1
|
Klötzli J, Suter M, Schaffner U, Müller-Schärer H, Lüscher A. Synergistic effects of grass competition and insect herbivory on the weed Rumex obtusifolius in an inundative biocontrol approach. Sci Rep 2023; 13:18508. [PMID: 37898617 PMCID: PMC10613235 DOI: 10.1038/s41598-023-45609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023] Open
Abstract
Outcomes of weed biological control projects are highly variable, but a mechanistic understanding of how top-down and bottom-up factors influence the success of weed biological control is often lacking. We grew Rumex obtusifolius, the most prominent native weed in European grasslands, in the presence and absence of competition from the grass Lolium perenne and subjected it to herbivory through targeted inoculation with root-boring Pyropteron spp. To explore whether the interactive effects of competition and inundative biological control were size-dependent, R. obtusifolius was planted covering a large range of plant sizes found in managed grasslands. Overall, competition from the grass sward reduced aboveground biomass and final root mass of R. obtusifolius about 62- and 7.5-fold, respectively, and increased root decay of R. obtusifolius from 14 to 58%. Herbivory alone increased only root decay. However, grass competition significantly enhanced infestation by Pyropteron spp. and, as a consequence, enhanced the impact of herbivory on aboveground biomass and final root mass. The synergistic effect was so strong that R. obtusifolius plants grown from initially smaller roots did no longer develop. Inoculating R. obtusifolius with Pyropteron species in grasslands should be further pursued as a promising inundative biological control strategy in the weed's native range.
Collapse
Affiliation(s)
- Julie Klötzli
- Forage Production and Grassland Systems, Agroscope, 8046, Zurich, Switzerland
- Department of Biology/Ecology and Evolution, University of Fribourg, 1700, Fribourg, Switzerland
| | - Matthias Suter
- Forage Production and Grassland Systems, Agroscope, 8046, Zurich, Switzerland.
| | - Urs Schaffner
- Forage Production and Grassland Systems, Agroscope, 8046, Zurich, Switzerland
- CABI, 2800, Delémont, Switzerland
| | - Heinz Müller-Schärer
- Department of Biology/Ecology and Evolution, University of Fribourg, 1700, Fribourg, Switzerland
| | - Andreas Lüscher
- Forage Production and Grassland Systems, Agroscope, 8046, Zurich, Switzerland
| |
Collapse
|
2
|
Costan CA, Godsoe WK, Bufford JL, Marris JWM, Hulme PE. Can the enemy release hypothesis explain the success of Rumex (Polygonaceae) species in an introduced range? Biol Invasions 2022. [DOI: 10.1007/s10530-022-02810-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe enemy release hypothesis states that introduced plants have a competitive advantage due to their release from co-evolved natural enemies (i.e., herbivores and pathogens), which allows them to spread rapidly in new environments. This hypothesis has received mixed support to date, but previous studies have rarely examined the herbivore community, plant damage, and performance simultaneously and largely ignored below-ground herbivores. We tested for enemy release by conducting large scale field surveys of insect diversity and abundance in both the native (United Kingdom) and introduced (New Zealand) ranges of three dock (Rumex, Polygonaceae) species: R. conglomeratus Murray (clustered dock), R. crispus L. (curly dock) and R. obtusifolius L. (broad-leaved dock). We captured both above- and below-ground insect herbivores, measured herbivore damage, and plant biomass as an indicator for performance. In the introduced range, Rumex plants had a lower diversity of insect herbivores, all insect specialists present in the native range were absent and plants had lower levels of herbivore damage on both roots and leaves. Despite this, only R. crispus had greater fresh weight in the introduced range compared to the native range. This suggests that enemy release, particularly from below-ground herbivores, could be a driver for the success of R. crispus plants in New Zealand, but not for R. conglomeratus and R. obtusifolius.
Collapse
|
3
|
Rasmann S. As above so below: Recent and future advances in plant-mediated above- and belowground interactions. AMERICAN JOURNAL OF BOTANY 2022; 109:672-675. [PMID: 35441697 PMCID: PMC9324811 DOI: 10.1002/ajb2.1845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Sergio Rasmann
- Institute of Biology, University of NeuchâtelRue Emile‐Argand 11, CH‐2000 NeuchâtelSwitzerland
| |
Collapse
|
4
|
Crawford MS, Schlägel UE, May F, Wurst S, Grimm V, Jeltsch F. While shoot herbivores reduce, root herbivores increase nutrient enrichment's impact on diversity in a grassland model. Ecology 2021; 102:e03333. [PMID: 33710633 DOI: 10.1002/ecy.3333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022]
Abstract
Nutrient enrichment is widespread throughout grassland systems and expected to increase during the Anthropocene. Trophic interactions, like aboveground herbivory, have been shown to mitigate its effect on plant diversity. Belowground herbivory may also impact these habitats' response to nutrient enrichment, but its influence is much less understood, and likely to depend on factors such as the herbivores' preference for dominant species and the symmetry of belowground competition. If preferential toward the dominant, fastest growing species, root herbivores may reduce these species' relative fitness and support diversity during nutrient enrichment. However, as plant competition belowground is commonly considered to be symmetric, root herbivores may be less impactful than shoot herbivores because they do not reduce any competitive asymmetry between the dominant and subordinate plants. To better understand this system, we used an established, two-layer, grassland community model to run a full-factorially designed simulation experiment, crossing the complete removal of aboveground herbivores and belowground herbivores with nutrient enrichment. After 100 yr of simulation, we analyzed communities' diversity, competition on the individual level, as well as their resistance and recovery. The model reproduced both observed general effects of nutrient enrichment in grasslands and the short-term trends of specific experiments. We found that belowground herbivores exacerbate the negative influence of nutrient enrichment on Shannon diversity within our model grasslands, while aboveground herbivores mitigate its effect. Indeed, data on individuals' above- and belowground resource uptake reveals that root herbivory reduces resource limitation belowground. As with nutrient enrichment, this shifts competition aboveground. Since shoot competition is asymmetric, with larger, taller individuals gathering disproportionate resources compared to their smaller, shorter counterparts, this shift promotes the exclusion of the smallest species. While increasing the root herbivores' preferences toward dominant species lessens their negative impact, at best they are only mildly advantageous, and they do very little reduce the negative consequences of nutrient enrichment. Because our model's belowground competition is symmetric, we hypothesize that root herbivores may be beneficial when root competition is asymmetric. Future research into belowground herbivory should account for the nature of competition belowground to better understand the herbivores' true influence.
Collapse
Affiliation(s)
- Michael S Crawford
- Transformation Pathways, Potsdam Institute for Climate Impact Research (PIK), Building A65 Room 120, P.O. Box 60 12 03, Telegraphenberg, Potsdam, 14412, Germany.,Department of Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ulrike E Schlägel
- Department of Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Felix May
- Theoretical Ecology, Institute for Biology, Freie Universität, Berlin, Germany
| | - Susanne Wurst
- Functional Biodiversity, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität, Berlin, Germany
| | - Volker Grimm
- Department of Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Department of Ecological Modelling, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.,Biodiversity Economics, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Florian Jeltsch
- Department of Plant Ecology and Nature Conservation, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
5
|
Aguirrebengoa M, Menéndez R, Müller C, González‐Megías A. Altered rainfall patterns reduce plant fitness and disrupt interactions between below‐ and aboveground insect herbivores. Ecosphere 2020. [DOI: 10.1002/ecs2.3127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Rosa Menéndez
- Lancaster Environment Centre Lancaster University Lancaster LAI 4YW UK
| | - Caroline Müller
- Department of Chemical Ecology Bielefeld University Bielefeld 33501 Germany
| | | |
Collapse
|
6
|
Lackner S, Lackus ND, Paetz C, Köllner TG, Unsicker SB. Aboveground phytochemical responses to belowground herbivory in poplar trees and the consequence for leaf herbivore preference. PLANT, CELL & ENVIRONMENT 2019; 42:3293-3307. [PMID: 31350910 DOI: 10.1111/pce.13628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Belowground (BG) herbivory can influence aboveground (AG) herbivore performance and food preference via changes in plant chemistry. Most evidence for this phenomenon derives from studies in herbaceous plants but studies in woody plants are scarce. Here we investigated whether and how BG herbivory on black poplar (Populus nigra) trees by Melolontha melolontha larvae influences the feeding preference of Lymantria dispar (gypsy moth) caterpillars. In a food choice assay, caterpillars preferred to feed on leaves from trees that had experienced attack by BG herbivores. Therefore, we investigated the effect of BG herbivory on the phytochemical composition of P. nigra trees alone and in combination with AG feeding by L. dispar caterpillars. BG herbivory did not increase systemic AG tree defences like volatile organic compounds, protease inhibitors and salicinoids. Jasmonates and salicylic acid were also not induced by BG herbivory in leaves but abscisic acid concentrations drastically increased together with proline and few other amino acids. Leaf coating experiments with amino acids suggest that proline might be responsible for the caterpillar feeding preference via presumptive phagostimulatory properties. This study shows that BG herbivory in poplar can modify the feeding preference of AG herbivores via phytochemical changes as a consequence of root-to-shoot signaling.
Collapse
Affiliation(s)
- Sandra Lackner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| |
Collapse
|
7
|
Release from Above- and Belowground Insect Herbivory Mediates Invasion Dynamics and Impact of an Exotic Plant. PLANTS 2019; 8:plants8120544. [PMID: 31779143 PMCID: PMC6963668 DOI: 10.3390/plants8120544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022]
Abstract
The enemy-release hypothesis is one of the most popular but also most discussed hypotheses to explain invasion success. However, there is a lack of explicit, experimental tests of predictions of the enemy-release hypothesis (ERH), particularly regarding the effects of above- and belowground herbivory. Long-term studies investigating the relative effect of herbivores on invasive vs. native plant species within a community are still lacking. Here, we report on a long-term field experiment in an old-field community, invaded by Solidago canadensis s. l., with exclusion of above- and belowground insect herbivores. We monitored population dynamics of the invader and changes in the diversity and functioning of the plant community across eight years. Above- and belowground insects favoured the establishment of the invasive plant species and thereby increased biomass and decreased diversity of the plant community. Effects of invertebrate herbivores on population dynamics of S. canadensis appeared after six years and increased over time, suggesting that long-term studies are needed to understand invasion dynamics and consequences for plant community structure. We suggest that the release from co-evolved trophic linkages is of importance not only for the effect of invasive species on ecosystems, but also for the functioning of novel species assemblages arising from climate change.
Collapse
|
8
|
Effects of restricting movement between root and canopy populations of woolly apple aphid. PLoS One 2019; 14:e0216424. [PMID: 31059561 PMCID: PMC6502340 DOI: 10.1371/journal.pone.0216424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/20/2019] [Indexed: 12/05/2022] Open
Abstract
Movement of insect pests between spatially subdivided populations can allow them to recolonize areas where local extinction has occurred, increasing pest persistence. Populations of woolly apple aphid (Eriosoma lanigerum [Hausmann]; Hemiptera: Aphididae), a worldwide pest of apple (Malus domestica [Borkhausen]), occur both below- and aboveground. These spatially subdivided subpopulations encounter different abiotic conditions, natural enemies, and control tactics. Restricting movement between them might be an effective management tactic to decrease woolly apple aphid persistence and abundance. We examined this possibility in the field, using sticky barriers to restrict upward woolly apple aphid movement to tree canopies, and in the greenhouse, using mulches and sand amendments to restrict downward movement to roots. In the field, blocking aphid movement up tree trunks did not decrease the number of colonies in tree canopies. Instead, sticky-banded apple trees had higher aphid colony counts late in the study. Earwigs, which are woolly apple aphid predators, were excluded from tree canopies by sticky bands. In the greenhouse, fewer root galls (indicative of aphid feeding) occurred on trees in sandy potting media and on those with mulch (wood chips or paper slurry). Our results suggest that upward movement is less important than other factors that affect aboveground aerial woolly apple aphid population dynamics. In addition, apple orchards planted in sandier soils or with mulches may be partially protected from woolly apple aphid root feeding.
Collapse
|
9
|
Yang LH, Karban R. The effects of pulsed fertilization and chronic herbivory by periodical cicadas on tree growth. Ecology 2019; 100:e02705. [DOI: 10.1002/ecy.2705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Louie H. Yang
- Department of Entomology and Nematology University of California Davis California 95616 USA
| | - Richard Karban
- Department of Entomology and Nematology University of California Davis California 95616 USA
| |
Collapse
|
10
|
Dettlaff MA, Marshall V, Erbilgin N, Cahill JF. Root condensed tannins vary over time, but are unrelated to leaf tannins. AOB PLANTS 2018; 10:ply044. [PMID: 30090221 PMCID: PMC6070047 DOI: 10.1093/aobpla/ply044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/21/2018] [Indexed: 05/08/2023]
Abstract
Although the negative effects of root herbivores on plant fitness are expected to be similar to those of above-ground herbivores, the study of below-ground plant defences is limited compared to the rich literature on above-ground defences. Current theory predicts that concentrations of defensive chemicals above- and below-ground should be correlated, as the evolutionary drivers that shape plant defence are similar across the whole plant. We conducted a field study to measure root condensed tannin concentrations in Populus tremuloides, and determine how they related to leaf condensed tannin concentrations, tree position within the stand (edge vs. interior), tree size, and time of year. Overall, root tannin concentrations were substantially lower than leaf tannin concentrations. At individual sampling periods, root and leaf tannin concentrations were uncorrelated with each other, and did not vary with stand position or size. Across the growing season both root and leaf tannin concentrations did show similar trends, with both highest in the early summer, and declining through mid-summer and fall. These results suggest that the mechanisms that influence leaf and root tannin levels in aspen are independent within individual stems, possibly due to different evolutionary pressures experienced by the different tissue types or in response to localized (roots vs. foliage) stressors. However, across individual stems, the similar patterns in chemical defence over time, independent of plant size or stand position indicate that larger scale processes can have consistent effects across individuals within a population, such as the relative investment in defence of tissues in the spring versus the fall. Overall, we conclude that using theories based on above-ground defence to predict below-ground defences may not be possible without further studies examining below-ground defence.
Collapse
Affiliation(s)
- Margarete A Dettlaff
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie Marshall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Nboyine JA, Boyer S, Saville DJ, Wratten SD. Agroecological management of a soil-dwelling orthopteran pest in vineyards. INSECT SCIENCE 2018; 25:475-486. [PMID: 27891761 DOI: 10.1111/1744-7917.12425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/20/2016] [Accepted: 11/13/2016] [Indexed: 06/06/2023]
Abstract
The efficacy of different combinations of undervine and inter-row treatments for managing a soil-dwelling orthopteran pest, weta (Hemiandrus sp.), in vineyards was investigated over 2 seasons. This insect damages vine buds, thus reducing subsequent grape yield. The undervine treatments comprised pea straw mulch, mussel shells, tick beans [Vicia faba Linn. var minor (Fab)], plastic sleeves on vine trunks (treated control) and control (no intervention), while inter-rows contained either the existing vegetation or tick beans. Treatments were arranged in a randomized complete block design with 10 replicates. Data were collected on weta densities, damage to beans and components of yield. The latter were numbers of bud laid down per vine, shoots per bud, clusters per shoot, grape bunches per vine, bunch weight and yield. The undervine treatments significantly affected all variables except the number of shoots per bud. In contrast, none of the variables was significantly affected by the inter-row treatments or their interaction with undervine treatments, apart from weta density. At the end of the experiment, weta density in the shell treatment was about 58% lower than in the control. As a result, there was about 39% significant yield increase in that treatment compared to the control. Although the undervine beans and sleeves treatments increased yield, there were no reductions in weta density. With undervine beans, the insect fed on the bean plants instead of vine buds. Thus, yield in that treatment was approximately 28% higher than in the control. These results demonstrate that simple agroecological management approaches can reduce above-ground damage by soil-dwelling insects.
Collapse
Affiliation(s)
- Jerry Asalma Nboyine
- Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
- CSIR, Savanna Agriculture Research Institute, Tamale, Ghana
| | - Stephane Boyer
- Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
- Environmental and Animal Sciences, Unitec Institute of Technology, Auckland, New Zealand
| | - David J Saville
- Saville Statistical Consulting Limited, Lincoln, New Zealand
| | | |
Collapse
|
12
|
Machado RAR, Arce CCM, McClure MA, Baldwin IT, Erb M. Aboveground herbivory induced jasmonates disproportionately reduce plant reproductive potential by facilitating root nematode infestation. PLANT, CELL & ENVIRONMENT 2018; 41:797-808. [PMID: 29327360 DOI: 10.1111/pce.13143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/08/2018] [Indexed: 05/14/2023]
Abstract
Different plant feeders, including insects and parasitic nematodes, can influence each other by triggering systemic changes in their shared host plants. In most cases, however, the underlying mechanisms are unclear, and the consequences for plant fitness are not well understood. We studied the interaction between leaf feeding Manduca sexta caterpillars and root parasitic nematodes in Nicotiana attenuata. Simulated M. sexta attack increased the abundance of root parasitic nematodes in the field and facilitated Meloidogyne incognita reproduction in the glasshouse. Intact jasmonate biosynthesis was found to be required for both effects. Flower counts revealed that the jasmonate-dependent facilitation of nematode infestation following simulated leaf attack reduces the plant's reproductive potential to a greater degree than would be expected from the additive effects of the individual stresses. This work reveals that jasmonates mediate the interaction between a leaf herbivore and root parasitic nematodes and illustrates how plant-mediated interactions can alter plant's reproductive potential. The selection pressure resulting from the demonstrated fitness effects is likely to influence the evolution of plant defense traits in nature.
Collapse
Affiliation(s)
- Ricardo A R Machado
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Institute of Plant Sciences, Biotic Interaction Section, University of Bern, Bern, 3012, Switzerland
| | - Carla C M Arce
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Functional and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Michael A McClure
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Institute of Plant Sciences, Biotic Interaction Section, University of Bern, Bern, 3012, Switzerland
| |
Collapse
|
13
|
Rasmann S, Bennett A, Biere A, Karley A, Guerrieri E. Root symbionts: Powerful drivers of plant above- and belowground indirect defenses. INSECT SCIENCE 2017; 24:947-960. [PMID: 28374534 DOI: 10.1111/1744-7917.12464] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/08/2017] [Accepted: 03/15/2017] [Indexed: 05/04/2023]
Abstract
Soil microbial mutualists of plants, including mycorrhizal fungi, non-mycorrhizal fungi and plant growth promoting rhizobacteria, have been typically characterized for increasing nutrient acquisition and plant growth. More recently, soil microbes have also been shown to increase direct plant defense against above- and belowground herbivores. Plants, however, do not only rely on direct defenses when attacked, but they can also recruit pest antagonists such as predators and parasitoids, both above and belowground, mainly via the release of volatile organic compounds (i.e., indirect defenses). In this review, we illustrate the main features and effects of soil microbial mutualists of plants on plant indirect defenses and discuss possible applications within the framework of sustainable crop protection against root- and shoot-feeding arthropod pests. We indicate the main knowledge gaps and the future challenges to be addressed in the study and application of these multifaceted interactions.
Collapse
Affiliation(s)
- Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alison Bennett
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Arjen Biere
- Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Alison Karley
- Department of Ecological Sciences, James Hutton Institute, Dundee, UK
| | - Emilio Guerrieri
- Institute for Sustainable Plant Protection, National Research Council of Italy, Portici, Italy
| |
Collapse
|
14
|
Robert CA, Zhang X, Machado RA, Schirmer S, Lori M, Mateo P, Erb M, Gershenzon J. Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. eLife 2017; 6. [PMID: 29171835 PMCID: PMC5701792 DOI: 10.7554/elife.29307] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/29/2017] [Indexed: 01/17/2023] Open
Abstract
Highly adapted herbivores can phenocopy two-component systems by stabilizing, sequestering and reactivating plant toxins. However, whether these traits protect herbivores against their enemies is poorly understood. We demonstrate that the western corn rootworm Diabrotica virgifera virgifera, the most damaging maize pest on the planet, specifically accumulates the root-derived benzoxazinoid glucosides HDMBOA-Glc and MBOA-Glc. MBOA-Glc is produced by D. virgifera through stabilization of the benzoxazinoid breakdown product MBOA by N-glycosylation. The larvae can hydrolyze HDMBOA-Glc, but not MBOA-Glc, to produce toxic MBOA upon predator attack. Accumulation of benzoxazinoids renders D. virgifera highly resistant to nematodes which inject and feed on entomopathogenic symbiotic bacteria. While HDMBOA-Glc and MBOA reduce the growth and infectivity of both the nematodes and the bacteria, MBOA-Glc repels infective juvenile nematodes. Our results illustrate how herbivores combine stabilized and reactivated plant toxins to defend themselves against a deadly symbiosis between the third and the fourth trophic level enemies. The western corn rootworm is the most damaging pest of maize plants. Out of sight, the larvae of this beetle feed on maize roots, and cause billions of dollars worth of losses each year. One of the reasons why this pest remains such a problem is it can adapt and resist many crop protection strategies. Biological control refers to combating a pest using its own natural enemies – for example, its predators. Biological control of the western corn rootworm has been attempted using nematode worms. Normally, the nematodes locate and enter an insect larvae, release bacteria that kill it, and then feed and multiply within the dead larvae. Yet, the western corn rootworm seems at least partly able to resist these nematodes, and the success of biological control in the field has been variable. Several insect herbivores are known to accumulate, or sequester, plant toxins in their own body for self-defense. Previously, in 2012, researchers reported that the western corn rootworm is resistant and attracted to the major toxins in maize roots, the benzoxazinoids. The blood-like fluid of the western corn rootworm also repels many predators. Could the western corn rootworm be sequestering maize benzoxazinoids to resist the biological control of nematodes and their bacterial partners? Plants store benzoxazinoids in a non-toxic form. If herbivores damage the plant, these molecules quickly break down into compounds that are toxic to most insects. Now Robert et al. – who include two of the researchers involved in the 2012 study – show that the western corn rootworm uses a similar defense system to protect itself against biological control nematodes and their bacterial partners. First, the larvae convert a benzoxazinoid breakdown product by adding a glucose molecule. They then release large amounts of this modified molecule to repel young nematodes. Second, via an unknown mechanism, the larvae stabilize a second plant-derived benzoxazinoid, sequester its non-toxic form in their bodies, and activate it upon nematode attack. The resulting toxins can kill both nematodes and their bacterial partners. By combining different chemical strategies to stabilize and activate plant toxins, the western corn rootworm is able to resist the nematodes used for biological control. These findings can help to explain why biological control has had limited success against the western corn rootworm. In the long run, they may lead to more effective biological control programs, for instance by stopping the western corn rootworm from sequestering benzoxazinoids or by using natural enemies that are resistant to the insect’s toxins.
Collapse
Affiliation(s)
- Christelle Am Robert
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.,Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Xi Zhang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Stefanie Schirmer
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martina Lori
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Pierre Mateo
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
15
|
Schaeffer RN, Wilson CM, Radville L, Barrett M, Whitney E, Roitman S, Miller ER, Wolfe BE, Thornber CS, Orians CM, Preisser EL. Individual and non‐additive effects of exotic sap‐feeders on root functional and mycorrhizal traits of a shared conifer host. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Claire M. Wilson
- Department of Biological Sciences University of Rhode Island Kingston RI USA
| | - Laura Radville
- Department of Biological Sciences University of Rhode Island Kingston RI USA
- Department of Ecosystem Science and Management and Ecology Intercollege Graduate Degree Program Pennsylvania State University University Park PA USA
| | - Mauri Barrett
- Department of Biological Sciences University of Rhode Island Kingston RI USA
- USDA‐APHIS Buzzards Bay MA USA
| | - Elizabeth Whitney
- Department of Biological Sciences University of Rhode Island Kingston RI USA
| | - Sofia Roitman
- Department of Biological Sciences Tufts University Medford MA USA
| | - Esther R. Miller
- Department of Biological Sciences Tufts University Medford MA USA
| | | | - Carol S. Thornber
- Department of Biological Sciences University of Rhode Island Kingston RI USA
- Department of Natural Resources Science University of Rhode Island Kingston RI USA
| | - Colin M. Orians
- Department of Biological Sciences Tufts University Medford MA USA
| | - Evan L. Preisser
- Department of Biological Sciences University of Rhode Island Kingston RI USA
| |
Collapse
|
16
|
Kafle D, Hänel A, Lortzing T, Steppuhn A, Wurst S. Sequential above- and belowground herbivory modifies plant responses depending on herbivore identity. BMC Ecol 2017; 17:5. [PMID: 28178961 PMCID: PMC5299658 DOI: 10.1186/s12898-017-0115-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herbivore-induced changes in plant traits can cause indirect interactions between spatially and/or temporally separated herbivores that share the same host plant. Feeding modes of the herbivores is one of the major factors that influence the outcome of such interactions. Here, we tested whether the effects of transient aboveground herbivory for seven days by herbivores of different feeding guilds on tomato plants (Solanum lycopersicum) alters their interaction with spatially as well as temporally separated belowground herbivores. RESULTS The transient aboveground herbivory by both chewing caterpillars (Spodoptera exigua) and sucking aphids (Myzus persicae) had significant impacts on plant traits such as plant growth, resource allocation and phytohormone contents. While the changes in plant traits did not affect the overall performance of the root-knot nematodes (Meloidogyne incognita) in terms of total number of galls, we found that the consequences of aboveground herbivory for the plants can be altered by the subsequent nematode herbivory. For example, plants that had hosted aphids showed compensatory growth when they were later challenged by nematodes, which was not apparent in plants that had hosted only aphids. In contrast, plants that had been fed by S. exigua larvae did not show such compensatory growth even when challenged by nematodes. CONCLUSION The results suggest that the earlier aboveground herbivory can modify plant responses to subsequent herbivores, and such modifications may depend upon identity and/or feeding modes of the aboveground herbivores.
Collapse
Affiliation(s)
- Dinesh Kafle
- Functional Biodiversity, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Anne Hänel
- Functional Biodiversity, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Susanne Wurst
- Functional Biodiversity, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| |
Collapse
|
17
|
Affiliation(s)
- Gerlinde B. De Deyn
- Dept of Soil Quality; Wageningen Univ.; PO Box 47 NL-6700AA Wageningen the Netherlands
| |
Collapse
|
18
|
Borgström P, Strengbom J, Marini L, Viketoft M, Bommarco R. Above- and belowground insect herbivory modifies the response of a grassland plant community to nitrogen eutrophication. Ecology 2017; 98:545-554. [DOI: 10.1002/ecy.1667] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/10/2016] [Accepted: 11/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Pernilla Borgström
- Department of Ecology; Swedish University of Agricultural Sciences (SLU); Ulls väg 16 75651 Uppsala Sweden
| | - Joachim Strengbom
- Department of Ecology; Swedish University of Agricultural Sciences (SLU); Ulls väg 16 75651 Uppsala Sweden
| | - Lorenzo Marini
- DAFNAE; University of Padova; Viale dell'Università 16 35020 Legnaro Padua Italy
| | - Maria Viketoft
- Department of Ecology; Swedish University of Agricultural Sciences (SLU); Ulls väg 16 75651 Uppsala Sweden
| | - Riccardo Bommarco
- Department of Ecology; Swedish University of Agricultural Sciences (SLU); Ulls väg 16 75651 Uppsala Sweden
| |
Collapse
|
19
|
Garrido E, Díaz MF, Bernal H, Ñustez CE, Thaler J, Jander G, Poveda K. Costs and Tradeoffs of Resistance and Tolerance to Belowground Herbivory in Potato. PLoS One 2017; 12:e0169083. [PMID: 28095490 PMCID: PMC5240997 DOI: 10.1371/journal.pone.0169083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/12/2016] [Indexed: 12/05/2022] Open
Abstract
The success of sustainable crop production depends on our ability to select or create varieties that can allocate resources to both growth and defence. However, breeding efforts have emphasized increases in yields but have partially neglected defence traits against pests. Estimating the costs of multiple defences against tuber herbivores and the tradeoffs among them, as well as understanding the relationship between yield and multiple defences is still unknown but relevant to both basic and applied ecology. Using twenty commercial potato varieties available in Colombia and the tuber herbivore Tecia solanivora, we tested whether high yielding varieties show a reduction in three types of defence: constitutive and induced resistance, as well as tolerance. Specifically, we determined (1) the costs in terms of yield of all three defences, (2) the possible tradeoffs among them, and (3) if oviposition preference was related to the expression of these defences. We detected no costs in terms of yield of constitutive and induced resistance to tuber damage. We did, however, find evidence of costs of being able to tolerate tuber herbivory. While we found no tradeoffs among any of the estimated defences, there was a positive correlation between aboveground compensatory growth and tolerance in terms of tuber production, suggesting that after damage there are no shifts in the allocation of resources from aboveground to belowground biomass. Finally, we found that females laid more eggs on those varieties with the lowest level of constitutive resistance. In conclusion our findings suggest that in potatoes, breeding for higher yields has not caused any reduction in constitutive or induced resistance to tuber damage. This is not the case for tolerance where those varieties with higher yields are also less likely to tolerate tuber damage. Given the high incidence of tuber pests in Colombia, selecting for higher tolerance could allow for high productivity in the presence of herbivores. Finding mechanisms to decouple the tolerance response from yield should be a new priority in potato breeding in Colombia to guarantee a higher yield in both the presence and absence of herbivores.
Collapse
Affiliation(s)
- Etzel Garrido
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | | | - Hugo Bernal
- Fundación Biodiversa Colombia, Bogotá, Colombia
| | | | - Jennifer Thaler
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, United States of America
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Clavijo McCormick A. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors? Ecol Evol 2016; 6:8569-8582. [PMID: 28031808 PMCID: PMC5167045 DOI: 10.1002/ece3.2567] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/24/2022] Open
Abstract
The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.
Collapse
|
21
|
Ferrenberg S, Martinez AS, Faist AM. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance. PeerJ 2016; 4:e2545. [PMID: 27761333 PMCID: PMC5068348 DOI: 10.7717/peerj.2545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. METHODS Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. RESULTS Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod communities and vegetation and soil properties, but no significant association among belowground arthropod communities and environmental factors. DISCUSSION Our results suggest context-dependent influences of stochastic and deterministic community assembly processes across different fractions of a spatially co-occurring ground-dwelling arthropod community following disturbance. This variation in assembly may be linked to contrasting ecological strategies and dispersal rates within above- and below-ground communities. Our findings add to a growing body of evidence indicating concurrent influences of stochastic and deterministic processes in community assembly, and highlight the need to consider potential variation across different fractions of biotic communities when testing community ecology theory and considering conservation strategies.
Collapse
Affiliation(s)
- Scott Ferrenberg
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, United States
| | - Alexander S. Martinez
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Akasha M. Faist
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, United States
| |
Collapse
|
22
|
Effects of population-related variation in plant primary and secondary metabolites on aboveground and belowground multitrophic interactions. CHEMOECOLOGY 2016; 26:219-233. [PMID: 27795618 PMCID: PMC5063910 DOI: 10.1007/s00049-016-0222-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/07/2016] [Indexed: 11/04/2022]
Abstract
Insects feeding on aboveground and belowground tissues can influence each other through their shared plant and this is often mediated by changes in plant chemistry. We examined the effects of belowground root fly (Delia radicum) herbivory on the performance of an aboveground herbivore (Plutella xylostella) and its endoparasitoid wasp (Cotesia vestalis). Insects were reared on three populations of wild cabbage (Brassica oleracea) plants, exhibiting qualitative and quantitative differences in root and shoot defense chemistry, that had or had not been exposed to root herbivory. In addition, we measured primary (amino acids and sugars) and secondary [glucosinolate (GS)] chemistry in plants exposed to the various plant population-treatment combinations to determine to what extent plant chemistry could explain variation in insect performance variables using multivariate statistics. In general, insect performance was more strongly affected by plant population than by herbivory in the opposite compartment, suggesting that population-related differences in plant quality are larger than those induced by herbivory. Sugar profiles were similar in the three populations and concentrations only changed in damaged tissues. In addition to population-related differences, amino acid concentrations primarily changed locally in response to herbivory. Whether GS concentrations changed in response to herbivory (indole GS) or whether there were only population-related differences (aliphatic GS) depended on GS class. Poor correlations between performance and chemical attributes made biological interpretation of these results difficult. Moreover, trade-offs between life history traits suggest that factors other than food nutritional quality contribute to the expression of life history traits.
Collapse
|
23
|
Li X, Guo W, Siemann E, Wen Y, Huang W, Ding J. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense. Oecologia 2016; 182:1107-1115. [PMID: 27623939 DOI: 10.1007/s00442-016-3719-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/21/2016] [Indexed: 11/26/2022]
Abstract
Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.
Collapse
Affiliation(s)
- Xiaoqiong Li
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Wenfeng Guo
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, China
| | - Evan Siemann
- Biosciences Department, Rice University, Houston, TX, 77005, USA
| | - Yuanguang Wen
- College of Forestry, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wei Huang
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Jianqing Ding
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
24
|
Hiltpold I, Moore BD, Johnson SN. Novel In vitro Procedures for Rearing a Root-Feeding Pest (Heteronychus arator) of Grasslands. FRONTIERS IN PLANT SCIENCE 2016; 7:1316. [PMID: 27625673 PMCID: PMC5003920 DOI: 10.3389/fpls.2016.01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Optimizing plant protection against insect herbivory relies on testing plant defense mechanisms and how the insect response to these defensive strategies. Such experiments benefit from using insects generated from standardized rearing protocols since this reduces stochastic variation. Such protocols can be challenging to devise, however, especially for root herbivores. These insects generally have complex and long life cycles, which are often only poorly described. Moreover, using field-captured root herbivores is often suboptimal because it involves extensive excavation from sites selected by chance (their location is not obvious) and larval stages are frequently indistinguishable beyond the family level. We investigated in vitro procedures to improve the availability of the African Black Beetle (ABB) Heteronychus arator, an invasive alien pest in both Australia and New Zealand. Native to Africa, this scarab beetle has established in Australian and New Zealand grasslands, pastures, and crops. Adults feed on the stem of young plants just beneath the soil surface. During the mating season, gravid females lay eggs in the soil, giving rise to larvae feeding on grass roots, causing severe damage, and impairing plant growth. Here, we propose laboratory approaches to collect eggs from field-captured adult beetles, to hatch eggs, and to rear neonate larvae to adults. We propose that these methods will provide plant scientists and entomologists with a better and more controlled supply of ABB larvae for laboratory and field assays. In turn, this will assist with the collection of important information for the management of this insect pest and enhanced protection of plants in crop and grassland ecosystems.
Collapse
|
25
|
Biere A, Goverse A. Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:499-527. [PMID: 27359367 DOI: 10.1146/annurev-phyto-080615-100245] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of altered resource dynamics and defense signaling and activation. We review studies documenting the outcome of cross-compartment interactions between these phytophage groups and show patterns of cross-compartment facilitation as well as cross-compartment induced resistance. Studies involving soilborne pathogens and foliar nematodes are scant. We further highlight the important role of defense signaling loops between shoots and roots to activate a full resistance complement. Moreover, manipulation of such loops by phytophages affects systemic interactions with other plant feeders. Finally, cross-compartment-induced changes in root defenses and root exudates extend systemic defense loops into the rhizosphere, enhancing or reducing recruitment of microbes that induce systemic resistance but also affecting interactions with root-feeding phytophages.
Collapse
Affiliation(s)
- Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, 6708 PB Wageningen, The Netherlands;
| | - Aska Goverse
- Lab of Nematology, Department of Plant Sciences, Wageningen University, 6700 PB Wageningen, The Netherlands
| |
Collapse
|
26
|
McKenzie SW, Johnson SN, Jones TH, Ostle NJ, Hails RS, Vanbergen AJ. Root Herbivores Drive Changes to Plant Primary Chemistry, but Root Loss Is Mitigated under Elevated Atmospheric CO2. FRONTIERS IN PLANT SCIENCE 2016; 7:837. [PMID: 27379129 PMCID: PMC4906026 DOI: 10.3389/fpls.2016.00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/27/2016] [Indexed: 05/29/2023]
Abstract
Above- and belowground herbivory represents a major challenge to crop productivity and sustainable agriculture worldwide. How this threat from multiple herbivore pests will change under anthropogenic climate change, via altered trophic interactions and plant response traits, is key to understanding future crop resistance to herbivory. In this study, we hypothesized that atmospheric carbon enrichment would increase the amount (biomass) and quality (C:N ratio) of crop plant resources for above- and belowground herbivore species. In a controlled environment facility, we conducted a microcosm experiment using the large raspberry aphid (Amphorophora idaei), the root feeding larvae of the vine weevil (Otiorhynchus sulcatus), and the raspberry (Rubus idaeus) host-plant. There were four herbivore treatments (control, aphid only, weevil only and a combination of both herbivores) and an ambient (aCO2) or elevated (eCO2) CO2 treatment (390 versus 650 ± 50 μmol/mol) assigned to two raspberry cultivars (cv Glen Ample or Glen Clova) varying in resistance to aphid herbivory. Contrary to our predictions, eCO2 did not increase crop biomass or the C:N ratio of the plant tissues, nor affect herbivore abundance either directly or via the host-plant. Root herbivory reduced belowground crop biomass under aCO2 but not eCO2, suggesting that crops could tolerate attack in a CO2 enriched environment. Root herbivory also increased the C:N ratio in leaf tissue at eCO2, potentially due to decreased N uptake indicated by lower N concentrations found in the roots. Root herbivory greatly increased root C concentrations under both CO2 treatments. Our findings confirm that responses of crop biomass and biochemistry to climate change need examining within the context of herbivory, as biotic interactions appear as important as direct effects of eCO2 on crop productivity.
Collapse
Affiliation(s)
- Scott W. McKenzie
- Centre for Ecology and Hydrology, EdinburghUK
- The James Hutton Institute, DundeeUK
- Centre for Ecology and Hydrology, WallingfordUK
- School of Biosciences, Cardiff University, CardiffUK
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, University of Western Sydney, Sydney, NSWAustralia
| | | | - Nick J. Ostle
- Lancaster Environment Centre, Lancaster University, LancasterUK
| | | | | |
Collapse
|
27
|
Catton HA, Lalonde RG, Buckley YM, De Clerck‐Floate RA. Biocontrol insect impacts population growth of its target plant species but not an incidentally used nontarget. Ecosphere 2016. [DOI: 10.1002/ecs2.1280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Haley A. Catton
- Department of Biology University of British Columbia Okanagan Kelowna British Columbia V1V 1V7 Canada
| | - Robert G. Lalonde
- Department of Biology University of British Columbia Okanagan Kelowna British Columbia V1V 1V7 Canada
| | - Yvonne M. Buckley
- School of Natural Sciences, Zoology Trinity College Dublin The University of Dublin Dublin 2 Ireland
| | | |
Collapse
|
28
|
Borgström P, Strengbom J, Viketoft M, Bommarco R. Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect. PeerJ 2016; 4:e1867. [PMID: 27069805 PMCID: PMC4824911 DOI: 10.7717/peerj.1867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/09/2016] [Indexed: 11/22/2022] Open
Abstract
Insect herbivores can shift the composition of a plant community, but the mechanism underlying such shifts remains largely unexplored. A possibility is that insects alter the competitive symmetry between plant species. The effect of herbivory on competition likely depends on whether the plants are subjected to aboveground or belowground herbivory or both, and also depends on soil nitrogen levels. It is unclear how these biotic and abiotic factors interactively affect competition. In a greenhouse experiment, we measured competition between two coexisting grass species that respond differently to nitrogen deposition: Dactylis glomerata L., which is competitively favoured by nitrogen addition, and Festuca rubra L., which is competitively favoured on nitrogen-poor soils. We predicted: (1) that aboveground herbivory would reduce competitive asymmetry at high soil nitrogen by reducing the competitive advantage of D. glomerata; and (2), that belowground herbivory would relax competition at low soil nitrogen, by reducing the competitive advantage of F. rubra. Aboveground herbivory caused a 46% decrease in the competitive ability of F. rubra, and a 23% increase in that of D. glomerata, thus increasing competitive asymmetry, independently of soil nitrogen level. Belowground herbivory did not affect competitive symmetry, but the combined influence of above- and belowground herbivory was weaker than predicted from their individual effects. Belowground herbivory thus mitigated the increased competitive asymmetry caused by aboveground herbivory. D. glomerata remained competitively dominant after the cessation of aboveground herbivory, showing that the influence of herbivory continued beyond the feeding period. We showed that insect herbivory can strongly influence plant competitive interactions. In our experimental plant community, aboveground insect herbivory increased the risk of competitive exclusion of F. rubra. Belowground herbivory appeared to mitigate the influence of aboveground herbivory, and this mechanism may play a role for plant species coexistence.
Collapse
Affiliation(s)
- Pernilla Borgström
- Department of Ecology, Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Joachim Strengbom
- Department of Ecology, Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Maria Viketoft
- Department of Ecology, Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences , Uppsala , Sweden
| |
Collapse
|
29
|
Dawkar VV, Chikate YR, More TH, Gupta VS, Giri AP. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide. INSECT SCIENCE 2016; 23:68-77. [PMID: 25284010 DOI: 10.1111/1744-7917.12177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects.
Collapse
Affiliation(s)
- Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Yojana R Chikate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Tushar H More
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008 (MS), India
| |
Collapse
|
30
|
Relationships of wood density and wood chemical traits between stems and coarse roots across 53 Bornean tropical tree species. JOURNAL OF TROPICAL ECOLOGY 2016. [DOI: 10.1017/s0266467416000018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:Wood density and wood chemical traits are strong predictors of tree performance, carbon stock, and wood decomposition, which play important roles in ecosystem processes and carbon and nutrient cycling in forests. However, it remains unknown how root wood traits are related to stem wood traits. We examined the relationships of wood density and wood chemical traits (lignin and nitrogen concentrations, carbon-to-nitrogen ratio) between the stems and coarse roots of 90 individuals representing 53 tropical tree species in Malaysian Borneo. We developed regression equations of each wood trait using the standardized major axis method. Each root wood trait was highly correlated with the corresponding stem wood trait, and most regression equations fitted well (R2 > 0.5). The lignin concentration of roots was significantly greater than that of stems. We conclude that root wood traits can be estimated from the corresponding stem wood traits in South-East Asian tropical trees. Further analysis of coarse root decomposability will provide more accurate estimates of carbon and nutrient fluxes in tropical forest ecosystems.
Collapse
|
31
|
Huber M, Epping J, Schulze Gronover C, Fricke J, Aziz Z, Brillatz T, Swyers M, Köllner TG, Vogel H, Hammerbacher A, Triebwasser-Freese D, Robert CAM, Verhoeven K, Preite V, Gershenzon J, Erb M. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLoS Biol 2016; 14:e1002332. [PMID: 26731567 PMCID: PMC4701418 DOI: 10.1371/journal.pbio.1002332] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022] Open
Abstract
Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.
Collapse
Affiliation(s)
- Meret Huber
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Janina Epping
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Münster, Germany
| | | | - Julia Fricke
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Zohra Aziz
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Théo Brillatz
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Swyers
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Tobias G. Köllner
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Heiko Vogel
- Department of Entomology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Almuth Hammerbacher
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Daniella Triebwasser-Freese
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Christelle A. M. Robert
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Koen Verhoeven
- Netherlands Institute of Ecology, Wageningen, Netherlands
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Root Herbivore Interactions Group, Max-Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
32
|
Ryalls JMW, Moore BD, Riegler M, Johnson SN. Above-Belowground Herbivore Interactions in Mixed Plant Communities Are Influenced by Altered Precipitation Patterns. FRONTIERS IN PLANT SCIENCE 2016; 7:345. [PMID: 27047522 PMCID: PMC4804199 DOI: 10.3389/fpls.2016.00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/07/2016] [Indexed: 05/11/2023]
Abstract
Root- and shoot-feeding herbivores have the capacity to influence one another by modifying the chemistry of the shared host plant. This can alter rates of nutrient mineralization and uptake by neighboring plants and influence plant-plant competition, particularly in mixtures combining grasses and legumes. Root herbivory-induced exudation of nitrogen (N) from legume roots, for example, may increase N acquisition by co-occurring grasses, with knock-on effects on grassland community composition. Little is known about how climate change may affect these interactions, but an important and timely question is how will grass-legume mixtures respond in a future with an increasing reliance on legume N mineralization in terrestrial ecosystems. Using a model grass-legume mixture, this study investigated how simultaneous attack on lucerne (Medicago sativa) by belowground weevils (Sitona discoideus) and aboveground aphids (Acyrthosiphon pisum) affected a neighboring grass (Phalaris aquatica) when subjected to drought, ambient, and elevated precipitation. Feeding on rhizobial nodules by weevil larvae enhanced soil water retention under ambient and elevated precipitation, but only when aphids were absent. While drought decreased nodulation and root N content in lucerne, grass root and shoot chemistry were unaffected by changes in precipitation. However, plant communities containing weevils but not aphids showed increased grass height and N concentrations, most likely associated with the transfer of N from weevil-attacked lucerne plants containing more nodules and higher root N concentrations compared with insect-free plants. Drought decreased aphid abundance by 54% but increased total and some specific amino acid concentrations (glycine, lysine, methionine, tyrosine, cysteine, histidine, arginine, aspartate, and glutamate), suggesting that aphid declines were being driven by other facets of drought (e.g., reduced phloem hydraulics). The presence of weevil larvae belowground decreased aphid numbers by 30%, likely associated with a significant reduction in proline in weevil-treated lucerne plants. This study demonstrates how predicted changes to precipitation patterns and indirect interactions between herbivores can alter the outcome of competition between N-fixing legumes and non-N-fixing grasses, with important implications for plant community structure and productivity.
Collapse
|
33
|
Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
González-Megías A. Within- and trans-generational effects of herbivores and detritivores on plant performance and reproduction. J Anim Ecol 2015; 85:283-90. [PMID: 26433200 DOI: 10.1111/1365-2656.12453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/26/2015] [Indexed: 11/27/2022]
Abstract
Mutualistic and antagonistic above-ground and below-ground species have the potential to be involved in strong interactions that can either weaken or strengthen their individual impacts on plants. Their impacts can also have delayed effects on a plant's progeny by altering offspring traits and survival. Few studies have explored the effect of herbivore and detritivore interactions with parent plants on offspring vital life-cycle processes, such as seedling emergence rate, seedling establishment and offspring survival. In the field, I experimentally studied the combined effects of floral herbivores (FH), root herbivores (RH) and detritivores on plant growth and reproduction of Moricandia moricandioides (Brassicaceae). In particular, I analysed the trans-generational effects of herbivores and detritivores on seed and juvenile production as well as on vital life-cycle processes (i.e. seedling emergence rates, survival). Floral herbivores strongly reduced the number of flowers, fruits, seeds and juveniles. Detritivores had an impact on plant success by increasing seed quality (% N and N : C ratio), although the effect was altered by the presence of floral and RH. I found maternal effects (trans-generational effects) of FH, RH and detritivores. Floral herbivores reduced seedling emergence and establishment. Floral and RH in combination reduced seedling emergence timing, but the effect was counteracted by detritivores. Detritivores also reduced the negative effect of FH on offspring mortality rate. This study shows that the impact of above-ground and below-ground organisms on M. moricandioides plants go beyond seed production and were evident in the probability of establishment and survival of the following generation. Trans-generational effects were induced by all three groups of interacting organisms and the net consequences for plant offspring depended on the organisms interacting with the plant.
Collapse
Affiliation(s)
- Adela González-Megías
- Depto. de Zoología, Facultad de Ciencias, Universidad de Granada, Avda Fuentenueva s/n, Granada, Spain
| |
Collapse
|
35
|
Wang M, Bezemer TM, van der Putten WH, Biere A. Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status. J Chem Ecol 2015; 41:1006-17. [PMID: 26552915 PMCID: PMC4670619 DOI: 10.1007/s10886-015-0644-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/19/2015] [Accepted: 10/09/2015] [Indexed: 11/16/2022]
Abstract
Plants often are exposed to antagonistic and symbiotic organisms both aboveground and belowground. Interactions between above- and belowground organisms may occur either simultaneously or sequentially, and jointly can determine plant responses to future enemies. However, little is known about time-dependency of such aboveground-belowground interactions. We examined how the timing of a 24 h period of aboveground herbivory by Spodoptera exigua (1-8 d prior to later arriving conspecifics) influenced the response of Plantago lanceolata and the performance of later arriving conspecifics. We also examined whether these induced responses were modulated by the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae. The amount of leaf area consumed by later arriving herbivores decreased with time after induction by early herbivores. Mycorrhizal infection reduced the relative growth rate (RGR) of later arriving herbivores, associated with a reduction in efficiency of conversion of ingested food rather than a reduction in relative consumption rates. In non-mycorrhizal plants, leaf concentrations of the defense compound catalpol showed a linear two-fold increase during the eight days following early herbivory. By contrast, mycorrhizal plants already had elevated levels of leaf catalpol prior to their exposure to early herbivory and did not show any further increase following herbivory. These results indicate that AMF resulted in a systemic induction, rather than priming of these defenses. AMF infection significantly reduced shoot biomass of Plantago lanceolata. We conclude that plant responses to future herbivores are not only influenced by exposure to prior aboveground and belowground organisms, but also by when these prior organisms arrive and interact.
Collapse
Affiliation(s)
- Minggang Wang
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands.
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University, P.O. Box 8132, 6700 ES, Wageningen, The Netherlands
| | - Arjen Biere
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
36
|
Interactive effects of above- and belowground herbivory and plant competition on plant growth and defence. Basic Appl Ecol 2015. [DOI: 10.1016/j.baae.2015.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Van Geem M, Harvey JA, Cortesero AM, Raaijmakers CE, Gols R. Interactions Between a Belowground Herbivore and Primary and Secondary Root Metabolites in Wild Cabbage. J Chem Ecol 2015; 41:696-707. [PMID: 26271671 PMCID: PMC4568014 DOI: 10.1007/s10886-015-0605-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/10/2015] [Accepted: 07/04/2015] [Indexed: 11/30/2022]
Abstract
Plants are attacked by both above- and belowground herbivores. Toxic secondary compounds are part of the chemical defense arsenal of plants against a range of antagonists, and are subject to genetic variation. Plants also produce primary metabolites (amino acids, nutrients, sugars) that function as essential compounds for growth and survival. Wild cabbage populations growing on the Dorset coast of the UK exhibit genetically different chemical defense profiles, even though they are located within a few kilometers of each other. As in other Brassicaceae, the defensive chemicals in wild cabbages constitute, among others, secondary metabolites called glucosinolates. Here, we used five Dorset populations of wild cabbage to study the effect of belowground herbivory by the cabbage root fly on primary and secondary chemistry, and whether differences in chemistry affected the performance of the belowground herbivore. There were significant differences in total root concentrations and chemical profiles of glucosinolates, amino acids, and sugars among the five wild cabbage populations. Glucosinolate concentrations not only differed among the populations, but also were affected by root fly herbivory. Amino acid and sugar concentrations also differed among the populations, but were not affected by root fly herbivory. Overall, population-related differences in plant chemistry were more pronounced for the glucosinolates than for amino acids and sugars. The performance of the root herbivore did not differ among the populations tested. Survival of the root fly was low (<40%), suggesting that other belowground factors may override potential differences in effects related to primary and secondary chemistry.
Collapse
Affiliation(s)
- Moniek Van Geem
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Ecological Sciences, Section Animal Ecology, VU University, Amsterdam, The Netherlands
| | - Anne Marie Cortesero
- Institute of Genetics, Environment and Plant Protection, Rennes University, Rennes, France
| | - Ciska E Raaijmakers
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
38
|
Milano NJ, Barber NA, Adler LS. Conspecific and Heterospecific Aboveground Herbivory Both Reduce Preference by a Belowground Herbivore. ENVIRONMENTAL ENTOMOLOGY 2015; 44:317-324. [PMID: 26313185 DOI: 10.1093/ee/nvv003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Insect herbivores damage plants both above- and belowground, and interactions in each realm can influence the other via shared hosts. While effects of leaf damage on aboveground interactions have been well-documented, studies examining leaf damage effects on belowground interactions are limited, and mechanisms for these indirect interactions are poorly understood. We examined how leaf herbivory affects preference of root-feeding larvae [Acalymma vittatum F. (Coleoptera: Chrysomelidae)] in cucumber (Cucumis sativus L.). We manipulated leaf herbivory using conspecific adult A. vittatum and heterospecific larval Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) herbivores in the greenhouse and the conspecific only in the field, allowing larvae to choose between roots of damaged and undamaged plants. We also examined whether leaf herbivory induced changes in defensive cucurbitacin C in leaves and roots. We hypothesized that induced changes in roots would deter larvae, and that effects would be stronger for damage by conspecifics than the unrelated caterpillar because the aboveground damage could be a cue to plants indicating future root damage by the same species. In both the greenhouse and field, plants with damaged leaves recruited significantly fewer larvae to their roots than undamaged plants. Effects of conspecific and heterospecific damage did not differ. Leaf damage did not induce changes in leaf or root cucurbitacin C, but did reduce root biomass. While past work has suggested that systemic induction by aboveground herbivory increases resistance in roots, our results suggest that decreased preference by belowground herbivores in this system may be because of reduced root growth.
Collapse
Affiliation(s)
- N J Milano
- Department of Biology, University of Massachusetts-Amherst, 611 North Pleasant St., Amherst, MA 01003
| | - N A Barber
- Department of Biological Sciences, Northern Illinois University, 155 Castle Dr., DeKalb, IL 60115.
| | - L S Adler
- Department of Biology, University of Massachusetts-Amherst, 611 North Pleasant St., Amherst, MA 01003
| |
Collapse
|
39
|
Ryalls JMW, Moore BD, Riegler M, Gherlenda AN, Johnson SN. Amino acid-mediated impacts of elevated carbon dioxide and simulated root herbivory on aphids are neutralized by increased air temperatures. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:613-23. [PMID: 25403916 PMCID: PMC4286407 DOI: 10.1093/jxb/eru439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Changes in host plant quality, including foliar amino acid concentrations, resulting from global climate change and attack from multiple herbivores, have the potential to modify the pest status of insect herbivores. This study investigated how mechanically simulated root herbivory of lucerne (Medicago sativa) before and after aphid infestation affected the pea aphid (Acyrthosiphon pisum) under elevated temperature (eT) and carbon dioxide concentrations (eCO2). eT increased plant height and biomass, and eCO2 decreased root C:N. Foliar amino acid concentrations and aphid numbers increased in response to eCO2, but only at ambient temperatures, demonstrating the ability of eT to negate the effects of eCO2. Root damage reduced aboveground biomass, height, and root %N, and increased root %C and C:N, most probably via decreased biological nitrogen fixation. Total foliar amino acid concentrations and aphid colonization success were higher in plants with roots cut early (before aphid arrival) than those with roots cut late (after aphid arrival); however, this effect was counteracted by eT. These results demonstrate the importance of amino acid concentrations for aphids and identify individual amino acids as being potential factors underpinning aphid responses to eT, eCO2, and root damage in lucerne. Incorporating trophic complexity and multiple climatic factors into plant-herbivore studies enables greater insight into how plants and insects will interact in the future, with implications for sustainable pest control and future crop security.
Collapse
Affiliation(s)
- James M W Ryalls
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Andrew N Gherlenda
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
40
|
Johnson SN, Rasmann S. Root-feeding insects and their interactions with organisms in the rhizosphere. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:517-35. [PMID: 25564744 DOI: 10.1146/annurev-ento-010814-020608] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Root-feeding insects are an increasingly studied group of herbivores whose impacts on plant productivity and ecosystem processes are widely recognized. Their belowground habitat has hitherto hindered our understanding of how they interact with other organisms that share the rhizosphere. A surge in research in this area has now shed light on these interactions. We review key interactions between root-feeding insects and other rhizospheric organisms, including beneficial plant microbes (mycorrhizal fungi, nitrogen-fixing bacteria), antagonists/pathogens of root herbivores (arthropod predators, entomopathogenic nematodes/fungi, and bacterial pathogens), competitors, symbiotic microbes, and detritivores. Patterns for these interactions are emerging. The negative impacts of mycorrhizal fungi on root herbivores, for instance, raise the intriguing prospect that these fungi could be used for pest management. Moreover, a better understanding of symbiotic microbes in root herbivores, especially those underpinning digestion, could prove useful in industries such as biofuel production.
Collapse
Affiliation(s)
- Scott N Johnson
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith NSW 2751, Australia;
| | | |
Collapse
|
41
|
Stephens AEA, Westoby M. Effects of insect attack to stems on plant survival, growth, reproduction and photosynthesis. OIKOS 2014. [DOI: 10.1111/oik.01809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Mark Westoby
- Dept of Biological Sciences; Macquarie Univ.; New South Wales 2109 Australia
| |
Collapse
|
42
|
Kulmatiski A, Anderson-Smith A, Beard KH, Doucette-Riise S, Mazzacavallo M, Nolan NE, Ramirez RA, Stevens JR. Most soil trophic guilds increase plant growth: a meta-analytical review. OIKOS 2014. [DOI: 10.1111/oik.01767] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Andrew Kulmatiski
- Dept of Wildland Resources and the Ecology Center; Utah State Univ.; Logan UT 84322-5230 USA
| | | | - Karen H. Beard
- Dept of Wildland Resources and the Ecology Center; Utah State Univ.; Logan UT 84322-5230 USA
| | | | | | - Nicole E. Nolan
- Dept of Wildland Resources and the Ecology Center; Utah State Univ.; Logan UT 84322-5230 USA
| | | | - John R. Stevens
- Dept of Mathematics and Statistics; Utah State Univ.; Logan UT 84322-3900 USA
| |
Collapse
|
43
|
Huang W, Siemann E, Xiao L, Yang X, Ding J. Species-specific defence responses facilitate conspecifics and inhibit heterospecifics in above-belowground herbivore interactions. Nat Commun 2014; 5:4851. [PMID: 25241651 PMCID: PMC4199110 DOI: 10.1038/ncomms5851] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/30/2014] [Indexed: 01/04/2023] Open
Abstract
Conspecific and heterospecific aboveground and belowground herbivores often occur together in nature and their interactions may determine community structure. Here we show how aboveground adults and belowground larvae of the tallow tree specialist beetle Bikasha collaris and multiple heterospecific aboveground species interact to determine herbivore performance. Conspecific aboveground adults facilitate belowground larvae, but other aboveground damage inhibits larvae or has no effect. Belowground larvae increase conspecific adult feeding, but decrease heterospecific aboveground insect feeding and abundance. Chemical analyses and experiments with plant populations varying in phenolics show that all these positive and negative effects on insects are closely related to root and shoot tannin concentrations. Our results show that specific plant herbivore responses allow herbivore facilitation and inhibition to co-occur, likely shaping diverse aboveground and belowground communities. Considering species-specific responses of plants is critical for teasing apart inter- and intraspecific interactions in aboveground and belowground compartments. It is unclear how herbivores determine community structure. Here the authors show how interactions between aboveground adults and belowground larvae of a tree flea beetle and multiple heterospecific aboveground species interact via plant defence responses to determine herbivore performance.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Evan Siemann
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Li Xiao
- 1] Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefang Yang
- 1] Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqing Ding
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
44
|
Kafle D, Krähmer A, Naumann A, Wurst S. Genetic Variation of the Host Plant Species Matters for Interactions with Above- and Belowground Herbivores. INSECTS 2014; 5:651-67. [PMID: 26462832 PMCID: PMC4592585 DOI: 10.3390/insects5030651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/22/2014] [Accepted: 08/08/2014] [Indexed: 11/20/2022]
Abstract
Plants are challenged by both above- and belowground herbivores which may indirectly interact with each other via herbivore-induced changes in plant traits; however, little is known about how genetic variation of the host plant shapes such interactions. We used two genotypes (M4 and E9) of Solanum dulcamara (Solanaceae) with or without previous experience of aboveground herbivory by Spodoptera exigua (Noctuidae) to quantify its effects on subsequent root herbivory by Agriotes spp. (Elateridae). In the genotype M4, due to the aboveground herbivory, shoot and root biomass was significantly decreased, roots had a lower C/N ratio and contained significantly higher levels of proteins, while the genotype E9 was not affected. However, aboveground herbivory had no effects on weight gain or mortality of the belowground herbivores. Root herbivory by Agriotes increased the nitrogen concentration in the roots of M4 plants leading to a higher weight gain of conspecific larvae. Also, in feeding bioassays, Agriotes larvae tended to prefer roots of M4 over E9, irrespective of the aboveground herbivore treatment. Fourier-Transform Infrared Spectroscopy (FT-IR) documented differences in metabolic profiles of the two plant genotypes and of the roots of M4 plants after aboveground herbivory. Together, these results demonstrate that previous aboveground herbivory can have genotype-specific effects on quantitative and qualitative root traits. This may have consequences for belowground interactions, although generalist root herbivores might not be affected when the root biomass offered is still sufficient for growth and survival.
Collapse
Affiliation(s)
- Dinesh Kafle
- Collaborative Research Center (CRC) 973, Institute of Biology, Functional Biodiversity, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin 14195, Germany.
| | - Andrea Krähmer
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Str. 19, Berlin 14195, Germany.
| | - Annette Naumann
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Str. 19, Berlin 14195, Germany.
| | - Susanne Wurst
- Collaborative Research Center (CRC) 973, Institute of Biology, Functional Biodiversity, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin 14195, Germany.
| |
Collapse
|
45
|
de la Peña E, Bonte D. Above- and belowground herbivory jointly impact defense and seed dispersal traits in Taraxacum officinale. Ecol Evol 2014; 4:3309-19. [PMID: 25473483 PMCID: PMC4222217 DOI: 10.1002/ece3.1172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 11/13/2022] Open
Abstract
Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above- and belowground herbivores differ substantially in life-history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above- and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root-feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above- and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal-related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.
Collapse
Affiliation(s)
- Eduardo de la Peña
- Terrestrial Ecology Unit (TEREC), Department of Biology, Faculty of Sciences, GhentUniversity K.L. Ledeganckstraat 35, Gent, 9000, Belgium ; Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas Algarrobo-Costa, Málaga, E-29750, Spain
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Faculty of Sciences, GhentUniversity K.L. Ledeganckstraat 35, Gent, 9000, Belgium
| |
Collapse
|
46
|
Johnson SN, Lopaticki G, Hartley SE. Elevated atmospheric CO2 triggers compensatory feeding by root herbivores on a C3 but not a C4 grass. PLoS One 2014; 9:e90251. [PMID: 24651855 PMCID: PMC3961222 DOI: 10.1371/journal.pone.0090251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
Abstract
Predicted increases in atmospheric carbon dioxide (CO2) concentrations often reduce nutritional quality for herbivores by increasing the C∶N ratio of plant tissue. This frequently triggers compensatory feeding by aboveground herbivores, whereby they consume more shoot material in an attempt to meet their nutritional needs. Little, however, is known about how root herbivores respond to such changes. Grasslands are particularly vulnerable to root herbivores, which can collectively exceed the mass of mammals grazing aboveground. Here we provide novel evidence for compensatory feeding by a grass root herbivore, Sericesthis nigrolineata, under elevated atmospheric CO2 (600 µmol mol−1) on a C3 (Microlaena stipoides) but not a C4 (Cymbopogon refractus) grass species. At ambient CO2 (400 µmol mol−1) M. stipoides roots were 44% higher in nitrogen (N) and 7% lower in carbon (C) concentrations than C. refractus, with insects performing better on M. stipoides. Elevated CO2 decreased N and increased C∶N in M. stipoides roots, but had no impact on C. refractus roots. Root-feeders displayed compensatory feeding on M. stipoides at elevated CO2, consuming 118% more tissue than at ambient atmospheric CO2. Despite this, root feeder biomass remained depressed by 24%. These results suggest that compensatory feeding under elevated atmospheric CO2 may make some grass species particularly vulnerable to attack, potentially leading to future shifts in the community composition of grasslands.
Collapse
Affiliation(s)
- Scott N. Johnson
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
- * E-mail:
| | - Goran Lopaticki
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia
| | - Susan E. Hartley
- York Environmental Sustainability Institute, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
47
|
Effects of belowground vertical distribution of a herbivore on plant biomass and survival in Lolium perenne. Ecol Res 2014. [DOI: 10.1007/s11284-014-1133-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
|
49
|
Wang M, Biere A, Van der Putten WH, Bezemer TM. Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance. Oecologia 2014; 175:187-98. [PMID: 24448700 DOI: 10.1007/s00442-014-2885-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/09/2014] [Indexed: 11/28/2022]
Abstract
Plants are often simultaneously or sequentially attacked by multiple herbivores and changes in host plants induced by one herbivore can influence the performance of other herbivores. We examined how sequential feeding on the plant Plantago lanceolata by the aboveground herbivore Spodoptera exigua and the belowground herbivore Agriotes lineatus influences plant defense and the performance of both insects. Belowground herbivory caused a reduction in the food consumption by the aboveground herbivore independent of whether it was initiated before, at the same time, or after that of the aboveground herbivore. By contrast, aboveground herbivory did not significantly affect belowground herbivore performance, but significantly reduced the performance of later arriving aboveground conspecifics. Interestingly, belowground herbivores negated negative effects of aboveground herbivores on consumption efficiency of their later arriving conspecifics, but only if the belowground herbivores were introduced simultaneously with the early arriving aboveground herbivores. Aboveground-belowground interactions could only partly be explained by induced changes in an important class of defense compounds, iridoid glycosides (IGs). Belowground herbivory caused a reduction in IGs in roots without affecting shoot levels, while aboveground herbivory increased IG levels in roots in the short term (4 days) but only in the shoots in the longer term (17 days). We conclude that the sequence of aboveground and belowground herbivory is important in interactions between aboveground and belowground herbivores and that knowledge on the timing of exposure is essential to predict outcomes of aboveground-belowground interactions.
Collapse
Affiliation(s)
- Minggang Wang
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands,
| | | | | | | |
Collapse
|
50
|
Ryalls JMW, Riegler M, Moore BD, Lopaticki G, Johnson SN. Effects of elevated temperature and CO2 on aboveground-belowground systems: a case study with plants, their mutualistic bacteria and root/shoot herbivores. FRONTIERS IN PLANT SCIENCE 2013; 4:445. [PMID: 24273544 PMCID: PMC3822287 DOI: 10.3389/fpls.2013.00445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 10/17/2013] [Indexed: 05/12/2023]
Abstract
Interactions between above- and belowground herbivores have been prominent in the field of aboveground-belowground ecology from the outset, although little is known about how climate change affects these organisms when they share the same plant. Additionally, the interactive effects of multiple factors associated with climate change such as elevated temperature (eT) and elevated atmospheric carbon dioxide (eCO2) are untested. We investigated how eT and eCO2 affected larval development of the lucerne weevil (Sitona discoideus) and colonization by the pea aphid (Acyrthosiphon pisum), on three cultivars of a common host plant, lucerne (Medicago sativa). Sitona discoideus larvae feed on root nodules housing N2-fixing rhizobial bacteria, allowing us to test the effects of eT and eCO2 across trophic levels. Moreover, we assessed the influence of these factors on plant growth. eT increased plant growth rate initially (6, 8 and 10 weeks after sowing), with cultivar "Sequel" achieving the greatest height. Inoculation with aphids, however, reduced plant growth at week 14. eT severely reduced root nodulation by 43%, whereas eCO2 promoted nodulation by 56%, but only at ambient temperatures. Weevil presence increased net root biomass and nodulation, by 31 and 45%, respectively, showing an overcompensatory plant growth response. Effects of eT and eCO2 on root nodulation were mirrored by weevil larval development; eT and eCO2 reduced and increased larval development, respectively. Contrary to expectations, aphid colonization was unaffected by eT or eCO2, but there was a near-significant 10% reduction in colonization rates on plants with weevils present belowground. The contrasting effects of eT and eCO2 on weevils potentially occurred through changes in root nodulation patterns.
Collapse
Affiliation(s)
- James M. W. Ryalls
- Hawkesbury Institute for the Environment, University of Western SydneyRichmond, NSW, Australia
| | | | | | | | | |
Collapse
|