1
|
Mukherjee S, Kalra G, Bhatla SC. Atmospheric nitrogen oxides (NO x), hydrogen sulphide (H 2S) and carbon monoxide (CO): Boon or Bane for plant metabolism and development? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125676. [PMID: 39814159 DOI: 10.1016/j.envpol.2025.125676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/07/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Urban air pollution has been a global challenge world-wide. While urban vegetation or forest modelling can be useful in reducing the toxicities of the atmospheric gases by their absorption, the surge in gaseous pollutants negatively affects plant growth, thereby altering photosynthetic efficiency and harvest index. The present review analyses our current understanding of the toxic and beneficial effects of atmospheric nitrogen oxides (NOx), hydrogen sulphide (H2S) and carbon monoxide (CO) on plant growth and metabolism. The atmospheric levels of these gases vary considerably due to urbanization, automobile emission, volcanic eruptions, agricultural practices and other anthropological activities. These gaseous pollutants prevalent in the atmosphere are known for their dual action (toxic or beneficiary) on plant growth, development and metabolism. NO seems to exert a specialized impact by upregulating nitrogen metabolism and reducing tropospheric ozone. High H2S emission in specific areas of geothermal plants, fumarolic soils and wetlands can be a limitation to air quality control. Certain shortcomings associated with the designing of field experiments, sensitivity of detection methods and simulation development are yet to be overcome to analyze the precise levels of NO, H2S and CO in the rhizosphere of diverse agro-climatic regions. Several laboratory-based investigations have been undertaken to assess the roles of atmospheric gases, namely NOx, CO, H2S, and particulate matter (PM). However, in order to enable natural and sustainable mitigation, it is essential to increase the number of field experiments in order to identify the pollutant-tolerant plants and study their interactive impact on plant growth and agriculture.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Geetika Kalra
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, 110019, India
| | - Satish C Bhatla
- Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
2
|
Escobar-Bravo R, Lin PA, Waterman JM, Erb M. Dynamic environmental interactions shaped by vegetative plant volatiles. Nat Prod Rep 2023; 40:840-865. [PMID: 36727645 PMCID: PMC10132087 DOI: 10.1039/d2np00061j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 02/03/2023]
Abstract
Covering: up to November 2022Plants shape terrestrial ecosystems through physical and chemical interactions. Plant-derived volatile organic compounds in particular influence the behavior and performance of other organisms. In this review, we discuss how vegetative plant volatiles derived from leaves, stems and roots are produced and released into the environment, how their production and release is modified by abiotic and biotic factors, and how they influence other organisms. Vegetative plant volatiles are derived from different biosynthesis and degradation pathways and are released via distinct routes. Both biosynthesis and release are regulated by other organisms as well as abiotic factors. In turn, vegetative plant volatiles modify the physiology and the behavior of a wide range of organisms, from microbes to mammals. Several concepts and frameworks can help to explain and predict the evolution and ecology of vegetative plant volatile emission patterns of specific pathways: multifunctionality of specialized metabolites, chemical communication displays and the information arms race, and volatile physiochemistry. We discuss how these frameworks can be leveraged to understand the evolution and expression patterns of vegetative plant volatiles. The multifaceted roles of vegetative plant volatiles provide fertile grounds to understand ecosystem dynamics and harness their power for sustainable agriculture.
Collapse
Affiliation(s)
| | - Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jamie M Waterman
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Liu WX, Liu WS, Yang MY, Wei YX, Chen Z, Virk AL, Lal R, Zhao X, Zhang HL. Effects of tillage and cropping sequences on crop production and environmental benefits in the North China Plain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17629-17643. [PMID: 36198981 DOI: 10.1007/s11356-022-23371-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing trend of greenhouse gas (GHG) emissions is accelerating global warming and threatening food security. Environmental benefits and sustainable food production must be pursued locally and globally. Thus, a field experiment was conducted in 2015 to understand how to balance the trade-offs between agronomic productivity and environment quality in the North China Plain (NCP). Eight treatments consisted of two factors, i.e., (1) tillage practices: rotary tillage (RT) and no-till (NT), and (2) cropping sequences (CS): maize-wheat-soybean-wheat (MWSW), soybean-wheat-maize-wheat (SWMW), soybean-wheat (SW), and maize-wheat (MW). The economic and environmental benefits were evaluated by multiple indicators including the carbon footprint (CF), maize equivalent economic yield (MEEY), energy yield (EY), and carbon sustainability index (CSI). Compared with NT, RT increased the EY and MEEY, but emitted 9.4% higher GHGs. Among different CSs, no significant reduction was observed in CF. The lowest (2.0 Mg CO2-eq ha-1 year-1) and the highest (5.6 Mg CO2-eq ha-1 year-1) CF values were observed under MW and SWMW, respectively. However, CSs with soybean enhanced MEEY and the net revenue due to their higher price compared to that of MW. Although the highest CSI was observed under RT-MW, soybean-based crop rotation could offset the decline in CSI under NT when compared to that for RT. These findings suggest that conservation agriculture (CA) could enhance the balance in trade-offs between economic and environmental benefits. Additional research is needed on how to achieve high crop production by establishing a highly efficient CA system in the NCP.
Collapse
Affiliation(s)
- Wen-Xuan Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Wen-Sheng Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Mu-Yu Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Yu-Xin Wei
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Zhe Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Ahmad Latif Virk
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| | - Xin Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China.
| | - Hai-Lin Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| |
Collapse
|
4
|
Parlin AA, Kondo M, Watanabe N, Nakamura K, Wang J, Sakamoto Y, Komai T. Role of water in unexpectedly large changes in emission flux of volatile organic compounds in soils under dynamic temperature conditions. Sci Rep 2022; 12:4418. [PMID: 35292685 PMCID: PMC8924235 DOI: 10.1038/s41598-022-08270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding the diffusive transport behavior of volatile organic compounds (VOCs) in near-surface soils is important because soil VOC emissions affect atmospheric conditions and climate. Previous studies have suggested that temperature changes affect the transport behavior; however, the effect of these changes are poorly understood. Indeed, under dynamic temperature conditions, the change in VOC flux is much larger than that expected from the temperature dependency of the diffusion coefficient of VOCs in air. However, the mechanism is not well understood, although water in soil has been considered to play an important role. Here, we present the results of experiments for the upward vertical vapor-phase diffusive transport of two VOCs (benzene and tetrachloroethylene) in sandy soil under sinusoidal temperature variations of 20-30 °C, as well as its numerical representation. The results clarify that the unexpectedly large changes in emission flux can occur as a result of changes in the VOC concentration gradient due to VOC release (volatilization) from/trapping (dissolution) into water, and that such flux changes may occur in various environments. This study suggests the importance of a global evaluation of soil VOC emissions by continuous measurements in various soil environments and/or predictions through numerical simulations with thorough consideration of the role of water in dynamic soil environments.
Collapse
Affiliation(s)
- Asma Akter Parlin
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan.
| | - Monami Kondo
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan.
| | - Noriaki Watanabe
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan.
| | - Kengo Nakamura
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan
| | - Jiajie Wang
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan
| | - Yasuhide Sakamoto
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 3058567, Japan
| | - Takeshi Komai
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan
| |
Collapse
|
5
|
Wedow JM, Ainsworth EA, Li S. Plant biochemistry influences tropospheric ozone formation, destruction, deposition, and response. Trends Biochem Sci 2021; 46:992-1002. [PMID: 34303585 DOI: 10.1016/j.tibs.2021.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Tropospheric ozone (O3) is among the most damaging air pollutant to plants. Plants alter the atmospheric O3 concentration in two distinct ways: (i) by the emission of volatile organic compounds (VOCs) that are precursors of O3; and (ii) by dry deposition, which includes diffusion of O3 into vegetation through stomata and destruction by nonstomatal pathways. Isoprene, monoterpenes, and higher terpenoids are emitted by plants in quantities that alter tropospheric O3. Deposition of O3 into vegetation is related to stomatal conductance, leaf structural traits, and the detoxification capacity of the apoplast. The biochemical fate of O3 once it enters leaves and reacts with aqueous surfaces is largely unknown, but new techniques for the tracking and identification of initial products have the potential to open the black box.
Collapse
Affiliation(s)
- Jessica M Wedow
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuai Li
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
6
|
Drewer J, Leduning MM, Purser G, Cash JM, Sentian J, Skiba UM. Monoterpenes from tropical forest and oil palm plantation floor in Malaysian Borneo/Sabah: emission and composition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31792-31802. [PMID: 33611733 DOI: 10.1007/s11356-021-13052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Regional estimates of VOC fluxes focus largely on emissions from the canopy and omit potential contributions from the forest floor including soil, litter and understorey vegetation. Here, we measured monoterpene emissions every 2 months over 2 years from logged tropical forest and oil palm plantation floor in Malaysian Borneo using static flux chambers. The main emitted monoterpenes were α-pinene, β-pinene and d-limonene. The amount of litter present was the strongest indicator for higher monoterpene fluxes. Mean α-pinene fluxes were around 2.5-3.5 μg C m-2 h-1 from the forest floor with occasional fluxes exceeding 100 μg C m-2 h-1. Fluxes from the oil palm plantation, where hardly any litter was present, were lower (on average 0.5-2.9 μg C m-2 h-1) and only higher when litter was present. All other measured monoterpenes were emitted at lower rates. No seasonal trends could be identified for all monoterpenes and mean fluxes from both forest and plantation floor were ~ 100 times smaller than canopy emission rates reported in the literature. Occasional spikes of higher emissions from the forest floor, however, warrant further investigation in terms of underlying processes and their contribution to regional scale atmospheric fluxes.
Collapse
Affiliation(s)
- Julia Drewer
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK.
| | - Melissa M Leduning
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 84400, Kota Kinabalu, Malaysia
| | - Gemma Purser
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| | - James M Cash
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| | - Justin Sentian
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 84400, Kota Kinabalu, Malaysia
| | - Ute M Skiba
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK
| |
Collapse
|
7
|
Birami B, Bamberger I, Ghirardo A, Grote R, Arneth A, Gaona-Colmán E, Nadal-Sala D, Ruehr NK. Heatwave frequency and seedling death alter stress-specific emissions of volatile organic compounds in Aleppo pine. Oecologia 2021; 197:939-956. [PMID: 33835242 PMCID: PMC8591014 DOI: 10.1007/s00442-021-04905-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Biogenic volatile organic compounds (BVOC) play important roles in plant stress responses and can serve as stress indicators. While the impacts of gradual environmental changes on BVOCs have been studied extensively, insights in emission responses to repeated stress and recovery are widely absent. Therefore, we studied the dynamics of shoot gas exchange and BVOC emissions in Pinus halepensis seedlings during an induced moderate drought, two four-day-long heatwaves, and the combination of drought and heatwaves. We found clear stress-specific responses of BVOC emissions. Reductions in acetone emissions with declining soil water content and transpiration stood out as a clear drought indicator. All other measured BVOC emissions responded exponentially to rising temperatures during heat stress (maximum of 43 °C), but monoterpenes and methyl salicylate showed a reduced temperature sensitivity during the second heatwave. We found that these decreases in monoterpene emissions between heatwaves were not reflected by similar declines in their internal storage pools. Because stress intensity was extremely severe, most of the seedlings in the heat-drought treatment died at the end of the second heatwave (dark respiration ceased). Interestingly, BVOC emissions (methanol, monoterpenes, methyl salicylate, and acetaldehyde) differed between dying and surviving seedlings, already well before indications of a reduced vitality became visible in gas exchange dynamics. In summary, we could clearly show that the dynamics of BVOC emissions are sensitive to stress type, stress frequency, and stress severity. Moreover, we found indications that stress-induced seedling mortality was preceded by altered methanol, monoterpene, and acetaldehyde emission dynamics.
Collapse
Affiliation(s)
- Benjamin Birami
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany. .,University of Bayreuth, Chair of Plant Ecology, Universitätsstraße 30, 95440, Bayreuth, Germany.
| | - Ines Bamberger
- University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Atmospheric Chemistry, Dr.-Hans-Frisch-Straße 1-3, 95448, Bayreuth, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Rüdiger Grote
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Almut Arneth
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Elizabeth Gaona-Colmán
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Daniel Nadal-Sala
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
8
|
Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia 2021; 197:885-902. [PMID: 33420520 DOI: 10.1007/s00442-020-04813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.
Collapse
|
9
|
Expected Impacts of Mixing European Beech with Silver Fir on Regional Air Quality and Radiation Balance. CLIMATE 2020. [DOI: 10.3390/cli8100105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The anticipated climate change during the next decades is posing crucial challenges to ecosystems. In order to decrease the vulnerability of forests, introducing tree species’ mixtures are a viable strategy, with deep-rooting native Silver fir (Abies alba) being a primary candidate for admixture into current pure stands of European beech (Fagus sylvatica) especially in mountainous areas. Such a change in forest structure also has effects on the regional scale, which, however, have been seldomly quantified. Therefore, we measured and modeled radiative balance and air chemistry impacts of admixing Silver fir to European beech stands, including changes in biogenic volatile organic compound emissions. An increased fraction of Silver fir caused a smaller albedo and a (simulated) larger evapotranspiration, leading to a dryer and warmer forest. While isoprene emission was negligible for both species, sesquiterpene and monoterpene emissions were larger for fir than for beech. From these differences, we derived that ozone concentration as well as secondary organic aerosols and cloud condensation nuclei would increase regionally. Overall, we demonstrated that even a relatively mild scenario of tree species change will alter the energy balance and air quality in a way that could potentially influence the climate on a landscape scale.
Collapse
|
10
|
Zhang-Turpeinen H, Kivimäenpää M, Aaltonen H, Berninger F, Köster E, Köster K, Menyailo O, Prokushkin A, Pumpanen J. Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134851. [PMID: 32000328 DOI: 10.1016/j.scitotenv.2019.134851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
One of the effects of climate change on boreal forest will be more frequent forest wildfires and permafrost thawing. These will increase the availability of soil organic matter (SOM) for microorganisms, change the ground vegetation composition and ultimately affect the emissions of biogenic volatile organic compounds (BVOCs), which impact atmospheric chemistry and climate. BVOC emissions from boreal forest floor have been little characterized in southern boreal region, and even less so in permafrost soil, which underlies most of the northern boreal region. Here, we report the long-term effects of wildfire on forest floor BVOC emission rates along a wildfire chronosequence in a Larix gmelinii forest in central Siberia. We determined forest floor BVOC emissions from forests exposed to wildfire 1, 23 and > 100 years ago. We studied how forest wildfires and the subsequent succession of ground vegetation, as well as changes in the availability of SOM along with the deepened and recovered active layer, influence BVOC emission rates. The forest floor acted as source of a large number of BVOCs in all forest age classes. Monoterpenes were the most abundant BVOC group in all age classes. The total BVOC emission rates measured from the 23- and >100-year-old areas were ca. 2.6 times higher than the emissions from the 1-year-old area. Lower emissions were related to a decrease in plant coverage and microbial decomposition of SOM after wildfire. Our results showed that forest wildfires play an important indirect role in regulating the amount and composition of BVOC emissions from post-fire originated boreal forest floor. This could have a substantial effect on BVOC emissions if the frequency of forest wildfires increases in the future as a result of climate warming.
Collapse
Affiliation(s)
- Huizhong Zhang-Turpeinen
- Department of Environmental and Biological Sciences, P.O.Box 1627, FI-70211 Kuopio, University of Eastern Finland, Finland.
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, P.O.Box 1627, FI-70211 Kuopio, University of Eastern Finland, Finland
| | - Heidi Aaltonen
- Department of Forest Sciences, P.O. Box 27, FI-00014 Helsinki, University of Helsinki, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, P.O.Box 111, FI-80101 Joensuu, University of Eastern Finland, Finland
| | - Egle Köster
- Department of Forest Sciences, P.O. Box 27, FI-00014 Helsinki, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research/ Forest sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Kajar Köster
- Department of Forest Sciences, P.O. Box 27, FI-00014 Helsinki, University of Helsinki, Finland; Institute for Atmospheric and Earth System Research/ Forest sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | | | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, P.O.Box 1627, FI-70211 Kuopio, University of Eastern Finland, Finland
| |
Collapse
|
11
|
Abstract
The atmosphere is composed of nitrogen, oxygen and argon, a variety of trace gases, and particles or aerosols from a variety of sources. Reactive, trace gases have short mean residence time in the atmosphere and large spatial and temporal variations in concentration. Many trace gases are removed by reaction with hydroxyl radical and deposition in rainfall or dryfall at the Earth's surface. The upper atmosphere, the stratosphere, contains ozone that screens ultraviolet light from the Earth's surface. Chlorofluorocarbons released by humans lead to the loss of stratospheric ozone, which might eventually render the Earth's land surface uninhabitable. Changes in the composition of the atmosphere, especially rising concentrations of CO2, CH4, and N2O, will lead to climatic changes over much of the Earth's surface.
Collapse
|
12
|
Singh A, Srivastava N, Dubey SK. Molecular characterization and kinetics of isoprene degrading bacteria. BIORESOURCE TECHNOLOGY 2019; 278:51-56. [PMID: 30677698 DOI: 10.1016/j.biortech.2019.01.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Isoprene, the highly reactive volatile organic compound, is used as monomer for the synthesis of several useful polymers. Its extensive production and usage leads to contamination of air. Once released, it alters the atmospheric chemistry by reacting with hydroxyl radicals (OH) and nitrogen oxides (NOx) to generate tropospheric ozone. Its prolonged exposure causes deleterious effects in human and plants. Therefore, its removal from the contaminated environment through biodegradation, provides a promising remedial solution. In the present study, isoprene utilizing bacteria namely, Pseudomonas sp., Arthrobacter sp., Bacillus sp. Sphingobacterium sp., Sphingobium sp., and Pantoea sp. were isolated and characterized from leaf surface of Madhuca latifolia and Tectona grandis, and also from soils under these plants. Their isoprene degrading capability and kinetics were assessed in batch mode. The isoprene degradation study indicated Pseudomonas sp. to be the most efficient isoprene degrader.
Collapse
Affiliation(s)
- Abhishek Singh
- Molecular Ecology Laboratory, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Navnita Srivastava
- Molecular Ecology Laboratory, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Abis L, Loubet B, Ciuraru R, Lafouge F, Dequiedt S, Houot S, Maron PA, Bourgeteau-Sadet S. Profiles of volatile organic compound emissions from soils amended with organic waste products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1333-1343. [PMID: 29913594 DOI: 10.1016/j.scitotenv.2018.04.232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 05/24/2023]
Abstract
Volatile Organic Compounds (VOCs) are reactive compounds essential to atmospheric chemistry. They are mainly emitted by living organisms, and mostly by plants. Soil microbes also contribute to emissions of VOCs. However, these emissions have not yet been characterised in terms of quality and quantity. Furthermore, long-term organic matter amendments are known to affect the microbial content of soils, and hence the quantity and quality of VOC emissions. This study investigates which and how much of these VOCs are emitted from soil amended with organic waste products (OWPs). Four OWPs were investigated: municipal solid waste compost (MSW), green waste and sludge co-compost (GWS), bio-waste compost (BIOW) and farmyard manure (FYM). These OWPs have been amended every two years since 1998 until now at a rate of ~4 tC ha-1. A soil receiving no organic inputs was used as a reference (CN). VOCs emissions were measured under laboratory conditions using a Proton Transfer Reaction-Quadrupole ion guide Time of Flight-Mass Spectrometry (PTR-QiToF-MS). A laboratory system was set up made of two Pyrex chambers, one for samples and the second empty, to be used as a blank. Our results showed that total VOC emissions were higher in BIOW than in MSW. Further findings outlined that the most emitted compounds were acetone, butanone and acetaldehyde in all treatments, suggesting a common production mechanism for these compounds, meaning they were not affected by the OWP amendment. We isolated 21 VOCs that had statistically different emissions between the treatments and could therefore be considered as good markers of soil biological functioning. Our results suggest that organic matter and pH jointly influenced total VOC emissions. In conclusion, OWPs in soil affect the type of VOC emissions and the total flux also depends on the pH of the soil and the quantity of organic matter.
Collapse
Affiliation(s)
- Letizia Abis
- Sorbonne Université, UPMC, France; INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France.
| | - Benjamin Loubet
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Raluca Ciuraru
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Florence Lafouge
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Samuel Dequiedt
- INRA, UMR AgroEcologie, AgroSup Dijon, BP 87999, 21079 Dijon cedex, France
| | - Sabine Houot
- INRA, UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Pierre Alain Maron
- INRA, UMR AgroEcologie, AgroSup Dijon, BP 87999, 21079 Dijon cedex, France
| | | |
Collapse
|
14
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
15
|
Monson RK, Neice AA, Trahan NA, Shiach I, McCorkel JT, Moore DJ. Interactions between temperature and intercellular CO 2
concentration in controlling leaf isoprene emission rates. PLANT, CELL & ENVIRONMENT 2016; 39:2404-2413. [PMID: 0 DOI: 10.1111/pce.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 05/24/2023]
Affiliation(s)
- Russell K. Monson
- Department of Ecology and Evolutionary Biology; University of Arizona; Tucson AZ 85721 USA
- Laboratory of Tree Ring Research; University of Arizona; Tucson AZ 85721 USA
| | | | - Nicole A. Trahan
- School of Natural Resources and the Environment; University of Arizona; Tucson AZ 85721 USA
| | - Ian Shiach
- School of Natural Resources and the Environment; University of Arizona; Tucson AZ 85721 USA
| | - Joel T. McCorkel
- Biospheric Sciences Laboratory; NASA Goddard Space Flight Center; Greenbelt MD 20771 USA
| | - David J.P. Moore
- School of Natural Resources and the Environment; University of Arizona; Tucson AZ 85721 USA
| |
Collapse
|
16
|
Tolbatov I, Bartl P, Yurkovich J, Scheier P, Chipman DM, Denifl S, Ptasinska S. Monocarbon cationic cluster yields from N2/CH4 mixtures embedded in He nanodroplets and their calculated binding energies. J Chem Phys 2014; 140:034316. [PMID: 25669388 DOI: 10.1063/1.4861663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The formation of monocarbon cluster ions has been investigated by electron ionization mass spectrometry of cold helium nanodroplets doped with nitrogen/methane mixtures. Ion yields for two groups of clusters, CHmN2(+) or CHmN4(+), were determined for mixtures with different molecular ratios of CH4. The possible geometrical structures of these clusters were analyzed using electronic structure computations. Little correlation between the ion yields and the associated binding energies has been observed indicating that in most cases kinetic control is more important than thermodynamic control for forming the clusters.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Peter Bartl
- Institut für Ionenphysik und Angewandte Physik and Center of Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - James Yurkovich
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik and Center of Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Daniel M Chipman
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik and Center of Molecular Biosciences Innsbruck, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Sylwia Ptasinska
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
17
|
Monson RK, Jones RT, Rosenstiel TN, Schnitzler JP. Why only some plants emit isoprene. PLANT, CELL & ENVIRONMENT 2013; 36:503-16. [PMID: 22998549 DOI: 10.1111/pce.12015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Isoprene (2-methyl-1,3-butadiene) is emitted from many plants and it appears to have an adaptive role in protecting leaves from abiotic stress. However, only some species emit isoprene. Isoprene emission has appeared and been lost many times independently during the evolution of plants. As an example, our phylogenetic analysis shows that isoprene emission is likely ancestral within the family Fabaceae (= Leguminosae), but that it has been lost at least 16 times and secondarily gained at least 10 times through independent evolutionary events. Within the division Pteridophyta (ferns), we conservatively estimate that isoprene emissions have been gained five times and lost two times through independent evolutionary events. Within the genus Quercus (oaks), isoprene emissions have been lost from one clade, but replaced by a novel type of light-dependent monoterpene emissions that uses the same metabolic pathways and substrates as isoprene emissions. This novel type of monoterpene emissions has appeared at least twice independently within Quercus, and has been lost from 9% of the individuals within a single population of Quercus suber. Gain and loss of gene function for isoprene synthase is possible through relatively few mutations. Thus, this trait appears frequently in lineages; but, once it appears, the time available for evolutionary radiation into environments that select for the trait is short relative to the time required for mutations capable of producing a non-functional isoprene synthase gene. The high frequency of gains and losses of the trait and its heterogeneous taxonomic distribution in plants may be explained by the relatively few mutations necessary to produce or lose the isoprene synthase gene combined with the assumption that isoprene emission is advantageous in a narrow range of environments and phenotypes.
Collapse
Affiliation(s)
- Russell K Monson
- School of Natural Resources and the Environment and Laboratory for Tree Ring Research, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
18
|
Marteinsson V, Vaishampayan P, Kviderova J, Mapelli F, Medori M, Calfapietra C, Aguilera A, Hamisch D, Reynisson E, Magnússon S, Marasco R, Borin S, Calzada A, Souza-Egipsy V, González-Toril E, Amils R, Elster J, Hänsch R. A Laboratory of Extremophiles: Iceland Coordination Action for Research Activities on Life in Extreme Environments (CAREX) Field Campaign. Life (Basel) 2013; 3:211-33. [PMID: 25371340 PMCID: PMC4187199 DOI: 10.3390/life3010211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/23/2013] [Accepted: 02/05/2013] [Indexed: 11/16/2022] Open
Abstract
Existence of life in extreme environments has been known for a long time, and their habitants have been investigated by different scientific disciplines for decades. However, reports of multidisciplinary research are uncommon. In this paper, we report an interdisciplinary three-day field campaign conducted in the framework of the Coordination Action for Research Activities on Life in Extreme Environments (CAREX) FP7EU program, with participation of experts in the fields of life and earth sciences. In situ experiments and sampling were performed in a 20 m long hot springs system of different temperature (57 °C to 100 °C) and pH (2 to 4). Abiotic factors were measured to study their influence on the diversity. The CO2 and H2S concentration varied at different sampling locations in the system, but the SO2 remained the same. Four biofilms, mainly composed by four different algae and phototrophic protists, showed differences in photosynthetic activity. Varying temperature of the sampling location affects chlorophyll fluorescence, not only in the microbial mats, but plants (Juncus), indicating selective adaptation to the environmental conditions. Quantitative polymerase chain reaction (PCR), DNA microarray and denaturing gradient gel electrophoresis (DGGE)-based analysis in laboratory showed the presence of a diverse microbial population. Even a short duration (30 h) deployment of a micro colonizer in this hot spring system led to colonization of microorganisms based on ribosomal intergenic spacer (RISA) analysis. Polyphasic analysis of this hot spring system was possible due to the involvement of multidisciplinary approaches.
Collapse
Affiliation(s)
- Viggó Marteinsson
- Matis ohf. Food Safety, Environment and Genetics, Vinlandsleid 12, Reykjavik, 113, Iceland; E-Mails: (E.R.); (S.M.)
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California, Institute of Technology, Pasadena, CA 91109, USA; E-Mail:
| | - Jana Kviderova
- Institute of Botany AS CR, Dukelská 135, Třeboň, CZ-379 82 Czech Republic; E-Mails: (J.K.); (J.E.)
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice,CZ-370 05, Czech Republic
| | - Francesca Mapelli
- Department of Food, Environment and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, Milan, 20133, Italy; E-Mails: (F.M.); (R.M.); (S.B.)
| | - Mauro Medori
- Consiglio NazionaledelleRicercheIstituto di BiologiaAgroambientale e Forestale via Marconi 2-05010 Porano (TR), Italy; E-Mails: (M.M.); (C.C.)
| | - Carlo Calfapietra
- Consiglio NazionaledelleRicercheIstituto di BiologiaAgroambientale e Forestale via Marconi 2-05010 Porano (TR), Italy; E-Mails: (M.M.); (C.C.)
| | - Angeles Aguilera
- Centro de Astrobiología. INTA-CSIC. Torrenjón de Ardoz, Madrid, 28850, Spain; E-Mails: (A.A.); (V.S.-E.); (E.G.-T.); (R.A.)
| | - Domenica Hamisch
- Department of Plant Biology Technical University of Braunschweig, Pockelsstr. 14, Brunschweig, 38092, Germany; E-Mails: (D.H.); (R.H.)
| | - Eyjólfur Reynisson
- Matis ohf. Food Safety, Environment and Genetics, Vinlandsleid 12, Reykjavik, 113, Iceland; E-Mails: (E.R.); (S.M.)
| | - Sveinn Magnússon
- Matis ohf. Food Safety, Environment and Genetics, Vinlandsleid 12, Reykjavik, 113, Iceland; E-Mails: (E.R.); (S.M.)
| | - Ramona Marasco
- Department of Food, Environment and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, Milan, 20133, Italy; E-Mails: (F.M.); (R.M.); (S.B.)
| | - Sara Borin
- Department of Food, Environment and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, Milan, 20133, Italy; E-Mails: (F.M.); (R.M.); (S.B.)
| | - Abigail Calzada
- Geology Department, University of Oviedo, Jesús Arias de Velasc, Oviedo, 33005, Spain; E-Mail:
| | - Virginia Souza-Egipsy
- Centro de Astrobiología. INTA-CSIC. Torrenjón de Ardoz, Madrid, 28850, Spain; E-Mails: (A.A.); (V.S.-E.); (E.G.-T.); (R.A.)
| | - Elena González-Toril
- Centro de Astrobiología. INTA-CSIC. Torrenjón de Ardoz, Madrid, 28850, Spain; E-Mails: (A.A.); (V.S.-E.); (E.G.-T.); (R.A.)
| | - Ricardo Amils
- Centro de Astrobiología. INTA-CSIC. Torrenjón de Ardoz, Madrid, 28850, Spain; E-Mails: (A.A.); (V.S.-E.); (E.G.-T.); (R.A.)
| | - Josef Elster
- Institute of Botany AS CR, Dukelská 135, Třeboň, CZ-379 82 Czech Republic; E-Mails: (J.K.); (J.E.)
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice,CZ-370 05, Czech Republic
| | - Robert Hänsch
- Department of Plant Biology Technical University of Braunschweig, Pockelsstr. 14, Brunschweig, 38092, Germany; E-Mails: (D.H.); (R.H.)
| |
Collapse
|
19
|
Amos RT, Bekins BA, Cozzarelli IM, Voytek MA, Kirshtein JD, Jones EJP, Blowes DW. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer. GEOBIOLOGY 2012; 10:506-517. [PMID: 22925422 DOI: 10.1111/j.1472-4669.2012.00341.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 07/12/2012] [Indexed: 05/28/2023]
Abstract
In a methanogenic crude oil contaminated aquifer near Bemidji, Minnesota, the decrease in dissolved CH(4) concentrations along the groundwater flow path, along with the positive shift in δ(13) C(CH) (4) and negative shift in δ(13) C(DIC) , is indicative of microbially mediated CH(4) oxidation. Calculations of electron acceptor transport across the water table, through diffusion, recharge, and the entrapment and release of gas bubbles, suggest that these processes can account for at most 15% of the observed total reduced carbon oxidation, including CH(4) . In the anaerobic plume, the characteristic Fe(III)-reducing genus Geobacter was the most abundant of the microbial groups tested, and depletion of labile sediment iron is observed over time, confirming that reduced carbon oxidation coupled to iron reduction is an important process. Electron mass balance calculations suggest that organic carbon sources in the aquifer, BTEX and non-volatile dissolved organic carbon, are insufficient to account for the loss in sediment Fe(III), implying that CH(4) oxidation may also be related to Fe(III) reduction. The results support a hypothesis of Fe(III)-mediated CH(4) oxidation in the contaminated aquifer.
Collapse
Affiliation(s)
- R T Amos
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Monson RK, Grote R, Niinemets Ü, Schnitzler JP. Modeling the isoprene emission rate from leaves. THE NEW PHYTOLOGIST 2012; 195:541-559. [PMID: 22738087 DOI: 10.1111/j.1469-8137.2012.04204.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The leaves of many plants emit isoprene (2-methyl-1,3-butadiene) to the atmosphere, a process which has important ramifications for global and regional atmospheric chemistry. Quantitation of leaf isoprene emission and its response to environmental variation are described by empirically derived equations that replicate observed patterns, but have been linked only in some cases to known biochemical and physiological processes. Furthermore, models have been proposed from several independent laboratories, providing multiple approaches for prediction of emissions, but with little detail provided as to how contrasting models are related. In this review we provide an analysis as to how the most commonly used models have been validated, or not, on the basis of known biochemical and physiological processes. We also discuss the multiple approaches that have been used for modeling isoprene emission rate with an emphasis on identifying commonalities and contrasts among models, we correct some mathematical errors that have been propagated through the models, and we note previously unrecognized covariances within processes of the models. We come to the conclusion that the state of isoprene emission modeling remains highly empirical. Where possible, we identify gaps in our knowledge that have prevented us from achieving a greater mechanistic foundation for the models, and we discuss the insight and data that must be gained to fill those gaps.
Collapse
Affiliation(s)
- Russell K Monson
- School of Natural Resources and the Environment and Laboratory for Tree Ring Research, University of Arizona, Tucson, Arizona 85721, USA
| | - Rüdiger Grote
- Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research, Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
21
|
Velikova V, Várkonyi Z, Szabó M, Maslenkova L, Nogues I, Kovács L, Peeva V, Busheva M, Garab G, Sharkey TD, Loreto F. Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. PLANT PHYSIOLOGY 2011; 157:905-16. [PMID: 21807886 PMCID: PMC3192565 DOI: 10.1104/pp.111.182519] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/28/2011] [Indexed: 05/19/2023]
Abstract
Three biophysical approaches were used to get insight into increased thermostability of thylakoid membranes in isoprene-emittingplants.Arabidopsis (Arabidopsis thaliana) plants genetically modified to make isoprene and Platanus orientalis leaves, in which isoprene emission was chemically inhibited, were used. First, in the circular dichroism spectrum the transition temperature of the main band at 694 nm was higher in the presence of isoprene, indicating that the heat stability of chiral macrodomains of chloroplast membranes, and specifically the stability of ordered arrays of light-harvesting complex II-photosystem II in the stacked region of the thylakoid grana, was improved in the presence of isoprene. Second, the decay of electrochromic absorbance changes resulting from the electric field component of the proton motive force (ΔA₅₁₅) was evaluated following single-turnover saturating flashes. The decay of ΔA₅₁₅ was faster in the absence of isoprene when leaves of Arabidopsis and Platanus were exposed to high temperature, indicating that isoprene protects the thylakoid membranes against leakiness at elevated temperature. Finally, thermoluminescence measurements revealed that S₂Q(B)⁻ charge recombination was shifted to higher temperature in Arabidopsis and Platanus plants in the presence of isoprene, indicating higher activation energy for S₂Q(B)⁻ redox pair, which enables isoprene-emitting plants to perform efficient primary photochemistry of photosystem II even at higher temperatures. The data provide biophysical evidence that isoprene improves the integrity and functionality of the thylakoid membranes at high temperature. These results contribute to our understanding of isoprene mechanism of action in plant protection against environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesco Loreto
- Institute of Plant Physiology and Genetics (V.V., L.M., V.P.) and Institute of Biophysics and Biomedical Engineering (M.B.), Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.V., M.S., L.K., G.G.); Institute of Agroenvironmental and Forest Biology, National Research Council, 00015 Monterotondo, Rome, Italy (I.N.); Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (T.D.S.); Institute for Plant Protection, National Research Council, 50019 Sesto Fiorentino, Florence, Italy (F.L.)
| |
Collapse
|
22
|
Barkley MP, Palmer PI, Ganzeveld L, Arneth A, Hagberg D, Karl T, Guenther A, Paulot F, Wennberg PO, Mao J, Kurosu TP, Chance K, Müller JF, De Smedt I, Van Roozendael M, Chen D, Wang Y, Yantosca RM. Can a “state of the art” chemistry transport model simulate Amazonian tropospheric chemistry? ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015893] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Enhanced isoprene-related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations. Oecologia 2011; 166:273-82. [DOI: 10.1007/s00442-011-1947-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/17/2011] [Indexed: 11/26/2022]
|
24
|
Gray CM, Monson RK, Fierer N. Emissions of volatile organic compounds during the decomposition of plant litter. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jg001291] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Köksal M, Zimmer I, Schnitzler JP, Christianson DW. Structure of isoprene synthase illuminates the chemical mechanism of teragram atmospheric carbon emission. J Mol Biol 2010; 402:363-73. [PMID: 20624401 DOI: 10.1016/j.jmb.2010.07.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 11/29/2022]
Abstract
The X-ray crystal structure of recombinant PcISPS (isoprene synthase from gray poplar hybrid Populus×canescens) has been determined at 2.7 Å resolution, and the structure of its complex with three Mg(2+) and the unreactive substrate analogue dimethylallyl-S-thiolodiphosphate has been determined at 2.8 Å resolution. Analysis of these structures suggests that the generation of isoprene from substrate dimethylallyl diphosphate occurs via a syn-periplanar elimination mechanism in which the diphosphate-leaving group serves as a general base. This chemical mechanism is responsible for the annual atmospheric emission of 100 Tg of isoprene by terrestrial plant life. Importantly, the PcISPS structure promises to guide future protein engineering studies, potentially leading to hydrocarbon fuels and products that do not rely on traditional petrochemical sources.
Collapse
Affiliation(s)
- Mustafa Köksal
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | | | | | | |
Collapse
|
26
|
Rivoal A, Fernandez C, Lavoir AV, Olivier R, Lecareux C, Greff S, Roche P, Vila B. Environmental control of terpene emissions from Cistus monspeliensis L. in natural Mediterranean shrublands. CHEMOSPHERE 2010; 78:942-9. [PMID: 20092868 DOI: 10.1016/j.chemosphere.2009.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 05/18/2023]
Abstract
The large amount of volatile organic compound (VOC) emitted by vegetation modifies air quality contributing to both tropospheric ozone and secondary organic aerosol production. A better understanding of the factors controlling VOC emissions by vegetation is mandatory in order to improve emission estimates derived from tropospheric chemistry models. Although the Mediterranean shrublands are particularly abundant and rich in emitting species, their emission potential is poorly known. Focusing on a VOC-emitting shrub species widespread in the Mediterranean area (Cistus monspeliensis L.), we measured and analysed its emissions of terpenes taking into account the age of individuals, the season of sampling and the soil type. Sampling was done under natural environmental conditions. Species of the genus Cistus are frequently reported to be storing species, although we found only one stored monoterpene and three sesquiterpenes in very low amount. Major emitted compounds were alpha-pinene and beta-myrcene. Total terpene emissions were not influenced by plant age but emission of some individual terpenes was positively correlated with age. A strong seasonal effect was evidenced. A larger amount of terpenes was emitted during spring and summer than during fall and winter. Summer emission rates were nearly 70 times higher than winter emission rates. Total and individual terpene emissions were influenced by soil type; emissions on siliceous substrate were ca. seven times higher than those on calcareous substrate. In conclusion, it appears clearly that environmental factors such as soil nature and season should be taken into account in order to achieve improved modelling of terpene emissions by shrub species.
Collapse
Affiliation(s)
- A Rivoal
- Aix-Marseille Université - Institut Méditerranéen d'Ecologie et de Paléoécologie (IMEP UMR CNRS 6116), Equipe Diversité Fonctionnelle des Communautés Végétales, Centre St. Charles, Case 4, 13331 Marseille Cedex 03, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Keenan T, Niinemets Ü, Sabate S, Gracia C, Peñuelas J. Seasonality of monoterpene emission potentials inQuercus ilexandPinus pinea: Implications for regional VOC emissions modeling. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011904] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Affiliation(s)
- Jens Hartung
- Fachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany.
| |
Collapse
|
29
|
Alvarez LA, Exton DA, Timmis KN, Suggett DJ, McGenity TJ. Characterization of marine isoprene-degrading communities. Environ Microbiol 2009; 11:3280-91. [PMID: 19807779 DOI: 10.1111/j.1462-2920.2009.02069.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isoprene is a volatile and climate-altering hydrocarbon with an atmospheric concentration similar to that of methane. It is well established that marine algae produce isoprene; however, until now there was no specific information about marine isoprene sinks. Here we demonstrate isoprene consumption in samples from temperate and tropical marine and coastal environments, and furthermore show that the most rapid degradation of isoprene coincides with the highest rates of isoprene production in estuarine sediments. Isoprene-degrading enrichment cultures, analysed by denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene and by culturing, were generally dominated by Actinobacteria, but included other groups such as Alphaproteobacteria and Bacteroidetes, previously not known to degrade isoprene. In contrast to specialist methane-oxidizing bacteria, cultivated isoprene degraders were nutritionally versatile, and nearly all of them were able to use n-alkanes as a source of carbon and energy. We therefore tested and showed that the ubiquitous marine hydrocarbon-degrader, Alcanivorax borkumensis, could also degrade isoprene. A mixture of the isolates consumed isoprene emitted from algal cultures, confirming that isoprene can be metabolized at low, environmentally relevant concentrations, and suggesting that, in the absence of spilled petroleum hydrocarbons, algal production of isoprene could maintain viable populations of hydrocarbon-degrading microbes. This discovery of a missing marine sink for isoprene is the first step in obtaining more robust predictions of its flux, and suggests that algal-derived isoprene provides an additional source of carbon for diverse microbes in the oceans.
Collapse
Affiliation(s)
- Laura Acuña Alvarez
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | | | | | | | | |
Collapse
|
30
|
Vickers CE, Gershenzon J, Lerdau MT, Loreto F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 2009; 5:283-91. [DOI: 10.1038/nchembio.158] [Citation(s) in RCA: 505] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Velikova V, Fares S, Loreto F. Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress. PLANT, CELL & ENVIRONMENT 2008; 31:1882-1894. [PMID: 18811730 DOI: 10.1111/j.1365-3040.2008.01893.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Isoprene and nitric oxide (NO) are two volatile molecules that are produced in leaves. Both compounds were suggested to have an important protective role against stresses. We tested, in two isoprene-emitting species, Populus nigra and Phragmites australis, whether: (1) NO emission outside leaves is measurable and is affected by oxidative stresses; and (2) isoprene and NO protect leaves against oxidative stresses, both singularly and in combination. The emission of NO was undetectable, and the compensation point was very low in control poplar leaves. Both emission and compensation point increased dramatically in stressed leaves. NO emission was inversely associated with stomatal conductance. More NO was emitted in leaves that were isoprene-inhibited, and more isoprene was emitted when NO was reduced by NO scavenger c-PTIO. Both isoprene and NO reduced oxidative damages. Isoprene-emitting leaves which were also fumigated with NO, or treated with NO donor, showed low damage to photosynthesis, a reduced accumulation of H(2)O(2) and a reduced membrane denaturation. We conclude that measurable amounts of NO are only produced and emitted by stressed leaves, that both isoprene and NO are effective antioxidant molecules and that an additional protection is achieved when both molecules are released.
Collapse
Affiliation(s)
- Violeta Velikova
- Bulgarian Academy of Sciences - Institute of Plant Physiology, Sofia, Bulgaria
| | | | | |
Collapse
|
32
|
Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 2008; 159:1-13. [DOI: 10.1007/s00442-008-1188-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
|
33
|
Barkley MP, Palmer PI, Kuhn U, Kesselmeier J, Chance K, Kurosu TP, Martin RV, Helmig D, Guenther A. Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009863] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Leff JW, Fierer N. Volatile organic compound (VOC) emissions from soil and litter samples. SOIL BIOLOGY AND BIOCHEMISTRY 2008. [PMID: 0 DOI: 10.1016/j.soilbio.2008.01.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
35
|
Phylogenetic and functional gene analysis of the bacterial and archaeal communities associated with the surface microlayer of an estuary. ISME JOURNAL 2008; 2:776-89. [PMID: 18356822 DOI: 10.1038/ismej.2008.28] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The surface microlayer (SML) is the thin biogenic film found at the surface of a water body. The SML is poorly understood but has been shown to be important in biogeochemical cycling and sea-air gas exchange. We sampled the SML of the Blyth estuary at two sites (salinities 21 and 31 psu) using 47 mm polycarbonate membranes. DNA was extracted from the SML and corresponding subsurface water (0.4 m depth) and microbial (bacteria and archaea) community analysis was performed using denaturing gradient gel electrophoresis of 16S rRNA gene PCR amplicons. The diversity of bacterial functional genes that encode enzyme subunits for methane monooxygenase (pmoA and mmoX) and carbon monoxide dehydrogenase (coxL) was assessed using PCR, clone library construction and restriction fragment length polymorphism (RFLP) analysis. Methanotroph genes were present only in low copy numbers and pmoA was detected only in subsurface samples. Diversity of mmoX genes was low and most of the clone sequences detected were similar to those of mmoX from Methylomonas spp. Interestingly, some sequences detected in the SML were different from those detected in the subsurface. RFLP analysis of coxL clone libraries indicated a high diversity of carbon monoxide (CO)-utilizing bacteria in the estuary. The habitats of the closely related coxL sequences suggest that CO-utilizing bacteria in the estuary are recruited from both marine and freshwater/terrestrial inputs. In contrast, methanotroph recruitment appears to occur solely from freshwater input into the estuary.
Collapse
|
36
|
Hall SJ, Huber D, Grimm NB. Soil N2O and NO emissions from an arid, urban ecosystem. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jg000523] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sharon J. Hall
- School of Life Sciences; Arizona State University; Tempe Arizona USA
| | - David Huber
- School of Life Sciences; Arizona State University; Tempe Arizona USA
| | - Nancy B. Grimm
- School of Life Sciences; Arizona State University; Tempe Arizona USA
| |
Collapse
|
37
|
Wiberley AE, Donohue AR, Meier ME, Westphal MM, Sharkey TD. Regulation of isoprene emission in Populus trichocarpa leaves subjected to changing growth temperature. PLANT, CELL & ENVIRONMENT 2008; 31:258-267. [PMID: 17996012 DOI: 10.1111/j.1365-3040.2007.01758.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hydrocarbon isoprene is emitted in large quantities from numerous plant species, and has a substantial impact on atmospheric chemistry. Temperature affects isoprene emission at several levels: the temperature at which emission is measured, the temperature at which leaves develop, and the temperatures to which a mature leaf is exposed in the days prior to emission measurement. The molecular regulation of the response to the last of these factors was investigated in this study. When plants were grown at 20 degrees C and moved from 20 to 30 degrees C and back, or grown at 30 degrees C and moved from 30 to 20 degrees C and back, their isoprene emission peaked within 3 h of the move and stabilized over the following 3 d. Trees that developed at 20 degrees C and experienced 30 degrees C episodes had higher isoprene emission capacities than did leaves grown exclusively at 20 degrees C, even 2 weeks after the last 30 degrees C episode. The levels and extractable activities of isoprene synthase protein, which catalyses the synthesis of isoprene, and those of dimethylallyl diphosphate (DMADP), its substrate, alone could not explain observed variations in isoprene emission. Therefore, we conclude that control of isoprene emission in mature leaves is shared between isoprene synthase protein and DMADP supply.
Collapse
Affiliation(s)
- Amy E Wiberley
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
38
|
Pegoraro E, Potosnak MJ, Monson RK, Rey A, Barron-Gafford G, Osmond CB. The effect of elevated CO 2, soil and atmospheric water deficit and seasonal phenology on leaf and ecosystem isoprene emission. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:774-784. [PMID: 32689405 DOI: 10.1071/fp07021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 06/18/2007] [Indexed: 06/11/2023]
Abstract
Two cottonwood plantations were grown at different CO2 concentrations at the Biosphere 2 Laboratory in Arizona to investigate the response of isoprene emission to elevated [CO2] and its interaction with water deficits. We focused on responses due to seasonal variation and variation in the mean climate from one year to the next. In fall and in spring, isoprene emission rate showed a similar inhibition by elevated [CO2], despite an 8-10°C seasonal difference in mean air temperature. The overall response of isoprene emission to drought was also similar for observations conducted during the spring or fall, and during the fall of two different years with an approximate 5°C difference in mean air temperature. In general, leaf-level isoprene emission rates, measured at constant temperature and photon-flux density, decreased slightly, or remained constant during drought, whereas ecosystem-level isoprene emission rates increased. The uncoupling of ecosystem- and leaf-scale responses is not due to differential dependence on leaf area index (LAI) as LAI increased only slightly, or decreased, during the drought treatments at the same time that ecosystem isoprene emission rate increased greatly. Nor does the difference in isoprene emission rate between leaves and ecosystems appear to be due solely to increases in canopy surface temperature during the drought, though some increase in temperature was observed. It is possible that still further factors, such as increased penetration of PPFD into the canopy as a result of changes in leaf angle, reduced sink strength of the soil for atmospheric isoprene, and decreases in the mean Ci of leaves, combined with the small increases in canopy surface temperature, increased the ecosystem isoprene emission rate. Whatever the causes of the differences in the leaf and ecosystem responses, we conclude that the overall shape of the leaf and ecosystem responses to drought was constant irrespective of season or year.
Collapse
Affiliation(s)
- Emiliano Pegoraro
- Department of Desertification and Geoecology, Estación Experimental de Zonas Áridas, CSIC, 04001 Almería, Spain
| | - Mark J Potosnak
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV 89512, USA
| | - Russell K Monson
- Department of Ecology and Evolutionary Biology, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA
| | - Ana Rey
- Department of Desertification and Geoecology, Estación Experimental de Zonas Áridas, CSIC, 04001 Almería, Spain
| | - Greg Barron-Gafford
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - C Barry Osmond
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
39
|
Monson RK, Trahan N, Rosenstiel TN, Veres P, Moore D, Wilkinson M, Norby RJ, Volder A, Tjoelker MG, Briske DD, Karnosky DF, Fall R. Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2007; 365:1677-95. [PMID: 17513269 DOI: 10.1098/rsta.2007.2038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Coupled surface-atmosphere models are being used with increased frequency to make predictions of tropospheric chemistry on a 'future' earth characterized by a warmer climate and elevated atmospheric CO2 concentration. One of the key inputs to these models is the emission of isoprene from forest ecosystems. Most models in current use rely on a scheme by which global change is coupled to changes in terrestrial net primary productivity (NPP) which, in turn, is coupled to changes in the magnitude of isoprene emissions. In this study, we conducted measurements of isoprene emissions at three prominent global change experiments in the United States. Our results showed that growth in an atmosphere of elevated CO2 inhibited the emission of isoprene at levels that completely compensate for possible increases in emission due to increases in aboveground NPP. Exposure to a prolonged drought caused leaves to increase their isoprene emissions despite reductions in photosynthesis, and presumably NPP. Thus, the current generation of models intended to predict the response of isoprene emission to future global change probably contain large errors. A framework is offered as a foundation for constructing new isoprene emission models based on the responses of leaf biochemistry to future climate change and elevated atmospheric CO2 concentrations.
Collapse
Affiliation(s)
- Russell K Monson
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chan ASK, Steudler PA. Carbon monoxide uptake kinetics in unamended and long-term nitrogen-amended temperate forest soils. FEMS Microbiol Ecol 2006; 57:343-54. [PMID: 16907749 DOI: 10.1111/j.1574-6941.2006.00127.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The effect of nitrogen (N) additions on the dynamics of carbon monoxide consumption in temperate forest soils is poorly understood. We measured soil CO profiles, potential rates of CO consumption and uptake kinetics in temperate hardwood and pine control plots and plots amended with 50 and 150 kg N ha-1 year-1 for more than 15 years. Soil profiles of CO concentrations were above atmospheric levels in the high-N plots of both stands, suggesting that in these forest soils the balance between consumption and production may be shifted so that either production is increased or consumption decreased. Highest rates of CO consumption were measured in the organic horizon and decreased with soil depth. In the N-amended plots, CO consumption increased in all but one soil depth of the hardwood stand, but decreased in all soil depths of the pine stand. CO enzyme affinities increased with soil depth in the control plots. However, enzyme affinities in the most active soil depths (organic and 0-5 cm mineral) decreased in response to low levels of N in both stands. In the high-N plots, affinities dramatically-increased in the hardwood stand, but decreased in the organic horizon and increased slightly in the 0-5 cm mineral soil in the pine stand. These findings indicate that long-term N addition either by fertilization or deposition may alter the size, composition and/or physiology of the community of CO consumers so that their ability to act as a sink for atmospheric CO has changed. This change could have a substantial effect on the lifetime of greenhouse gases such as CH4 and therefore the future of Earth's climate.
Collapse
Affiliation(s)
- Alvarus S K Chan
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | | |
Collapse
|
41
|
Funk JL, Giardina CP, Knohl A, Lerdau MT. Influence of nutrient availability, stand age, and canopy structure on isoprene flux in aEucalyptus salignaexperimental forest. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jg000085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jennifer L. Funk
- Department of Ecology and Evolution; State University of New York; Stony Brook New York USA
| | | | - Alexander Knohl
- Department of Environmental Science, Policy and Management; University of California, Berkeley; Berkeley California USA
| | - Manuel T. Lerdau
- Department of Ecology and Evolution; State University of New York; Stony Brook New York USA
| |
Collapse
|
42
|
Pegoraro E, Rey A, Barron-Gafford G, Monson R, Malhi Y, Murthy R. The interacting effects of elevated atmospheric CO2 concentration, drought and leaf-to-air vapour pressure deficit on ecosystem isoprene fluxes. Oecologia 2005; 146:120-9. [PMID: 16001217 DOI: 10.1007/s00442-005-0166-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
Isoprene is the most abundant biogenic hydrocarbon released from vegetation and it plays a major role in tropospheric chemistry. Because of its link to climate change, there is interest in understanding the relationship between CO2, water availability and isoprene emission. We explored the effect of atmospheric elevated CO2 concentration and its interaction with vapour pressure deficit (VPD) and water stress, on gross isoprene production (GIP) and net ecosystem exchange of CO2 (NEE) in two Populus deltoides plantations grown at ambient and elevated atmospheric CO2 concentration in the Biosphere 2 Laboratory facility. Although GIP and NEE showed a similar response to light and temperature, their responses to CO2 and VPD were opposite; NEE was stimulated by elevated CO2 and depressed by high VPD, while GIP was inhibited by elevated CO2 and stimulated by high VPD. The difference in response between isoprene production and photosynthesis was also evident during water stress. GIP was stimulated in the short term and declined only when the stress was severe, whereas NEE started to decrease from the beginning of the experiment. This contrasting response led the carbon lost as isoprene in both the ambient and the elevated CO2 treatments to increase as water stress progressed. Our results suggest that water limitation can override the inhibitory effect of elevated CO2 leading to increased global isoprene emissions in a climate change scenario with warmer and drier climate.
Collapse
Affiliation(s)
- Emiliano Pegoraro
- Biosphere 2 Laboratory, Columbia University, Oracle, AZ, 85623, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Stroud C. Role of canopy-scale photochemistry in modifying biogenic-atmosphere exchange of reactive terpene species: Results from the CELTIC field study. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005jd005775] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Pegoraro E, Rey A, Bobich EG, Barron-Gafford G, Grieve KA, Malhi Y, Murthy R. Effect of elevated CO 2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought. FUNCTIONAL PLANT BIOLOGY : FPB 2004; 31:1137-1147. [PMID: 32688981 DOI: 10.1071/fp04142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Accepted: 10/08/2004] [Indexed: 06/11/2023]
Abstract
To further our understanding of the influence of global climate change on isoprene production we studied the effect of elevated [CO2] and vapour pressure deficit (VPD) on isoprene emission rates from leaves of Populus deltoides Bartr. during drought stress. Trees, grown inside three large bays with atmospheres containing 430, 800, or 1200 μmol mol-1 CO2 at the Biosphere 2 facility, were subjected to a period of drought during which VPD was manipulated, switching between low VPD (approximately 1 kPa) and high VPD (approximately 3 kPa) for several days. When trees were not water-stressed, elevated [CO2] inhibited isoprene emission and stimulated photosynthesis. Isoprene emission was less responsive to drought than photosynthesis. As water-stress increased, the inhibition of isoprene emission disappeared, probably as a result of stomatal closure and the resulting decreases in intercellular [CO2] (Ci). This assumption was supported by increased isoprene emission under high VPD. Drought and high VPD dramatically increased the proportion of assimilated carbon lost as isoprene. When measured at the same [CO2], leaves from trees grown at ambient [CO2] always had higher isoprene emission rates than the leaves of trees grown at elevated [CO2], demonstrating that CO2 inhibition is a long-term effect.
Collapse
Affiliation(s)
| | - Ana Rey
- School of GeoSciences, University of Edinburgh, Darwin Building, Mayfield Road, Edinburgh EH9 3JU, UK
| | - Edward G Bobich
- Biosphere 2 Laboratory, Columbia University, Oracle, AZ 85623, USA
| | | | | | - Yadvinder Malhi
- School of GeoSciences, University of Edinburgh, Darwin Building, Mayfield Road, Edinburgh EH9 3JU, UK
| | - Ramesh Murthy
- Biosphere 2 Laboratory, Columbia University, Oracle, AZ 85623, USA
| |
Collapse
|
45
|
Abstract
Carbon monoxide (CO) has long been known to have dramatic physiological effects on organisms ranging from bacteria to humans, but recently there have a number of suggestions that organisms might have specific sensors for CO. This article reviews the current evidence for a variety of proteins with demonstrated or potential CO-sensing ability. Particular emphasis is placed on the molecular description of CooA, a heme-containing CO sensor from Rhodospirillum rubrum, since its biological role as a CO sensor is clear and we have substantial insight into the basis of its sensing ability.
Collapse
Affiliation(s)
- Gary P Roberts
- Department of Bacteriology, 420 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
46
|
Staudt M, Mir C, Joffre R, Rambal S, Bonin A, Landais D, Lumaret R. Isoprenoid emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific genetic introgression. THE NEW PHYTOLOGIST 2004; 163:573-584. [PMID: 33873752 DOI: 10.1111/j.1469-8137.2004.01140.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Among oak species, Quercus ilex is classified as a monoterpene emitter and Q. suber is mainly known as a nonisoprenoid emitter. The extent and origin of this diversification is unknown. • We examined intra- and interspecific emission variability in two mixed stands which differed in their level of hybridization and reciprocal genetic introgression based on variations in cytoplasmic (chloroplast DNA) and nuclear (allozyme) markers. • At both sites all trees identified as Q. ilex, or as recent descendants from Q. ilex × Q. suber hybrids, emitted monoterpenes. Of Q. suber trees (genetically introgressed or not by Q. ilex), 91% were also monoterpene emitters, and the remainder nonemitters. One tree identified as a Q. canariensis × Q. ilex hybrid emitted both isoprene and monoterpenes. Compared with Q. ilex, the standard emission rate of Q. suber was higher in summer and lower in autumn. Both species emitted the same monoterpenes, proportions of which showed significant intra- and interspecific variability. • The results suggest that Q. suber populations in the French Mediterranean intrinsically emit monoterpenes, and that gene flow between oak species contributes to diversification of emission signatures.
Collapse
Affiliation(s)
- Michael Staudt
- CNRS Centre d'Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Céline Mir
- CNRS Centre d'Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Richard Joffre
- CNRS Centre d'Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Serge Rambal
- CNRS Centre d'Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Aurélie Bonin
- CNRS Centre d'Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Damien Landais
- CNRS Centre d'Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Roselyne Lumaret
- CNRS Centre d'Ecologie Fonctionnelle et Evolutive, 1919 route de Mende, 34293 Montpellier cedex 5, France
| |
Collapse
|
47
|
Naik V, Delire C, Wuebbles DJ. Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003jd004236] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vaishali Naik
- Department of Atmospheric Sciences; University of Illinois; Urbana Illinois USA
| | - Christine Delire
- Center for Sustainability and the Global Environment, Gaylord Nelson Institute for Environmental Studies; University of Wisconsin-Madison; Madison Wisconsin USA
| | - Donald J. Wuebbles
- Department of Atmospheric Sciences; University of Illinois; Urbana Illinois USA
| |
Collapse
|
48
|
Affiliation(s)
- Ray Fall
- Department of Chemistry and Biochemistry, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309-0215, USA.
| |
Collapse
|
49
|
Harley P, Otter L, Guenther A, Greenberg J. Micrometeorological and leaf-level measurements of isoprene emissions from a southern African savanna. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002jd002592] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter Harley
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - Luanne Otter
- Climatology Research Group; University of the Witwatersrand, Braamfontein; Johannesburg South Africa
| | - Alex Guenther
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| | - James Greenberg
- Atmospheric Chemistry Division; National Center for Atmospheric Research; Boulder Colorado USA
| |
Collapse
|
50
|
Monson RK. The many faces of plant carbon relations: forging an ecophysiological identity in the age of human influence. THE NEW PHYTOLOGIST 2003; 157:167-170. [PMID: 33873637 DOI: 10.1046/j.1469-8137.2003.00685.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Russell K Monson
- Department of Environmental, Population and Organismic Biology, University of Colorado, Boulder, CO 80309-0334, USA (fax +1 303 4928699; email )
| |
Collapse
|