1
|
Li Y, Chai Q, Chen Y, Ma Y, Wang Y, Zhao J. Genome-wide investigation of the OR gene family in Helicoverpa armigera and functional analysis of OR48 and OR75 in metamorphosis development. Int J Biol Macromol 2024; 278:134646. [PMID: 39128738 DOI: 10.1016/j.ijbiomac.2024.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The cotton bollworm, Helicoverpa armigera, is a significant global agricultural pest, particularly detrimental during its larval feeding period. Insects' odorant receptors (ORs) are crucial for their crop-feeding activities, yet a comprehensive analysis of H. armigera ORs has been lacking, and the influence of hormones on ORs remain understudied. Herein, we conducted a genome-wide study and identified 81 ORs, categorized into 15 distinct groups. Analyses of protein motifs and gene structures revealed both conservation within groups and divergence among them. Comparative gene duplication analysis between H. armigera and Bombyx mori highlighted different duplication patterns. We further investigated subcellular localization and protein interactions within the odorant receptor family, providing valuable insights for future functional and interaction studies of ORs. Specifically, we identified that OR48 and OR75 were abundantly expressed during molting/metamorphosis and feeding stages, respectively. We demonstrated that 20E induced the upregulation of OR48 via EcR, while insulin upregulated OR75 expression through InR. Moreover, 20E induced the translocation of OR48 to the cell membrane, mediating its effects. Functional studies involving the knockdown of OR48 and OR75 revealed their roles in metamorphosis development, with OR48 knockdown resulting in delayed pupation and OR75 knockdown leading to premature pupation. OR48 can promote autophagy and apoptosis in fat body, while OR75 can significantly inhibit apoptosis and autophagy. These findings significantly contribute to our understanding of OR function in H. armigera and shed light on potential avenues for pest control strategies.
Collapse
Affiliation(s)
- Yanli Li
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Qichao Chai
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Ying Chen
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Yujia Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, Shandong, China
| | - Yongcui Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
| | - Junsheng Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
| |
Collapse
|
2
|
Yang X, Li X, Bao Q, Wang Z, He S, Qu X, Tang Y, Song B, Huang J, Yi G. Uncovering Evolutionary Adaptations in Common Warthogs through Genomic Analyses. Genes (Basel) 2024; 15:166. [PMID: 38397156 PMCID: PMC10888464 DOI: 10.3390/genes15020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
In the Suidae family, warthogs show significant survival adaptability and trait specificity. This study offers a comparative genomic analysis between the warthog and other Suidae species, including the Luchuan pig, Duroc pig, and Red River hog. By integrating the four genomes with sequences from the other four species, we identified 8868 single-copy orthologous genes. Based on 8868 orthologous protein sequences, phylogenetic assessments highlighted divergence timelines and unique evolutionary branches within suid species. Warthogs exist on different evolutionary branches compared to DRCs and LCs, with a divergence time preceding that of DRC and LC. Contraction and expansion analyses of warthog gene families have been conducted to elucidate the mechanisms of their evolutionary adaptations. Using GO, KEGG, and MGI databases, warthogs showed a preference for expansion in sensory genes and contraction in metabolic genes, underscoring phenotypic diversity and adaptive evolution direction. Associating genes with the QTLdb-pigSS11 database revealed links between gene families and immunity traits. The overlap of olfactory genes in immune-related QTL regions highlighted their importance in evolutionary adaptations. This work highlights the unique evolutionary strategies and adaptive mechanisms of warthogs, guiding future research into the distinct adaptability and disease resistance in pigs, particularly focusing on traits such as resistance to African Swine Fever Virus.
Collapse
Affiliation(s)
- Xintong Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
| | - Qi Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
| | - Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
| | - Sang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
| | - Xiaolu Qu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
| | - Yueting Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Bangmin Song
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China;
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China; (X.Y.); (X.L.); (Q.B.); (Z.W.); (S.H.); (X.Q.); (Y.T.); (B.S.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Bama Yao Autonomous County Rural Revitalization Research Institute, Bama 547500, China
| |
Collapse
|
3
|
Kowalewski J, Huynh B, Ray A. A System-Wide Understanding of the Human Olfactory Percept Chemical Space. Chem Senses 2021; 46:6153471. [PMID: 33640959 DOI: 10.1093/chemse/bjab007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fundamental units of olfactory perception are discrete 3D structures of volatile chemicals that each interact with specific subsets of a very large family of hundreds of odorant receptor proteins, in turn activating complex neural circuitry and posing a challenge to understand. We have applied computational approaches to analyze olfactory perceptual space from the perspective of odorant chemical features. We identify physicochemical features associated with ~150 different perceptual descriptors and develop machine-learning models. Validation of predictions shows a high success rate for test set chemicals within a study, as well as across studies more than 30 years apart in time. Due to the high success rates, we are able to map ~150 percepts onto a chemical space of nearly 0.5 million compounds, predicting numerous percept-structure combinations. The chemical structure-to-percept prediction provides a system-level view of human olfaction and opens the door for comprehensive computational discovery of fragrances and flavors.
Collapse
Affiliation(s)
- Joel Kowalewski
- Interdepartmental Neuroscience Program, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
| | - Brandon Huynh
- Department of Molecular, Cell and Systems Biology, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
| | - Anandasankar Ray
- Interdepartmental Neuroscience Program, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA.,Department of Molecular, Cell and Systems Biology, University of California, 3401 Watkins Drive, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Xing Q, Liao H, Peng C, Zheng G, Yang Z, Wang J, Lu W, Huang X, Bao Z. Identification, characterization and expression analyses of cholinesterases genes in Yesso scallop (Patinopecten yessoensis) reveal molecular function allocation in responses to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105736. [PMID: 33422860 DOI: 10.1016/j.aquatox.2020.105736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/02/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Cholinesterases are key enzymes in central and peripheral cholinergic nerve system functioning on nerve impulse transmission in animals. Though cholinesterases have been identified in most vertebrates, the knowledge about the variable numbers and multiple functions of the genes is still quite meagre in invertebrates, especially in scallops. In this study, the complete cholinesterase (ChE) family members have been systematically characterized in Yesso scallop (Patinopecten yessoensis) via whole-genome scanning through in silico analysis. Ten ChE family members in the genome of Yesso scallop (designated PyChEs) were identified and potentially acted to be the largest number of ChE in the reported species to date. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of these genes. The expression profiles of PyChEs were determined in all developmental stages, in healthy adult tissues, and in mantles under low pH stress (pH 6.5 and 7.5). Spatiotemporal expression suggested the ubiquitous functional roles of PyChEs in all stages of development, as well as general and tissue-specific functions in scallop tissues. Regulation expressions revealed diverse up- and down-regulated expression patterns at most time points, suggesting different functional specialization of gene superfamily members in response to ocean acidification (OA). Evidences in gene number, phylogenetic relationships and expression patterns of PyChEs revealed that functional innovations and differentiations after gene duplication may result in altered functional constraints among PyChEs gene clusters. Collectively, our results provide the potential clues that the selection pressures coming from the environment were the potential inducement leading to function allocation of ChE family members in scallop.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Cheng Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guiliang Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wei Lu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
5
|
Marquet N, Cardoso JCR, Louro B, Fernandes SA, Silva SC, Canário AVM. Holothurians have a reduced GPCR and odorant receptor-like repertoire compared to other echinoderms. Sci Rep 2020; 10:3348. [PMID: 32098989 PMCID: PMC7042368 DOI: 10.1038/s41598-020-60167-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/05/2020] [Indexed: 01/13/2023] Open
Abstract
Sea cucumbers lack vision and rely on chemical sensing to reproduce and survive. However, how they recognize and respond to environmental cues remains unknown. Possible candidates are the odorant receptors (ORs), a diverse family of G protein-coupled receptors (GPCRs) involved in olfaction. The present study aimed at characterizing the chemosensory GPCRs in sea cucumbers. At least 246 distinct GPCRs, of which ca. 20% putative ORs, were found in a transcriptome assembly of putative chemosensory (tentacles, oral cavity, calcareous ring, and papillae/tegument) and reproductive (ovary and testis) tissues from Holothuria arguinensis (57 ORs) and in the Apostichopus japonicus genome (79 ORs). The sea cucumber ORs clustered with those of sea urchin and starfish into four main clades of gene expansions sharing a common ancestor and evolving under purifying selection. However, the sea cucumber ORs repertoire was the smallest among the echinoderms and the olfactory receptor signature motif LxxPxYxxxxxLxxxDxxxxxxxxP was better conserved in cluster OR-l1 which also had more members. ORs were expressed in tentacles, oral cavity, calcareous ring, and papillae/tegument, supporting their potential role in chemosensing. This study is the first comprehensive survey of chemosensory GPCRs in sea cucumbers, and provides the molecular basis to understand how they communicate.
Collapse
Affiliation(s)
- Nathalie Marquet
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - João C R Cardoso
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bruno Louro
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Stefan A Fernandes
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Sandra C Silva
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Adelino V M Canário
- CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
6
|
Singh PB, Newman AG. On the relations of phase separation and Hi-C maps to epigenetics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191976. [PMID: 32257349 PMCID: PMC7062049 DOI: 10.1098/rsos.191976] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks of constitutive heterochromatin, heterochromatin protein 1 (HP1) and its binding partner the H3K9me2/3 determinant of the histone code. They are key epigenetic regulators in eukaryotes. Both hallmarks are also found outside mammalian constitutive heterochromatin as constituents of larger (0.1-5 Mb) heterochromatin-like domains and smaller (less than 100 kb) complexes. The well-documented ability of HP1 proteins to function as bridges between H3K9me2/3-marked nucleosomes contributes to polymer-polymer phase separation that packages epigenetically heritable chromatin states during interphase. Contacts mediated by HP1 'bridging' are likely to have been detected in Hi-C maps, as evidenced by the B4 heterochromatic subcompartment that emerges from contacts between large KRAB-ZNF heterochromatin-like domains. Further, mutational analyses have revealed a finer, innate, compartmentalization in Hi-C experiments that probably reflect contacts involving smaller domains/complexes. Proteins that bridge (modified) DNA and histones in nucleosomal fibres-where the HP1-H3K9me2/3 interaction represents the most evolutionarily conserved paradigm-could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Nur-Sultan Z05K4F4, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russian Federation
| | - Andrew G. Newman
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
7
|
Xing Q, Wang J, Zhao Q, Liao H, Xun X, Yang Z, Huang X, Bao Z. Alternative splicing, spatiotemporal expression of TEP family genes in Yesso scallop (Patinopecten yessoensis) and their disparity in responses to ocean acidification. FISH & SHELLFISH IMMUNOLOGY 2019; 95:203-212. [PMID: 31610293 DOI: 10.1016/j.fsi.2019.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The complement system constitutes a highly sophisticated and powerful body defense machinery acting in the innate immunity of both vertebrates and invertebrates. As central components of the complement system, significant effects of thioester-containing protein (TEP) family members on immunity have been reported in most vertebrates and in some invertebrates, but the spatiotemporal expression and regulatory patterns of TEP family genes under environmental stress have been less widely investigated in scallops. In this study, expression profiling of TEP family members in the Yesso scallop Patinopecten yessoensis (designated PyTEPs) was performed at all developmental stages, in different healthy adult tissues, and in mantles during exposure to different levels of acidification (pH = 6.5 and 7.5) for different time points (3, 6, 12 and 24 h); this profiling was accomplished through in silico analysis of transcriptome and genome databases. Spatiotemporal expression patterns revealed that PyTEPs had specific functional differentiation in all stages of growth and development of the scallop. Expression analysis confirmed the inducible expression patterns of PyTEPs during exposure to acidification. Gene duplication and alternative splicing events simultaneously occurred in PyTEP1. Seven different cDNA variants of PyTEP1 (designated PyTEP1-A-PyTEP1-G) were identified in the scallop mantle transcriptome during acidic stress. These variants were produced by the alternative splicing of seven differentially transcribed exons (exons 18-24), which encode the highly variable central region. The responses to immune stress may have arisen through the gene duplication and alternative splicing of PyTEP1. The sequence diversity of PyTEP1 isoforms and their different expression profiles in response to ocean acidification (OA) suggested a mechanism used by scallops to differentiate and regulate PyTEP1 gene expression. Collectively, these results demonstrate the gene duplication and alternative splicing of TEP family genes and provide valuable resources for elucidating their versatile roles in bivalve innate immune responses to OA challenge.
Collapse
Affiliation(s)
- Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Yantai Marine Economic Research Institute, Yantai, 264000, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zujing Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
8
|
Correlations between odour activity and the structural modifications of acrylates. Anal Bioanal Chem 2019; 411:5545-5554. [PMID: 31201455 DOI: 10.1007/s00216-019-01936-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
Acrylates (acrylic esters) are versatile monomers that are widely used in polymer formulations because of their highly reactive α,β-unsaturated carboxyl structure. Commonly used acrylates such as butyl acrylate are known to emit a strong unpleasant odour, and the monomers are therefore potential off-odorants in acrylic polymers. However, up to now, the odour properties of structurally related acrylic esters have not been characterised in detail. To obtain deeper insights into the smell properties of different acrylates, we investigated the relationship between the molecular structure and odour thresholds as well as the odour qualities of 20 acrylic esters, nine of these synthesised here for the first time. The OT values of 16 acrylates fell within the range from 0.73 to 20 ng/Lair, corresponding to a high-odour activity. Moreover, sec-butyl acrylate and 2-methoxyphenyl acrylate showed even lower OT values of 0.073 and 0.068, respectively. On the other hand, the OT values of the hydroxylated acrylates 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate were 5-244 times higher than those of the other compounds, demonstrating that the presence of a hydroxyl group obviously favours odour inactivity.
Collapse
|
9
|
Cseke LJ, Kaufman PB, Kirakosyan A. The Biology of Essential Oils in the Pollination of Flowers. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700201225] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pollination is an essential biological process in higher plant reproduction that involves the transfer of pollen to the female sexual organs of flowers or cones. It plays a critical role in the reproductive success and evolution of most plant species by allowing plants to share genetic material from other members of the same or closely-related species, thus increasing genetic diversity. In many cases, non-plant organisms are involved in carrying out this cross-pollination, including insects, bats, mammals, and birds. In order to attract such pollinators, plants have evolved the ability to produce a mind-boggling array of volatile compounds that have also found abundant use for humans when collected as essential oils. In this review, we focus on the role of essential oil compounds that are produced by flowers as chemical attractants used to draw in their often highly-specific pollinators. We examine in some detail various questions behind the biology of floral scent, including how these compounds are produced in flowers, how they are detected by potential pollinators, and how biotechnology can be used to alter their activity.
Collapse
Affiliation(s)
- Leland J. Cseke
- Department of Biological Science, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Peter B. Kaufman
- Department of Cardiac Surgery, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Ara Kirakosyan
- Department of Cardiac Surgery, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Abstract
Since the first attempts to mimic the human nose with artificial devices, a variety of sensors have been developed, ranging from simple inorganic and organic gas detectors to biosensing elements incorporating proteins of the biological olfactory system. In order to design a device able to mimic the human nose, two major issues still need to be addressed regarding the complexity of olfactory coding and the extreme sensitivity of the biological system. So far, only 50 of the approximately 300–400 functioning olfactory receptors have been de-orphanized, still a long way from breaking the human olfactory code. On the other hand, the exceptional sensitivity of the human nose is based on amplification mechanisms difficult to reproduce with electronic circuits, and perhaps novel approaches are required to address this issue. Here, we review the recent literature on chemical sensing both in biological systems and artificial devices, and try to establish the state-of-the-art towards the design of an electronic nose.
Collapse
|
11
|
Lorber K, Zeh G, Regler J, Buettner A. Structure-Odor Relationships of ( Z)-3-Alken-1-ols, ( Z)-3-Alkenals, and ( Z)-3-Alkenoic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2334-2343. [PMID: 28006903 DOI: 10.1021/acs.jafc.6b04780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
( Z)-3-Unsaturated volatile acids, alcohols, and aldehydes are commonly found in foods and other natural sources, playing a vital role in the attractiveness of foods but also as compounds with chemocommunicative function in entomology. However, a systematic investigation of their smell properties, especially regarding humans, has not been carried out until today. To close this gap, the odor thresholds in air and odor qualities of homologous series of ( Z)-3-alken-1-ols, ( Z)-3-alkenals, and ( Z)-3-alkenoic acids were determined by gas chromatography-olfactometry. It was found that the odor qualities in the series of the ( Z)-3-alken-1-ols and ( Z)-3-alkenals changed, with increasing chain length, from grassy, green to an overall fatty and citrus-like, soapy character. On the other hand, the odor qualities of the ( Z)-3-alkenoic acids changed successively from cheesy, sweaty via plastic-like, to waxy in their homologous series. With regard to their odor potencies, the lowest thresholds in air were found for ( Z)-3-hexenal, ( Z)-3-octenoic acid, and ( Z)-3-octenal.
Collapse
Affiliation(s)
- Katja Lorber
- Professorship of Aroma Research, Department of Chemistry and Pharmacy, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Henkestrasse 9 , 91054 Erlangen , Germany
- Department of Sensory Analytics , Fraunhofer Institute for Process Engineering and Packaging (IVV) , Giggenhauser Strasse 35 , 85354 Freising , Germany
| | - Gina Zeh
- Professorship of Aroma Research, Department of Chemistry and Pharmacy, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Henkestrasse 9 , 91054 Erlangen , Germany
| | - Johanna Regler
- Professorship of Aroma Research, Department of Chemistry and Pharmacy, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Henkestrasse 9 , 91054 Erlangen , Germany
| | - Andrea Buettner
- Professorship of Aroma Research, Department of Chemistry and Pharmacy, Emil Fischer Center , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Henkestrasse 9 , 91054 Erlangen , Germany
- Department of Sensory Analytics , Fraunhofer Institute for Process Engineering and Packaging (IVV) , Giggenhauser Strasse 35 , 85354 Freising , Germany
| |
Collapse
|
12
|
Juhlke F, Lorber K, Wagenstaller M, Buettner A. Influence of the Chemical Structure on Odor Qualities and Odor Thresholds of Halogenated Guaiacol-Derived Odorants. Front Chem 2018; 5:120. [PMID: 29326924 PMCID: PMC5741668 DOI: 10.3389/fchem.2017.00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
Chlorinated guaiacol derivatives are found in waste water of pulp mills using chlorine in the bleaching process of wood pulp. They can also be detected in fish tissue, possibly causing off-odors. To date, there is no systematic investigation on the odor properties of halogenated guaiacol derivatives. To close this gap, odor thresholds in air and odor qualities of 14 compounds were determined by gas chromatography-olfactometry. Overall, the investigated compounds elicited smells that are characteristic for guaiacol, namely smoky, sweet, vanilla-like, but also medicinal and plaster-like. Their odor thresholds in air were, however, very low, ranging from 0.00072 to 23 ng/Lair. The lowest thresholds were found for 5-chloro- and 5-bromoguaiacol, followed by 4,5-dichloro- and 6-chloroguaiacol. Moreover, some inter-individual differences in odor threshold values could be observed, with the highest variations having been recorded for the individual values of 5-iodo- and 4-bromoguaiacol.
Collapse
Affiliation(s)
- Florian Juhlke
- Professorship of Aroma Research, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Lorber
- Professorship of Aroma Research, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Maria Wagenstaller
- Department of Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Andrea Buettner
- Professorship of Aroma Research, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
13
|
Tromelin A, Chabanet C, Audouze K, Koensgen F, Guichard E. Multivariate statistical analysis of a large odorants database aimed at revealing similarities and links between odorants and odors. FLAVOUR FRAG J 2017. [DOI: 10.1002/ffj.3430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anne Tromelin
- UMR CSGA: CNRS, INRA; Université de Bourgogne Franche-Comté; 21000 Dijon France
| | - Claire Chabanet
- UMR CSGA: CNRS, INRA; Université de Bourgogne Franche-Comté; 21000 Dijon France
| | - Karine Audouze
- MTi, Sorbonne Paris Cité; Université Paris Diderot; INSERM UMR-S 973 75013 Paris France
| | - Florian Koensgen
- UMR CSGA: CNRS, INRA; Université de Bourgogne Franche-Comté; 21000 Dijon France
| | - Elisabeth Guichard
- UMR CSGA: CNRS, INRA; Université de Bourgogne Franche-Comté; 21000 Dijon France
| |
Collapse
|
14
|
Xing Q, Liao H, Xun X, Wang J, Zhang Z, Yang Z, Huang X, Bao Z. Genome-wide identification, characterization and expression analyses of TLRs in Yesso scallop (Patinopecten yessoensis) provide insight into the disparity of responses to acidifying exposure in bivalves. FISH & SHELLFISH IMMUNOLOGY 2017; 68:280-288. [PMID: 28698128 DOI: 10.1016/j.fsi.2017.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Toll-like receptors (TLRs) play a crucial role in innate immunity by recognizing specific pathogen-associated molecular patterns, including lipoproteins, lipopeptides, lipopolysaccharide, flagellin, dsRNA, ssRNA and CpG DNA motifs. Although significant effects of TLRs on immunity have been reported in most vertebrates and some invertebrates, the complete TLR superfamily has not been systematically characterized in scallops. In this study, 18 TLR genes were identified from Yesso scallop (Patinopecten yessoensis) using whole-genome scanning. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of the 18 genes. Extensive expansion of TLR genes from the Yesso scallop genome indicated gene duplication events. In addition, expression profiling of PyTLRs was performed at different acidifying exposure levels (pH = 6.50, 7.50) with different challenge durations (3, 6, 12 and 24 h) via in silico analysis using transcriptome and genome databases. Our results confirmed the inducible expression patterns of PyTLRs under acidifying exposure, and the responses to immune stress may have arisen through adaptive recruitment of tandem duplications of TLR genes. Collectively, this study provides novel insight into PyTLRs as well as the specific role and response of TLR signaling pathways in host immune responses against acidifying exposure in bivalves.
Collapse
Affiliation(s)
- Qiang Xing
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huan Liao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaogang Xun
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zujing Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
15
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Li W, Fontanelli O, Miramontes P. Size distribution of function-based human gene sets and the split-merge model. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160275. [PMID: 27853602 PMCID: PMC5108952 DOI: 10.1098/rsos.160275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
The sizes of paralogues-gene families produced by ancestral duplication-are known to follow a power-law distribution. We examine the size distribution of gene sets or gene families where genes are grouped by a similar function or share a common property. The size distribution of Human Gene Nomenclature Committee (HGNC) gene sets deviate from the power-law, and can be fitted much better by a beta rank function. We propose a simple mechanism to break a power-law size distribution by a combination of splitting and merging operations. The largest gene sets are split into two to account for the subfunctional categories, and a small proportion of other gene sets are merged into larger sets as new common themes might be realized. These operations are not uncommon for a curator of gene sets. A simulation shows that iteration of these operations changes the size distribution of Ensembl paralogues and could lead to a distribution fitted by a rank beta function. We further illustrate application of beta rank function by the example of distribution of transcription factors and drug target genes among HGNC gene families.
Collapse
Affiliation(s)
- Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Oscar Fontanelli
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510 DF, México
| | - Pedro Miramontes
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04510 DF, México
- Bioinformatics Group and Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstrasse 16–18, 04107 Leipzig, Germany
| |
Collapse
|
17
|
Abstract
Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described.
Collapse
|
18
|
Haviland-Jones JM, McGuire TR, Wilson P. Testing for Individual Differences in the Identification of Chemosignals for Fear and Happy: Phenotypic Super-Detectors, Detectors and Non-Detectors. PLoS One 2016; 11:e0154495. [PMID: 27149084 PMCID: PMC4858204 DOI: 10.1371/journal.pone.0154495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/27/2016] [Indexed: 01/03/2023] Open
Abstract
Mood odor identification, explicit awareness of mood odor, may be an important emotion skill and part of a complex dual processing system. It has already been shown that mood odors have significant implicit effects, effects that occur without awareness. This study applies methods for examining human individual differences in the identification of chemosignals for fear and happy, important in itself, and a key to understanding the dual processing of emotion in the olfactory system. Axillary mood odors had been collected from 14 male donors during a mood induction task. Pads were collected after 12 and 24 minutes, creating two doses. Sixty -one participants (41 females) identified the mood odor chemosignals. On a single trial, participants identified 2 doses of fear, 2 doses of happy, and a sterile control. There were 15 trials. The first analysis (rtt) showed that the population was phenotypically heterogeneous, not homogeneous, in identification accuracy. It also showed that a minimum of 10 trials was needed for test reliability. The second analysis, Growth Mixture Modeling, found three distinct groups of detectors: (1) 49.49% were consistently accurate super detectors, (2) 32.52% were accurate above chance level detectors, and (3) 17.98% were non-detectors. Bayesian Posterior Analyses showed reliability of groups at or above 98%. No differences related to mood odor valence (fear or happy), dose (collection at 12 or 24 minutes) or gender were found. Implications for further study of genetic differences, learning and function of identification are noted. It appears that many people can be reliable in explicitly identifying fear and happy mood odors but this skill is not homogeneous.
Collapse
Affiliation(s)
- Jeannette M. Haviland-Jones
- Psychology Department, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| | - Terry R. McGuire
- Genetics Department, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Patricia Wilson
- Psychology Department, La Salle University, Philadelphia, PA, United States of America
| |
Collapse
|
19
|
Affiliation(s)
- Anne Tromelin
- CNRS; UMR6265 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- INRA; UMR1324 Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
- Université de Bourgogne; UMR Centre des Sciences du Goût et de l'Alimentation; F-21000 Dijon France
| |
Collapse
|
20
|
Lorber K, Buettner A. Structure-Odor Relationships of (E)-3-Alkenoic Acids, (E)-3-Alken-1-ols, and (E)-3-Alkenals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6681-6688. [PMID: 26165743 DOI: 10.1021/acs.jafc.5b02169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
(E)-3-Unsaturated volatile acids, alcohols, and aldehydes are commonly found as odorants or pheromones in foods and other natural sources, playing a vital role in not only the attractiveness of foods but also chemo-communication in the animal kingdom. However, a systematic elucidation of their aroma properties, especially for humans, has not been carried out until today. To close this gap, the odor thresholds in air and odor qualities of homologous series of (E)-3-alkenoic acids, (E)-3-alken-1-ols, and (E)-3-alkenals were determined by gas chromatography-olfactometry. In the series of (E)-3-alkenoic acids the odor quality changed successively from sweaty via plastic-like to sweaty and waxy. On the other hand, the odor qualities in the series of (E)-3-alken-1-ols and (E)-3-alkenals changed from grassy, green to an overall citrus-like, fresh, soapy, and coriander-like odor with increasing chain length. With regard to their odor potencies, the lowest thresholds in air were found for (E)-3-heptenoic acid, (E)-3-hexenoic acid, and (E)-3-hexenal.
Collapse
Affiliation(s)
- Katja Lorber
- †Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Andrea Buettner
- †Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstrasse 19, 91052 Erlangen, Germany
- §Department of Sensory Analytics, Fraunhofer Institute for Process Engineering and Packaging (IVV), Giggenhauserstrasse 35, 85354 Freising, Germany
| |
Collapse
|
21
|
Wolf S, Grünewald S. Sequence, structure and ligand binding evolution of rhodopsin-like G protein-coupled receptors: a crystal structure-based phylogenetic analysis. PLoS One 2015; 10:e0123533. [PMID: 25881057 PMCID: PMC4399913 DOI: 10.1371/journal.pone.0123533] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/20/2015] [Indexed: 01/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) form the largest family of membrane receptors in the human genome. Advances in membrane protein crystallization so far resulted in the determination of 24 receptors available as high-resolution atomic structures. We performed the first phylogenetic analysis of GPCRs based on the available set of GPCR structures. We present a new phylogenetic tree of known human rhodopsin-like GPCR sequences based on this structure set. We can distinguish the three separate classes of small-ligand binding GPCRs, peptide binding GPCRs, and olfactory receptors. Analyzing different structural subdomains, we found that small molecule binding receptors most likely have evolved from peptide receptor precursors, with a rhodopsin/S1PR1 ancestor, most likely an ancestral opsin, forming the link between both classes. A light-activated receptor therefore seems to be the origin of the small molecule hormone receptors of the central nervous system. We find hints for a common evolutionary path of both ligand binding site and central sodium/water binding site. Surprisingly, opioid receptors exhibit both a binding cavity and a central sodium/water binding site similar to the one of biogenic amine receptors instead of peptide receptors, making them seemingly prone to bind small molecule ligands, e.g. opiates. Our results give new insights into the relationship and the pharmacological properties of rhodopsin-like GPCRs.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| | - Stefan Grünewald
- CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
22
|
Brüning T, Bartsch R, Bolt HM, Desel H, Drexler H, Gundert-Remy U, Hartwig A, Jäckh R, Leibold E, Pallapies D, Rettenmeier AW, Schlüter G, Stropp G, Sucker K, Triebig G, Westphal G, van Thriel C. Sensory irritation as a basis for setting occupational exposure limits. Arch Toxicol 2014; 88:1855-79. [PMID: 25182421 PMCID: PMC4161939 DOI: 10.1007/s00204-014-1346-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/21/2014] [Indexed: 02/06/2023]
Abstract
There is a need of guidance on how local irritancy data should be incorporated into risk assessment procedures, particularly with respect to the derivation of occupational exposure limits (OELs). Therefore, a board of experts from German committees in charge of the derivation of OELs discussed the major challenges of this particular end point for regulatory toxicology. As a result, this overview deals with the question of integrating results of local toxicity at the eyes and the upper respiratory tract (URT). Part 1 describes the morphology and physiology of the relevant target sites, i.e., the outer eye, nasal cavity, and larynx/pharynx in humans. Special emphasis is placed on sensory innervation, species differences between humans and rodents, and possible effects of obnoxious odor in humans. Based on this physiological basis, Part 2 describes a conceptual model for the causation of adverse health effects at these targets that is composed of two pathways. The first, “sensory irritation” pathway is initiated by the interaction of local irritants with receptors of the nervous system (e.g., trigeminal nerve endings) and a downstream cascade of reflexes and defense mechanisms (e.g., eyeblinks, coughing). While the first stages of this pathway are thought to be completely reversible, high or prolonged exposure can lead to neurogenic inflammation and subsequently tissue damage. The second, “tissue irritation” pathway starts with the interaction of the local irritant with the epithelial cell layers of the eyes and the URT. Adaptive changes are the first response on that pathway followed by inflammation and irreversible damages. Regardless of these initial steps, at high concentrations and prolonged exposures, the two pathways converge to the adverse effect of morphologically and biochemically ascertainable changes. Experimental exposure studies with human volunteers provide the empirical basis for effects along the sensory irritation pathway and thus, “sensory NOAEChuman” can be derived. In contrast, inhalation studies with rodents investigate the second pathway that yields an “irritative NOAECanimal.” Usually the data for both pathways is not available and extrapolation across species is necessary. Part 3 comprises an empirical approach for the derivation of a default factor for interspecies differences. Therefore, from those substances under discussion in German scientific and regulatory bodies, 19 substances were identified known to be human irritants with available human and animal data. The evaluation started with three substances: ethyl acrylate, formaldehyde, and methyl methacrylate. For these substances, appropriate chronic animal and a controlled human exposure studies were available. The comparison of the sensory NOAEChuman with the irritative NOAECanimal (chronic) resulted in an interspecies extrapolation factor (iEF) of 3 for extrapolating animal data concerning local sensory irritating effects. The adequacy of this iEF was confirmed by its application to additional substances with lower data density (acetaldehyde, ammonia, n-butyl acetate, hydrogen sulfide, and 2-ethylhexanol). Thus, extrapolating from animal studies, an iEF of 3 should be applied for local sensory irritants without reliable human data, unless individual data argue for a substance-specific approach.
Collapse
Affiliation(s)
- Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sunarharum WB, Williams DJ, Smyth HE. Complexity of coffee flavor: A compositional and sensory perspective. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.02.030] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Ignatieva EV, Levitsky VG, Yudin NS, Moshkin MP, Kolchanov NA. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset. Front Psychol 2014; 5:247. [PMID: 24715883 PMCID: PMC3970011 DOI: 10.3389/fpsyg.2014.00247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 03/05/2014] [Indexed: 11/13/2022] Open
Abstract
The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100–1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences Novosibirsk, Russia ; Department of Natural Science, Novosibirsk State University Novosibirsk, Russia
| | - Victor G Levitsky
- Department of Natural Science, Novosibirsk State University Novosibirsk, Russia ; Laboratory of Molecular-Genetic Systems, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences Novosibirsk, Russia
| | - Nikolay S Yudin
- Department of Natural Science, Novosibirsk State University Novosibirsk, Russia ; Laboratory of Human Molecular Genetics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences Novosibirsk, Russia
| | - Mikhail P Moshkin
- Department of Natural Science, Novosibirsk State University Novosibirsk, Russia ; Laboratory of Mammalian Ecological Genetics, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Department of Natural Science, Novosibirsk State University Novosibirsk, Russia ; Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences Novosibirsk, Russia ; National Research centre "Kurchatov Institute" Moscow, Russia
| |
Collapse
|
25
|
Lai PC, Guida B, Shi J, Crasto CJ. Preferential binding of an odor within olfactory receptors: a precursor to receptor activation. Chem Senses 2014; 39:107-23. [PMID: 24398973 PMCID: PMC3894857 DOI: 10.1093/chemse/bjt060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using computational methods, which allow mechanistic insights at a molecular level, we explored the olfactory receptor (OR)-odor interactions for 2 mouse ORs, S79 and S86. Both ORs have been previously experimentally, functionally characterized. The odors used were mostly carboxylic acids, which differed in chain length, substituents on the primary carbon atom-chain and degree of unsaturation. These odors elicited varied activation responses from both ORs. Our studies revealed that both receptors have 2 distinct binding sites. Preferential binding in 1 of the 2 sites is correlated with OR activation. The activating odorants: nonanedioic acid, heptanoic acid, and octanoic acid for OR S79 and nonanoic acid for OR S86 preferentially bind in the region bound by transmembranes (TMs [helical domains]) III, IV, V, and VI. The non excitatory odorants heptanol for S79 and heptanoic acid for S86 showed a greater likelihood of binding in the region bound by TMs I, II, III, and VII. Nanosecond-scale molecular dynamics simulations of the physiologically relevant conditions of docked OR-odorant complexes enabled us to quantitatively assess the roles of individual OR amino acids in odor binding. Amino acid-odorant contact maps and distance determinations over the course of the simulations lend support to our conclusions.
Collapse
Affiliation(s)
- Peter C Lai
- Department of Genetics, Division of Research, University of Alabama at Birmingham, 720 20th Street S., Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Pseudogenes are very common in the genomes of a wide range of organisms and, although they were originally considered as genetic junk, now several functions have been attributed to them. One important function of pseudogenes, as discussed in this chapter, is to provide material for genetic diversity. This is most prominent in the case of immunological recognition molecules such as immunoglobulins and B- and T-cell receptors, as well as in the case of antigenic variation in intracellular pathogens. Other examples discussed are olfactory receptors, ribosomal proteins, cytochrome P450s, and pseudokinases.
Collapse
|
27
|
Cleland TA. Construction of Odor Representations by Olfactory Bulb Microcircuits. PROGRESS IN BRAIN RESEARCH 2014; 208:177-203. [DOI: 10.1016/b978-0-444-63350-7.00007-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Serratrice J, Serratrice G. Olfatto e gusto. Neurologia 2013. [DOI: 10.1016/s1634-7072(13)64486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Strotmann R, Schröck K, Böselt I, Stäubert C, Russ A, Schöneberg T. Evolution of GPCR: change and continuity. Mol Cell Endocrinol 2011; 331:170-8. [PMID: 20708652 DOI: 10.1016/j.mce.2010.07.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 06/28/2010] [Accepted: 07/13/2010] [Indexed: 12/26/2022]
Abstract
Once introduced into the very early eukaryotic blueprint, seven-transmembrane receptors soon became the central and versatile components of the evolutionary highly successful G protein-coupled transmembrane signaling mechanism. In contrast to all other components of this signal transduction pathway, G protein-coupled receptors (GPCR) evolved in various structural families, eventually comprising hundreds of members in vertebrate genomes. Their functional diversity is in contrast to the conserved transmembrane core and the invariant set of intracellular signaling mechanisms, and it may be the interplay of these properties that is the key to the evolutionary success of GPCR. The GPCR repertoires retrieved from extant vertebrate genomes are the recent endpoints of this long evolutionary process. But the shaping of the fine structure and the repertoire of GPCR is still ongoing, and signatures of recent selection acting on GPCR genes can be made visible by modern population genetic methods. The very dynamic evolution of GPCR can be analyzed from different perspectives: at the levels of sequence comparisons between species from different families, orders and classes, and at the level of populations within a species. Here, we summarize the main conclusions from studies at these different levels with a specific focus on the more recent evolutionary dynamics of GPCR.
Collapse
Affiliation(s)
- Rainer Strotmann
- Institute of Biochemistry, Medical Faculty, University of Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Odorant Detection and Discrimination in the Olfactory System. LECTURE NOTES IN ELECTRICAL ENGINEERING 2011. [DOI: 10.1007/978-94-007-1324-6_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Abstract
Practitioners of oral medicine frequently encounter patients with complaints of taste disturbance. While some such complaints represent pathological processes specific to the gustatory system, per se, this is rarely the case. Unless taste-bud mediated qualities such as sweet, sour, bitter, salty, umami, chalky, or metallic are involved, 'taste' dysfunction inevitably reflects damage to the sense of smell. Such 'taste' sensations as chicken, chocolate, coffee, raspberry, steak sauce, pizza, and hamburger are dependent upon stimulation of the olfactory receptors via the nasopharynx during deglutition. In this paper, we briefly review the anatomy, physiology, and pathophysiology of the olfactory system, along with means for clinically assessing its function. The prevalence, etiology, and nature of olfactory disorders commonly encountered in the dental clinic are addressed, along with approaches to therapy and patient management.
Collapse
Affiliation(s)
- S M Bromley
- Department of Neurology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Camden, NJ, USA
| | | |
Collapse
|
32
|
Abstract
Is genetic evolution predictable? Evolutionary developmental biologists have argued that, at least for morphological traits, the answer is a resounding yes. Most mutations causing morphological variation are expected to reside in the cis-regulatory, rather than the coding, regions of developmental genes. This "cis-regulatory hypothesis" has recently come under attack. In this review, we first describe and critique the arguments that have been proposed in support of the cis-regulatory hypothesis. We then test the empirical support for the cis-regulatory hypothesis with a comprehensive survey of mutations responsible for phenotypic evolution in multicellular organisms. Cis-regulatory mutations currently represent approximately 22% of 331 identified genetic changes although the number of cis-regulatory changes published annually is rapidly increasing. Above the species level, cis-regulatory mutations altering morphology are more common than coding changes. Also, above the species level cis-regulatory mutations predominate for genes not involved in terminal differentiation. These patterns imply that the simple question "Do coding or cis-regulatory mutations cause more phenotypic evolution?" hides more interesting phenomena. Evolution in different kinds of populations and over different durations may result in selection of different kinds of mutations. Predicting the genetic basis of evolution requires a comprehensive synthesis of molecular developmental biology and population genetics.
Collapse
Affiliation(s)
- David L Stern
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
33
|
Lagerström MC, Schiöth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008; 7:339-57. [PMID: 18382464 DOI: 10.1038/nrd2518] [Citation(s) in RCA: 1086] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane-bound receptors and also the targets of many drugs. Understanding of the functional significance of the wide structural diversity of GPCRs has been aided considerably in recent years by the sequencing of the human genome and by structural studies, and has important implications for the future therapeutic potential of targeting this receptor family. This article aims to provide a comprehensive overview of the five main human GPCR families--Rhodopsin, Secretin, Adhesion, Glutamate and Frizzled/Taste2--with a focus on gene repertoire, general ligand preference, common and unique structural features, and the potential for future drug discovery.
Collapse
Affiliation(s)
- Malin C Lagerström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, BOX 593, 751 24, Uppsala, Sweden
| | | |
Collapse
|
34
|
Schöneberg T, Hermsdorf T, Engemaier E, Engel K, Liebscher I, Thor D, Zierau K, Römpler H, Schulz A. Structural and functional evolution of the P2Y(12)-like receptor group. Purinergic Signal 2007; 3:255-68. [PMID: 18404440 PMCID: PMC2072910 DOI: 10.1007/s11302-007-9064-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/19/2007] [Indexed: 12/11/2022] Open
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mitropoulos C, Papachatzopoulou A, Menounos PG, Kolonelou C, Pappa M, Bertolis G, Gerou S, Patrinos GP. Association Study of HumanVN1R1Pheromone Receptor Gene Alleles and Gender. ACTA ACUST UNITED AC 2007; 11:128-32. [PMID: 17627382 DOI: 10.1089/gte.2006.0516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pheromones are water-soluble chemicals that elicit neuroendocrine and physiological changes, while they also provide information about gender within individuals of the same species. VN1R1 is the only functional pheromone receptor in humans. We have undertaken a large mutation screening approach in 425 adult individuals from the Hellenic population to investigate whether the allelic differences, namely alleles 1a and 1b present in the human VN1R1 gene, are gender specific. Here we show that both VN1R1 1a and 1b alleles are found in chromosomes of both male and female subjects at frequency of 26.35% and 73.65%, respectively. Given the fact that those allelic differences potentially cause minor changes in the protein conformation and its transmembrane domains, as simulated by the TMHMM software, our data suggest that the allelic differences in the human VN1R1 gene are unlikely to be associated with gender and hence to contribute to distinct gender-specific behavior.
Collapse
|
36
|
Heckmann M, Kütt S, Dittmar S, Hamm H. Making scents: improvement of olfactory profile after botulinum toxin-A treatment in healthy individuals. Dermatol Surg 2007; 33:S81-7. [PMID: 17241419 DOI: 10.1111/j.1524-4725.2006.32336.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The axilla is particularly associated with body odor and putative pheromone production in humans. Although botulinum toxin type A (BT-A) is injected increasingly into the axillary skin to stop excessive sweating, its potential to control body odor is largely unexplored. OBJECTIVE The objective was to measure the impact of BT-A on human axillary odor in an objective and reproducible fashion. METHODS This study was a randomized, double-blind, placebo-controlled trial with 51 healthy volunteers receiving 50 U of BOTOX (Allergan, Inc.) in one axilla and placebo in the other. Odor quality was assessed by treated subjects (questionnaire) as well as by independent raters who were exposed to blinded T-shirt samples. RESULTS No major side effects occurred, and no subject withdrew from the study for medical reasons. Samples from the BT-A-treated side smelled less intense (p<.001) and better (p<.001) according to self-assessments. Likewise, independent raters found the BT-A-treated samples to smell less intense and better (p<.001). They preferred "to work together with the respective person" and found the odor "more erotic" (p<.001). CONCLUSION Side-by-side comparison of odor samples (T-shirt sniff test) by independent raters showed that axillary odor in healthy individuals is significantly more appealing after BT-A injection.
Collapse
|
37
|
Young KWH, Danielewska-Nikiel B, Munro IC. An evaluation of the maximized survey-derived daily intake (MSDI) as a practical method to estimate intake of flavouring substances. Food Chem Toxicol 2006; 44:1849-67. [PMID: 16905233 DOI: 10.1016/j.fct.2006.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/25/2006] [Accepted: 06/06/2006] [Indexed: 11/30/2022]
Abstract
Realistic estimates of intake are essential for risk assessments of flavouring agents, since substantial over or underestimations introduce inaccuracies into such evaluations. The objectives of this study were to examine the relationship between intakes estimated using methods based on the reported volume of production [e.g., maximized survey-derived daily intake (MSDI)] versus use-level data [e.g., possible average daily intake (PADI) and modified theoretical added maximum daily intake (mTAMDI)]. The impact of volatility, self-limiting organoleptic properties and whether 10% of the population are eaters, an assumption in the MSDI calculation, on intake estimates were investigated. Analyses on 221 flavouring substances showed that intake estimates derived from MSDI correlated with values determined from detailed 14-day menu-census data, PADI, and mTAMDI. Comparisons of menu-census intake data adjusted to account for factors such as volatile losses showed that MSDI estimates are realistic and sufficiently conservative, whereas mTAMDI results in substantial overestimates of intake. Very few flavours have less than 10% eaters, and in the worst case, this assumption underestimates percent eaters by a factor of about 4. This investigation supports the use of MSDI as a conservative yet practical method to estimate intake of flavouring substances.
Collapse
Affiliation(s)
- Karen W H Young
- CANTOX Health Sciences International, 2233 Argentia Road, Suite 308, Mississauga, Ont., Canada L5N 2X7.
| | | | | |
Collapse
|
38
|
Pernollet JC, Sanz G, Briand L. Les récepteurs des molécules odorantes et le codage olfactif. C R Biol 2006; 329:679-90. [PMID: 16945834 DOI: 10.1016/j.crvi.2006.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 06/01/2006] [Indexed: 11/21/2022]
Abstract
The first step of olfactory detection involves interactions between odorant molecules and neuronal protein receptors. Odour coding results from the combinatory activation of a set of receptors and rests on their clonal expression and olfactory neurone connexion, which lead to formation of a specific sensory map in the cortex. This system, sufficient to discriminate myriads of odorants with a mere 350 different receptors, allows humans to smell molecules that are not natural (new cooking flavours, synthetic chemicals...). The extreme olfactory genome diversity explains the absence of odour semantics. Olfactory receptors are also involved in cellular chemotaxis.
Collapse
Affiliation(s)
- Jean-Claude Pernollet
- Biochimie de l'Olfaction et de la Gustation, UMR de Neurobiologie de l'Olfaction et de la Prise Alimentaire, Inra, Jouy-en-Josas, France.
| | | | | |
Collapse
|
39
|
Harkema JR, Carey SA, Wagner JG. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol Pathol 2006; 34:252-69. [PMID: 16698724 DOI: 10.1080/01926230600713475] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nose is a very complex organ with multiple functions that include not only olfaction, but also the conditioning (e.g., humidifying, warming, and filtering) of inhaled air. The nose is also a "scrubbing tower" that removes inhaled chemicals that may be harmful to the more sensitive tissues in the lower tracheobronchial airways and pulmonary parenchyma. Because the nasal airway may also be a prime target for many inhaled toxicants, it is important to understand the comparative aspects of nasal structure and function among laboratory animals commonly used in inhalation toxicology studies, and how nasal tissues and cells in these mammalian species may respond to inhaled toxicants. The surface epithelium lining the nasal passages is often the first tissue in the nose to be directly injured by inhaled toxicants. Five morphologically and functionally distinct epithelia line the mammalian nasal passages--olfactory, respiratory, squamous, transitional, and lymphoepithelial--and each nasal epithelium may be injured by an inhaled toxicant. Toxicant-induced epithelial lesions in the nasal passages of laboratory animals (and humans) are often site-specific and dependent on the intranasal regional dose of the inhaled chemical and the sensitivity of the nasal epithelial tissue to the specific chemical. In this brief review, we present examples of nonneoplastic epithelial lesions (e.g., cell death, hyperplasia, metaplasia) caused by single or repeated exposure to various inhaled chemical toxicants. In addition, we provide examples of how nasal maps may be used to record the character, magnitude and distribution of toxicant-induced epithelial injury in the nasal airways of laboratory animals. Intranasal mapping of nasal histopathology (or molecular and biochemical alterations to the nasal mucosa) may be used along with innovative dosimetric models to determine dose/response relationships and to understand if site-specific lesions are driven primarily by airflow, by tissue sensitivity, or by another mechanism of toxicity. The present review provides a brief overview of comparative nasal structure, function and toxicologic pathology of the mammalian nasal epithelium and a brief discussion on how data from animal toxicology studies have been used to estimate the risk of inhaled chemicals to human health.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
40
|
Feldmesser E, Olender T, Khen M, Yanai I, Ophir R, Lancet D. Widespread ectopic expression of olfactory receptor genes. BMC Genomics 2006; 7:121. [PMID: 16716209 PMCID: PMC1508154 DOI: 10.1186/1471-2164-7-121] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 05/22/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. RESULTS We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. CONCLUSION The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.
Collapse
Affiliation(s)
- Ester Feldmesser
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Khen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itai Yanai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- Present address: Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ron Ophir
- Department of Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
41
|
Elsaesser R, Paysan J. Morituri te salutant? Olfactory signal transduction and the role of phosphoinositides. ACTA ACUST UNITED AC 2006; 34:97-116. [PMID: 16374712 DOI: 10.1007/s11068-005-5050-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/11/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
During the past 150 years, researchers have investigated the cellular, physiological, and molecular mechanisms underlying the sense of smell. Based on these efforts, a conclusive model of olfactory signal transduction in the vertebrate's nose is now available, spanning from G-protein-mediated odorant receptors to ion channels, which are linked by a cyclic adenosine 3',5'-monophosphate-mediated signal transduction cascade. Here we review some historical milestones in the chronology of olfactory research, particularly emphasising the role of cyclic nucleotides and inositol trisphosphate as alternative second messengers in olfactory cells. We will describe the functional anatomy of the nose, outline the cellular composition of the olfactory epithelium, and describe the discovery of the molecular backbone of the olfactory signal transduction cascade. We then summarize our current model, in which cyclic adenosine monophosphate is the sole excitatory second messenger in olfactory sensory neurons. Finally, a possible significance of microvillous olfactory epithelial cells and inositol trisphosphate in olfaction will be discussed.
Collapse
Affiliation(s)
- Rebecca Elsaesser
- School of Medicine, Johns Hopkins University, 725 N. Wolfe St., 408 WBSB, Baltimore, MD 21205, USA
| | | |
Collapse
|
42
|
Whitley M, Treloar H, De Arcangelis A, Georges Labouesse E, Greer CA. The alpha6 integrin subunit in the developing mouse olfactory bulb. ACTA ACUST UNITED AC 2006; 34:81-96. [PMID: 16374711 DOI: 10.1007/s11068-005-5049-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Integrins are heterodimeric cell surface receptors that mediate developmental events by binding extracellular matrix ligands. Several lines of evidence suggest a role for integrins, specifically the alpha 6 subunit, in neuronal migration, neurite outgrowth, and axon guidance during olfactory development. Therefore, we undertook an analysis of the expression of the alpha 6 subunit in the olfactory system of the embryonic and early postnatal mouse to understand the role it may play during neural development. In addition, as a functional assay we examined the developmental effects of the loss of this subunit on olfactory development by analyzing an alpha 6 knockout (alpha 6-/-). Immunohistochemical analyses and confocal microscopy were used to examine alpha 6 expression in the CD-1 embryonic and early postnatal olfactory system and also to examine the organization of the olfactory system in the alpha 6-/- mouse. In CD-1 mice from E13 to E17, alpha 6 localizes in radial patterns extending from the core of the olfactory bulb to the nerve layer and colocalizes with RC2, an antibody specific for radial glia. By the day of birth (P0; approximately E19), expression is limited to the external plexiform layer and the olfactory nerve layer, where it colocalizes with laminin and p75. In the alpha 6-/- mouse, areas of ectopic granule cells were observed in the mitral cell layer of the olfactory bulb. These ectopias coincided with areas of disorganization of the radial glial processes and breaks in the mitral cell layer. These observations suggest a role for alpha 6 integrin in neural migration during olfactory development, likely secondary to organization of the radial glial scaffold.
Collapse
Affiliation(s)
- Matthew Whitley
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
43
|
Grossmann N, Brin I, Aizenbud D, Sichel JY, Gross-Isseroff R, Steiner J. Nasal airflow and olfactory function after the repair of cleft palate (with and without cleft lip). ACTA ACUST UNITED AC 2005; 100:539-44. [PMID: 16243237 DOI: 10.1016/j.tripleo.2005.02.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 01/10/2005] [Accepted: 02/24/2005] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The objective of this study was to examine nasal airflow and olfactory functions in patients with repaired cleft palate compared with matching normal controls. STUDY DESIGN The all-cleft group consisted of 25 patients with hard palate cleft comprising 15 patients with unilateral cleft palate and lip (UCLP); 2 with CP but no cleft lip (UCLP subgroup) and 8 patients with bilateral cleft lip and palate (BCLP subgroup). All had had surgical correction of the palate in infancy. The control group consisted of 20 nonaffected orthodontic patients. The median age of both groups was 14 years. The tests included the following: (1) nasal airflow measured by anterior rhinomanometry, (2) smell threshold for isoamyl-acetate determined using a 3-way forced choice method, (3) a self-administered questionnaire regarding the subjective perception of smell sense function, and (4) orthonasal and retronasal smell identification (correct/incorrect) and hedonics using visual analog scale (VAS). RESULTS The respective test results follow. (1) When compared with the control group, the total airflow in the UCLP subgroup was significantly lower especially on the affected side; while in the BCLP subgroup it was lower than in the control group bilaterally. No significant difference was found between the cleft side of UCLP and BCLP subgroups. (2) The smell threshold of the UCLP subgroup was significantly higher than that of the control group and BCLP subgroup. No significant differences were found between right and left nostrils within the BCLP patients and between them and the control group. (3) No difference was found between the groups regarding the subjective perception of smell. (4) No significant differences were found between the UCLP and BCLP subgroups and between the all-cleft group and the control group, except for one item, regarding orthonasal and retronasal smell identification and hedonics. CONCLUSION Although nasal airflow is significantly lower and the smell threshold higher on the cleft side, the day-to-day function of the sense of smell of cleft patients is similar to that of normal controls.
Collapse
Affiliation(s)
- Noam Grossmann
- Department of Orthodontics, Hebrew University-Hadassah SDM, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
44
|
Römpler H, Schulz A, Pitra C, Coop G, Przeworski M, Pääbo S, Schöneberg T. The Rise and Fall of the Chemoattractant Receptor GPR33. J Biol Chem 2005; 280:31068-75. [PMID: 15987686 DOI: 10.1074/jbc.m503586200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chemokine and chemoattractant receptors are members of the large superfamily of G protein-coupled receptors (GPCR), which control leukocyte chemotaxis. In addition to their physiological role, several chemokine and chemoattractant receptors, such as CCR5 and Duffy, have been directly associated with pathogen entry. GPR33 is an orphan chemoattractant GPCR that was previously identified as a pseudogene in humans. GPR33 evolved in mammals about 125-190 million years ago. The cloning and analysis of more than 120 mammalian GPR33 orthologs from 16 of 18 eutherian orders revealed an inactivation of this chemoattractant GPCR not only in humans, but also in several great ape and rodent species. Intriguingly, in all ape and some rodent species where the inactivation occurred, samples harbored both pseudogene and intact gene variants. The analysis of over 1200 human individuals representing all major linguistic groups revealed that the intact allele of GPR33 is still present in the human population. Estimates of the age of the human alleles suggest inactivation in the past 1 million years. Similarly, analysis of more than 120 wild-caught gray rats (Rattus norvegicus), revealed that inactivation of gpr33 is worldwide fixed and occurred in less than 0.7 million years ago. The coincidental inactivation and its fixation in several species of distantly related mammalian orders suggest a selective pressure on this chemoattractant receptor gene.
Collapse
Affiliation(s)
- Holger Römpler
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Hypothalamic gonadotropin releasing hormone (GnRH I) and its pituitary receptor are responsible for the CNS regulation of reproduction. However, a second GnRH (GnRH II) is also expressed in humans and a gene that resembles the GnRH II receptor in fish has been identified in humans and monkeys. The amino-acid sequence of this newly identified, seven-transmembrane, G-protein-coupled receptor in monkeys differs from the human GnRH I receptor by having a C-terminal, cytoplasmic tail. GnRH II is approximately 400-fold more potent at GnRH II receptors than GnRH I receptors. GnRH I directly inhibits proliferation of human tumor cells, and GnRH II and its receptor might have a similar role. Limited progress has been made, however, because of difficulty translating the mRNA that encodes the human GnRH II receptor. Nevertheless, such receptors are likely to exist in humans because GnRH II is more inhibitory to tumor cell replication than GnRH I, and GnRH I and GnRH II have reciprocal effects on human decidual stromal cells in culture. The focus of this review is the identity of a possible translatable, functional GnRH II receptor in humans. The two possibilities considered are either that GnRH II receptor mRNA is expressed that encodes either 5 or 7 transmembrane domains or that a GnRH II-responsive complex is formed by the GnRH I receptor and fragments derived from the GnRH II receptor.
Collapse
Affiliation(s)
- Jimmy D Neill
- University of Alabama School of Medicine, Department of Physiology and Biophysics, MCLM 816, 1918 University Boulevard, Birmingham, AL 35294-0005, USA.
| | | | | |
Collapse
|
46
|
Zhang X, Rogers M, Tian H, Zhang X, Zou DJ, Liu J, Ma M, Shepherd GM, Firestein SJ. High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proc Natl Acad Sci U S A 2004; 101:14168-73. [PMID: 15377787 PMCID: PMC521132 DOI: 10.1073/pnas.0405350101] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The large number of olfactory receptor genes necessitates high throughput methods to analyze their expression patterns. We have therefore designed a high-density oligonucleotide array containing all known mouse olfactory receptor (OR) and V1R vomeronasal receptor genes. This custom array detected a large number of receptor genes, demonstrating specific expression in the olfactory sensory epithelium for approximately 800 OR genes previously designated as ORs based solely on genomic sequences. The array also enabled us to monitor the spatial and temporal distribution of gene expression for the entire OR family. Interestingly, OR genes showing spatially segregated expression patterns were also segregated on the chromosomes. This correlation between genomic location and spatial expression provides unique insights about the regulation of this large family of genes.
Collapse
Affiliation(s)
- Xinmin Zhang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Restrepo D, Arellano J, Oliva AM, Schaefer ML, Lin W. Emerging views on the distinct but related roles of the main and accessory olfactory systems in responsiveness to chemosensory signals in mice. Horm Behav 2004; 46:247-56. [PMID: 15325226 DOI: 10.1016/j.yhbeh.2004.02.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 02/17/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
In rodents, the nasal cavity contains two separate chemosensory epithelia, the main olfactory epithelium, located in the posterior dorsal aspect of the nasal cavity, and the vomeronasal/accessory olfactory epithelium, located in a capsule in the anterior aspect of the ventral floor of the nasal cavity. Both the main and accessory olfactory systems play a role in detection of biologically relevant odors. The accessory olfactory system has been implicated in response to pheromones, while the main olfactory system is thought to be a general molecular analyzer capable of detecting subtle differences in molecular structure of volatile odorants. However, the role of the two systems in detection of biologically relevant chemical signals appears to be partially overlapping. Thus, while it is clear that the accessory olfactory system is responsive to putative pheromones, the main olfactory system can also respond to some pheromones. Conversely, while the main olfactory system can mediate recognition of differences in genetic makeup by smell, the vomeronasal organ (VNO) also appears to participate in recognition of chemosensory differences between genetically distinct individuals. The most salient feature of our review of the literature is that there are no general rules that allow classification of the accessory olfactory system as a pheromone detector and the main olfactory system as a detector of general odorants. Instead, each behavior must be considered within a specific behavioral context to determine the role of these two chemosensory systems. In each case, one system or the other (or both) participates in a specific behavioral or hormonal response.
Collapse
Affiliation(s)
- Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program and Rocky Mountain Taste and Smell Center, School of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | | | | | |
Collapse
|
48
|
Weigle B, Fuessel S, Ebner R, Temme A, Schmitz M, Schwind S, Kiessling A, Rieger MA, Meye A, Bachmann M, Wirth MP, Rieber EP. D-GPCR: a novel putative G protein-coupled receptor overexpressed in prostate cancer and prostate. Biochem Biophys Res Commun 2004; 322:239-49. [PMID: 15313197 DOI: 10.1016/j.bbrc.2004.07.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Indexed: 12/01/2022]
Abstract
The use of molecular targets in novel strategies of tumor treatment largely depends on the identification of proteins with a tumor- or tissue-restricted expression. We identified the novel protein D-GPCR that is selectively overexpressed in human prostate cancer and prostate and belongs to the subfamily of odorant-like orphan G protein-coupled receptors. Quantification of D-GPCR transcripts in different human tissues by real-time PCR demonstrated 27-fold overexpression in prostate compared to skeletal muscle, the organ with second highest transcript numbers in males. Investigation of tumor/normal cDNA pairs obtained from 241 cancer patients including four prostate tumors confirmed the preferential expression in prostate. When comparing the mean transcript level of 15 prostate cancer tissues to their non-tumorous counterparts, D-GPCR was almost 6-fold upregulated. Coupled in vitro transcription and translation of D-GPCR cDNA produced a protein band of approximately 28 kDa. Recombinant, His-tagged protein was expressed in transfected HEK293 cells and gave rise to a 30 kDa band specifically detected by anti-His antibody. These data provide the basis for future studies evaluating the diagnostic potential of D-GPCR and its utility as a novel target in immunotherapy of prostate cancer.
Collapse
Affiliation(s)
- Bernd Weigle
- Institute of Immunology, Medical Faculty, Technical University of Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Peter Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
50
|
Olender T, Fuchs T, Linhart C, Shamir R, Adams M, Kalush F, Khen M, Lancet D. The canine olfactory subgenome. Genomics 2004; 83:361-72. [PMID: 14962662 DOI: 10.1016/j.ygeno.2003.08.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 08/06/2003] [Accepted: 08/11/2003] [Indexed: 10/26/2022]
Abstract
We identified 971 olfactory receptor (OR) genes in the dog genome, estimated to constitute approximately 80% of the canine OR repertoire. This was achieved by directed genomic DNA cloning of olfactory sequence tags as well as by mining the Celera canine genome sequences. The dog OR subgenome is estimated to have 12% pseudogenes, suggesting a functional repertoire similar to that of mouse and considerably larger than for humans. No novel OR families were discovered, but as many as 34 gene subfamilies were unique to the dog. "Fish-like" Class I ancient ORs constituted 18% of the repertoire, significantly more than in human and mouse. A set of 122 dog-human-mouse ortholog triplets was identified, with a relatively high fraction of Class I ORs. The elucidation of a large portion of the canine olfactory receptor gene superfamily, with some dog-specific attributes, may help us understand the unique chemosensory capacities of this species.
Collapse
Affiliation(s)
- Tsviya Olender
- Department of Molecular Genetics and the Crown Human Genome Center, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|