1
|
Foronda J, Berville L, Rodríguez E, Peña A, Perdereau E, Montoro M, Lucas C, Ruano F. Chemical Recognition Cues in Ant-Aphid Mutualism: Differentiating, Sharing, and Modifying Cuticular Components. J Chem Ecol 2025; 51:52. [PMID: 40343563 PMCID: PMC12064600 DOI: 10.1007/s10886-025-01562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 05/11/2025]
Abstract
Aphid-tending ants form mutualistic associations with aphids. During their interactions, aphids and ants use both tactile stimuli and chemical cues to communicate. Recent studies suggest that ants modify the cuticular hydrocarbons of mutualistic aphids they attend, but it is unclear which compounds are implicated in recognition. Thus, we investigated the chemical basis for the discrimination between attended and unattended aphids, Aphis gossypii Glover (Hemiptera: Aphididae), by the ant Tapinoma ibericum (Santschi, 1925) including cuticular hydrocarbons (CHCs and non-CHCs) compounds in the analysis. Chemical profiles of 14 colonies of A. gossypii attended by ants for three days were significantly different from those of unattended aphids. These results show that contact with T. ibericum rapidly induces modification of the cuticular profiles of the aphids on which they feed. Moreover, the compounds of unattended aphid A. gossypii also change over time but differ from those of attended aphids. The main compound of the ant cuticle (3,15-di-MeC27), which is highly abundant in attended aphids, was identified as a possible recognition marker, but without forgetting other identified compounds that may also play a predominant role in the ant-aphid mutualistic interactions. These promising compounds represent opportunities for pest control strategies using chemical manipulations.
Collapse
Affiliation(s)
- Jesús Foronda
- Institute for Agricultural and Fisheries Research and Training (IFAPA) La Mojonera, Almería, Spain
- Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain
| | | | - Estefania Rodríguez
- Institute for Agricultural and Fisheries Research and Training (IFAPA) La Mojonera, Almería, Spain
| | - Aránzazu Peña
- Instituto Andaluz de Ciencias de la Tierra (CSIC), Armilla, Granada, 18100, Spain
| | - Elfie Perdereau
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS, University of Tours, Tours, France
| | - Mar Montoro
- Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain
| | - Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS, University of Tours, Tours, France
| | - Francisca Ruano
- Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain.
| |
Collapse
|
2
|
Hayashi M, Ito N, Millar JG, Nakamuta K. Discrimination of Methyl-Branched Hydrocarbons by Tetramorium tsushimae Ants: a Focus on Branch Position and Chain Length. J Chem Ecol 2025; 51:41. [PMID: 40100520 DOI: 10.1007/s10886-025-01595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025]
Abstract
In nature, organisms are exposed to scents and tastes composed of multiple rather than single chemicals. The ability to sense and correctly identify different chemicals within these complex mixtures is essential for optimized behavior. However, when minor variations in chemical structure do not significantly impact the organisms, a generalized response to similar chemicals without discrimination might be more adaptive. In this study, we investigated the ability of ants to discriminate among methyl-branched alkanes. Ants recognize each other using cuticular hydrocarbons (CHCs), typically composed of a mixture of n-alkanes, n-alkenes, and methyl-branched alkanes. Tetramorium tsushimae ants have been shown to use the methylalkane fraction of CHCs to identify their mutualistic partners. We measured the behavioral responses of ant workers to dummies coated with various hydrocarbons, after presenting them with dummies treated with methylalkanes and a sucrose solution as a reward. The results showed that ants previously exposed to 2-methyltetracosane (2-MeC24) decreased their aggression not only toward 2-MeC24 but also toward 2-MeC26, despite the difference in the chain lengths. Conversely, ants exposed to 13-MeC27 maintained high levels of aggression toward 5-MeC27, which has the methyl branch in a different position. These findings suggest that T. tsushimae ants can differentiate between methylalkanes with different methyl branch positions, but are less able to discriminate between those with the same methyl branch position but different chain lengths.
Collapse
Affiliation(s)
- Masayuki Hayashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan.
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
- Institute for Plant Protection, National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba, Ibaraki, 305‑8666, Japan.
| | - Naofumi Ito
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
- Nippon Soda Co., Ltd., 345 Takada, Odawara, Kanagawa, 250-0216, Japan
| | - Jocelyn G Millar
- Departments of Entomology and Chemistry, University of California, Riverside, CA, 92521, USA
| | - Kiyoshi Nakamuta
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
- , 2-22-4 Matsushiro, Tsukuba, Ibaraki, 305-0035, Japan
| |
Collapse
|
3
|
Chen Y, Cui H, Xu T, Chen L. Contrasting Effects of Mutualistic Ants ( Solenopsis invicta) and Predatory Ladybugs on the Proportion of Dark Green Morphs of Cotton Aphids. INSECTS 2025; 16:271. [PMID: 40266780 PMCID: PMC11943279 DOI: 10.3390/insects16030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/25/2025]
Abstract
Cotton aphids, Aphis gossypii, are an important pest worldwide and have evolved mutualistic relationships with the invasive fire ant Solenopsis invicta. Their body color varies from pale yellow to dark green, with an increase in body size and fecundity. The body color composition in a cotton aphid colony can be influenced by biotic interactions with mutualistic ants and predatory ladybugs. However, since the distribution of nutrients varies across host plant organs, there may exist special effects of biotic interactions on the body color composition of the aphids on different plant parts. In the present study, we found that, under constant laboratory conditions, the proportions of dark green morphs varied among the cotton aphids distributed on different parts of a cotton seedling, with significantly higher proportions on the stems, petioles, and sprouts (SPSs) than on leaves. The presence of mutualistic fire ants significantly increased the proportion of dark green morphs in the cotton aphid colony, but with a reduction in aphid body size, compared to the untended individuals. In contrast, the introduction of a predatory seven-spotted ladybug, Coccinella septempunctata, dramatically decreased the proportion of dark green morphs on SPSs, but not on leaves, leading to a reduction in the proportion of the whole colony. These results illustrate a spatial variation in the proportions of dark green morphs on host plants in cotton aphids, which may be an adaptive strategy used by the aphids to gain benefits and/or minimize costs in the interactions with mutualistic ants and predatory ladybugs.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China; (Y.C.); (H.C.)
| | - Hejun Cui
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China; (Y.C.); (H.C.)
| | - Tian Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Li Chen
- College of Life Sciences, Hebei Basic Science Center for Biotic Interactions, Hebei University, Baoding 071002, China; (Y.C.); (H.C.)
| |
Collapse
|
4
|
Gonçalves Diniz A, de Freitas Grasse R, de Lima AGG, de Oliveira Ribeiro TK, da Costa AF, Tiago PV. Susceptibility of Aphis craccivora (Hemiptera: Aphididae) to three entomopathogenic Fusarium species. Microb Pathog 2024; 196:107015. [PMID: 39396687 DOI: 10.1016/j.micpath.2024.107015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
The black aphid (Aphis craccivora) is an insect pest that can cause significant losses to different agricultural crops. Entomopathogenic fungi can be good options for controlling this insect. Fusarium species have shown promising results in the biological control of several agricultural pests, mainly of the order Hemiptera. This study investigated the susceptibility of A. craccivora to 27 Fusarium isolates, distributed among F. sulawesiense (4), F. pernambucanum (6) and F. caatingaense (17). The viability of the conidia of all isolates was assessed by measuring their germination rate. Pathogenicity tests were conducted at 10⁷ conidia/mL, and the best-performing isolate was further tested at different concentrations (10⁴ to 10⁸ conidia/mL). Data were analyzed using ANOVA, Tukey's test at 5 %, and R for calculating lethal times (LT50,90) and lethal concentrations (LC50,90). All isolates had viable conidia with germination rates between 92.67 % and 100 %. Mortality rates ranged from 17.22 % to 90.23 %. F. pernambucanum URM 7559 had the shortest lethal times (LT50 of 2.24 days and LT90 of 4.42 days), followed by F. sulawesiense URM 7555 (LT50 of 2.35 days and LT90 of 4.77 days) and F. caatingaense with LT50 of 3.93 days for URM 6784 and LT90 of 8.27 days for URM 6807. The three Fusarium species tested, especially F. pernambucanum, showed promise in the biological control of A. craccivora. Although the results are promising, additional studies are needed to evaluate the safety, field efficacy and environmental impacts of Fusarium use, focusing on the interaction with the agricultural ecosystem and the risks to non-target organisms.
Collapse
|
5
|
Gaber H, Ruland F, Jeschke JM, Bernard‐Verdier M. Behavioural changes in the city: The common black garden ant defends aphids more aggressively in urban environments. Ecol Evol 2024; 14:e11639. [PMID: 38962026 PMCID: PMC11221068 DOI: 10.1002/ece3.11639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Urbanisation alters biodiversity patterns and threatens to disrupt mutualistic interactions. Aside from pollination, however, little is known about how mutualisms change in cities. Our study aimed to assess how urbanisation affects the protective mutualism between ants and aphids, investigating potential behavioural changes in mutualistic ants and their implications for aphids in urban environments. To do so, we studied the protective mutualism between the pink tansy aphid (Metopeurum fuscoviride) and the black garden ant (Lasius niger) along an urbanisation gradient in Berlin, Germany. In nine locations along this gradient, we measured aphid colony dynamics and proxies for parasitism, quantified the investment of ants in tending aphids and conducted behavioural assays to test the aggressiveness of ant responses to a simulated attack on the aphids. We found that aphid colonies flourished and were equally tended by ants across the urbanisation gradient, with a consistent positive density dependence between aphid and ant numbers. However, ants from more urbanised sites responded more aggressively to the simulated attack. Our findings suggest that this protective mutualism is not only maintained in the city, but that ants might even rely more on it and defend it more aggressively, as other food resources may become scarce and more unpredictable with urbanisation. We thereby provide unique insights into this type of mutualism in the city, further diversifying the growing body of work on mutualisms across urbanisation gradients.
Collapse
Affiliation(s)
- Hannah Gaber
- Department of BiologyGhent University (Ugent)GhentBelgium
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Florian Ruland
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- West Iceland Nature Research CentreStykkisholmurIceland
| | - Jonathan M. Jeschke
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Maud Bernard‐Verdier
- Institute of Biology, Freie Universität Berlin (FUB)BerlinGermany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| |
Collapse
|
6
|
Agarwal R, Althoff DM. Extreme specificity in obligate mutualism-A role for competition? Ecol Evol 2024; 14:e11628. [PMID: 38911491 PMCID: PMC11190587 DOI: 10.1002/ece3.11628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Obligate mutualisms, reciprocally obligate beneficial interactions, are some of the most important mutualisms on the planet, providing the basis for the evolution of the eukaryotic cell, the formation and persistence of terrestrial ecosystems and the establishment and expansion of coral reefs. In addition, these mutualisms can also lead to the diversification of interacting partner species. Accompanying this diversification is a general pattern of a high degree of specificity among interacting partner species. A survey of obligate mutualisms demonstrates that greater than half of these systems have only one or two mutualist species on each side of the interaction. This is in stark contrast to facultative mutualisms that can have dozens of interacting mutualist species. We posit that the high degree of specificity in obligate mutualisms is driven by competition within obligate mutualist guilds that limits species richness. Competition may be particularly potent in these mutualisms because mutualistic partners are totally dependent on each other's fitness gains, which may fuel interspecific competition. Theory and the limited number of empirical studies testing for the role of competition in determining specificity suggest that competition may be an important force that fuels the high degree of specificity. Further empirical research is needed to dissect the relative roles of trait complementarity, mutualism regulation, and competition among mutualist guild members in determining mutualism specificity at local scales.
Collapse
Affiliation(s)
- Renuka Agarwal
- Department of BiologySyracuse UniversitySyracuseNew YorkUSA
| | | |
Collapse
|
7
|
Parmentier T, Molero-Baltanás R, Valdivia C, Gaju-Ricart M, Boeckx P, Łukasik P, Wybouw N. Co-habiting ants and silverfish display a converging feeding ecology. BMC Biol 2024; 22:123. [PMID: 38807209 PMCID: PMC11134936 DOI: 10.1186/s12915-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Various animal taxa have specialized to living with social hosts. Depending on their level of specialization, these symbiotic animals are characterized by distinct behavioural, chemical, and morphological traits that enable close heterospecific interactions. Despite its functional importance, our understanding of the feeding ecology of animals living with social hosts remains limited. We examined how host specialization of silverfish co-habiting with ants affects several components of their feeding ecology. We combined stable isotope profiling, feeding assays, phylogenetic reconstruction, and microbial community characterization of the Neoasterolepisma silverfish genus and a wider nicoletiid and lepismatid silverfish panel where divergent myrmecophilous lifestyles are observed. RESULTS Stable isotope profiling (δ13C and δ15N) showed that the isotopic niches of granivorous Messor ants and Messor-specialized Neoasterolepisma exhibit a remarkable overlap within an ant nest. Trophic experiments and gut dissections further supported that these specialized Neoasterolepisma silverfish transitioned to a diet that includes plant seeds. In contrast, the isotopic niches of generalist Neoasterolepisma silverfish and generalist nicoletiid silverfish were clearly different from their ant hosts within the shared nest environment. The impact of the myrmecophilous lifestyle on feeding ecology was also evident in the internal silverfish microbiome. Compared to generalists, Messor-specialists exhibited a higher bacterial density and a higher proportion of heterofermentative lactic acid bacteria. Moreover, the nest environment explained the infection profile (or the 16S rRNA genotypes) of Weissella bacteria in Messor-specialized silverfish and the ant hosts. CONCLUSIONS Together, we show that social hosts are important determinants for the feeding ecology of symbiotic animals and can induce diet convergence.
Collapse
Affiliation(s)
- Thomas Parmentier
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | | | - Catalina Valdivia
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Miquel Gaju-Ricart
- Depto. de Biología Animal (Zoología), University of Córdoba, Córdoba, Spain
| | - Pascal Boeckx
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Nicky Wybouw
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Avilés JM. The evolutionary ecology of bird-ant interactions: a pervasive but under-studied connection. Proc Biol Sci 2024; 291:20232023. [PMID: 38166423 PMCID: PMC10762437 DOI: 10.1098/rspb.2023.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/01/2023] [Indexed: 01/04/2024] Open
Abstract
Birds and ants are among the most ubiquitous taxa co-occurring in terrestrial ecosystems, but how they mutually interact is almost unknown. Here, the main features of this neglected interaction are synthetized in a systematic literature review. Interaction with ants has been recorded in 1122 bird species (11.2% of extant species) belonging to 131 families widely distributed across the globe and the avian phylogeny. On the other hand, 47 genus of ants (14.4% of extant genus) belonging to eight subfamilies interact with birds. Interactions include competition, antagonism (either ant-bird mutual predation or parasitism) and living together commensally or mutualistically. Competition (48.9%) and antagonism (36.1%) were the most common reported interactions. The potential for engaging in commensalism and competition with ants has a phylogenetic structure in birds and was present in the birds' ancestor. Interaction is better studied in the tropics, in where the network is less dense and more nested than in temperate or arid biomes. This review demonstrates that ant-bird interactions are a pervasive phenomenon across ecological domains, playing a key role in ecosystem function. Future studies need to combine sensible experimentation within anthropogenic disturbance gradients in order to achieve a better understanding of this interaction.
Collapse
Affiliation(s)
- Jesús M. Avilés
- Departamento de Ecología Funcional y Evolutiva, EEZA-CSIC, Almería E-04120, Spain
- Unidad Asociada (CSIC-UNEX): Ecología en el Antropoceno, Badajoz E-06006, Spain
| |
Collapse
|
9
|
Bispo LF, Demolin-Leite GL, Fagundes WM, Abreu AMSA, Santos JMMD, Oliveira FMM, Silva VJ, Souza TO, Silva YOR, Amaral FL. Recovery of a degraded area using Platycyamus regnellii (Fabaceae) saplings. BRAZ J BIOL 2023; 83:e278702. [PMID: 38126588 DOI: 10.1590/1519-6984.278702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- L F Bispo
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - G L Demolin-Leite
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - W M Fagundes
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - A M S A Abreu
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - J M M Dos Santos
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - F M M Oliveira
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - V J Silva
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - T O Souza
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - Y O R Silva
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - F L Amaral
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| |
Collapse
|
10
|
Tercel MPTG, Cuff JP, Symondson WOC, Vaughan IP. Non-native ants drive dramatic declines in animal community diversity: A meta-analysis. INSECT CONSERVATION AND DIVERSITY 2023; 16:733-744. [PMID: 38505669 PMCID: PMC10947240 DOI: 10.1111/icad.12672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/13/2023] [Indexed: 03/21/2024]
Abstract
Non-native ants can cause ecosystem-wide ecological change, and these changes are generally assumed to be negative. Despite this, the evidence base has never been holistically synthesised to quantify whether and to what degree non-native ants impact native species diversity.In this study, we performed a meta-analysis of the effects of ant invasion on animal communities. We extracted data from 46 published articles investigating abundance (156 effect sizes) and richness (53 effect sizes) responses of animal taxa to ant invasion in locations relatively unimpacted by other stressors (e.g. human disturbance, other non-native species) to help isolate the effects of invasion.Overall, local animal diversity declined severely, with species abundance and richness lower by 42.79% and 53.56%, respectively, in areas with non-native ants compared with intact uninvaded sites. We then combined responses of individual animal taxa extracted from an article into a single response to represent the 'community' abundance (40 effect sizes) or richness (28 effect sizes) response to non-native ants represented in each article. Local communities decreased substantially in total abundance (52.67%) and species richness (53.47%) in invaded sites.These results highlight non-native ants as the drivers, rather than passengers, of large net-negative reductions to animal community diversity in relatively undisturbed systems around the world, approximately halving local species abundance and richness in invaded areas. Improved international prevention processes, early detection systems harnessing emerging technologies, and well-designed control measures deployable by conservation practitioners are urgently needed if these effects are to be mitigated, prevented or reversed.
Collapse
Affiliation(s)
- Maximillian P. T. G. Tercel
- School of BiosciencesCardiff UniversityCardiffUK
- Durrell Wildlife Conservation TrustLes Augrès ManorJerseyChannel Islands
| | - Jordan P. Cuff
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
| | | | | |
Collapse
|
11
|
Zhang X, Dalsgaard B, Staab M, Zhu C, Zhao Y, Gonçalves F, Ren P, Cai C, Qiao G, Ding P, Si X. Habitat fragmentation increases specialization of multi-trophic interactions by high species turnover. Proc Biol Sci 2023; 290:20231372. [PMID: 37876189 PMCID: PMC10598433 DOI: 10.1098/rspb.2023.1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Habitat fragmentation is altering species interactions worldwide. However, the mechanisms underlying the response of network specialization to habitat fragmentation remain unknown, especially for multi-trophic interactions. We here collected a large dataset consisting of 2670 observations of tri-trophic interactions among plants, sap-sucking aphids and honeydew-collecting ants on 18 forested islands in the Thousand Island Lake, China. For each island, we constructed an antagonistic plant-aphid and a mutualistic aphid-ant network, and tested how network specialization varied with island area and isolation. We found that both networks exhibited higher specialization on smaller islands, while only aphid-ant networks had increased specialization on more isolated islands. Variations in network specialization among islands was primarily driven by species turnover, which was interlinked across trophic levels as fragmentation increased the specialization of both antagonistic and mutualistic networks through bottom-up effects via plant and aphid communities. These findings reveal that species on small and isolated islands display higher specialization mainly due to effects of fragmentation on species turnover, with behavioural changes causing interaction rewiring playing only a minor role. Our study highlights the significance of adopting a multi-trophic perspective when exploring patterns and processes in structuring ecological networks in fragmented landscapes.
Collapse
Affiliation(s)
- Xue Zhang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Bo Dalsgaard
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Michael Staab
- Technical University Darmstadt, Ecological Networks, 64287 Darmstadt, Germany
| | - Chen Zhu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yuhao Zhao
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Fernando Gonçalves
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Peng Ren
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Chang Cai
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ping Ding
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xingfeng Si
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
12
|
Parmentier T. Differential transport of a guild of mutualistic root aphids by the ant Lasius flavus. Curr Zool 2023; 69:409-417. [PMID: 37614922 PMCID: PMC10443613 DOI: 10.1093/cz/zoac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/29/2022] [Indexed: 08/25/2023] Open
Abstract
Mutually beneficial associations are widespread in ecological networks. They are typically assembled as multispecies guilds of symbionts that compete for one or more host species. The ant Lasius flavus engages in an intriguing and obligate mutualistic association with a community of aphids that are cultivated on plant roots in its nests. The ant displays a repertoire of amicable behaviors toward the aphids, including their transport. I examined whether L. flavus preferentially carried some of the root aphids. Using a no-choice and a choice experiment, I comparatively analyzed the transport rate of 5 obligate and one loosely associated species back to the ant nest and used the transport rate of the ant larvae as a reference. All associated root aphids were carried back to the nest, but in a clear preferential hierarchy. Geoica utricularia, Forda Formicaria, and Trama rara were rapidly transported, but slower than the own larvae. Tetraneura ulmi and Geoica setulosa were collected at a moderate rate and the loosely associated Aploneura lentisci was slowly retrieved. In contrast, different species of unassociated aphids were not transported and even provoked aggressive behavior in L. flavus. This study revealed that co-occurring symbionts may induce different degrees of host attraction, which ultimately may affect the coexistence and assembly of ant-symbiont communities.
Collapse
Affiliation(s)
- Thomas Parmentier
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
13
|
Kaszyca-Taszakowska N, Kanturski M, Depa Ł. Perianal Structures in Non-Myrmecophilous Aphids (Hemiptera, Aphididae). INSECTS 2023; 14:insects14050471. [PMID: 37233099 DOI: 10.3390/insects14050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Mutualistic relation with ants is one of the leading features of aphid ecology. For some aphid species, it is a crucial association enhancing their survival capability, while the life mode of some others is completely independent of ants. It was broadly accepted that during the evolution of aphids, the ones relying on ants developed special morphological adaptations for this mutualism, the so-called trophobiotic organ. Its exact structuring, however, posed some explanatory difficulties because many non-myrmecophilous aphids had structural modifications accordant with the trophobiotic organ, while some myrmecophilous did not. Here we present an evaluation of the morphology of perianal structures in 25 non-myrmecophilous aphid species with reference to previous, similar studies on myrmecophilous species based on scanning electron microscopy. We conclude that the trophobiotic organ is an existing adaptation, but its definition requires revision.
Collapse
Affiliation(s)
- Natalia Kaszyca-Taszakowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mariusz Kanturski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Łukasz Depa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
14
|
Fei M, Gols R, Harvey JA. The Biology and Ecology of Parasitoid Wasps of Predatory Arthropods. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:109-128. [PMID: 36198401 DOI: 10.1146/annurev-ento-120120-111607] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Parasitoid wasps are important components of insect food chains and have played a central role in biological control programs for over a century. Although the vast majority of parasitoids exploit insect herbivores as hosts, others parasitize predatory insects and arthropods, such as ladybird beetles, hoverflies, lacewings, ground beetles, and spiders, or are hyperparasitoids. Much of the research on the biology and ecology of parasitoids of predators has focused on ladybird beetles, whose parasitoids may interfere with the control of insect pests like aphids by reducing ladybird abundance. Alternatively, parasitoids of the invasive ladybird Harmonia axyridis may reduce its harmful impact on native ladybird populations. Different life stages of predatory insects and spiders are susceptible to parasitism to different degrees. Many parasitoids of predators exhibit intricate physiological interrelationships with their hosts, adaptively manipulating host behavior, biology, and ecology in ways that increase parasitoid survival and fitness.
Collapse
Affiliation(s)
- Minghui Fei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China;
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands;
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands;
- Animal Ecology Section, Department of Ecological Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Kaszyca-Taszakowska N, Kanturski M, Depa Ł. Comparative Studies of Perianal Structures in Myrmecophilous Aphids (Hemiptera, Aphididae). INSECTS 2022; 13:insects13121160. [PMID: 36555071 PMCID: PMC9781728 DOI: 10.3390/insects13121160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 05/31/2023]
Abstract
There are three types of relationships between aphids and ants: non-myrmecophilous, obligatory and facultatively myrmecophilous. The degree of involvement in this mutualism is believed to be corelated with morphological adaptations of perianal structures. In this manuscript, we analyzed the differences of these structures in obligatorily (18 species) and facultatively (10 species) myrmecophilous aphids. Scanning electron microscopy (SEM) and light stereoscopic microscopy (LSM) techniques were used for these studies. Comparison of structures showed no strict relationship between their morphology and the degree myrmecophily, with certain indication that the microsculpture of perianal cuticle may play role in protection of aphids against honeydew droplet in facultatively myrmecophilous aphids.
Collapse
|
16
|
Holt JR, Malacrinò A, Medina RF. Quantifying the impacts of symbiotic interactions between two invasive species: the tawny crazy ant ( Nylanderia fulva) tending the sorghum aphid ( Melanaphis sorghi). PeerJ 2022; 10:e14448. [PMID: 36530409 PMCID: PMC9753752 DOI: 10.7717/peerj.14448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
The establishment of new symbiotic interactions between introduced species may facilitate invasion success. For instance, tawny crazy ant (Nylanderia fulva Mayr) is known to be an opportunistic tender of honeydew producing insects and this ants' symbiotic interactions have exacerbated agricultural damage in some invaded regions of the world. The invasive sorghum aphid (Melanaphis sorghi Theobald) was first reported as a pest in the continental United States-in Texas and Louisiana-as recent as 2013, and tawny crazy ant (TCA) was reported in Texas in the early 2000s. Although these introductions are relatively recent, TCA workers tend sorghum aphids in field and greenhouse settings. This study quantified the tending duration of TCA workers to sorghum aphids and the impact of TCA tending on aphid biomass. For this study aphids were collected from three different host plant species (i.e., sugarcane, Johnson grass, and sorghum) and clone colonies were established. Sorghum is the main economic crop in which these aphids occur, hence we focused our study on the potential impacts of interactions on sorghum. Quantification of invasive ant-aphid interactions, on either stems or leaves of sorghum plants, were conducted in greenhouse conditions. Our results show that although these two invasive insect species do not have a long coevolutionary history, TCA developed a tending interaction with sorghum aphid, and aphids were observed excreting honeydew after being antennated by TCA workers. Interestingly, this relatively recent symbiotic interaction significantly increased overall aphid biomass for aphids that were positioned on stems and collected from Johnson grass. It is recommended to continue monitoring the interaction between TCA and sorghum aphid in field conditions due to its potential to increase aphid populations and sorghum plant damage.
Collapse
Affiliation(s)
- Jocelyn R. Holt
- Entomology, Texas A&M University, College Station, TX, United States of America,Department of BioSciences, Rice University, Houston, TX, United States of America
| | - Antonino Malacrinò
- Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität Münster, Münster, Germany,Current Affiliation: Department of Agriculture, Universitá degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Raul F. Medina
- Entomology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
17
|
Stucchi L, Galeano J, Pastor JM, Iriondo JM, Cuesta JA. Prevalence of mutualism in a simple model of microbial coevolution. Phys Rev E 2022; 106:054401. [PMID: 36559513 DOI: 10.1103/physreve.106.054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
Evolutionary transitions among ecological interactions are widely known, although their detailed dynamics remain absent for most population models. Adaptive dynamics has been used to illustrate how the parameters of population models might shift through evolution, but within an ecological regime. Here we use adaptive dynamics combined with a generalized logistic model of population dynamics to show that transitions of ecological interactions might appear as a consequence of evolution. To this purpose, we introduce a two-microbial toy model in which population parameters are determined by a bookkeeping of resources taken from (and excreted to) the environment, as well as from the byproducts of the other species. Despite its simplicity, this model exhibits all kinds of potential ecological transitions, some of which resemble those found in nature. Overall, the model shows a clear trend toward the emergence of mutualism.
Collapse
Affiliation(s)
- Luciano Stucchi
- Universidad del Pacífico, 15072 Lima, Peru and Group of Complex Systems, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Javier Galeano
- Group of Complex Systems, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Juan Manuel Pastor
- Group of Complex Systems, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Jose María Iriondo
- Biodiversity and Conservation Area, ESCET, Universidad Rey Juan Carlos, 28933 Madrid, Spain
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Madrid, Spain; Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain; and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
18
|
Combined Elevation of Temperature and CO 2 Impacts the Production and Sugar Composition of Aphid Honeydew. J Chem Ecol 2022; 48:772-781. [PMID: 36171514 DOI: 10.1007/s10886-022-01385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Honeydew is the keystone of many interactions between aphids and their predators, parasitoids, and mutualistic partners. Despite the crucial importance of honeydew in aphid-ant mutualism, very few studies have investigated the potential impacts of climate change on its production and composition. Here, we quantified changes in sugar compounds and the amount of honeydew droplets released by Aphis fabae reared on Vicia faba plants under elevated temperature and/or CO2 conditions. Following the combined elevation of these two abiotic factors, we found a significant increase in the fructose content of A. fabae honeydew, accompanied by nonsignificant trends of increase in total honeydew production and melezitose content. The environmental conditions tested in this study did not significantly impact the other honeydew sugar contents. The observed changes may be related to changes in phloem composition under elevated CO2 conditions as well as to increases in aphid metabolism and sap ingestion under elevated temperatures. Although limited, such changes in aphid honeydew may concurrently reinforce ant attendance and mutualism under elevated temperature and CO2 conditions. Finally, we discuss the enhancing and counteracting effects of climate change on other biological agents (gut microorganisms, predators, and parasitoids) that interact with aphids in a complex multitrophic system.
Collapse
|
19
|
Amiri-Jami A. Effect of ant-attendance on the occurrence of intraguild predation. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Anjos DV, Tena A, Viana-Junior AB, Carvalho RL, Torezan-Silingardi H, Del-Claro K, Perfecto I. The effects of ants on pest control: a meta-analysis. Proc Biol Sci 2022; 289:20221316. [PMID: 35975443 PMCID: PMC9382213 DOI: 10.1098/rspb.2022.1316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Environmental impacts of conventional agriculture have generated interest in sustainable agriculture. Biological pest control is a fundamental tool, and ants are key players providing ecological services, as well as some disservices. We have used a meta-analytical approach to investigate the contribution of ants to biological control, considering their effects on pest and natural enemy abundance, plant damage and crop yield. We also evaluated whether the effects of ants are modulated by traits of ants, pests and other natural enemies, as well as by field size, crop system and experiment duration. Overall (considering all meta-analyses), from 52 studies on 17 different crops, we found that ants decrease the abundance of non-honeydew-producing pests, decrease plant damage and increase crop yield (services). In addition, ants decrease the abundance of natural enemies, mainly the generalist ones, and increase honeydew-producing pest abundance (disservices). We show that the pest control and plant protection provided by ants are boosted in shaded crops compared to monocultures. Furthermore, ants increase crop yield in shaded crops, and this effect increases with time. Finally, we bring new insights such as the importance of shaded crops to ant services, providing a good tool for farmers and stakeholders considering sustainable farming practices.
Collapse
Affiliation(s)
- Diego V. Anjos
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais 38405-302, Brazil
| | - Alejandro Tena
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Spain
| | - Arleu Barbosa Viana-Junior
- Programa de Pós-Graduação em Biodiversidade e Evolução, Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Para 66077-830, Brazil
| | - Raquel L. Carvalho
- Instituto de Estudos Avançados, Universidade de São Paulo, São Paulo, 05508-020, Brazil
| | - Helena Torezan-Silingardi
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais 38405-302, Brazil
| | - Kleber Del-Claro
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais 38405-302, Brazil
| | - Ivette Perfecto
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Ivens ABF, Kronauer DJC. Aphid-farming ants. Curr Biol 2022; 32:R813-R817. [PMID: 35944477 DOI: 10.1016/j.cub.2022.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Ivens and Kronauer provide an overview of the farming mutualism between ants and aphids, in which ants protect aphids in exchange for food.
Collapse
Affiliation(s)
- Aniek B F Ivens
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
22
|
Hojo MK. Evolution of chemical interactions between ants and their mutualist partners. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100943. [PMID: 35691585 DOI: 10.1016/j.cois.2022.100943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Mutualism is the reciprocal exploitation of interacting participants and is vulnerable to nonrewarding cheating. Ants are dominant insects in most terrestrial ecosystems, and some aphids and lycaenid butterfly species provide them with nutritional nectar rewards and employ ants as bodyguards. In this review, I discuss how chemical communication based on condition-dependent signaling and recognition plasticity regulate the payoff of interacting participants. I argue that the selfishness of both participants explains the signaling and communication among participants and contributes to the stability of these mutualisms. Uncovering the origin and maintenance of mutualistic association of ants will come from future research on ant collective behavior, the genetic and neural basis of cooperation, and a deeper understanding of the costs and benefits of these interactions.
Collapse
Affiliation(s)
- Masaru K Hojo
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
23
|
A neotropical mistletoe influences herbivory of its host plant by driving changes in the associated insect community. Naturwissenschaften 2022; 109:27. [DOI: 10.1007/s00114-022-01798-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/26/2022]
|
24
|
Narayan KS, Vorburger C, Hafer‐Hahmann N. Bottom-up effect of host protective symbionts on parasitoid diversity: Limited evidence from two field experiments. J Anim Ecol 2022; 91:643-654. [PMID: 34910305 PMCID: PMC9306599 DOI: 10.1111/1365-2656.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022]
Abstract
Protective symbionts can provide effective and specific protection to their hosts. This protection can differ between different symbiont strains with each strain providing protection against certain components of the parasite and pathogen community their host faces. Protective symbionts are especially well known from aphids where, among other functions, they provide protection against different parasitoid wasps. However, most of the evidence for this protection comes from laboratory experiments. Our aim was to understand how consistent protection is across different symbiont strains under natural field conditions and whether symbiont diversity enhanced the species diversity of colonizing parasitoids, as could be expected from the specificity of their protection. We used experimental colonies of the black bean aphid Aphis fabae to investigate symbiont-conferred protection under natural field conditions over two seasons. Colonies differed only in their symbiont composition, carrying either no symbionts, a single strain of the protective symbiont Hamiltonella defensa, or a mixture of three H. defensa strains. These aphid colonies were exposed to natural parasitoid communities in the field. Subsequently, we determined the parasitoids hatched from each aphid colony. The evidence for a protective effect of H. defensa was limited and inconsistent between years, and aphid colonies harbouring multiple symbiont strains did not support a more diverse parasitoid community. Instead, parasitoid diversity tended to be highest in the absence of H. defensa. Symbiont-conferred protection, although a strong and repeatable effect under laboratory conditions may not always cause the predicted bottom-up effects under natural conditions in the field.
Collapse
Affiliation(s)
- Karthik Sankar Narayan
- Department of Aquatic EcologyEawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| | - Christoph Vorburger
- Department of Aquatic EcologyEawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
| | - Nina Hafer‐Hahmann
- Department of Aquatic EcologyEawagSwiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
| |
Collapse
|
25
|
Zheng Z, Zhao M, Zhang Z, Hu X, Xu Y, Wei C, He H. Lactic Acid Bacteria Are Prevalent in the Infrabuccal Pockets and Crops of Ants That Prefer Aphid Honeydew. Front Microbiol 2022; 12:785016. [PMID: 35126329 PMCID: PMC8814368 DOI: 10.3389/fmicb.2021.785016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 01/04/2023] Open
Abstract
Ants are evolutionarily successful species and occupy diverse trophic and habitat niches on the earth. To fulfill dietary requirements, ants have established commensalism with both sap-feeding insects and bacteria. In this study, we used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacterial composition and structure of the digestive tracts in three species of Formica ants and Lasius niger (Linnaeus)—species that predominantly feed on honeydew secreted by aphids. We found that bacterial communities displayed species- and colony-level signatures, and that bacterial communities in the infrabuccal pockets and crops were different from those in the midguts and hindguts. Lactobacillus and Wolbachia were dominant in the infrabuccal pockets and crops of workers, whereas Wolbachia was dominant in the midguts, hindguts and brood (larvae, pupae and cocoons). To learn more about the dominant Lactobacillus in ants, we assessed its prevalence in a wide range of aphid-tending ants using diagnostic PCR. We found that Lactobacillus was more prevalent in Formicinae than in Myrmicinae species. We also isolated four strains of lactic acid bacteria (Lactobacillus sanfranciscensis, Lactobacillus lindneri, Weissella cibaria and Fructobacillus sp.) from the infrabuccal pockets and crops of aphid-tending ants using a culture-dependent method. Two predominant lactic acid bacterial isolates, Lactobacillus sanfranciscensis (La2) and Weissella cibaria (La3), exhibited abilities in catabolizing sugars (sucrose, trehalose, melezitose and raffinose) known to be constituents of hemipteran honeydew. These findings contribute to further understanding the association between ants, aphids and bacteria, and provide additional information on the function of lactic acid bacteria in ants.
Collapse
Affiliation(s)
- Zhou Zheng
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Mengqin Zhao
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Zhijun Zhang
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Xin Hu
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Yang Xu
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, College of Plant Protection, Northwest A&F University, Yangling, China
- *Correspondence: Cong Wei,
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, China
- Hong He,
| |
Collapse
|
26
|
Vorburger C. Defensive Symbionts and the Evolution of Parasitoid Host Specialization. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:329-346. [PMID: 34614366 DOI: 10.1146/annurev-ento-072621-062042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect host-parasitoid interactions abound in nature and are characterized by a high degree of host specialization. In addition to their behavioral and immune defenses, many host species rely on heritable bacterial endosymbionts for defense against parasitoids. Studies on aphids and flies show that resistance conferred by symbionts can be very strong and highly specific, possibly as a result of variation in symbiont-produced toxins. I argue that defensive symbionts are therefore an important source of diversifying selection, promoting the evolution of host specialization by parasitoids. This is likely to affect the structure of host-parasitoid food webs. I consider potential changes in terms of food web complexity, although the nature of these effects will also be influenced by whether maternally transmitted symbionts have some capacity for lateral transfer. This is discussed in the light of available evidence for horizontal transmission routes. Finally, I propose that defensive mutualisms other than microbial endosymbionts may also exert diversifying selection on insect parasitoids.
Collapse
Affiliation(s)
- Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600 Dübendorf, Switzerland;
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
27
|
Lima JS, Leite GLD, Guanabens PFS, Soares MA, Silva JL, Mota MVS, Lemes PG, Zanuncio JC. Insects and spiders on Acacia mangium (Fabaceae) saplings as bioindicators for the recovery of tropical degraded areas. BRAZ J BIOL 2021; 84:e252088. [PMID: 34755814 DOI: 10.1590/1519-6984.252088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
Acacia mangium is a pioneer species with fast growth and frequently used in the recovery of degraded areas. The objectives were to evaluate insects and spiders, their ecological indices and interactions on A. mangium saplings in a tropical degraded area in recovering process. The experimental design was completely randomized with 24 replications, with treatments represented by the first and second years after A. mangium seedling planted. Numbers of leaves/branch, branches/sapling, and ground cover by A. mangium saplings, Hemiptera: Phenacoccus sp. and Pachycoris torridus; Hymenoptera: Tetragonisca angustula and Trigona spinipes, Brachymyrmex sp., Camponotus sp. and Cephalotes sp.; Blattodea: Nasutitermes sp. and Neuroptera: Chrysoperla sp.; abundance, species richness of pollinating insects, tending ants, and the abundance of Sternorrhyncha predators were greatest in the second year after planting. Numbers of Hemiptera: Aethalium reticulatum, Hymenoptera: Camponotus sp., Cephalotes sp., Polybia sp., T. angustula, T. spinipes, tending ants, pollinating insects, Sternorrhyncha predators and species richness of tending ants were highest on A. mangium saplings with greatest numbers of leaves or branches. The increase in the population of arthropods with ground cover by A. mangium saplings age increase indicates the positive impact by this plant on the recovery process of degraded areas.
Collapse
Affiliation(s)
- J S Lima
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - G L D Leite
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - P F S Guanabens
- Instituto Federal de Minas Gerais - IFMG, Campus de São João Evangelista, São João Evangelista, MG, Brasil
| | - M A Soares
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Departamento de Agronomia, Diamantina, MG, Brasil
| | - J L Silva
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - M V S Mota
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - P G Lemes
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Insetário G.W.G. Moraes, Montes Claros, MG, Brasil
| | - J C Zanuncio
- Universidade Federal de Viçosa - UFV, Departamento de Entomologia/BIOAGRO, Viçosa, MG, Brasil
| |
Collapse
|
28
|
Padje AV', van de Peppel LJJ, Aanen DK. Evolution: Ant trail pheromones promote ant-aphid mutualisms. Curr Biol 2021; 31:R1437-R1439. [PMID: 34752771 DOI: 10.1016/j.cub.2021.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A new study shows that trail pheromones produced by an invasive ant species suppress the dispersal and stimulate the reproduction of cotton aphids that the ants can 'milk' for honeydew. Aphids use these pheromones as a signal of ant presence and respond adaptively, analogous to early stages of animal husbandry where animals were attracted to human settlements.
Collapse
Affiliation(s)
- Anouk van 't Padje
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | - Lennart J J van de Peppel
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Duur K Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
29
|
Xu T, Xu M, Lu Y, Zhang W, Sun J, Zeng R, Turlings TCJ, Chen L. A trail pheromone mediates the mutualism between ants and aphids. Curr Biol 2021; 31:4738-4747.e4. [PMID: 34496221 DOI: 10.1016/j.cub.2021.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Mutualisms, such as the ones between ants and aphids, evolve and persist when benefits outweigh the costs from the interactions between the partners. We show here that the trail pheromone of the red imported fire ant, Solenopsis invicta, can enhance these benefits by suppressing aphid dispersal and stimulating their reproduction. The ant's mutualistic partner, the cotton aphid Aphis gossypii, was found to readily perceive and respond to two specific trail pheromone components. Two pheromone components, Z,E-α-farnesene and E,E-α-farnesene, both suppressed walking dispersal of apterous aphids, whereas only the major pheromone component, Z,E-α-farnesene, also increased aphid reproduction rate. The ants, as well as the aphids, benefit from this inter-species function of the trail pheromone. For the ants it increases and prolongs the availability of honeydew as a key food source, whereas the aphid colony benefits from faster population growth and continuous ant-provided protection. These findings reveal a hitherto unknown mechanism by which ants and aphids both increase the benefits that they provide to each other, thereby likely enhancing the stability of their mutualistic relationship.
Collapse
Affiliation(s)
- Tian Xu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Meng Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Yongyue Lu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Wenqian Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| | - Rensen Zeng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China.
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Li Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China; Laboratory of Fundamental and Applied Research in Chemical Ecology (FARCE), University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
30
|
Rogalski MA, Stewart Merrill T, Gowler CD, Cáceres CE, Duffy MA. Context-Dependent Host-Symbiont Interactions: Shifts along the Parasitism-Mutualism Continuum. Am Nat 2021; 198:563-575. [PMID: 34648395 DOI: 10.1086/716635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSymbiotic interactions can shift along a mutualism-parasitism continuum. While there are many studies examining dynamics typically considered to be mutualistic that sometimes shift toward parasitism, little is known about conditions underlying shifts from parasitism toward mutualism. In lake populations, we observed that infection by a microsporidian gut symbiont sometimes conferred a reproductive advantage and other times a disadvantage to its Daphnia host. We hypothesized that the microsporidian might benefit its host by reducing infection by more virulent parasites, which attack via the gut. In a laboratory study using field-collected animals, we found that spores of a virulent fungal parasite were much less capable of penetrating the guts of Daphnia harboring the microsporidian gut symbiont. We predicted that this altered gut penetrability could cause differential impacts on host fitness depending on ecological context. Field survey data revealed that microsporidian-infected Daphnia hosts experienced a reproductive advantage when virulent parasites were common while resource scarcity led to a reproductive disadvantage, but only in lakes where virulent parasites were relatively rare. Our findings highlight the importance of considering multiparasite community context and resource availability in host-parasite studies and open the door for future research into conditions driving shifts along parasitism to mutualism gradients.
Collapse
|
31
|
Aphids harbouring different endosymbionts exhibit differences in cuticular hydrocarbon profiles that can be recognized by ant mutualists. Sci Rep 2021; 11:19559. [PMID: 34599211 PMCID: PMC8486828 DOI: 10.1038/s41598-021-98098-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/20/2021] [Indexed: 11/08/2022] Open
Abstract
Cuticular hydrocarbons (CHCs) have important communicative functions for ants, which use CHC profiles to recognize mutualistic aphid partners. Aphid endosymbionts can influence the quality of their hosts as ant mutualists, via effects on honeydew composition, and might also affect CHC profiles, suggesting that ants could potentially use CHC cues to discriminate among aphid lines harbouring different endosymbionts. We explored how several strains of Hamiltonella defensa and Regiella insecticola influence the CHC profiles of host aphids (Aphis fabae) and the ability of aphid-tending ants (Lasius niger) to distinguish the profiles of aphids hosting different endosymbionts. We found significant compositional differences between the CHCs of aphids with different infections. Some endosymbionts changed the proportions of odd-chain linear alkanes, while others changed primarily methyl-branched compounds, which may be particularly important for communication. Behavioural assays, in which we trained ants to associate CHC profiles of endosymbiont infected or uninfected aphids with food rewards, revealed that ants readily learned to distinguish differences in aphid CHC profiles associated with variation in endosymbiont strains. While previous work has documented endosymbiont effects on aphid interactions with antagonists, the current findings support the hypothesis that endosymbionts also alter traits that influence communicative interactions with ant mutualists.
Collapse
|
32
|
Aléné DC, Latar Vernyuy N, Djiéto-Lordon C, Burckhardt D. Diaphorina pfanderae Aléné and Burckhardt sp. nov. (Hemiptera: Psylloidea: Psyllidae) and its association with ants on Ozoroa pulcherrima (Anacardiaceae). J NAT HIST 2021. [DOI: 10.1080/00222933.2021.1951861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Désirée Chantal Aléné
- Laboratory of Zoology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Nina Latar Vernyuy
- Laboratory of Zoology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | | | | |
Collapse
|
33
|
A symbiotic aphid selfishly manipulates attending ants via dopamine in honeydew. Sci Rep 2021; 11:18569. [PMID: 34535706 PMCID: PMC8448758 DOI: 10.1038/s41598-021-97666-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022] Open
Abstract
Symbiotic relationships are widespread in nature, but the mechanisms maintaining these relationships remain to be elucidated because symbiosis incurs a maintenance cost to each participant, which lowers its reproductive rate. In host-parasite relationships, parasites are known to manipulate the host's behavior selfishly, and there is an arms race between them. Selfish manipulations also occur in symbiosis, but the effects of selfish manipulations on symbiosis are not fully understood. Here, we show that an ant-associated aphid manipulates attending ants to receive stronger protection. Aphid honeydew regurgitated by ants contains dopamine (DA). The ants showed low aggressiveness before contact with the aphids, but it rose after contact. Administration of DA to the ants increased ant aggressiveness as the concentration increased, while an antagonist of DA inhibited this effect. The other 3 amines showed no effect on aggressiveness. A previous study showed that attending ants selfishly manipulate aphids by increasing the reproductive rate of green morph to obtain high-quality honeydew. These results suggest that mutual selfish manipulation benefits both participants and is likely to strengthen symbiosis. The selfishness of each participant may contribute to sustaining this symbiosis because their selfishness increases their long-term fitness.
Collapse
|
34
|
Oña L, Giri S, Avermann N, Kreienbaum M, Thormann KM, Kost C. Obligate cross-feeding expands the metabolic niche of bacteria. Nat Ecol Evol 2021; 5:1224-1232. [PMID: 34267366 DOI: 10.1038/s41559-021-01505-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Bacteria frequently engage in obligate metabolic mutualisms with other microorganisms. However, it remains generally unclear how the resulting metabolic dependencies affect the ecological niche space accessible to the whole consortium relative to the niche space available to its constituent individuals. Here we address this issue by systematically cultivating metabolically dependent strains of different bacterial species either individually or as pairwise cocultures in a wide range of carbon sources. Our results show that obligate cross-feeding is significantly more likely to expand the metabolic niche space of interacting bacterial populations than to contract it. Moreover, niche expansion occurred predominantly between two specialist taxa and correlated positively with the phylogenetic distance between interaction partners. Together, our results demonstrate that obligate cross-feeding can significantly expand the ecological niche space of interacting bacterial genotypes, thus explaining the widespread occurrence of this type of ecological interaction in natural microbiomes.
Collapse
Affiliation(s)
- Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Samir Giri
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany.,Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Neele Avermann
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Maximilian Kreienbaum
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität, Gießen, Germany
| | - Kai M Thormann
- Department of Microbiology and Molecular Biology, Justus-Liebig-Universität, Gießen, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany. .,Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
35
|
Camacho LF, Avilés L. Resource exchange and partner recognition mediate mutualistic interactions between prey and their would-be predators. Biol Lett 2021; 17:20210316. [PMID: 34376075 DOI: 10.1098/rsbl.2021.0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals may develop mutualistic associations with other species, whereby prey offer resources or services in exchange for protection from predators. Alternatively, prey may offer resources or services directly to their would-be predators in exchange for their lives. The latter may be the case of hemipterans that engage in mutualistic interactions with ants by offering a honeydew reward. We test the extent to which a honeydew offering versus partner recognition may play a role as proximate mechanisms deterring ants from predating upon their hemipteran partners. We showed that, when presented with a choice between a hemipteran partner and an alternative prey type, mutualist ants were less likely to attack and more likely to remain probing their hemipteran partners. This occurred even in the absence of an immediate sugary reward, suggesting either an evolved or learned partner recognition response. To a similar extent, however, ants were also less likely to attack the alternative prey type when laced with honey as a proxy for a honeydew reward. This was the case even after the honey had been depleted, suggesting an ability of ants to recognize new potential sources of sugars. Either possibility suggests a degree of innate or learned partner recognition.
Collapse
Affiliation(s)
- Luis F Camacho
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
36
|
Renyard A, Gries R, Lee J, Chalissery JM, Damin S, Britton R, Gries G. All sugars ain't sweet: selection of particular mono-, di- and trisaccharides by western carpenter ants and European fire ants. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210804. [PMID: 34430049 PMCID: PMC8371376 DOI: 10.1098/rsos.210804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Ants select sustained carbohydrate resources, such as aphid honeydew, based on many factors including sugar type, volume and concentration. We tested the hypotheses (H1-H3) that western carpenter ants, Camponotus modoc, seek honeydew excretions from Cinara splendens aphids based solely on the presence of sugar constituents (H1), prefer sugar solutions containing aphid-specific sugars (H2) and preferentially seek sugar solutions with higher sugar content (H3). We further tested the hypothesis (H4) that workers of both Ca. modoc and European fire ants, Myrmica rubra, selectively consume particular mono-, di- and trisaccharides. In choice bioassays with entire ant colonies, sugar constituents in honeydew (but not aphid-specific sugar) as well as sugar concentration affected foraging decisions by Ca. modoc. Both Ca. modoc and M. rubra foragers preferred fructose to other monosaccharides (xylose, glucose) and sucrose to other disaccharides (maltose, melibiose, trehalose). Conversely, when offered a choice between the aphid-specific trisaccharides raffinose and melezitose, Ca. modoc and M. rubra favoured raffinose and melezitose, respectively. Testing the favourite mono-, di- and trisaccharide head-to-head, both ant species favoured sucrose. While both sugar type and sugar concentration are the ultimate cause for consumption by foraging ants, strong recruitment of nest-mates to superior sources is probably the major proximate cause.
Collapse
Affiliation(s)
- Asim Renyard
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Regine Gries
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Jan Lee
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Jaime M. Chalissery
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Sebastian Damin
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
37
|
Ulrich GF, Zemp N, Vorburger C, Boulain H. Quantitative trait locus analysis of parasitoid counteradaptation to symbiont-conferred resistance. Heredity (Edinb) 2021; 127:219-232. [PMID: 34012059 PMCID: PMC8322320 DOI: 10.1038/s41437-021-00444-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/04/2023] Open
Abstract
Insect hosts and parasitoids are engaged in an intense struggle of antagonistic coevolution. Infection with heritable bacterial endosymbionts can substantially increase the resistance of aphids to parasitoid wasps, which exerts selection on parasitoids to overcome this symbiont-conferred protection (counteradaptation). Experimental evolution in the laboratory has produced counteradapted populations of the parasitoid wasp Lysiphlebus fabarum. These populations can parasitize black bean aphids (Aphis fabae) protected by the bacterial endosymbiont Hamiltonella defensa, which confers high resistance against L. fabarum. We used two experimentally evolved parasitoid populations to study the genetic architecture of the counteradaptation to symbiont-conferred resistance by QTL analysis. With simple crossing experiments, we showed that the counteradaptation is a recessive trait depending on the maternal genotype. Based on these results, we designed a customized crossing scheme to genotype a mapping population phenotyped for the ability to parasitize Hamiltonella-protected aphids. Using 1835 SNP markers obtained by ddRAD sequencing, we constructed a high-density linkage map consisting of six linkage groups (LGs) with an overall length of 828.3 cM and an average marker spacing of 0.45 cM. We identified a single QTL associated with the counteradaptation to Hamiltonella in L. fabarum on linkage group 2. Out of 120 genes located in this QTL, several genes encoding putative venoms may represent candidates for counteradaptation, as parasitoid wasps inject venoms into their hosts during oviposition.
Collapse
Affiliation(s)
- Gabriel F. Ulrich
- grid.418656.80000 0001 1551 0562EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Niklaus Zemp
- Genetic Diversity Centre, Department of Environmental Systems Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Christoph Vorburger
- grid.418656.80000 0001 1551 0562EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Hélène Boulain
- grid.418656.80000 0001 1551 0562EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.9851.50000 0001 2165 4204Present Address: Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Xu T, Chen L. Chemical communication in ant-hemipteran mutualism: potential implications for ant invasions. CURRENT OPINION IN INSECT SCIENCE 2021; 45:121-129. [PMID: 33901733 DOI: 10.1016/j.cois.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Ant-hemipteran mutualism is one of the most frequently observed food-for-protection associations in nature, and is recently found to contribute to the invasions of several of the most destructive invasive ants. Chemical communication underlies establishment and maintenance of such associations, in which a multitude of semiochemicals, such as pheromones, cuticular hydrocarbons, honeydew sugars and bacteria-produced honeydew volatiles mediate location, recognition, selection, learning of mutualistic partners. Here, we review what is known about the chemical communication between ants and honeydew-producing hemipterans, and discuss how invasive ants can rapidly recognize and establish a mutualistic relationship with the hemipterans with which they have never coevolved. We also highlight some future directions for a clearer understanding of the chemical communication in ant-hemipteran mutualism and its role in ant invasions.
Collapse
Affiliation(s)
- Tian Xu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
39
|
Interactions of ants with native and invasive lady beetles and the role of chemical cues in intraguild interference. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe predator-predator naïveté hypothesis suggests that non-native predators benefit from being unknown to native predators, resulting in reduced intraguild interference with native predators. This novelty advantage should depend on the ability of native predators to recognize cues of non-native predators. Here, we compared ant aggression and lady beetle reaction in four native and the invasive lady beetle species Harmonia axyridis. In addition, we tested whether lady beetle cuticular hydrocarbons (CHCs) are involved in species recognition, which might explain naïveté if the invasive species has a specific CHC profile. To this end, we conducted behavioral assays confronting two native ant species with both living lady beetles and lady beetle elytra bearing or lacking CHCs of different lady beetle species. Finally, we characterized CHC profiles of the lady beetles using GC–MS. In general, the aggression of Lasius niger was more frequent than that of Myrmica rubra and L. niger aggression was more frequent towards most native lady beetle species compared to H. axyridis. The removal of CHCs from lady beetle elytra reduced aggression of both ant species. If CHCs of respective lady beetle species were added on cue-free elytra, natural strength of L. niger aggression could be restored. CHC analyses revealed a distinct cue composition for each lady beetle species. Our experiments demonstrate that the presence of chemical cues on the surface of lady beetles contribute to the strength of ant aggression against lady beetles. Reduced aggression of L. niger towards H. axyridis and reduced avoidance behavior in H. axyridis compared to the equally voracious C. septempunctata might improve the invasive lady beetle’s access to ant-tended aphids.
Collapse
|
40
|
Singh A, Mayer VE, Zytynska SE, Hesse B, Weisser WW. The Efficiency of Plant Defense: Aphid Pest Pressure Does Not Alter Production of Food Rewards by Okra Plants in Ant Presence. FRONTIERS IN PLANT SCIENCE 2021; 12:627570. [PMID: 33790922 PMCID: PMC8005652 DOI: 10.3389/fpls.2021.627570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Pearl bodies are produced by some plant species as food reward for ants and in exchange, ants defend these plants against insect pests. Sap-sucking pests such as aphids also excrete honeydew as food reward for ants, leading to potential conflict where ants could preferentially defend either the plant or the aphid. How pest insects might influence plant pearl body production, is yet to be investigated. Okra is a widely consumed vegetable worldwide and is attacked by the ant-tended cotton aphid. The plants produce pearl bodies, which are predominantly found on the underside of the leaves and formed from epidermal cells. We conducted a set of field and greenhouse experiments to explore plant-aphid-ant interactions, their influence on pearl body production and resulting performance of okra plants, across okra varieties. We found that ants of Pheidole genus, which are dominant in okra fields, preferred pearl bodies over aphid honeydew; although, their highest abundance was recorded in presence of both these food rewards, and on one okra variety. Removal of pearl bodies from the plants increased their production; however, plant growth and chlorophyll content were negatively associated with pearl body replenishment. Potentially to mitigate this resource cost, plants developed such a novel defense response because we found that aphid presence reduced pearl body production, but only when there were no ants. Finally, aphids negatively affected plant performance, but only at very high densities. As aphids also attract ants, plants may tolerate their presence at low densities to attract higher ant abundances. Our study highlights that plants can adapt their defense strategies in pest presence for efficient resource use. We suggest that understanding pearl body associated interactions in crop plants can assist in using such traits for pest management.
Collapse
Affiliation(s)
- Akanksha Singh
- Chair for Terrestrial Ecology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
- Agricultural Ecology Group, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Veronika E. Mayer
- Department of Botany and Biodiversity Research, Division of Structural and Functional Botany, University of Vienna, Wien, Austria
| | - Sharon E. Zytynska
- Chair for Terrestrial Ecology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
- Department of Evolution, Ecology and Behavior, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Benjamin Hesse
- Land Surface-Atmosphere Interactions, AG Ecophysiology of Plants, Department for Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Wolfgang W. Weisser
- Chair for Terrestrial Ecology, Department of Ecology and Ecosystem Management, Technische Universität München, Freising, Germany
| |
Collapse
|
41
|
First Report on the Acrobat Ant Crematogaster scutellaris Storing Live Aphids in Its Oak-Gall Nests. INSECTS 2021; 12:insects12020108. [PMID: 33513695 PMCID: PMC7912212 DOI: 10.3390/insects12020108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Galls represent an amazing microcosm which contains a variety of multiple interactions among different actors, and therefore, offers the opportunity to observe and investigate phenomena belonging to different areas of biology: from the development process, connected to the interaction between the galligenous agent and the host plant, to the moment of their colonization by different species, since some ants may provide defense against pathogens, certain phytophagous insects or favor mutualists. In the present work we describe some aspects of oak-gall colonization by different ant species, highlighting how the gall’s height on the plant influences ant colonization and how different ant species produce different nest architectures. The most relevant aspect, however, is the discovery of a novel ant-aphid relationship: the transport of living aphids into oak-gall nests. We found no evidence of immediate predation of these aphids inside the galls, so they are likely stored to overwinter due to a mutualistic relationship and/or serve as food storage. This is not only an interesting report on the mutualisms involving ants and their insect partners, but it may also have important consequences on the aphids’ phenology with the host plants. Once more, ants show their relevant impact on multitrophic interactions and ecosystem dynamics. Abstract This study provides new data about the role of ants in mutualistic interactions with aphids mediated by galls. We focused our investigation on galls induced by the cynipid Andricus kollari by conducting a survey and a subsequent experiment in an Italian oak forest. The ants Crematogaster scutellaris, Colobopsis truncata and Temnothorax italicus frequently used the galls as nests: Crematogaster scutellaris occupied galls which were located higher on the oak trees, while C. truncata and T. italicus were located at lower positions. In addition, galls occupied by C. scutellaris showed varied internal architecture in relation to the colony composition. Importantly, field surveys revealed for the first time that C. scutellaris nest galls also contained live individuals of the non-galligenous aphid Panaphis juglandis. Field experiments suggested that the ants actively seek, collect and stock live aphids. No signs of predation and injuries were detected on the stored aphids, which were probably kept for safe overwintering, though we cannot exclude a possible occasional use as food. This report reveals a possible novel relationship which could have important consequences on the phenology and presence of aphids on the host plant.
Collapse
|
42
|
Novgorodova T. Preventing Transmission of Lethal Disease: Removal Behaviour of Lasius fuliginosus (Hymenoptera: Formicidae) Towards Fungus Contaminated Aphids. INSECTS 2021; 12:insects12020099. [PMID: 33498832 PMCID: PMC7911655 DOI: 10.3390/insects12020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
The ability of ants to detect and remove conidia-contaminated aphids, aimed at limiting contacts with potentially dangerous entities, is an effective antifungal mechanism to prevent the spread of infection among both their nestmates and aphids, their main suppliers of carbohydrates. However, the spread and the scale of this quarantining behaviour among ants are still scarcely studied. Among seven ant species studied, active usage of quarantining behaviour was found only in Formica ants. The behaviour of Lasius fuliginosus (Latreille) aphid milkers towards Chaitophorus populeti (Panzer) aphids covered with conidia of Beauveria bassiana (Balsamo-Crivelli) Vuillemin was studied in the field. Most aggressive milkers quickly detected and removed conidia-contaminated aphids from the plant, carrying them down and placing them some distance away from the experimental aspen trees. In general, active usage of quarantining behaviour towards conidia-contaminated aphids was found to be not limited to the genus Formica, but typical of L. fuliginosus as well. The response of milkers of L. fuliginosus and Formica s. str. ants to living aphids covered with conidia is quite similar. Removal of most fungus-contaminated aphids from the plant enables these ants to reduce the risk of infection transmission among both their nestmates and aphids.
Collapse
Affiliation(s)
- Tatiana Novgorodova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Frunze str. 11, Novosibirsk 630091, Russia
| |
Collapse
|
43
|
Okrutniak M, Grześ IM. Accumulation of metals in Lasius niger: Implications for using ants as bioindicators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115824. [PMID: 33158620 DOI: 10.1016/j.envpol.2020.115824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The high capacity of many ant species to accumulate trace metals raises the question of whether the metal concentration in ants' bodies could reliably reflect the contamination of ecosystems. The idea of applying the metal accumulation in ants for bioindication purposes is tempting; however, the methods should consider that ants are unique organisms due to their social way of life. In this study, we describe the between-colony variation in the accumulation of Zn and Cd in workers of the common garden ant Lasius niger originated from the post-mining area of a zinc-and-lead smelter in southern Poland. We show that the accumulation of both metals differs significantly between colonies even within the same study site; at the maximum, we detected a three-fold difference in Zn accumulation and a six-fold difference in Cd. The results showed that in the study area, the capacity of L. niger to accumulate metals is highly colony-specific. If future studies on other ant species concur with our findings, this may suggest that incorporating the between-colony variation of metal accumulation in prospective bioindication protocols would provide a higher accuracy of the assessments on the contamination of impacted environments. We suggest that using ants for bioindication should be preceded by preliminary studies to assess representative samples of colonies that could reliably indicate the contamination of the investigated area.
Collapse
Affiliation(s)
- Mateusz Okrutniak
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Kraków, Poland.
| | - Irena M Grześ
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Kraków, Poland
| |
Collapse
|
44
|
Stewart JE. Towards a general theory of the major cooperative evolutionary transitions. Biosystems 2020; 198:104237. [DOI: 10.1016/j.biosystems.2020.104237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
|
45
|
Nakazawa T, Katayama N. Stage-Specific Parasitism by a Mutualistic Partner Can Increase the Host Abundance. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.602675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Spatial cognition in the context of foraging styles and information transfer in ants. Anim Cogn 2020; 23:1143-1159. [PMID: 32840698 DOI: 10.1007/s10071-020-01423-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/13/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
Abstract
Ants are central-place foragers: they always return to the nest, and this requires the ability to remember relationships between features of the environment, or an individual's path through the landscape. The distribution of these cognitive responsibilities within a colony depends on a species' foraging style. Solitary foraging as well as leader-scouting, which is based on information transmission about a distant targets from scouts to foragers, can be considered the most challenging tasks in the context of ants' spatial cognition. Solitary foraging is found in species of almost all subfamilies of ants, whereas leader-scouting has been discovered as yet only in the Formica rufa group of species (red wood ants). Solitary foraging and leader-scouting ant species, although enormously different in their levels of sociality and ecological specificities, have many common traits of individual cognitive navigation, such as the primary use of visual navigation, excellent visual landmark memories, and the subordinate role of odour orientation. In leader-scouting species, spatial cognition and the ability to transfer information about a distant target dramatically differ among scouts and foragers, suggesting individual cognitive specialization. I suggest that the leader-scouting style of recruitment is closely connected with the ecological niche of a defined group of species, in particular, their searching patterns within the tree crown. There is much work to be done to understand what cognitive mechanisms underpin route planning and communication about locations in ants.
Collapse
|
47
|
Depa Ł, Kaszyca‐Taszakowska N, Taszakowski A, Kanturski M. Ant‐induced evolutionary patterns in aphids. Biol Rev Camb Philos Soc 2020; 95:1574-1589. [DOI: 10.1111/brv.12629] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Łukasz Depa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences University of Silesia in Katowice Bankowa 9 40‐007 Katowice Poland
| | - Natalia Kaszyca‐Taszakowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences University of Silesia in Katowice Bankowa 9 40‐007 Katowice Poland
| | - Artur Taszakowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences University of Silesia in Katowice Bankowa 9 40‐007 Katowice Poland
| | - Mariusz Kanturski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences University of Silesia in Katowice Bankowa 9 40‐007 Katowice Poland
| |
Collapse
|
48
|
Methyl Salicylate and Sesquiterpene Emissions Are Indicative for Aphid Infestation on Scots Pine. FORESTS 2020. [DOI: 10.3390/f11050573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biotic stresses on forest trees are caused by various pest insects and plant pathogens. Attack by these parasites is known to induce the emissions of various biogenic volatile organic compounds (BVOCs), and the profile of these emissions often differs between infested and healthy plants. This difference in emission profile can be used for the non-destructive early-stage diagnosis of the stressor organism. We studied how phloem feeding by a large pine aphid (Cinara pinea Mordvilko) on the branch bark of Scots pine (Pinus sylvestris L.) affects BVOC emissions compared to those of healthy plants in two experiments. We found that in aphid-infested plants, methyl salicylate (MeSA) emissions significantly increased, and the emission rates were dependent on aphid density on the studied branch. Aphid infestation did not significantly affect total monoterpene emission, while the emissions of total sesquiterpenes were substantially higher in aphid-infested saplings than in uninfested plants. Sesquiterpene (E, E)-α-farnesene was emitted at increased rates in both experiments, and the aphid alarm pheromone sesquiterpene (E)-β-farnesene, only in the experiment with higher aphid pressure. We conclude that the rapid increase in MeSA emissions is the most reliable indicator of aphid infestation in pine trees together with (E, E)-α-farnesene.
Collapse
|
49
|
Pearse IS, LoPresti E, Schaeffer RN, Wetzel WC, Mooney KA, Ali JG, Ode PJ, Eubanks MD, Bronstein JL, Weber MG. Generalising indirect defence and resistance of plants. Ecol Lett 2020; 23:1137-1152. [DOI: 10.1111/ele.13512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ian S. Pearse
- U.S. Geological Survey Fort Collins Science Center 2150 Centre Ave #C Ft Collins CO 80526 USA
| | - Eric LoPresti
- Department of Plant Biology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| | | | - William C. Wetzel
- Department of Entomology and Ecology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| | - Kailen A. Mooney
- Ecology & Evolutionary Biology University of California Irvine, CA USA
| | - Jared G. Ali
- Department of Entomology Penn State University State College PA USA
| | - Paul J. Ode
- Graduate Degree Program in Ecology Department of Bioagricultural Science and Pest Management Colorado State University Fort Collins CO 80523 USA
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station TX USA
| | - Judith L. Bronstein
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721 USA
| | - Marjorie G. Weber
- Department of Plant Biology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| |
Collapse
|
50
|
Sanchez JA, López-Gallego E, La-Spina M. The impact of ant mutualistic and antagonistic interactions on the population dynamics of sap-sucking hemipterans in pear orchards. PEST MANAGEMENT SCIENCE 2020; 76:1422-1434. [PMID: 31628776 DOI: 10.1002/ps.5655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ants are known to establish antagonistic and mutualistic interactions with honeydew-producing hemipterans, depending on the species involved and the ecological context. The aim of this work was to infer the role that such interactions play in the population dynamics of psyllids and aphids in pear orchards. Interactions were inferred from field data and periodical sampling along a 4-year study, and from interaction assays performed under controlled conditions. RESULTS A decline in the abundance of the pear psyllid (Cacopsylla pyri L.), parallel to an increase in the abundance of aphids, was registered over 4 years. Ants were the dominant species, representing about 90% of the predators, followed by spiders and predatory hemipterans (namely Pilophorus gallicus Remane). Ant abundance increased over the 4 years, matching the population dynamics of aphids. Evidence of mutualistic and antagonistic interactions were found for ant-aphid and ant-psyllid, respectively: (i) ant-aphid abundances on pear trees were positively correlated, and ants reduced predation on aphids by generalist predators, and (ii) ant-psyllid abundances were negatively correlated, ants have a negative effect on the psyllid population growth rates, and ants were found to prey on the psyllid. CONCLUSIONS Because of their high abundance in comparison with other predators and the mutualistic-antagonistic relationships with aphids-psyllids, ants are considered to be the principal force behind the decline of pear psyllid populations and the increase in aphid numbers. In summary, ants contribute positively to biological control by the suppresion of pests (i.e. the psyllid) which are more damaging than those they protect (i.e. aphids). © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juan A Sanchez
- Biological Control and Ecosystem Services Laboratory, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, Spain
| | - Elena López-Gallego
- Biological Control and Ecosystem Services Laboratory, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, Spain
| | - Michelangelo La-Spina
- Biological Control and Ecosystem Services Laboratory, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Murcia, Spain
| |
Collapse
|