1
|
Shi J, He C, Chen L, Xing X, Wei W, Zhang J. Targeting PD-1 post-translational modifications for improving cancer immunotherapy. CELL INSIGHT 2025; 4:100248. [PMID: 40336591 PMCID: PMC12056969 DOI: 10.1016/j.cellin.2025.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Programmed cell death protein 1 (PD-1) is a critical immune checkpoint receptor that suppresses immune responses largely through its interaction with PD-L1. Tumors exploit this mechanism to evade immune surveillance, positioning immune checkpoint inhibitors targeting the PD-1/PD-L1 axis as groundbreaking advancements in cancer therapy. However, the overall effectiveness of these therapies is often constrained by an incomplete understanding of the underlying mechanisms. Recent research has uncovered the pivotal role of various post-translational modifications (PTMs) of PD-1, including ubiquitination, UFMylation, phosphorylation, palmitoylation, and glycosylation, in regulating its protein stability, localization, and protein-protein interactions. As much, dysregulation of these PTMs can drive PD-1-mediated immune evasion and contribute to therapeutic resistance. Notably, targeting PD-1 PTMs with small-molecule inhibitors or monoclonal antibodies (MAbs) has shown potential to bolster anti-tumor immunity in both pre-clinical mouse models and clinical trials. This review highlights recent findings on PD-1's PTMs and explores emerging therapeutic strategies aimed at modulating these modifications. By integrating these mechanistic insights, the development of combination cancer immunotherapies can be further rationally advanced, offering new avenues for more effective and durable treatments.
Collapse
Affiliation(s)
- Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Chuan He
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Xixin Xing
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
2
|
Wathan AJ, Deschene NM, Litz JM, Sumner I. The Lysine Deprotonation Mechanism in a Ubiquitin Conjugating Enzyme. J Phys Chem B 2025; 129:4962-4968. [PMID: 40353756 DOI: 10.1021/acs.jpcb.5c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Ubiquitination is a biochemical reaction in which a small protein, ubiquitin (Ub), is covalently linked to a lysine on a target protein. This type of post-translational modification can signal for protein degradation, DNA repair, or inflammation response. Ubiquitination is catalyzed by three families of enzymes: ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), and ubiquitin ligases (E3). In this study, we focus on the chemical mechanism used by the E2 enzyme, Ubc13, which forms polyubiquitin chains by linking a substrate Ub to Lys63 on a target ubiquitin (Ub*). Initially, Ubc13 is covalently linked to the substrate Ub. Next, Lys63 in the Ub* is deprotonated, becomes an active nucleophile, and attacks the thioester bond in the Ubc13∼Ub conjugate. The deprotonation mechanism is not well understood. There are two, conserved nearby residues that may act as conjugate bases (Asp119 on Ubc13 and Glu64 on Ub*.) It is also hypothesized that the active site environment suppresses the lysine's pKa, favoring deprotonated lysine. We test these hypotheses by simulating both WT and mutant Ubc13 with constant pH molecular dynamics (CpHMD), which allows titratable residues to change their protonation states. In our simulations, we have five titratable residues, including Lys63, and we use these simulations to monitor the protonation states and to generate titration curves of lysine 63. We found that the pKa of Lys63 is highly dependent on its distance from the active site. Also, mutating Asp119 or Glu64 to Ala has little effect on the lysine pKa, indicating that neither residue acts as a generalized base. Finally, we note that mutating a structural residue (Asn79 to Ala) increases the lysine pKa, suggesting that alterations to the active site hydrogen bonding network can affect nucleophile activation.
Collapse
Affiliation(s)
- Alexis J Wathan
- Department of Science and Mathematics, Rochester Institute of Technology/NTID, Rochester, New York 14623, United States
| | - Nicole M Deschene
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Joseph M Litz
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Isaiah Sumner
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| |
Collapse
|
3
|
Alrosan AZ, Heilat GB, Alrosan K, Shannag A, Alshalout EM. NEDD4 signaling: a new frontier in the diagnosis and treatment of breast and ovarian cancers. Med Oncol 2025; 42:200. [PMID: 40327180 DOI: 10.1007/s12032-025-02751-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Currently, breast cancer (BC) and ovarian cancer (OC) are the most prevalent forms of cancer among women worldwide. Even though BC has a favorable outlook when detected early and managed appropriately compared to OC, the spread of BC and OC to other parts of the body, known as metastasis, is a significant cause of death. A robust association exists between genetic and protein alterations and post-translational modifications (PTMs), significantly impacting tumor formation, advancement, and prognosis. Ubiquitination, a crucial PTM, regulates almost all aspects of cellular function, and E3-ligase-mediated ubiquitination is a pivotal process that controls the speed of the protein ubiquitination cascade. NEDD4-1, a neural developmentally downregulated protein 4-1, is a crucial E3 ligase that plays a significant role in regulating several proteins that have important functions in the development and progression of BC and OC, thus controlling BC and OC cells' movement, infiltration, and multiplication. This review discusses the latest developments in comprehending NEDD4-1 substrates and their involvement in signal transduction pathways in BC and OC. NEDD4-1 likely serves as a novel diagnostic indicator and a target for therapy in the battle against both cancers.
Collapse
Affiliation(s)
- Amjad Z Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan.
| | - Ghaith B Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Ahmad Shannag
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ehab M Alshalout
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| |
Collapse
|
4
|
Yang H, Zhang Y, Lyu S, Mao Y, Yu F, Liu S, Fang Y, Deng S. Arabidopsis CIRP1 E3 ligase modulates drought and oxidative stress tolerance and reactive oxygen species homeostasis by directly degrading catalases. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1274-1289. [PMID: 39873956 DOI: 10.1111/jipb.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/29/2024] [Indexed: 01/30/2025]
Abstract
Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. H2O2, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear. Here, we report that CAT2 and CAT3 protein abundance was partially controlled using the 26S proteasome. To further identify candidate proteins that modulate the stability of CAT2, we performed yeast-two-hybrid screening and recovered several clones encoding a protein with RING and vWA domains, CIRP1 ( CAT2 Interacting RING Protein 1). Drought and oxidative stress downregulated CIRP1 transcripts. CIRP1 harbored E3 ubiquitination activity and accelerated the degradation of CAT2 and CAT3 by direct interaction and ubiquitination. The cirp1 mutants exhibited stronger drought and oxidative stress tolerance, which was opposite to the cat2 and cat3 mutants. Genetic analysis revealed that CIRP1 acts upstream of CAT2 and CAT3 to negatively regulate drought and oxidative stress tolerance. The increased drought and oxidative stress tolerance of the cirp1 mutants was due to enhanced catalase (CAT) activities and alleviated ROS levels. Our data revealed that the CIRP1-CAT2/CAT3 module plays a vital role in alleviating ROS levels and balancing growth and stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Heng Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yaping Mao
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- National Engineering Research Center of Navel Orange, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Fangqin Yu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sai Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Fang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- National Engineering Research Center of Navel Orange, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Engineering Research Center of Navel Orange, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
5
|
Hwang J, Lauinger L, Kaiser P. Distinct Stress Regulators in the CRL Family: Emerging Roles of F-Box Proteins: Cullin-RING Ligases and Stress-Sensing. Bioessays 2025; 47:e202400249. [PMID: 40091294 DOI: 10.1002/bies.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Cullin-RING ligases (CRLs) are central regulators of environmental and cellular stress responses, orchestrating diverse processes through the ubiquitination of substrate proteins. As modular complexes, CRLs employ substrate-specific adaptors to target proteins for degradation and other ubiquitin-mediated processes, enabling dynamic adaptation to environmental cues. Recent advances have highlighted the largest CRL subfamily SCF (Skp1-cullin-F-box) in environmental sensing, a role historically underappreciated for SCF ubiquitin ligases. Notably, emerging evidence suggests that the F-box domain, a 50-amino acid motif traditionally recognized for mediating protein-protein interactions, can act as a direct environmental sensor due to its ability to bind heavy metals. Despite these advances, the roles of many CRL components in environmental sensing remain poorly understood. This review provides an overview of CRLs in stress response regulation and emphasizes the emerging functions of F-box proteins in environmental adaptation.
Collapse
Affiliation(s)
- Jiwon Hwang
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Linda Lauinger
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
6
|
Gong X, Xu L, Cai P. Friend or foe of tripartite motif-containing protein 21 in cardiovascular disease: A review. Int J Biol Macromol 2025; 308:142682. [PMID: 40164260 DOI: 10.1016/j.ijbiomac.2025.142682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
As an E3 ubiquitin ligase and an Fc receptor, tripartite motif-containing protein 21 (TRIM21) plays a crucial role in immune defense, signal transduction, and cellular regulation. TRIM21 is widely expressed in various tissues, but it is particularly abundant in cardiovascular tissues and is involved in the pathogenesis of various cardiovascular diseases (CVDs). However, although TRIM21 is involved in the regulation of several key molecular pathways in the immune system, its specific role in CVD remains unclear. In this review, we comprehensively summarize the regulatory role of TRIM21 in signaling pathways and discuss the function of TRIM21 in CVD, to provide a systematic understanding of this important protein in CVD and offer insights for further research into the pathogenesis of CVD and its potential applications.
Collapse
Affiliation(s)
- Xiangmei Gong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Xu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Kumar M, Banerjee S, Cohen-Kfir E, Mitelberg MB, Tiwari S, Isupov MN, Dessau M, Wiener R. UFC1 reveals the multifactorial and plastic nature of oxyanion holes in E2 conjugating enzymes. Nat Commun 2025; 16:3912. [PMID: 40280917 PMCID: PMC12032130 DOI: 10.1038/s41467-025-58826-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
The conjugation of ubiquitin (Ub) or ubiquitin-like proteins (UBL) to target proteins is a crucial post-translational modification that typically involves nucleophilic attack by a lysine on a charged E2 enzyme (E2~Ub/UBL), forming an oxyanion intermediate. Stabilizing this intermediate through an oxyanion hole is vital for progression of the reaction. Still, the mechanism of oxyanion stabilization in E2 enzymes remains unclear, although an asparagine residue in the conserved HPN motif of E2 enzymes was suggested to stabilize the oxyanion intermediate. Here, we study the E2 enzyme UFC1, which presents a TAK rather than an HPN motif. Crystal structures of UFC1 mutants, including one that mimics the oxyanion intermediate, combined with in vitro activity assays, suggest that UFC1 utilizes two distinct types of oxyanion holes, one that stabilizes the oxyanion intermediate during trans-ufmylation mediated by the E3 ligase, and another that stabilizes cis-driven auto-ufmylation. Our findings indicate that oxyanion stabilization is influenced by multiple factors, including C-alpha hydrogen bonding, and is adaptable, enabling different modes of action.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Sayanika Banerjee
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Einav Cohen-Kfir
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Marissa Basia Mitelberg
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel
| | - Suryakant Tiwari
- Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter, UK
| | - Moshe Dessau
- Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel.
| |
Collapse
|
8
|
Feijs-Žaja KLH, Siefert J, Žaja R. Modifying the modifiers: ubiquitination of ADP-ribosylation in human cells. Trends Biochem Sci 2025:S0968-0004(25)00059-3. [PMID: 40263069 DOI: 10.1016/j.tibs.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025]
Abstract
Ubiquitination and ADP-ribosylation are protein post-translational modifications (PTMs) which influence diverse protein properties. In vitro work has indicated that ubiquitin can be ADP-ribosylated and vice versa, ADP-ribose ubiquitinated. An exciting new study by Bejan et al. now demonstrates that ubiquitination of ADP-ribosylated proteins, termed MARUbylation, occurs in human cells.
Collapse
Affiliation(s)
- Karla L H Feijs-Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany.
| | - Jonas Siefert
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Lim YJ, Lee YH. Solo or in Concert: SUMOylation in Pathogenic Fungi. THE PLANT PATHOLOGY JOURNAL 2025; 41:140-152. [PMID: 40211619 PMCID: PMC11986368 DOI: 10.5423/ppj.rw.11.2024.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/14/2025]
Abstract
SUMOylation plays a pivotal role in DNA replication and repair, transcriptional stability, and stress response. Although SUMOylation is a conserved posttranslational modification (PTM) in eukaryotes, the number, type, and function of SUMOylation-associated components vary among mammals, plants, and fungi. SUMOylation shares overlapping features with ubiquitination, another well-known PTM. However, comparative studies on the interplay between these two PTMs are largely limited to yeast among fungal species. Recently, the role of SUMOylation in pathogenicity and its potential for crosstalk with ubiquitination have gained attention in fungal pathogens. In this review, we summarize recent findings on the distinct components of SUMOylation across organisms and describe its critical functions in fungal pathogens. Furthermore, we propose new research directions for SUMOylation in fungal pathogens, both independently and in coordination with other PTMs. This review aims to illuminate the potential for advancing PTM crosstalk research in fungal systems.
Collapse
Affiliation(s)
- You-Jin Lim
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Yong-Hwan Lee
- Research Institute of Agriculture and Life Sciences and Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Agricultural Genomics, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Center for Plant Microbiome Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
10
|
Zhang N, Wang X, Li Y, Lu Y, Sheng C, Sun Y, Ma N, Jiao Y. Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer. Commun Biol 2025; 8:77. [PMID: 39825074 PMCID: PMC11748638 DOI: 10.1038/s42003-024-07383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025] Open
Abstract
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer. Additionally, we explore the role of CPIs in tumor drug resistance to gain a deeper understanding of their potential applications in the development of new anti-cancer therapeutic approaches.
Collapse
Affiliation(s)
- Nan Zhang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Xinjia Wang
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yu Li
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yiwei Lu
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Chengcheng Sheng
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Yumeng Sun
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China
| | - Ningye Ma
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| | - Yisheng Jiao
- Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
| |
Collapse
|
11
|
Baytshtok V, DiMattia MA, Lima CD. Structural basis for a nucleoporin exportin complex between RanBP2, SUMO1-RanGAP1, the E2 Ubc9, Crm1 and the Ran GTPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616749. [PMID: 39763778 PMCID: PMC11703149 DOI: 10.1101/2024.10.04.616749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
The human nucleoporin RanBP2/Nup358 interacts with SUMO1-modified RanGAP1 and the SUMO E2 Ubc9 at the nuclear pore complex (NPC) to promote export and disassembly of exportin Crm1/Ran(GTP)/cargo complexes. In mitosis, RanBP2/SUMO1-RanGAP1/Ubc9 remains intact after NPC disassembly and is recruited to kinetochores and mitotic spindles by Crm1 where it contributes to mitotic progression. Interestingly, RanBP2 binds SUMO1-RanGAP1/Ubc9 via motifs that also catalyze SUMO E3 ligase activity. Here, we resolve cryo-EM structures of a RanBP2 C-terminal fragment in complex with Crm1, SUMO1-RanGAP1/Ubc9, and two molecules of Ran(GTP). These structures reveal several unanticipated interactions with Crm1 including a nuclear export signal (NES) for RanGAP1, the deletion of which mislocalizes RanGAP1 and the Ran GTPase in cells. Our structural and biochemical results support models in which RanBP2 E3 ligase activity is dependent on Crm1, the RanGAP1 NES and Ran GTPase cycling.
Collapse
Affiliation(s)
- Vladimir Baytshtok
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- These authors contributed equally
| | - Michael A DiMattia
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Current address: Schrödinger New York, 1540 Broadway, 24th Floor, New York, NY 10036, USA
- These authors contributed equally
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Howard Hughes Medical Institute, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
12
|
Chen S, Zhang D, Du Y, Shi J, Gu S, Zhou X, Yu H, Wang F, Chen J, Cui H. Targeting TRAF6/IRF3 axis to inhibit NF-κB-p65 nuclear translocation enhances the chemosensitivity of 5-FU and reverses the proliferation of gastric cancer. Cell Death Dis 2024; 15:924. [PMID: 39706834 DOI: 10.1038/s41419-024-07290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Chemoresistance poses a significant clinical challenge in the treatment of gastric cancer (GC), while its underlying molecular mechanisms are still not fully understood. Post-translational protein modification and abnormal activation of nuclear factor-kappa B (NF-κB) are critical regulators of tumor chemoresistance. This study investigates the role of TNF receptors-associated factors 6 (TRAF6) in 5-Fluorouracil (5-FU) resistant GC. Utilizing short hairpin RNA (shRNA) to suppress TRAF6 expression in 5-FU resistant GC cells across both in vivo and in vitro models, we observed a marked reduction in cell proliferation and tumor growth. Low expression of TRAF6 inhibited nuclear translocation of NF-κB-p65, which was achieved by promoting the expression of Interferon regulatory factor 3 (IRF3). Importantly, TRAF6, an E3 ubiquitin ligase, bound to the IRF3-Δ (SR + IAD) (1-190aa) domain, inducing Lys70 ubiquitination of IRF3 to regulate its protein stability, with ubiquitin K48 residue playing a crucial role in this process. In conclusion, our study reveals the mechanism by which the TRAF6/IRF3 axis decreases GC's cells sensitivity to 5-FU by promoting nuclear translocation of NF-κB-p65, offering valuable insights into overcoming chemoresistance in GC.
Collapse
Affiliation(s)
- Shitong Chen
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Dong Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Yi Du
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Junbo Shi
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Xujun Zhou
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
| | - Feng Wang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Jinfei Chen
- Department of Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
| |
Collapse
|
13
|
Chang YC, Tsai YC, Chang EC, Hsu YC, Huang YR, Lee YH, Tsai YS, Chen YQ, Lee YC, Liao YC, Kuo JC, Su MT, Yang UC, Chern Y, Cheng TH. PIAS1 S510G variant acts as a genetic modifier of spinocerebellar ataxia type 3 by selectively impairing mutant ataxin-3 proteostasis. Int J Biochem Cell Biol 2024; 176:106662. [PMID: 39293559 DOI: 10.1016/j.biocel.2024.106662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Dysregulated protein homeostasis, characterized by abnormal protein accumulation and aggregation, is a key contributor to the progression of neurodegenerative disorders such as Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Previous studies have identified PIAS1 gene variants in patients with late-onset SCA3 and Huntington's disease. This study aims to elucidate the role of PIAS1 and its S510G variant in modulating the pathogenic mechanisms of SCA3. Through in vitro biochemical analyses and in vivo assays, we demonstrate that PIAS1 stabilizes both wild-type and mutant ataxin-3 (ATXN3). The PIAS1 S510G variant, however, selectively reduces the stability and SUMOylation of mutant ATXN3, thereby decreasing its aggregation and toxicity while maintaining the stability of wild-type ATXN3. This effect is mediated by a weakened interaction with the SUMO-conjugating enzyme UBC9 in the presence of mutant ATXN3. In Drosophila models, downregulation of dPIAS1 resulted in reduced levels of mutant ATXN3 and alleviated associated phenotypes, including retinal degeneration and motor dysfunction. Our findings suggest that the PIAS1 S510G variant acts as a genetic modifier of SCA3, highlighting the potential of targeting SUMOylation as a therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Yi-Ching Chang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yao-Chou Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - En-Cheng Chang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yu-Chien Hsu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yi-Ru Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yan-Hua Lee
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Shuen Tsai
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yin-Quan Chen
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11221, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ming-Tsan Su
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yijuang Chern
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11529, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Hao Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
14
|
Calvert SH, Pawlak T, Hessman G, McGouran JF. Rapid diazotransfer for selective lysine labelling. Org Biomol Chem 2024; 22:7976-7981. [PMID: 39283514 DOI: 10.1039/d4ob01094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Azide functionalization of protein and peptide lysine residues allows selective bioorthogonal labeling to introduce new, site selective functionaltiy into proteins. Optimised diazotransfer reactions under mild conditions allow aqueous diazotransfer to occur in just 20 min at pH 8.5 on amino acid, peptide and protein targets. In addition, conditons can be modified to selectively label a single lysine residue in both protein targets investigated. Finally, we demonstrate selective modification of proteins containing a single azidolysine using copper(I)-catalyzed triazole formation.
Collapse
Affiliation(s)
- Susannah H Calvert
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| | - Tomasz Pawlak
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
| | - Gary Hessman
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
| | - Joanna F McGouran
- School of Chemistry, Trinity Biomedical Science Institute, Trinity College Dublin, D02 R590, Ireland.
- SSPC, The SFI Research Centre for Pharmaceuticals, Ireland
| |
Collapse
|
15
|
Li H, Liu BJ, Xu J, Song SS, Ba R, Zhang J, Huan XJ, Wang D, Miao ZH, Liu T, He JX, Xiong B. Design, synthesis, and biological evaluation of pyrido[2,3-d]pyrimidin-7(8H)-one derivatives as potent USP1 inhibitors. Eur J Med Chem 2024; 275:116568. [PMID: 38889606 DOI: 10.1016/j.ejmech.2024.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
USP1 has emerged as a novel and potential target for drug discovery in single therapeutic agents or combination with chemotherapy and molecular targeted therapy. In this study, based on the disclosed structure of ML323 and KSQ-4279, we designed and synthesized a series of pyrido[2,3-d]pyrimidin-7(8H)-one derivatives as potent USP1 inhibitors by cyclization strategy and the systematic structure-activity relationship exploration was conducted. The representative compounds 1k, 1m and 2d displayed excellent USP1/UAF inhibition and exhibited strong antiproliferation effect in NCI-H1299 cells. Further flow cytometry analysis revealed that they could arrest breast cancer cells MDA-MB-436 in the S phase. Inhibition mechanism study of compound 1m indicated these derivatives acted as reversible and noncompetitive USP1 inhibitors. Of note, the combination of compound 1m with PARP inhibitor olaparib generated enhanced cell killing in olaparib-resistant MDA-MB-436/OP cells, and compound 1m exhibited excellent oral pharmacokinetic properties in mice. Overall, our efforts may provide a reliable basis for the development of novel USP1 inhibitor as a single therapeutic agent and in combination with PARP inhibitors.
Collapse
Affiliation(s)
- Hongrui Li
- Shenyang Pharmaceutical University, 103 Wenhua Rd, Shenyang, Liaoning, 110016, PR China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Yangtze Delta Drug Advanced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Ben-Jin Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, PR China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, PR China
| | - Jiahao Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Yangtze Delta Drug Advanced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China; School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, PR China
| | - Ruixian Ba
- Shenyang Pharmaceutical University, 103 Wenhua Rd, Shenyang, Liaoning, 110016, PR China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Yangtze Delta Drug Advanced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Junjie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Xia-Juan Huan
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, PR China
| | - Dun Wang
- Shenyang Pharmaceutical University, 103 Wenhua Rd, Shenyang, Liaoning, 110016, PR China
| | - Ze-Hong Miao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, PR China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Jin-Xue He
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, PR China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China; Yangtze Delta Drug Advanced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China.
| |
Collapse
|
16
|
Zhang C, Jia Q, Zhu L, Hou J, Wang X, Li D, Zhang J, Zhang Y, Yang S, Tu Z, Yan X, Yang W, Li S, Li X, Yin P. Suppressing UBE2N ameliorates Alzheimer's disease pathology through the clearance of amyloid beta. Alzheimers Dement 2024; 20:6287-6304. [PMID: 39015037 PMCID: PMC11497675 DOI: 10.1002/alz.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Aging is one of the risk factors for the early onset of Alzheimer's disease (AD). We previously discovered that the age-dependent increase in Ubiquitin Conjugating Enzyme E2 N (UBE2N) plays a role in the accumulation of misfolded proteins through K63 ubiquitination, which has been linked to AD pathogenesis. However, the impact of UBE2N on amyloid pathology and clearance has remained unknown. RESULTS We observed the elevated UBE2N during the amyloid beta (Aβ) generation in the brains of 5×FAD, APP/PS1 mice, and patients with AD, in comparison to healthy individuals. UBE2N overexpression exacerbated amyloid deposition in 5×FAD mice and senescent monkeys, whereas knocking down UBE2N via CRISPR/Cas9 reduced Aβ generation and cognitive deficiency. Moreover, pharmacological inhibition of UBE2N ameliorated Aβ pathology and subsequent transcript defects in 5×FAD mice. DISCUSSION We have discovered that age-dependent expression of UBE2N is a critical regulator of AD pathology. Our findings suggest that UBE2N could serve as a potential pharmacological target for the advancement of AD therapeutics. HIGHLIGHTS Ubiquitin Conjugating Enzyme E2 N (UBE2N) level was elevated during amyloid beta (Aβ) deposition in AD mouse and patients' brains. UBE2N exacerbated Aβ generation in the AD mouse and senescent monkey. Drug inhibition of UBE2N ameliorated Aβ pathology and cognitive deficiency.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Longhong Zhu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Junqi Hou
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Dandan Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Jiawei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Yiran Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Su Yang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Zhuchi Tu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Xin Yan
- Department of Anatomy and NeurobiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Weili Yang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Xiao‐Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Key Laboratory of Non‐human Primate ResearchGuangdong‐Hongkong‐Macau Institute of CNS RegenerationJinan UniversityGuangzhouChina
| |
Collapse
|
17
|
Saxena K, Inholz K, Basler M, Aichem A. FAT10 inhibits TRIM21 to down-regulate antiviral type-I interferon secretion. Life Sci Alliance 2024; 7:e202402786. [PMID: 38977311 PMCID: PMC11231494 DOI: 10.26508/lsa.202402786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
The ubiquitin-like modifier FAT10 is upregulated under pro-inflammatory conditions, targets its substrates for proteasomal degradation and functions as a negative regulator of the type-I IFN response. Influenza A virus infection upregulates the production of type-I IFN and the expression of the E3 ligase TRIM21, which regulates type-I IFN production in a positive feedback manner. In this study, we show that FAT10 becomes covalently conjugated to TRIM21 and that this targets TRIM21 for proteasomal degradation. We further show that the coiled-coil and PRYSPRY domains of TRIM21 and the C-terminal diglycine motif of FAT10 are important for the TRIM21-FAT10 interaction. Moreover, upon influenza A virus infection and in the presence of FAT10 the total ubiquitination of TRIM21 is reduced and our data reveal that the FAT10-mediated degradation of TRIM21 diminishes IFNβ production. Overall, this study provides strong evidence that FAT10 down-regulates the antiviral type-I IFN production by modulating additional molecules of the RIG-I signaling pathway besides the already published OTUB1. In addition, we elucidate a novel mechanism of FAT10-mediated proteasomal degradation of TRIM21 that regulates its stability.
Collapse
Affiliation(s)
- Kritika Saxena
- Department of Biology, Division of Immunology, University of Konstanz, Konstanz, Germany
| | - Katharina Inholz
- Department of Biology, Division of Immunology, University of Konstanz, Konstanz, Germany
| | - Michael Basler
- Department of Biology, Division of Immunology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Annette Aichem
- Department of Biology, Division of Immunology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgauh at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
18
|
Calvo Santos L, den Brave F. Analysis of quality control pathways for the translocase of the outer mitochondrial membrane. Methods Enzymol 2024; 707:565-584. [PMID: 39488391 DOI: 10.1016/bs.mie.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The functionality of mitochondria depends on the import of proteins synthesized on cytosolic ribosomes. Impaired import into mitochondria results in mitochondrial dysfunction and proteotoxic accumulation of precursor proteins in the cytosol. All proteins sorted to inner mitochondrial compartments are imported via the translocase of the outer membrane (TOM) complex. Premature protein folding, a reduction of the mitochondrial membrane potential or defects in translocases can result in precursor arrest during translocation, thereby clogging the TOM channel and blocking protein import. In recent years, different pathways have been identified, which employ the cytosolic ubiquitin-proteasome system in the extraction and turnover of precursor proteins from the TOM complex. Central events in this process are the modification of arrested precursor proteins with ubiquitin, their extraction by AAA-ATPases and subsequent degradation by the 26 S proteasome. Analysis of these processes is largely facilitated by the expression of model proteins that function as efficient "cloggers" of the import machinery. Here we describe the use of such clogger proteins and how their handling by the protein quality control machinery can be monitored. We provide protocols to study the extent of clogging, the ubiquitin-modification of arrested precursor proteins and their turnover by the 26 S proteasome.
Collapse
Affiliation(s)
- Lara Calvo Santos
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
19
|
Chen M, Liu Y, Zuo M, Guo C, Du Y, Xu H, Liu B, Li M, Xiao W, Yu G. NEDD8 enhances Hippo signaling by mediating YAP1 neddylation. J Biol Chem 2024; 300:107512. [PMID: 38960037 PMCID: PMC11327456 DOI: 10.1016/j.jbc.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024] Open
Abstract
The Hippo-YAP signaling pathway plays a central role in many biological processes such as regulating cell fate, organ size, and tissue growth, and its key components are spatiotemporally expressed and posttranslationally modified during these processes. Neddylation is a posttranslational modification that involves the covalent attachment of NEDD8 to target proteins by NEDD8-specific E1-E2-E3 enzymes. Whether neddylation is involved in Hippo-YAP signaling remains poorly understood. Here, we provide evidence supporting the critical role of NEDD8 in facilitating the Hippo-YAP signaling pathway by mediating neddylation of the transcriptional coactivator yes-associated protein 1 (YAP1). Overexpression of NEDD8 induces YAP1 neddylation and enhances YAP1 transactivity, but inhibition of neddylation suppresses YAP1 transactivity and attenuates YAP1 nuclear accumulation. Furthermore, inhibition of YAP1 signaling promotes MLN4924-induced ovarian granulosa cells apoptosis and disruption of nedd8 in zebrafish results in downregulation of yap1-activated genes and upregulation of yap1-repressed genes. Further assays show that the xiap ligase promotes nedd8 conjugates to yap1 and that yap1 neddylation. In addition, we identify lysine 159 as a major neddylation site on YAP1. These findings reveal a novel mechanism for neddylation in the regulation of Hippo-YAP signaling.
Collapse
Affiliation(s)
- Mengjuan Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yuqing Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Mingzhong Zuo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Chaohui Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yongkun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Bianzhi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, People's Republic of China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Guangqing Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P. R. China.
| |
Collapse
|
20
|
Gutierrez-Morton E, Haluska C, Collins L, Rizkallah R, Tomko RJ, Wang Y. The polySUMOylation axis promotes nucleolar release of Tof2 for mitotic exit. Cell Rep 2024; 43:114492. [PMID: 39002125 PMCID: PMC11298248 DOI: 10.1016/j.celrep.2024.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024] Open
Abstract
In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown. Here, we show that Tof2 exhibits cell-cycle-regulated nucleolar delocalization and turnover. Depletion of the nuclear small ubiquitin-like modifier (SUMO) protease Ulp2 not only causes Tof2 polySUMOylation, nucleolar delocalization, and degradation but also leads to Cdc14 nucleolar release and activation. This outcome depends on polySUMOylation and the activity of downstream enzymes, including SUMO-targeted ubiquitin ligase and Cdc48/p97 segregase. We further developed a system to tether SUMO machinery to Tof2 and generated a SUMO-deficient tof2 mutant, and the results indicate that Tof2 polySUMOylation is necessary and sufficient for its nucleolar delocalization and degradation. Together, our work reveals a polySUMO-dependent mechanism that delocalizes Tof2 from the nucleolus to facilitate mitotic exit.
Collapse
Affiliation(s)
- Emily Gutierrez-Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Cory Haluska
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liam Collins
- College of Arts and Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
21
|
Hör J, Wolf SG, Sorek R. Bacteria conjugate ubiquitin-like proteins to interfere with phage assembly. Nature 2024; 631:850-856. [PMID: 39020165 DOI: 10.1038/s41586-024-07616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/28/2024] [Indexed: 07/19/2024]
Abstract
Several immune pathways in humans conjugate ubiquitin-like proteins to virus and host molecules as a means of antiviral defence1-5. Here we studied an antiphage defence system in bacteria, comprising a ubiquitin-like protein, ubiquitin-conjugating enzymes E1 and E2, and a deubiquitinase. We show that during phage infection, this system specifically conjugates the ubiquitin-like protein to the phage central tail fibre, a protein at the tip of the tail that is essential for tail assembly as well as for recognition of the target host receptor. Following infection, cells encoding this defence system release a mixture of partially assembled, tailless phage particles and fully assembled phages in which the central tail fibre is obstructed by the covalently attached ubiquitin-like protein. These phages show severely impaired infectivity, explaining how the defence system protects the bacterial population from the spread of phage infection. Our findings demonstrate that conjugation of ubiquitin-like proteins is an antiviral strategy conserved across the tree of life.
Collapse
Affiliation(s)
- Jens Hör
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Wang F, Zhang N, Niu R, Lu Y, Zhang W, He Z. Identification of biomimetic nanoplatform-mediated delivery of si-ISG15 for treatment of triple-negative breast cancer. Cell Signal 2024; 118:111117. [PMID: 38401776 DOI: 10.1016/j.cellsig.2024.111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Triple-negative breast cancer (TNBC) is recognized as the most malicious form of breast cancer and exhibits an alarming tendency for recurrence, a heightened propensity for metastasis, and an overwhelmingly grim prognosis. Therefore, effective therapy approaches for TNBC are urgently required. In this study, the interferon-stimulated gene 15 (ISG15) expression level was analyzed by bioinformatics and verified by Western blot analysis. The effects of ISG15 on the proliferation and metastasis of TNBC cells were assessed using MTT, Colony formation, EdU, Transwell, and Flow cytometry assays. We also developed a cancer cell-biomimetic nanoparticle delivery system and evaluated its therapeutic efficacy in vivo. In this study, we reported that ISG15 was upregulated in TNBC, and its high expression level correlated with an increased risk of tumorigenesis. Through in vitro and in vivo studies, we discovered that ISG15 knockdown drastically suppressed cell proliferation, invasion, and migration and induced apoptosis in TNBC cells. Our findings revealed that ISG15 was a candidate therapeutic target in TNBC because of its key role in malignant growth and invasion. Moreover, co-immunoprecipitation showed that ISG15 exerted oncogenic functions through its interaction with ATP binding cassette subfamily E member 1 and activated the Janus kinase/signal transducers and activators of the transcription signaling pathway. Furthermore, we created a nanoparticle-based siRNA camouflaged using a cancer cell membrane vesicle delivery system (the CM@NP complex) and confirmed its therapeutic effects in vivo. Our findings confirmed that ISG15 may play a pivotal oncogenic role in the development of TNBC and that CM@siRNA-NP complexes are an effective delivery system and a novel biological strategy for treating TNBC.
Collapse
Affiliation(s)
- Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Nannan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Ruishu Niu
- Department of General Surgery, Huaian Hospital of Huaian City, Huaian, China
| | - Yunpeng Lu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Wei Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
23
|
Yan Y, Xiao J, Huang F, Xian W, Yu B, Cheng R, Wu H, Lu X, Wang X, Huang W, Li J, Oyejobi GK, Robinson CV, Wu H, Wu D, Liu X, Wang L, Zhu B. Phage defence system CBASS is regulated by a prokaryotic E2 enzyme that imitates the ubiquitin pathway. Nat Microbiol 2024; 9:1566-1578. [PMID: 38649411 DOI: 10.1038/s41564-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
The cyclic-oligonucleotide-based anti-phage signalling system (CBASS) is a type of innate prokaryotic immune system. Composed of a cyclic GMP-AMP synthase (cGAS) and CBASS-associated proteins, CBASS uses cyclic oligonucleotides to activate antiviral immunity. One major class of CBASS contains a homologue of eukaryotic ubiquitin-conjugating enzymes, which is either an E1-E2 fusion or a single E2. However, the functions of single E2s in CBASS remain elusive. Here, using biochemical, genetic, cryo-electron microscopy and mass spectrometry investigations, we discover that the E2 enzyme from Serratia marcescens regulates cGAS by imitating the ubiquitination cascade. This includes the processing of the cGAS C terminus, conjugation of cGAS to a cysteine residue, ligation of cGAS to a lysine residue, cleavage of the isopeptide bond and poly-cGASylation. The poly-cGASylation activates cGAS to produce cGAMP, which acts as an antiviral signal and leads to cell death. Thus, our findings reveal a unique regulatory role of E2 in CBASS.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Cardiovascular Surgery, Taikang Center for Life and Medical Sciences Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Fengtao Huang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.
| | - Wei Xian
- Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Bingbing Yu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Cheng
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xueling Lu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglue Wang
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Huang
- Department of Cardiovascular Surgery, Taikang Center for Life and Medical Sciences Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- Department of Cardiovascular Surgery, Taikang Center for Life and Medical Sciences Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Greater Kayode Oyejobi
- Department of Cardiovascular Surgery, Taikang Center for Life and Medical Sciences Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| | - Xiaoyun Liu
- Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China.
| | - Longfei Wang
- Department of Cardiovascular Surgery, Taikang Center for Life and Medical Sciences Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.
| |
Collapse
|
24
|
Zhuang Y, Fischer JB, Nishanth G, Schlüter D. Cross-regulation of Listeria monocytogenes and the host ubiquitin system in listeriosis. Eur J Cell Biol 2024; 103:151401. [PMID: 38442571 DOI: 10.1016/j.ejcb.2024.151401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
The facultative intracellular bacterium Listeria (L.) monocytogenes may cause severe diseases in humans and animals. The control of listeriosis/L. monocytogenes requires the concerted action of cells of the innate and adaptive immune systems. In this regard, cell-intrinsic immunity of infected cells, activated by the immune responses, is crucial for the control and elimination intracellular L. monocytogenes. Both the immune response against L. monocytogenes and cell intrinsic pathogen control are critically regulated by post-translational modifications exerted by the host ubiquitin system and ubiquitin-like modifiers (Ubls). In this review, we discuss our current understanding of the role of the ubiquitin system and Ubls in listeriosis, as well as future directions of research.
Collapse
Affiliation(s)
- Yuan Zhuang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany.
| | - Johanna B Fischer
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany
| | - Gopala Nishanth
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Schlüter
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover 30625, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| |
Collapse
|
25
|
Kwak JS, Song JT, Seo HS. E3 SUMO ligase SIZ1 splicing variants localize and function according to external conditions. PLANT PHYSIOLOGY 2024; 195:1601-1623. [PMID: 38497423 PMCID: PMC11142376 DOI: 10.1093/plphys/kiae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 03/19/2024]
Abstract
SIZ1 (SAP and MIZ1) is a member of the Siz/PIAS-type RING family of E3 SUMO (small ubiquitin-related modifier) ligases that play key roles in growth, development, and stress responses in plant and animal systems. Nevertheless, splicing variants of SIZ1 have not yet been characterized. Here, we identified four splicing variants of Arabidopsis (Arabidopsis thaliana) SIZ1, which encode three different protein isoforms. The SIZ1 gene encodes an 873-amino acid (aa) protein. Among the four SIZ1 splicing variants (SSVs), SSV1 and SSV4 encode identical 885 aa proteins; SSV2 encodes an 832 aa protein; and SSV3 encodes an 884 aa protein. SSV2 mainly localized to the plasma membrane, whereas SIZ1, SSV1/SSV4, and SSV3 localized to the nucleus. Interestingly, SIZ1 and all SSVs exhibited similar E3 SUMO ligase activities and preferred SUMO1 and SUMO2 for their E3 ligase activity. Transcript levels of SSV2 were substantially increased by heat treatment, while those of SSV1, SSV3, and SSV4 transcripts were unaffected by various abiotic stresses. SSV2 directly interacted with and sumoylated cyclic nucleotide-gated ion channel 6 (CNGC6), a positive thermotolerance regulator, enhancing the stability of CNGC6. Notably, transgenic siz1-2 mutants expressing SSV2 exhibited greater heat stress tolerance than wild-type plants, whereas those expressing SIZ1 were sensitive to heat stress. Furthermore, transgenic cngc6 plants overaccumulating a mutated mCNGC6 protein (K347R, a mutation at the sumoylation site) were sensitive to heat stress, similar to the cngc6 mutants, while transgenic cngc6 plants overaccumulating CNGC6 exhibited restored heat tolerance. Together, we propose that alternative splicing is an important mechanism that regulates the function of SSVs during development or under adverse conditions, including heat stress.
Collapse
Affiliation(s)
- Jun Soo Kwak
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
26
|
Lauinger L, Andronicos A, Flick K, Yu C, Durairaj G, Huang L, Kaiser P. Cadmium binding by the F-box domain induces p97-mediated SCF complex disassembly to activate stress response programs. Nat Commun 2024; 15:3894. [PMID: 38719837 PMCID: PMC11079001 DOI: 10.1038/s41467-024-48184-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
The F-box domain is a highly conserved structural motif that defines the largest class of ubiquitin ligases, Skp1/Cullin1/F-box protein (SCF) complexes. The only known function of the F-box motif is to form the protein interaction surface with Skp1. Here we show that the F-box domain can function as an environmental sensor. We demonstrate that the F-box domain of Met30 is a cadmium sensor that blocks the activity of the SCFMet30 ubiquitin ligase during cadmium stress. Several highly conserved cysteine residues within the Met30 F-box contribute to binding of cadmium with a KD of 8 µM. Binding induces a conformational change that allows for Met30 autoubiquitylation, which in turn leads to recruitment of the segregase Cdc48/p97/VCP followed by active SCFMet30 disassembly. The resulting inactivation of SCFMet30 protects cells from cadmium stress. Our results show that F-box domains participate in regulation of SCF ligases beyond formation of the Skp1 binding interface.
Collapse
Affiliation(s)
- Linda Lauinger
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Anna Andronicos
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Karin Flick
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Geetha Durairaj
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, 92697, USA
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
27
|
Xian W, Fu J, Zhang Q, Li C, Zhao YB, Tang Z, Yuan Y, Wang Y, Zhou Y, Brzoic PS, Zheng N, Ouyang S, Luo ZQ, Liu X. The Shigella kinase effector OspG modulates host ubiquitin signaling to escape septin-cage entrapment. Nat Commun 2024; 15:3890. [PMID: 38719850 PMCID: PMC11078946 DOI: 10.1038/s41467-024-48205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.
Collapse
Affiliation(s)
- Wei Xian
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Jiaqi Fu
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, 130021, Changchun, China
| | - Qinxin Zhang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Chuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan-Bo Zhao
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yan Zhou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Peter S Brzoic
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
28
|
Lin WC, Chang HH, Huang ZB, Huang LC, Kuo WC, Cheng MC. COP1-ERF1-SCE1 regulatory module fine-tunes stress response under light-dark cycle in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:1877-1894. [PMID: 38343027 DOI: 10.1111/pce.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 04/06/2024]
Abstract
ETHYLENE RESPONSE FACTOR 1 (ERF1) plays an important role in integrating hormone crosstalk and stress responses. Previous studies have shown that ERF1 is unstable in the dark and its degradation is mediated by UBIQUITIN-CONJUGATING ENZYME 18. However, whether there are other enzymes regulating ERF1's stability remains unclear. Here, we use various in vitro and in vivo biochemical, genetic and stress-tolerance tests to demonstrate that both CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUMO-CONJUGATING ENZYME 1 (SCE1) regulate the stability of ERF1. We also performed transcriptomic analyses to understand their common regulatory pathways. We show that COP1 mediates ERF1 ubiquitination in the dark while SCE1 mediates ERF1 sumoylation in the light. ERF1 stability is positively regulated by SCE1 and negatively regulated by COP1. Upon abiotic stress, SCE1 plays a positive role in stress defence by regulating the expression of ERF1's downstream stress-responsive genes, whereas COP1 plays a negative role in stress response. Moreover, ERF1 also promotes photomorphogenesis and the expression of light-responsive genes. Our study reveals the molecular mechanism of how COP1 and SCE1 counteract to regulate ERF1's stability and light-stress signalling crosstalk.
Collapse
Affiliation(s)
- Wen-Chi Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Hui-Hsien Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Zi-Bin Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Lin-Chen Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wen-Chieh Kuo
- Fruit and Flower Industry Division, Agriculture and Food Agency, Ministry of Agriculture, Nantou, Taiwan
| | - Mei-Chun Cheng
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
30
|
Rinehart L, Stewart WE, Luffman N, Wawersik M, Kerscher O. Chigno/CG11180 and SUMO are Chinmo-interacting proteins with a role in Drosophila testes somatic support cells. PeerJ 2024; 12:e16971. [PMID: 38495765 PMCID: PMC10944633 DOI: 10.7717/peerj.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
Stem cells are critical for replenishment of cells lost to death, damage or differentiation. Drosophila testes are a key model system for elucidating mechanisms regulating stem cell maintenance and differentiation. An intriguing gene identified through such studies is the transcription factor, chronologically inappropriate morphogenesis (Chinmo). Chinmo is a downstream effector of the Jak-STAT signaling pathway that acts in testis somatic stem cells to ensure maintenance of male stem cell fate and sexual identity. Defects in these processes can lead to infertility and the formation of germ cell tumors. While Chinmo's effect on testis stem cell behavior has been investigated in detail, there is still much to be learned about its structure, function, and interactions with other proteins. Using a two-hybrid screen, we find that Chinmo interacts with itself, the small ubiquitin-like modifier SUMO, the novel protein CG11180, and four other proteins (CG4318, Ova (ovaries absent), Taf3 (TBP-associated factor 3), and CG18269). Since both Chinmo and CG11180 contain sumoylation sites and SUMO-interacting motifs (SIMs), we analyzed their interaction in more detail. Using site-directed mutagenesis of a unique SIM in CG11180, we demonstrate that Chinmo's interaction with CG11180 is SUMO-dependent. Furthermore, to assess the functional relevance of both SUMO and CG11180, we performed RNAi-mediated knockdown of both proteins in somatic cells of the Drosophila testis. Using this approach, we find that CG11180 and SUMO are required in somatic cells of adult testes, and that reduction of either protein causes formation of germ cell tumors. Overall, our work suggests that SUMO may be involved in the interaction of Chinmo and CG11180 and that these genes are required in somatic cells of the adult Drosophila testis. Consistent with the CG11180 knockdown phenotype in male testes, and to underscore its connection to Chinmo, we propose the name Chigno (Childless Gambino) for CG11180.
Collapse
Affiliation(s)
- Leanna Rinehart
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Wendy E. Stewart
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Natalie Luffman
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Matthew Wawersik
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Oliver Kerscher
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| |
Collapse
|
31
|
Sheng X, Xia Z, Yang H, Hu R. The ubiquitin codes in cellular stress responses. Protein Cell 2024; 15:157-190. [PMID: 37470788 PMCID: PMC10903993 DOI: 10.1093/procel/pwad045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanting Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ronggui Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
32
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Queiroz LY, Kageyama R, Cimarosti HI. SUMOylation effects on neural stem cells self-renewal, differentiation, and survival. Neurosci Res 2024; 199:1-11. [PMID: 37742800 DOI: 10.1016/j.neures.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
SUMO (small ubiquitin-like modifier) conjugation or SUMOylation, a post-translational modification, is a crucial regulator of protein function and cellular processes. In the context of neural stem cells (NSCs), SUMOylation has emerged as a key player, affecting their proliferation, differentiation, and survival. By modifying transcription factors, such as SOX1, SOX2, SOX3, SOX6, Bmi1, and Nanog, SUMOylation can either enhance or impair their transcriptional activity, thus impacting on NSCs self-renewal. Moreover, SUMOylation regulates neurogenesis and neuronal differentiation by modulating key proteins, such as Foxp1, Mecp2, MEF2A, and SOX10. SUMOylation is also crucial for the survival and proliferation of NSCs in both developing and adult brains. By regulating the activity of transcription factors, coactivators, and corepressors, SUMOylation acts as a molecular switch, inducing cofactor recruitment and function during development. Importantly, dysregulation of NSCs SUMOylation has been implicated in various disorders, including embryonic defects, ischemic cerebrovascular disease, glioma, and the harmful effects of benzophenone-3 exposure. Here we review the main findings on SUMOylation-mediated regulation of NSCs self-renewal, differentiation and survival. Better understanding NSCs SUMOylation mechanisms and its functional consequences might provide new strategies to promote neuronal differentiation that could contribute for the development of novel therapies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Letícia Yoshitome Queiroz
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Ryoichiro Kageyama
- Graduate School of Medicine, Kyoto University, Kyoto, Japan; RIKEN Center for Brain Science, Wako, Japan
| | - Helena I Cimarosti
- Postgraduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil; Postgraduate Program in Neuroscience, UFSC, Florianopolis, Brazil.
| |
Collapse
|
34
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
35
|
Zhang Y, Xu X, Wang Y, Wang Y, Zhou X, Pan L. Mechanistic insights into the homo-dimerization of HOIL-1L and SHARPIN. Biochem Biophys Res Commun 2023; 689:149239. [PMID: 37976837 DOI: 10.1016/j.bbrc.2023.149239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
HOIL-1L and SHARPIN are two essential regulatory subunits of the linear ubiquitin chain assembly complex (LUBAC), which is the only known E3 ligase complex generating linear ubiquitin chains. In addition to their LUBAC-dependent functions, HOIL-1L and SHARPIN alone play crucial roles in many LUBAC-independent cellular processes. Importantly, deficiency of HOIL-1L or SHARPIN leads to severe disorders in humans or mice. However, the mechanistic bases underlying the multi-functions of HOIL-1L and SHARPIN are still largely unknown. Here, we uncover that HOIL-1L and SHARPIN alone can form homo-dimers through their LTM motifs. We solve two crystal structures of the dimeric LTM motifs of HOIL-1L and SHARPIN, which not only elucidate the detailed molecular mechanism underpinning the dimer formations of HOIL-1L and SHARPIN, but also reveal a general mode shared by the LTM motifs of HOIL-1L and SHARPIN for forming homo-dimer or hetero-dimer. Furthermore, we elucidate that the polyglucosan body myopathy-associated HOIL-1L A18P mutation disturbs the structural folding of HOIL-1L LTM, and disrupts the dimer formation of HOIL-1L. In summary, our study provides mechanistic insights into the homo-dimerization of HOIL-1L and SHARPIN mediated by their LTM motifs, and expands our understandings of the multi-functions of HOIL-1L and SHARPIN as well as the etiology of relevant human disease caused by defective HOIL-1L.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaolong Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yaru Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
36
|
Tang F, Lu C, He X, Lin W, Xie B, Gao X, Peng Y, Yang D, Sun L, Weng L. E3 ligase Trim35 inhibits LSD1 demethylase activity through K63-linked ubiquitination and enhances anti-tumor immunity in NSCLC. Cell Rep 2023; 42:113477. [PMID: 37979167 DOI: 10.1016/j.celrep.2023.113477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Targeting lysine-specific histone demethylase 1A (LSD1) can improve tumor immunogenicity of poorly immunogenic tumors, such as non-small cell lung cancer (NSCLC), with elevated T cell infiltration and sensitize tumors to anti-PD-1 therapy. However, the lack of reliable biomarkers limits utilization of LSD1 inhibitors in cancer therapy. Here, we identify an E3 ligase, Trim35, as an effective biomarker for high activity of LSD1 to predict prognosis of LSD1-targeted therapy as well as immunotherapy. Mechanistically, Trim35 represses LSD1 demethylase activity by mediating K63 ubiquitination at lysine site 422 of LSD1. Suppressed LSD1 activity facilitates ERGIC1 transcription, followed by autophagy inhibition and IFNGR1 stabilization to activate IFN-γ signaling, leading to increased MHC class I expression and immune surveillance of NSCLC cells. Furthermore, combinational use of an LSD1 inhibitor and anti-PD-1 therapy can significantly eradicate poorly immunogenic lung cancer with low Trim35. These findings strongly suggest that Trim35 is a promising biomarker for prediction of immunotherapy outcome in NSCLC.
Collapse
Affiliation(s)
- Feiyu Tang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China; Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China; Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang He
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China; Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China
| | - Wei Lin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bowen Xie
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xing Gao
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China; Department of Stomatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yang Peng
- Department of Gynecology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Desong Yang
- Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal Carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China; Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China; Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China; Institute of Gerontological Cancer Research, National Clinical Research Center for Gerontology, Changsha 410008, China.
| | - Liang Weng
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha 410008, China; Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha 410008, China; Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha 410008, China; Hunan Provincial Clinical Research Center for Respiratory Diseases, Changsha, China; Institute of Gerontological Cancer Research, National Clinical Research Center for Gerontology, Changsha 410008, China.
| |
Collapse
|
37
|
Suen TC, DeBruyne JP. Lysine-independent ubiquitination and degradation of REV-ERBα involves a bi-functional degradation control sequence at its N-terminus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538963. [PMID: 37205588 PMCID: PMC10187254 DOI: 10.1101/2023.05.01.538963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
REV-ERBα and REV-ERBβ proteins play crucial roles in linking the circadian system to overt daily rhythms in mammalian physiology and behavior. In most tissues, REV-ERBα protein robustly cycles such that it is detected only within a tight interval of 4-6 hours each day, suggesting both its synthesis and degradation are tightly controlled. Several ubiquitin ligases are known to drive REV-ERBα degradation, but how they interact with REV-ERBα and which lysine residues they ubiquitinate to promote degradation are unknown. In this study, we attempted to identify both ubiquitin-ligase-binding and ubiquitination sites within REV-ERBα required for its degradation. Surprisingly, mutating all lysine residues, the common sites for ubiquitin conjugation, in REV-ERBα to arginines (K20R), did very little to impair its degradation in cells. K20R were degraded much faster by co-expression of two E3 ligases, SIAH2 or SPSB4, suggesting possible N-terminal ubiquitination. To explore this, we examined if small deletions at the N-terminus of REV-ERBα would alter its degradation. Interestingly, deletion of amino acid (AA) residues 2 to 9 (delAA2-9) clearly resulted in a less stable REV-ERBα. We found that it was the length (i.e. 8 AA), and not the specific sequence, that confers stability in this region. Simultaneously, we also mapped the interaction site of the E3 ligase SPSB4 to this same region, specifically requiring AA4-9 of REV-ERBα. Thus, the first 9 AA of REV-ERBα has two opposing roles in regulating REV-ERBα turnover. Further, deleting eight additional AAs (delAA2-17) from the N-terminus strongly prevents REV-ERBα degradation. Combined, these results suggest that complex interactions within the first 25AAs potentially act as an endogenous 'switch' that allows REV-ERBα to exist in a stabilized conformation in order to accumulate at one time of day, but then rapidly shifts to a destabilized form, to enhance its removal at the end of its daily cycle.
Collapse
|
38
|
Szulc NA, Piechota M, Biriczová L, Thapa P, Pokrzywa W. Lysine deserts and cullin-RING ligase receptors: Navigating untrodden paths in proteostasis. iScience 2023; 26:108344. [PMID: 38026164 PMCID: PMC10665810 DOI: 10.1016/j.isci.2023.108344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) governs the degradation of proteins by ubiquitinating their lysine residues. Our study focuses on lysine deserts - regions in proteins conspicuously low in lysine residues - in averting ubiquitin-dependent proteolysis. We spotlight the prevalence of lysine deserts among bacteria leveraging the pupylation-dependent proteasomal degradation, and in the UPS of eukaryotes. To further scrutinize this phenomenon, we focused on human receptors VHL and SOCS1 to ascertain if lysine deserts could limit their ubiquitination within the cullin-RING ligase (CRL) complex. Our data indicate that the wild-type and lysine-free variants of VHL and SOCS1 maintain consistent turnover rates, unaltered by CRL-mediated ubiquitination, hinting at a protective mechanism facilitated by lysine deserts. Nonetheless, we noted their ubiquitination at non-lysine sites, alluding to alternative regulation by the UPS. Our research underscores the role of lysine deserts in limiting CRL-mediated ubiquitin tagging while promoting non-lysine ubiquitination, thereby advancing our understanding of proteostasis.
Collapse
Affiliation(s)
- Natalia A. Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Małgorzata Piechota
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Lilla Biriczová
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Pankaj Thapa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., 02-109 Warsaw, Poland
| |
Collapse
|
39
|
Wang Y, Liu Z, Bian X, Zhao C, Zhang X, Liu X, Wang N. Function and regulation of ubiquitin-like SUMO system in heart. Front Cell Dev Biol 2023; 11:1294717. [PMID: 38033852 PMCID: PMC10687153 DOI: 10.3389/fcell.2023.1294717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
The small ubiquitin-related modifier (SUMOylation) system is a conserved, reversible, post-translational protein modification pathway covalently attached to the lysine residues of proteins in eukaryotic cells, and SUMOylation is catalyzed by SUMO-specific activating enzyme (E1), binding enzyme (E2) and ligase (E3). Sentrin-specific proteases (SENPs) can cleave the isopeptide bond of a SUMO conjugate and catalyze the deSUMOylation reaction. SUMOylation can regulate the activity of proteins in many important cellular processes, including transcriptional regulation, cell cycle progression, signal transduction, DNA damage repair and protein stability. Biological experiments in vivo and in vitro have confirmed the key role of the SUMO conjugation/deconjugation system in energy metabolism, Ca2+ cycle homeostasis and protein quality control in cardiomyocytes. In this review, we summarized the research progress of the SUMO conjugation/deconjugation system and SUMOylation-mediated cardiac actions based on related studies published in recent years, and highlighted the further research areas to clarify the role of the SUMO system in the heart by using emerging technologies.
Collapse
Affiliation(s)
- Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Zhihao Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Chenxu Zhao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
40
|
Hunt LC, Pagala V, Stephan A, Xie B, Kodali K, Kavdia K, Wang YD, Shirinifard A, Curley M, Graca FA, Fu Y, Poudel S, Li Y, Wang X, Tan H, Peng J, Demontis F. An adaptive stress response that confers cellular resilience to decreased ubiquitination. Nat Commun 2023; 14:7348. [PMID: 37963875 PMCID: PMC10646096 DOI: 10.1038/s41467-023-43262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.
Collapse
Affiliation(s)
- Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Department of Biology, Rhodes College, 2000 North Pkwy, Memphis, TN, 38112, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kiran Kodali
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
41
|
Zhou P, Shen J, Ge X, Cheng H, Sun Y, Li M, Li H, Yi Z, Li Z. Identification and validation of ubiquitination-related signature and subgroups in immune microenvironment of tuberculosis. Aging (Albany NY) 2023; 15:12570-12587. [PMID: 37950733 PMCID: PMC10683621 DOI: 10.18632/aging.205198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/07/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is the bacterial pathogen responsible for causing tuberculosis (TB), a severe public health concern that results in numerous deaths worldwide. Ubiquitination (Ub) is an essential physiological process that aids in maintaining homeostasis and contributes to the development of TB. Therefore, the main objective of our study was to investigate the potential role of Ub-related genes in TB. METHODS Our research entailed utilizing single sample gene set enrichment analysis (ssGSEA) in combination with several machine learning techniques to discern the Ub-related signature of TB and identify potential diagnostic markers that distinguish TB from healthy controls (HC). RESULTS In summary, we used the ssGSEA algorithm to determine the score of Ub families (E1, E2, E3, DUB, UBD, and ULD). Notably, the score of E1, E3, and UBD were lower in TB patients than in HC individuals, and we identified 96 Ub-related differentially expressed genes (UbDEGs). Employing machine learning algorithms, we identified 11 Ub-related hub genes and defined two distinct Ub-related subclusters. Notably, through GSVA and functional analysis, it was determined that these subclusters were implicated in numerous immune-related processes. We further investigated these Ub-related hub genes in four TB-related diseases and found that TRIM68 exhibited higher correlations with various immune cells in different conditions, indicating that it may play a crucial role in the immune process of these diseases. CONCLUSION The observed enrichment of Ub-related gene expression in TB patients emphasizes the potential involvement of ubiquitination in the progression of TB. These significant findings establish a basis for future investigations to elucidate the molecular mechanisms associated with TB, select suitable diagnostic biomarkers, and design innovative therapeutic interventions for combating this fatal infectious disease.
Collapse
Affiliation(s)
- Peipei Zhou
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Jie Shen
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Xiao Ge
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Haien Cheng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Yanli Sun
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Meng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Heng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong 261053
| | - Zhengjun Yi
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong 261053
| | - Zhenpeng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong 261053
| |
Collapse
|
42
|
Schnell L, Zubrod A, Catone N, Bialas J, Aichem A. Tumor necrosis factor mediates USE1-independent FAT10ylation under inflammatory conditions. Life Sci Alliance 2023; 6:e202301985. [PMID: 37604583 PMCID: PMC10442930 DOI: 10.26508/lsa.202301985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
The ubiquitin-like modifier FAT10 is up-regulated in many different cell types by IFNγ and TNFα (TNF) and directly targets proteins for proteasomal degradation. FAT10 gets covalently conjugated to its conjugation substrates by the E1 activating enzyme UBA6, the E2 conjugating enzyme USE1, and E3 ligases including Parkin. To date, USE1 was supposed to be the only E2 enzyme for FAT10ylation, and we show here that a knockout of USE1 strongly diminished FAT10 conjugation. Remarkably, under inflammatory conditions in the presence of TNF, FAT10 conjugation appears to be independent of USE1. We report on the identification of additional E2 conjugating enzymes, which were previously not associated with FAT10. We confirm their capacity to be charged with FAT10 onto their active site cysteine, and to rescue FAT10 conjugation in the absence of USE1. This finding strongly widens the field of FAT10 research by pointing to multiple, so far unknown pathways for the conjugation of FAT10, disclosing novel possibilities for pharmacological interventions to regulate FAT10 conjugation under inflammatory conditions and/or viral infections.
Collapse
Affiliation(s)
- Leonie Schnell
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alina Zubrod
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Johanna Bialas
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
43
|
Xu X, Wang Y, Zhang Y, Wang Y, Yin Y, Peng C, Gong X, Li M, Zhang Y, Zhang M, Tang Y, Zhou X, Liu H, Pan L. Mechanistic insights into the enzymatic activity of E3 ligase HOIL-1L and its regulation by the linear ubiquitin chain binding. SCIENCE ADVANCES 2023; 9:eadi4599. [PMID: 37831767 PMCID: PMC10575588 DOI: 10.1126/sciadv.adi4599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023]
Abstract
Heme-oxidized IRP2 ubiquitin ligase 1 (HOIL-1L) serves as a unique E3 ligase to catalyze the mono-ubiquitination of relevant protein or sugar substrates and plays vital roles in numerous cellular processes in mammals. However, the molecular mechanism underpinning the E3 activity of HOIL-1L and the related regulatory mechanism remain elusive. Here, we report the crystal structure of the catalytic core region of HOIL-1L and unveil the key catalytic triad residues of HOIL-1L. Moreover, we discover that HOIL-1L contains two distinct linear di-ubiquitin binding sites that can synergistically bind to linear tetra-ubiquitin, and the binding of HOIL-1L with linear tetra-ubiquitin can promote its E3 activity. The determined HOIL-1L/linear tetra-ubiquitin complex structure not only elucidates the detailed binding mechanism of HOIL-1L with linear tetra-ubiquitin but also uncovers a unique allosteric ubiquitin-binding site for the activation of HOIL-1L. In all, our findings provide mechanistic insights into the E3 activity of HOIL-1L and its regulation by the linear ubiquitin chain binding.
Collapse
Affiliation(s)
- Xiaolong Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yaru Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Yingli Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Xinyu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Miao Li
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingfang Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haobo Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lifeng Pan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Yang Z, Wu G, Zhao J, Shi G, Zhou J, Zhou X. UBE2V2 promotes metastasis by regulating EMT and predicts a poor prognosis in lung adenocarcinoma. Cancer Med 2023; 12:19850-19865. [PMID: 37755128 PMCID: PMC10587983 DOI: 10.1002/cam4.6566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
PURPOSE As a member of the ubiquitin-conjugating enzyme (E2) family, UBE2V2 demonstrates significant tumorigenicity in many cancers. However, the relationship between UBE2V2 expression and the morbidity of lung adenocarcinoma (LUAD) is still unknown. METHODS We detected the mRNA and protein expression of UBE2V2 and analyzed its relationship with clinical parameters as well as survival prognosis based on bioinformatic and immunohistochemistry (IHC) in LUAD. The signaling pathway of UBE2V2 in the development of LUAD was obtained by GSEA. The TIMER database was used to investigate the association between UBE2V2 expression and the level of infiltration of different immune cells. Finally, we explored the effects of UBE2V2 knockdown on the proliferation, apoptosis, and migration of LUAD cells. RESULTS The results showed that UBE2V2 was a potential oncogene and might be considered an independent prognostic molecule for LUAD patients based on TCGA prediction (HR: 1.497 p = 0.012) and IHC (HR:1.864 p = 0.044). IHC showed that UBE2V2 was related to the following clinicopathological factors: gender (p = 0.043), stage (p = 0.042), and lymph node metastasis (p = 0.002). Finally, knockdown of UBE2V2 reduced the migration of LUAD cells by regulating EMT-related proteins. Knockdown of UBE2V2 induced LUAD cells to arrest in the G1 phase. Knockdown of UBE2V2 increased LUAD cell apoptosis and decreased proliferation, which might be related to the downregulation of PCNA and upregulation of P53 and ƳH2AX expression. Interestingly, UBE2V2 is negatively correlated with B cells, CD4+ T cells, macrophages, and dendritic cells. CONCLUSION UBE2V2 may be a valuable therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Respiratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Gujie Wu
- Department of Thoracic SurgeryZhongshan Hospital Fudan UniversityshanghaiChina
| | - Jianmei Zhao
- Department of PediatricsAffiliated Hospital of Nantong UniversityNantongChina
| | - Guanglin Shi
- Department of respiratory medicineThe sixth people's hospital of NantongNantongChina
| | - Juan Zhou
- Department of Respiratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Xiaoyu Zhou
- Department of Respiratory MedicineAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
45
|
Liu T, Chen J, Wu J, Du Q, Liu J, Tan S, Pan Y, Yao S. Role of the tripartite motif (TRIM) family in female genital neoplasms. Pathol Res Pract 2023; 250:154811. [PMID: 37713735 DOI: 10.1016/j.prp.2023.154811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The tripartite motif proteins (TRIMs) family represents a class of highly conservative proteins which play a large regulatory role in molecular processes. Recently, increasing evidence has demonstrated a role of TRIMs in female genital neoplasms. Our review thereby aimed to provide an overview of the biological involvement of TRIMs in female genital neoplasms, to provide a better understanding of its role in the development and progression of such diseases, and emphasize its potential as targeted cancer therapy. Overall, our review highlighted that the wide-ranging roles of TRIMs, in not only target protein ubiquitination, tumor migration and/or invasion, epithelial-mesenchymal transition, stemness, cell adhesion, proliferation, cell cycle regulation, and apoptosis, but also in influencing estrogenic, and chemotherapy response.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Jian Chen
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jinjie Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Silu Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Pfirrmann T, Franco B, Kopinke D, Gerhardt C. Editorial: Regulation of proteostasis and cellular energy homeostasis at the primary cilium. Front Cell Dev Biol 2023; 11:1285237. [PMID: 37745293 PMCID: PMC10515195 DOI: 10.3389/fcell.2023.1285237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023] Open
Affiliation(s)
- Thorsten Pfirrmann
- Department of Medicine, Institute for Molecular Medicine, Health and Medical University, Potsdam, Germany
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Federico II University of Naples, School for Advanced Studies, Genomics and Experimental Medicine Programme, Naples, Italy
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, Myology Institute, University of Florida, Gainesville, FL, United States
| | - Christoph Gerhardt
- Department of Medicine, Institute for Molecular Medicine, Health and Medical University, Potsdam, Germany
| |
Collapse
|
47
|
Gastelum S, Michael AF, Bolger TA. Saccharomyces cerevisiae as a research tool for RNA-mediated human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1814. [PMID: 37671427 DOI: 10.1002/wrna.1814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Stephanie Gastelum
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - Allison F Michael
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Timothy A Bolger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
48
|
Singh S, Machida S, Tulsian NK, Choong YK, Ng J, Shankar S, Liu Y, Chandiramani KV, Shi J, Sivaraman J. Structural Basis for the Enzymatic Activity of the HACE1 HECT-Type E3 Ligase Through N-Terminal Helix Dimerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207672. [PMID: 37537642 PMCID: PMC10520629 DOI: 10.1002/advs.202207672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/15/2023] [Indexed: 08/05/2023]
Abstract
HACE1 is an ankyrin repeat (AKR) containing HECT-type E3 ubiquitin ligase that interacts with and ubiquitinates multiple substrates. While HACE1 is a well-known tumor suppressor, its structure and mode of ubiquitination are not understood. The authors present the cryo-EM structures of human HACE1 along with in vitro functional studies that provide insights into how the enzymatic activity of HACE1 is regulated. HACE1 comprises of an N-terminal AKR domain, a middle (MID) domain, and a C-terminal HECT domain. Its unique G-shaped architecture interacts as a homodimer, with monomers arranged in an antiparallel manner. In this dimeric arrangement, HACE1 ubiquitination activity is hampered, as the N-terminal helix of one monomer restricts access to the C-terminal domain of the other. The in vitro ubiquitination assays, hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis, mutagenesis, and in silico modeling suggest that the HACE1 MID domain plays a crucial role along with the AKRs in RAC1 substrate recognition.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Satoru Machida
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Nikhil Kumar Tulsian
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
- Department of BiochemistryNational University of Singapore28 Medical DriveSingapore117546Singapore
| | - Yeu Khai Choong
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Joel Ng
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Srihari Shankar
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - Yaochen Liu
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | | | - Jian Shi
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| | - J Sivaraman
- Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117558Singapore
| |
Collapse
|
49
|
Alrosan AZ, Alrosan K, Heilat GB, Alsharedeh R, Abudalo R, Oqal M, Alqudah A, Elmaghrabi YA. Potential roles of NEDD4 and NEDD4L and their utility as therapeutic targets in high‑incidence adult male cancers (Review). Mol Clin Oncol 2023; 19:68. [PMID: 37614371 PMCID: PMC10442760 DOI: 10.3892/mco.2023.2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/07/2023] [Indexed: 08/25/2023] Open
Abstract
The term 'cancer' refers to >100 disorders that progressively manifest over time and are characterized by uncontrolled cell division. Although malignant growth can occur in virtually any human tissue, the underlying mechanisms underlying all forms of cancer are consistent. The International Agency for Research on Cancer's annual GLOBOCAN 2020 report provided an update on the global cancer incidence and mortality. Excluding non-melanoma skin cancer, the report predicts that there will be 19.3 million new cancer cases and >10 million cancer-related fatalities in 2023. Lung, prostate, and colon cancers are the most prevalent and lethal cancers in males. It was recognized that post-translational modifications (PTMs) of proteins are necessary for almost all cellular biological processes, as well as in cancer development and metastasis to other bodily organs. Thus, PTMs have a considerable impact on how proteins behave. Various PTMs may have harmful roles by affecting the hallmarks of cancer, metabolism and the regulation of the tumor microenvironment. PTMs and genetic changes/mutations are essential in carcinogenesis and cancer development. A pivotal PTM mechanism is protein ubiquitination. Of note, the rate-limiting stage of the protein ubiquitination cascade is hypothesized to be E3-ligase-mediated ubiquitination. Numerous studies revealed that the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) E3 ligase is among the E3 ubiquitin ligases that have essential roles in cellular processes. It regulates protein degradation and substrate ubiquitination. In addition, it has been shown that NEDD4 primarily functions as an oncogene in various malignancies but can also act as a tumor suppressor in certain types of tumor. In the present review, the roles of NEDD4 as an anticancer protein in various high-incidence male malignancies and the significance of NEDD4 as a potential cancer therapeutic target are discussed. In addition, the targeting of NEDD4 as a therapeutic strategy for the treatment of human malignancies is explored.
Collapse
Affiliation(s)
- Amjad Z. Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Khaled Alrosan
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Ghaith B. Heilat
- Department of General Surgery and Urology, Faculty of Medicine, The Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rawan Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The Yarmouk University, Irbid 21163, Jordan
| | - Rawan Abudalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Muna Oqal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, The Hashemite University, Zarqa 13133, Jordan
| | - Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | | |
Collapse
|
50
|
Kolathur KK, Mallya S, Barve S, Bojja SL, Wagle MM. Moonlighting functions of the ubiquitin-like protein, Hub1/UBL-5. Int J Biochem Cell Biol 2023; 162:106445. [PMID: 37453225 DOI: 10.1016/j.biocel.2023.106445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The faithful splicing of pre-mRNA is critical for accurate gene expression. Dysregulation of pre-mRNA splicing has been associated with several human diseases including cancer. The ubiquitin-like protein Hub1/UBL5 binds to the substrates non-covalently and promotes pre-mRNA splicing. Additionally, UBL5 promotes the common fragile sites stability and the Fanconi anemia pathway of DNA damage repair. These functions strongly suggests that UBL5 could potentially be implicated in cancer. Therefore, we analyzed the UBL5 expression in TCGA tumor sample datasets and observed the differences between tumor and normal tissues among different tumor subtypes. We have noticed the alteration frequency of UBL5 in TCGA tumor samples. Altogether, this review summarizes the UBL5 functions and discusses its putative role in tumorigenesis.
Collapse
Affiliation(s)
- Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India.
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shivmani Barve
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences (MCOPS), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Manoj M Wagle
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|