone marrow. The promising results of these studies prompted clinical studies of the role of these cells, which have demonstrated the safety and practicability of cellular therapies for the treatment of heart disease. However, questions remain regarding this new therapeutic approach. Thus, the aim of the present review was to discuss the multitude of different cardiac stem cells that have been identified, their possible functional roles in the cardiac regenerative process, and their potential therapeutic uses in treating cardiac diseases.
Collapse
Affiliation(s)
- Camila F Leite
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University Uberaba, Brazil
| | - Thalles R Almeida
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University Uberaba, Brazil
| | - Carolina S Lopes
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University Uberaba, Brazil
| | - Valdo J Dias da Silva
- Department of Biochemistry, Pharmacology, Physiology and Molecular Biology, Institute for Biological and Natural Sciences, Triângulo Mineiro Federal University Uberaba, Brazil
| |
Collapse
|
48
|
Prigione A, Ruiz-Pérez MV, Bukowiecki R, Adjaye J. Metabolic restructuring and cell fate conversion. Cell Mol Life Sci 2015; 72:1759-77. [PMID: 25586562 PMCID: PMC11113500 DOI: 10.1007/s00018-015-1834-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 02/07/2023]
Abstract
Accumulating evidence implicates mitochondrial and metabolic pathways in the establishment of pluripotency, as well as in the control of proliferation and differentiation programs. From classic studies in mouse embryos to the latest findings in adult stem cells, human embryonic and induced pluripotent stem cells, an increasing number of evidence suggests that mitochondrial and metabolic-related processes might intertwine with signaling networks and epigenetic rewiring, thereby modulating cell fate decisions. This review summarizes the progresses in this exciting field of research. Dissecting these complex mitochondrial and metabolic mechanisms may lead to a more comprehensive understanding of stemness biology and to potential improvements in stem cell applications for biomedicine, cell therapy, and disease modeling.
Collapse
Affiliation(s)
- Alessandro Prigione
- Max Delbrueck Center for Molecular Medicine (MDC), Robert-Roessle-Str. 10, 13125, Berlin, Germany,
| | | | | | | |
Collapse
|
49
|
Cheng Y, Xie N, Jin P, Wang T. DNA methylation and hydroxymethylation in stem cells. Cell Biochem Funct 2015; 33:161-73. [PMID: 25776144 DOI: 10.1002/cbf.3101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/17/2015] [Accepted: 02/24/2015] [Indexed: 12/18/2022]
Abstract
In mammals, DNA methylation and hydroxymethylation are specific epigenetic mechanisms that can contribute to the regulation of gene expression and cellular functions. DNA methylation is important for the function of embryonic stem cells and adult stem cells (such as haematopoietic stem cells, neural stem cells and germline stem cells), and changes in DNA methylation patterns are essential for successful nuclear reprogramming. In the past several years, the rediscovery of hydroxymethylation and the TET enzymes expanded our insights tremendously and uncovered more dynamic aspects of cytosine methylation regulation. Here, we review the current knowledge and highlight the most recent advances in DNA methylation and hydroxymethylation in embryonic stem cells, induced pluripotent stem cells and several well-studied adult stems cells. Our current understanding of stem cell epigenetics and new advances in the field will undoubtedly stimulate further clinical applications of regenerative medicine in the future.
Collapse
Affiliation(s)
- Ying Cheng
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Nina Xie
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Tao Wang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
50
|
Qu Y, Chi W, Hua X, Deng R, Li J, Liu Z, Pflugfelder SC, Li DQ. Unique expression pattern and functional role of periostin in human limbal stem cells. PLoS One 2015; 10:e0117139. [PMID: 25658308 PMCID: PMC4319935 DOI: 10.1371/journal.pone.0117139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022] Open
Abstract
Periostin is a non-structural matricellular protein. Little is known about periostin in human limbal stem cells (LSCs). This study was to explore the unique expression pattern and functional role of periostin in maintaining the properties of human LSCs. Fresh donor corneal tissues were used to make cryosections for evaluation of periostin expression on ex vivo tissues. Primary human limbal epithelial cells (HLECs) were generated from limbal explant culture. In vitro culture models for proliferation and epithelial regeneration were performed to explore functional role of periostin in LSCs. The mRNA expression was determined by reverse transcription and quantitative real-time PCR (RT-qPCR), and the protein production and localization were detected by immunofluorescent staining and Western blot analysis. Periostin protein was found to be exclusively immunolocalized in the basal layer of human limbal epithelium. Periostin localization was well matched with nuclear factor p63, but not with corneal epithelial differentiation marker Keratin 3. Periostin transcripts was also highly expressed in limbal than corneal epithelium. In primary HLECs, periostin expression at mRNA and protein levels was significantly higher in 50% and 70% confluent cultures at exponential growth stage than in 100% confluent cultures at slow growth or quiescent condition. This expression pattern was similar to other stem/progenitor cell markers (p63, integrin β1 and TCF4). Periostin expression at transcripts, protein and immunoreactivity levels increased significantly during epithelial regeneration in wound healing process, especially in 16-24 hours at wound edge, which was accompanied by similar upregulation and activation of p63, integrin β1 and TCF4. Our findings demonstrated that periostin is exclusively produced by limbal basal epithelium and co-localized with p63, where limbal stem cells reside. Periostin promotes HLEC proliferation and regeneration with accompanied activation of stem/progenitor cell markers p63, integrin β1 and TCF4, suggesting its novel role in maintaining the phenotype and functional properties of LSC.
Collapse
Affiliation(s)
- Yangluowa Qu
- The Eye Institute, Xiamen University, Xiamen, China
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wei Chi
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Zhongshan Ophthalmic Center, State Key laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China
| | - Xia Hua
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ruzhi Deng
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jin Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zuguo Liu
- The Eye Institute, Xiamen University, Xiamen, China
- * E-mail: (ZL); (DQL)
| | - Stephen C. Pflugfelder
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - De-Quan Li
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (ZL); (DQL)
| |
Collapse
|