1
|
Sierro-Martínez B, Escamilla-Gómez V, Pérez-Ortega L, Guijarro-Albaladejo B, Hernández-Díaz P, de la Rosa-Garrido M, Lara-Chica M, Rodríguez-Gil A, Reguera-Ortega JL, Sanoja-Flores L, Arribas-Arribas B, Montiel-Aguilera MÁ, Carmona G, Robles MJ, Caballero-Velázquez T, Briones J, Einsele H, Hudecek M, Pérez-Simón JA, García-Guerrero E. Next-generation BCMA-targeted chimeric antigen receptor CARTemis-1: the impact of manufacturing procedure on CAR T-cell features. Cell Oncol (Dordr) 2025; 48:219-237. [PMID: 39192092 PMCID: PMC11850460 DOI: 10.1007/s13402-024-00984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
PURPOSE CAR therapy targeting BCMA is under investigation as treatment for multiple myeloma. However, given the lack of plateau in most studies, pursuing more effective alternatives is imperative. We present the preclinical and clinical validation of a new optimized anti-BCMA CAR (CARTemis-1). In addition, we explored how the manufacturing process could impact CAR-T cell product quality and fitness. METHODS CARTemis-1 optimizations were evaluated at the preclinical level both, in vitro and in vivo. CARTemis-1 generation was validated under GMP conditions, studying the dynamics of the immunophenotype from leukapheresis to final product. Here, we studied the impact of the manufacturing process on CAR-T cells to define optimal cell culture protocol and expansion time to increase product fitness. RESULTS Two different versions of CARTemis-1 with different spacers were compared. The longer version showed increased cytotoxicity. The incorporation of the safety-gene EGFRt into the CARTemis-1 structure can be used as a monitoring marker. CARTemis-1 showed no inhibition by soluble BCMA and presents potent antitumor effects both in vitro and in vivo. Expansion with IL-2 or IL-7/IL-15 was compared, revealing greater proliferation, less differentiation, and less exhaustion with IL-7/IL-15. Three consecutive batches of CARTemis-1 were produced under GMP guidelines meeting all the required specifications. CARTemis-1 cells manufactured under GMP conditions showed increased memory subpopulations, reduced exhaustion markers and selective antitumor efficacy against MM cell lines and primary myeloma cells. The optimal release time points for obtaining the best fit product were > 6 and < 10 days (days 8-10). CONCLUSIONS CARTemis-1 has been rationally designed to increase antitumor efficacy, overcome sBCMA inhibition, and incorporate the expression of a safety-gene. The generation of CARTemis-1 was successfully validated under GMP standards. A phase I/II clinical trial for patients with multiple myeloma will be conducted (EuCT number 2022-503063-15-00).
Collapse
Affiliation(s)
- Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Virginia Escamilla-Gómez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Laura Pérez-Ortega
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Beatriz Guijarro-Albaladejo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Paola Hernández-Díaz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María de la Rosa-Garrido
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Maribel Lara-Chica
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Juan Luis Reguera-Ortega
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Luzalba Sanoja-Flores
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Blanca Arribas-Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
- Programa doctorado Tecnología y Ciencias del Medicamento, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Miguel Ángel Montiel-Aguilera
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
| | - Gloria Carmona
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
| | - Maria Jose Robles
- Unidad de Patología Comparada, Biobanco Virgen del Rocío-IBiS, Unidad de Gestión Clínica de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Teresa Caballero-Velázquez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Javier Briones
- Servicio de Hematología, Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Hermann Einsele
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jose Antonio Pérez-Simón
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| | - Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
2
|
Zhang Q, Yang Z, Ou X, Zhang M, Qin X, Wu G. The role of immunity in insulin resistance in patients with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2025; 15:1464561. [PMID: 39911236 PMCID: PMC11797073 DOI: 10.3389/fendo.2024.1464561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent disorder of the endocrine system with significant clinical implications, often leading to health complications related to adipose tissue accumulation, including obesity, insulin resistance (IR), metabolic syndrome, and type 2 diabetes mellitus. While the precise pathogenesis of PCOS remains unclear, it is now recognized that genetic, endocrine, and metabolic dysregulations all contribute significantly to its onset. The immunopathogenesis of PCOS has not been extensively explored, but there is growing speculation that immune system abnormalities may play a pivotal role. This chronic inflammatory state is exacerbated by factors such as obesity and hyperinsulinemia. Therefore, this review aims to elucidate the interplay between IR in PCOS patients, the controlled immune response orchestrated by immune cells and immunomodulatory molecules, and their interactions with adipocytes, hyperandrogenemia, chronic inflammation, and metabolic homeostasis.
Collapse
Affiliation(s)
- Qixuan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhe Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyang Ou
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengying Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyu Qin
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gengxiang Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Roy T, Bernstein L, Keplinger HK, Fisk K, Ng SK, Denton SL, Gigley JP. CD4 Co-Receptor Regulates Sex-Specific NK Cell Responses to Acute Toxoplasma gondii Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627254. [PMID: 39713357 PMCID: PMC11661116 DOI: 10.1101/2024.12.06.627254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Immunity to Toxoplasma gondii ( T. gondii ) is sexually dimorphic in humans and mice, with females having higher morbidity and mortality during immune dysfunction and HIV-AIDS. The mechanisms underlying these sex differences are unclear. We investigated how a lack of CD4+ T cells (CD4 co-receptor KO) impacted T. gondii survival in mice. Female CD4 co-receptor KO mice succumbed to T. gondii much faster than males. To dissect why female CD4 co-receptor KO mice died faster, we tested their NK cell responses to acute T. gondii infection compared to males. Although in wild-type (WT) animals, both sexes had similar increases in total NK cells and IFNγ + NK cells, infected CD4 co-receptor KO female mice had 50% fewer IFNγ+ NK cells than infected WT female mice. Infected male CD4 co-receptor KO had a similar increase in IFNγ+ NK cells as WT male mice. Since CD4 co-receptor deficient mice still have functional helper T cells that are CD4-, we next tested survival and NK cell responses in female and male MHCII deficient (MHCIIKO) animals, which completely lack helper CD4+T cells. Surprisingly, survival, NK cell numbers, and IFNγ+ NK cells were not significantly different between WT or MHCIIKO female and male mice. These results suggest CD4 co-receptor expression is required for survival via optimal NK cell responses during acute T. gondii infection only in female mice and not in male mice. Our findings reveal an unappreciated sexual dimorphic role of CD4 co-receptor expression in regulating NK cell responses to acute T. gondii infection.
Collapse
|
4
|
Lv R, Wang D, Wang T, Li R, Zhuang A. Causality between gut microbiota, immune cells, and breast cancer: Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e40815. [PMID: 39654239 PMCID: PMC11630993 DOI: 10.1097/md.0000000000040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
The association between gut microbiota (GM) and breast cancer (BC) has been studied. Nevertheless, the causal relationship between them and the potential mediating factors have not been clearly defined. Therefore, in this study, Mendelian randomization analysis (MR) was employed to explore the causal relationship between 473 GM and BC, as well as the mediating effect of potential immune cells. In this investigation, we availed ourselves of the publicly accessible summary statistics from the genome-wide association study to undertake two-sample and reverse Mendelian randomization analyses on GM and BC, with the intention of clarifying the causal association between GM and BC. Subsequently, through the application of the two-step Mendelian randomization analysis, it was revealed that the relationship between GM and BC was mediated by immune cells. The stability of the research outcomes was verified via sensitivity analysis. Mendelian randomization analysis elucidated the protective impacts of 8 genera on BC (such as Phylum Actinobacteriota, Species Bacteroides A plebeius A, Species Bifidobacterium adolescentis, Species CAG-841 sp002479075, Family Fibrobacteraceae, Order Fibrobacterales, Class Fibrobacteria, and Species Phascolarctobacterium sp003150755). Additionally, there are 23 immune cell traits related to BC. Our research findings showed that the species Megamonas funiformis was associated with an increased risk of BC, and 11.20% of this effect was mediated by CD38 on IgD+ CD24-. Likewise, HLA DR on CD33br HLA DR+ CD14- mediated the causal relationship between Species Prevotellamassilia and BC, having a mediating ratio of 7.89%. This study clarifies a potential causal relationship between GM, immune cells, and BC and provides genetic evidence for this causal connection. It offers research directions for the subsequent prevention and treatment of BC through the interaction between GM and immune cells, and provides a reference for future mechanistic and clinical studies in this field.
Collapse
Affiliation(s)
- Rui Lv
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danyan Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhuji Second People’s Hospital, Zhuji, China
| | - Tengyue Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongqun Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Zhuang
- Institute of TCM Literature and Information, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
5
|
Jiang X, Wang X, Gao M, Li X, Ding Y, Song Y, Xiao H, Kong X. Molecular cloning, expression analysis, and functional characterization of an interleukin-15 like gene in common carp ( Cyprinus carpio L.). Front Immunol 2024; 15:1502847. [PMID: 39628491 PMCID: PMC11611867 DOI: 10.3389/fimmu.2024.1502847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Interleukin-15 (IL-15) is a crucial cytokine involved in immune system regulation, which is produced by various cell types, including dendritic cells, monocytes, and macrophages. IL-15 plays a key role in the proliferation and activation of natural killer (NK) cells, CD8+ T cells, and memory CD8+ T cells, supporting their survival and enhancing their effector functions. Although IL-15 homologues in fish have been identified, their functions remain poorly understood. In this study, we cloned and investigated the bioactivities of an IL-15 homologue, referred to as IL-15 like (CcIL-15L), in common carp (Cyprinus carpio L.). An expression pattern analysis revealed that CcIL-15L was constitutively expressed in all examined tissues of healthy common carp, with the highest expression level observed in the intestine. Additionally, CcIL-15L expression was significantly up-regulated in the head kidney, spleen, gills, and intestine following Aeromonas hydrophila infection. In vitro, the recombinant protein CcIL-15L can significantly up-regulated the gene expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ, and TNF-α) and NK cell activation (perforin and Eomesa). We constructed a 3×FLAG eukaryotic expression vector and successfully expressed it in common carp by intramuscular injection. Additionally, the heterologous CcIL-15L protein was successfully overexpressed in vivo, and immune-related genes including CD4-1, CD8β2, TNF-α, and IgM showed significant induction in the head kidney and spleen. Furthermore, CcIL-15L overexpression reduced the bacterial loads after 24 h post-A. hydrophila infection in the liver, spleen, and kidney. Phagocytic and chemotaxis assays showed that rCcIL-15L could promoted the phagocytosis and chemotactic abilities of common carp HKLs. Our study provides a new perspective on the role for CcIL-15L in immunological functions in common carp.
Collapse
Affiliation(s)
- Xinyu Jiang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
- Hangzhou Xiaoshan Donghai Aquaculture Co., Ltd, Hangzhou, Zhejiang, China
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xiaoyu Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Mengjie Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Xudong Li
- Fishery Technology Extension Station of Henan Province, Zhengzhou, Henan, China
| | - Yi Ding
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Yunjie Song
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Hehe Xiao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
6
|
Rahman MA, Bissa M, Scinto H, Howe SE, Sarkis S, Ma ZM, Gutowska A, Jiang X, Luo CC, Schifanella L, Moles R, Silva de Castro I, Basu S, N'guessan KF, Williams LD, Becerra-Flores M, Doster MN, Hoang T, Choo-Wosoba H, Woode E, Sui Y, Tomaras GD, Paquin-Proulx D, Rao M, Talton JD, Kong XP, Zolla-Pazner S, Cardozo T, Franchini G, Berzofsky JA. Loss of HIV candidate vaccine efficacy in male macaques by mucosal nanoparticle immunization rescued by V2-specific response. Nat Commun 2024; 15:9102. [PMID: 39438480 PMCID: PMC11496677 DOI: 10.1038/s41467-024-53359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Systemic vaccination of macaques with V1-deleted (ΔV1) envelope immunogens reduce the risk of SIVmac251 acquisition by approximately 60%, with protective roles played by V2-specific ADCC and envelope-specific mucosal IL-17+NKp44+ innate lymphoid cells (ILCs). We investigated whether increased mucosal responses to V2 benefit vaccine efficacy by delivering oral nanoparticles (NPs) that release V2-scaffolded on Typhoid Toxin B (TTB) to the large intestine. Strikingly, mucosal immunization of male macaques abrogated vaccine efficacy with control TTB or empty NPs, but vaccine efficacy of up to 47.6% was preserved with V2-TTB NPs. The deleterious effects of NPs were linked to preferential recruitment of mucosal plasmacytoid dendritic cells (pDCs), reduction of protective mucosal NKp44+ ILCs, increased non-protective mucosal PMA/Ionomycin-induced IFN-γ+NKG2A-NKp44-ILCs, and increased levels of mucosal activated Ki67+CD4+ T cells, a potential target for virus infection. V2-TTB NP mucosal boosting rescued vaccine efficacy, likely via high avidity V2-specific antibodies mediating ADCC, and higher frequencies of mucosal NKp44+ ILCs and of ∆V1gp120 binding antibody-secreting B cells in the rectal mucosa. These findings emphasize the central role of systemic immunization and mucosal V2-specific antibodies in the protection afforded by ΔV1 envelope immunogens and encourage careful evaluation of vaccine delivery platforms to avoid inducing immune responses favorable to HIV transmission.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Scinto
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Savannah E Howe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhong-Min Ma
- California National Primate Research Center, University of California, Davis, Davis, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shraddha Basu
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kombo F N'guessan
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - LaTonya D Williams
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Office of Collaborative Biostatistics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Emmanuel Woode
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mangala Rao
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Timothy Cardozo
- New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Belli S, Amann M, Hutchinson L, Pousse L, Abdolzade-Bavil A, Justies N, Jacobsen B, Ploix C, Tselempi E, Tosevski V, Koll H, Schnetzler G, Boetsch C, Marrer-Berger E. Optimizing Early Clinical Investigations in Cancer Immunotherapy: The Translational Journey of RG6292, a Novel, Selective Treg-Depleting Antibody. Clin Pharmacol Ther 2024; 116:834-846. [PMID: 38769868 DOI: 10.1002/cpt.3303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The multifaceted IL-2/IL-2R biology and its modulation by promising therapeutic agents are highly relevant topics in the cancer immunotherapy field. A novel CD25-Treg-depleting antibody (Vopikitug, RG6292) has been engineered to preserve IL-2 signaling on effector T cells to enhance effector activation and antitumor immunity, and is currently being evaluated in the clinic. The Entry into Human-enabling framework described here investigated the characteristics of RG6292, from in vitro quantification of CD25 and RG6292 pharmacology using human tissues to in vivo assessment of PK/PD/safety relationships in cynomolgus monkeys as non-human primate species (NHP). Fundamental knowledge on CD25 and Treg biology in healthy and diseased tissues across NHP and human highlighted the commonalities between these species in regard to the target biology and demonstrated the conservation of RG6292 properties between NHP and human. The integration of in vitro and in vivo PK/PD/safety data from these species enabled the identification of human relevant safety risks, the selection of the most appropriate safe starting dose and the projection of the pharmacologically-relevant dose range. The first clinical data obtained for RG6292 in patients verified the appropriateness of the described approaches as well as validated the full clinical relevance of the projected safety, PK, and PD profiles from animal to man. This work shows how the integration of mechanistic non-clinical data increases the predictive value for human, allowing efficient transition of drug candidates and optimizations of early clinical investigations.
Collapse
Affiliation(s)
- Sara Belli
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Lucy Hutchinson
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Laurène Pousse
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Afsaneh Abdolzade-Bavil
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Development (pRED), Penzberg, Germany
| | - Nicole Justies
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Bjoern Jacobsen
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Corinne Ploix
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Eleni Tselempi
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Vinko Tosevski
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Hans Koll
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Development (pRED), Penzberg, Germany
| | - Gabriel Schnetzler
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Christophe Boetsch
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| | - Estelle Marrer-Berger
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Development (pRED), Basel, Switzerland
| |
Collapse
|
9
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
10
|
Chen S, Li Z, Feng J, Quan Y, He J, Hao J, Dong Z. Dual Activity of Type III PI3K Kinase Vps34 is Critical for NK Cell Development and Senescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309315. [PMID: 38544346 PMCID: PMC11151045 DOI: 10.1002/advs.202309315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/05/2024] [Indexed: 06/06/2024]
Abstract
Vps34 is the unique member of the class III phosphoinositide 3-kinase family that performs both vesicular transport and autophagy. Its role in natural killer (NK) cells remains uncertain. In this study, a model without Vps34 (Vps34fl/fl/CD122Cre/+) is generated, deleting Vps34 during and after NK-cell commitment. These mice exhibit a nearly 90% decrease in NK cell count and impaired differentiation. A mechanistic study reveals that the absence of Vps34 disrupts the transport of IL-15 receptor subunit alpha CD122 to the cell membrane, resulting in reduced responsiveness of NK cells to IL-15. In mice lacking Vps34 at the terminal stage of NK-cell development (Vps34fl/fl/Ncr1Cre/+), NK cells gradually diminish during aging. This phenotype is associated with autophagy deficiency and the stress induced by reactive oxygen species (ROS). Therefore, terminally differentiated NK cells lacking Vps34 display an accelerated senescence phenotype, while the application of antioxidants effectively reverses the senescence caused by Vps34 deletion by neutralizing ROS. In summary, this study unveils the dual and unique activity of Vps34 in NK cells. Vps34-mediated vesicular transport is crucial for CD122 membrane trafficking during NK cell commitment, whereas Vps34-mediated autophagy can delay NK cell senescence.
Collapse
Affiliation(s)
- Shasha Chen
- Department of AllergyThe First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
- Innovative Institute of Tumor Immunity and Medicine (ITIM)Hefei230032China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and ImmunotherapyHefei230032China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Medical UniversityHefei230032China
| | - Zehua Li
- State Key Laboratory of Membrane BiologySchool of Medicine and Institute for ImmunologyTsinghua UniversityBeijing100084China
| | - Jin Feng
- State Key Laboratory of Membrane BiologySchool of Medicine and Institute for ImmunologyTsinghua UniversityBeijing100084China
| | - Yuhe Quan
- State Key Laboratory of Membrane BiologySchool of Medicine and Institute for ImmunologyTsinghua UniversityBeijing100084China
| | - Junming He
- State Key Laboratory of Membrane BiologySchool of Medicine and Institute for ImmunologyTsinghua UniversityBeijing100084China
| | - Jiqing Hao
- Department of AllergyThe First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
| | - Zhongjun Dong
- Department of AllergyThe First Affiliated Hospital of Anhui Medical University and Institute of Clinical ImmunologyAnhui Medical UniversityHefei230032China
- Innovative Institute of Tumor Immunity and Medicine (ITIM)Hefei230032China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and ImmunotherapyHefei230032China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui ProvinceAnhui Medical UniversityHefei230032China
- State Key Laboratory of Membrane BiologySchool of Medicine and Institute for ImmunologyTsinghua UniversityBeijing100084China
| |
Collapse
|
11
|
Imbiakha B, Sahler JM, Buchholz DW, Ezzatpour S, Jager M, Choi A, Monreal IA, Byun H, Adeleke RA, Leach J, Whittaker G, Dewhurst S, Rudd BD, Aguilar HC, August A. Adaptive immune cells are necessary for SARS-CoV-2-induced pathology. SCIENCE ADVANCES 2024; 10:eadg5461. [PMID: 38170764 PMCID: PMC10775995 DOI: 10.1126/sciadv.adg5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the ongoing global pandemic associated with morbidity and mortality in humans. Although disease severity correlates with immune dysregulation, the cellular mechanisms of inflammation and pathogenesis of COVID-19 remain relatively poorly understood. Here, we used mouse-adapted SARS-CoV-2 strain MA10 to investigate the role of adaptive immune cells in disease. We found that while infected wild-type mice lost ~10% weight by 3 to 4 days postinfection, rag-/- mice lacking B and T lymphocytes did not lose weight. Infected lungs at peak weight loss revealed lower pathology scores, fewer neutrophils, and lower interleukin-6 and tumor necrosis factor-α in rag-/- mice. Mice lacking αβ T cells also had less severe weight loss, but adoptive transfer of T and B cells into rag-/- mice did not significantly change the response. Collectively, these findings suggest that while adaptive immune cells are important for clearing SARS-CoV-2 infection, this comes at the expense of increased inflammation and pathology.
Collapse
Affiliation(s)
- Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie M. Sahler
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - Mason Jager
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Isaac A. Monreal
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Haewon Byun
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Richard Ayomide Adeleke
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Justin Leach
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Gary Whittaker
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
- Cornell Center for Health Equity, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Ikuta K, Asahi T, Cui G, Abe S, Takami D. Control of the Development, Distribution, and Function of Innate-Like Lymphocytes and Innate Lymphoid Cells by the Tissue Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:111-127. [PMID: 38467976 DOI: 10.1007/978-981-99-9781-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recently, considerable attention has been directed toward innate-like T cells (ITCs) and innate lymphoid cells (ILCs) owing to their indispensable contributions to immune responses, tissue homeostasis, and inflammation. Innate-like T cells include NKT cells, MAIT cells, and γδ T cells, whereas ILCs include NK cells, type 1 ILCs (ILC1s), type 2 ILCs (ILC2s), and type 3 ILCs (ILC3s). Many of these ITCs and ILCs are distributed to specific tissues and remain tissue-resident, while others, such as NK cells and some γδ T cells, circulate through the bloodstream. Nevertheless, recent research has shed light on novel subsets of innate immune cells that exhibit characteristics intermediate between tissue-resident and circulating states under normal and pathological conditions. The local microenvironment frequently influences the development, distribution, and function of these innate immune cells. This review aims to consolidate the current knowledge on the functional heterogeneity of ITCs and ILCs, shaped by local environmental cues, with particular emphasis on IL-15, which governs the activities of the innate immune cells involved in type 1 immune responses.
Collapse
Affiliation(s)
- Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daichi Takami
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
McMahon RA, D'Souza C, Neeson PJ, Siva S. Innate immunity: Looking beyond T-cells in radiation and immunotherapy combinations. Neoplasia 2023; 46:100940. [PMID: 37913654 PMCID: PMC10637988 DOI: 10.1016/j.neo.2023.100940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
Radiation therapy is an established and effective anti-cancer treatment modality. Extensive pre-clinical experimentation has demonstrated that the pro-inflammatory properties of irradiation may be synergistic with checkpoint immunotherapy. Radiation induces double-stranded DNA breaks (dsDNA). Sensing of the dsDNA activates the cGAS/STING pathway, producing Type 1 interferons essential to recruiting antigen-presenting cells (APCs). Radiation promotes cytotoxic CD8 T-cell recruitment by releasing tumour-associated antigens captured and cross-presented by surveying antigen-presenting cells. Radiation-induced vascular normalisation may further promote T-cell trafficking and drug delivery. Radiation is also immunosuppressive. Recruitment of regulatory T cells (Tregs) and innate cells such as myeloid-derived suppressive cells (m-MDSCs) all counteract the immunostimulatory properties of radiation. Many innate immune cell types operate at the interface of the adaptive immune response. Innate immune cells, such as m-MDSCs, can exert their immunosuppressive effects by expressing immune checkpoints such as PD-L1, further highlighting the potential of combined radiation and checkpoint immunotherapy. Several early-phase clinical studies investigating the combination of radiation and immunotherapy have been disappointing. A greater appreciation of radiotherapy's impact on the innate immune system is essential to optimise radioimmunotherapy combinations. This review will summarise the impact of radiotherapy on crucial cells of the innate immune system and vital immunosuppressive cytokines.
Collapse
Affiliation(s)
- R A McMahon
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.
| | - C D'Souza
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia; Cancer Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - P J Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia; Cancer Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - S Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Kaminski A, Hager FT, Kopplin L, Ticconi F, Leufgen A, Vendelova E, Rüttger L, Gasteiger G, Cerovic V, Kastenmüller W, Pabst O, Ugur M. Resident regulatory T cells reflect the immune history of individual lymph nodes. Sci Immunol 2023; 8:eadj5789. [PMID: 37874251 DOI: 10.1126/sciimmunol.adj5789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Regulatory T cells (Tregs) are present in lymphoid and nonlymphoid tissues where they restrict immune activation, prevent autoimmunity, and regulate inflammation. Tregs in nonlymphoid tissues are typically resident, whereas those in lymph nodes (LNs) are considered to recirculate. However, Tregs in LNs are not a homogenous population, and circulation kinetics of different Treg subsets are poorly characterized. Furthermore, whether Tregs can acquire memory T cell properties and persist for extended periods after their activation in LNs is unclear. Here, we used in situ labeling with a stabilized photoconvertible protein to uncover turnover rates of Tregs in LNs in vivo. We found that, whereas most Tregs in LNs recirculate, 10 to 20% are memory-like resident cells that remain in their respective LNs for weeks to months. Single-cell RNA sequencing revealed that LN-resident cells are a functionally and ontogenetically heterogeneous population and share the same core residency gene signature with conventional CD4+ and CD8+ T cells. Resident cells in LNs did not actively proliferate and did not require continuous T cell receptor (TCR) signaling for their residency. However, resident and circulating Tregs had distinct TCR repertoires, and each LN contained exclusive clonal subpopulations of resident Tregs. Our results demonstrate that, similar to conventional T cells, Tregs can form resident memory-like populations in LNs after adaptive immune responses. Specific and local suppression of immune responses by resident Tregs in draining LNs might provide previously unidentified therapeutic opportunities for the treatment of local chronic inflammatory conditions.
Collapse
Affiliation(s)
- Anne Kaminski
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabian Tobias Hager
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Lydia Kopplin
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabio Ticconi
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
- Institute for Computational Genomics, RWTH Aachen University, Aachen 52074, Germany
| | - Andrea Leufgen
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Emilia Vendelova
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Lennart Rüttger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Milas Ugur
- Institute of Molecular Medicine, RWTH Aachen University, Aachen 52074, Germany
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg 97078, Germany
| |
Collapse
|
15
|
Haynes C, Graham L, Bear HD. Adoptive immunotherapy with cells from tumor-draining lymph nodes activated and expanded in vitro. Methods Cell Biol 2023; 183:355-380. [PMID: 38548419 DOI: 10.1016/bs.mcb.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Tumor-draining lymph nodes (tumor-DLNs) provide a rich source of tumor-reactive lymphocytes which can be used in adoptive immunotherapy (AIT) and that circumvent the need to resect autologous tumor, without the challenges and shortcomings associated with using autologous tumor or anti-CD3 monoclonal antibody. Bryostatin/Ionomycin (Bryo/Io) provide a useful method of activating tumor-DLNs such that they can readily be expanded to sufficient numbers to be used in AIT, and growing the tumor-DLN lymphocytes in the gamma chain cytokines IL-7 plus IL-15 is superior to IL-2 in terms of T cell numbers and phenotype. AIT with these cells induces tumor regression and provides protection against metastases and future tumor challenge. Here, we provide a stepwise protocol to sensitize tumor-DLN cells in donor mice, activate tumor-DLN T cells ex vivo using Bryo/Io, expansion of these cells in gamma chain cytokines and adoptive transfer of the expanded cells back into tumor-bearing hosts. Methods relevant to these experiments, such as injecting tumor cells intravenously and monitoring for pulmonary metastases, tumor volume measurement and resection, and use of luciferase-expressing tumor cells to monitor for metastases following resection, are described in detail. The methods outlined herein can be easily adapted to suit similar experiments across multiple tumor cell lines and syngeneic mouse models.
Collapse
Affiliation(s)
- Carolyn Haynes
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States; The Massey Cancer Center at Virginia Commonwealth University, Richmond, VA, United States
| | - Laura Graham
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States; The Massey Cancer Center at Virginia Commonwealth University, Richmond, VA, United States; Division of Surgical Oncology, Department of Surgery and the Massey Cancer Center at Virginia Commonwealth University, Richmond, VA, United States
| | - Harry D Bear
- School of Medicine, Virginia Commonwealth University, Richmond, VA, United States; The Massey Cancer Center at Virginia Commonwealth University, Richmond, VA, United States; Division of Surgical Oncology, Department of Surgery and the Massey Cancer Center at Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
16
|
Zeng X, Dong X, Ma Y, Yao J. Chemokine (C-X-C motif) ligand 1 maintains the immune surveillance function of natural killer cells via the PDK2/mTOR signaling pathway. Cell Biol Toxicol 2023; 39:2227-2241. [PMID: 35304656 DOI: 10.1007/s10565-022-09708-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Chemokine (C-X-C motif) ligand 1 (CXCL1) is mainly expressed on neutrophils and macrophages and has neutrophil chemoattractant activity. However, natural killer (NK) cells also express CXCL1. We were curious about the role played by CXCL1 in NK cells. Knocking out CXCL1 in hematopoietic cells does not affect the occurrence of NK cells; however, it does hinder NK cell maturity. CXCL1 deletion enhances the expression of immature markers and decreases the expression of functional markers in NK cells, which may explain why it hinders the maturation of NK cells. Specific knockout of CXCL1 in NK cells (CXCL1flox/flox Ncr1-cre) leads to impaired IFN-γ production and degranulation of NK cells. The lack of CXCL1 may prevent IFN-γ production and degranulation of NK cells by inhibiting the phosphorylation of AKTS473 and S6. Therefore, we have discovered a new role for CXCL1 in regulating NK cell development and immune surveillance, providing a novel theoretical basis for immunotherapy based on NK cells and potential therapeutic targets for the clinical use of NK cells. 1. Knockout of CXCL1 in hematopoietic cells inhibits the maturation of NK cells. 2. Knockout of CXCL1 in NK cells inhibits the clearance of lymphoma by NK cells and reduces IFN-γ production and CD107 expression in NK cells. 3. CXCL1 activates the PKD2/mTOR signaling pathway, and promotes the production of IFN-γ and the expression of CD107a in NK cells.
Collapse
Affiliation(s)
- Xiaokang Zeng
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, Guangdong, China.
| | - Xinhuai Dong
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, Guangdong, China
| | - Yanning Ma
- Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Jie Yao
- Central Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, Guangdong, China.
- Department of Laboratory Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528300, Guangdong, China.
- Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, 528300, China.
| |
Collapse
|
17
|
Ghanbari Naeini L, Abbasi L, Karimi F, Kokabian P, Abdi Abyaneh F, Naderi D. The Important Role of Interleukin-2 in COVID-19. J Immunol Res 2023; 2023:7097329. [PMID: 37649897 PMCID: PMC10465260 DOI: 10.1155/2023/7097329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/04/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023] Open
Abstract
There is controversial literature about the effects of the interleukin-2 (IL-2) cytokine family in COVID-19 pathogenesis and immunity. So we aimed to identify the potential in the role of the IL-2 family in COVID-19. A narrative review search was done through online databases, including PubMed, Scopus, and Web of Science. The search deadline was up to December 2022. We applied no time limits for the searching strategy. After retrieving articles from the databases, the authors summarized the data into two data extraction tables. The first data extraction table described the changes in the IL-2 cytokine family in COVID-19 and the second table described the therapeutic interventions targeting IL-2 family cytokines. The results of the literature on the role of the IL-2 cytokine family do not show a singular rule. IL-2 cytokine family can change during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some studies suggest that IL-2 cytokine family rise during the infection and cause severe inflammatory response and cytokine storm. These cytokines are shown to be increased in immunocompromised patients and worsen their prognosis. In individuals without underlying disease, the upregulation of the IL-2 family shows the clinical outcome of the disease and rises with disease severity. However, some other studies show that these cytokines do not significantly change. IL-2 cytokine family is mostly upregulated in healthy individuals who had vaccination, but immunocompromised patients did not show significant changes after a single dose of vaccines, which shows that these patients need booster doses for efficient immunity. IL-2 cytokine family can also be used as immunotherapy agents in COVID-19.
Collapse
Affiliation(s)
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Delaram Naderi
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
18
|
Zhang Y, Zhao Z, Huang LA, Liu Y, Yao J, Sun C, Li Y, Zhang Z, Ye Y, Yuan F, Nguyen TK, Garlapati NR, Wu A, Egranov SD, Caudle AS, Sahin AA, Lim B, Beretta L, Calin GA, Yu D, Hung MC, Curran MA, Rezvani K, Gan B, Tan Z, Han L, Lin C, Yang L. Molecular mechanisms of snoRNA-IL-15 crosstalk in adipocyte lipolysis and NK cell rejuvenation. Cell Metab 2023; 35:1457-1473.e13. [PMID: 37329887 PMCID: PMC10712687 DOI: 10.1016/j.cmet.2023.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 06/19/2023]
Abstract
Obesity, in which the functional importance of small nucleolar RNAs (snoRNAs) remains elusive, correlates with risk for many cancer types. Here, we identify that the serum copies of adipocyte-expressed SNORD46 correlate with body mass index (BMI), and serum SNORD46 antagonizes interleukin-15 (IL-15) signaling. Mechanically, SNORD46 binds IL-15 via G11, and G11A (a mutation that significantly enhances binding affinity) knockin drives obesity in mice. Functionally, SNORD46 blocks IL-15-induced, FER kinase-dependent phosphorylation of platelet glycoprotein 4 (CD36) and monoglyceride lipase (MGLL) in adipocytes, leading to inhibited lipolysis and browning. In natural killer (NK) cells, SNORD46 suppresses the IL-15-dependent autophagy, leading to reduced viability of obese NK. SNORD46 power inhibitors exhibit anti-obesity effects, concurring with improved viability of obese NK and anti-tumor immunity of CAR-NK cell therapy. Hence, our findings demonstrate the functional importance of snoRNAs in obesity and the utility of snoRNA power inhibitors for antagonizing obesity-associated immune resistance.
Collapse
Affiliation(s)
- Yaohua Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa A Huang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuan Liu
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chengcao Sun
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Fei Yuan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikhil Reddy Garlapati
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abigail S Caudle
- Department of Breast Surgical Oncology, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bora Lim
- Oncology/Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung 406, Taiwan
| | - Michael A Curran
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Leng Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA; Brown Center for Immunotherapy, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Micevic G, Daniels A, Flem-Karlsen K, Park K, Talty R, McGeary M, Mirza H, Blackburn HN, Sefik E, Cheung JF, Hornick NI, Aizenbud L, Joshi NS, Kluger H, Iwasaki A, Bosenberg MW, Flavell RA. IL-7R licenses a population of epigenetically poised memory CD8 + T cells with superior antitumor efficacy that are critical for melanoma memory. Proc Natl Acad Sci U S A 2023; 120:e2304319120. [PMID: 37459511 PMCID: PMC10372654 DOI: 10.1073/pnas.2304319120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Recurrence of advanced melanoma after therapy is a major risk factor for reduced survival, and treatment options are limited. Antitumor immune memory plays a critical role in preventing melanoma recurrence and memory T cells could be a potent cell-based therapy, but the identity, and functional properties of the required immune cells are incompletely understood. Here, we show that an IL-7Rhi tumor-specific CD8+ population is critical for antitumor memory and can be epigenetically augmented to drive powerful antitumor immune responses. Using a model of functional antimelanoma memory, we found that high IL-7R expression selectively marks a CD8+ population in lymphoid organs that plays critical roles in maintaining tumor remission after immunotherapy or surgical resection. This population has intrinsic cytotoxic activity, lacks markers of exhaustion and has superior antitumor efficacy. IL-7Rhi cells have a functionally poised epigenetic landscape regulated by DNA methylation, which can be augmented by hypomethylating agents to confer improved survival and complete melanoma clearance in naive mice. Importantly, greater than 95% of tumor-specific T cells in draining lymph nodes after therapy express high levels of IL-7R. This overlap between IL-7Rhi and antigen-specific T cells allows for enrichment of a potent functional CD8+ population without determining antigen-specificity, which we demonstrate in a melanoma model without a known antigen. We identify that IL-7R expression in human melanoma is an independent prognostic factor of improved survival. These findings advance our basic understanding of antitumor memory and suggest a cell-based therapy using high IL-7R expression to enrich for a lymph node population with superior antitumor activity that can be augmented by hypomethylating agents.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Dermatology, Yale School of Medicine, New Haven, CT06520
| | - Andrew Daniels
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | | | - Koonam Park
- Department of Dermatology, Yale School of Medicine, New Haven, CT06520
| | - Ronan Talty
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | - Meaghan McGeary
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | - Haris Mirza
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | - Holly N. Blackburn
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Surgery, Yale School of Medicine, New Haven, CT06520
| | - Esen Sefik
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Julie F. Cheung
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Noah I. Hornick
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Lilach Aizenbud
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT06520
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
| | - Harriet Kluger
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT06520
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT06520
- HHMI, Chevy Chase, MD20815
| | - Marcus W. Bosenberg
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Department of Dermatology, Yale School of Medicine, New Haven, CT06520
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT06520
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT06520
| | - Richard A. Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT06520
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
20
|
Baysoy A, Seddu K, Salloum T, Dawson CA, Lee JJ, Yang L, Gal-oz S, Ner-Gaon H, Tellier J, Millan A, Sasse A, Brown B, Lanier LL, Shay T, Nutt S, Dwyer D, Benoist C, The Immunological Genome Project Consortium. The interweaved signatures of common-gamma-chain cytokines across immunologic lineages. J Exp Med 2023; 220:e20222052. [PMID: 36976164 PMCID: PMC10067526 DOI: 10.1084/jem.20222052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
"γc" cytokines are a family whose receptors share a "common-gamma-chain" signaling moiety, and play central roles in differentiation, homeostasis, and communications of all immunocyte lineages. As a resource to better understand their range and specificity of action, we profiled by RNAseq the immediate-early responses to the main γc cytokines across all immunocyte lineages. The results reveal an unprecedented landscape: broader, with extensive overlap between cytokines (one cytokine doing in one cell what another does elsewhere) and essentially no effects unique to any one cytokine. Responses include a major downregulation component and a broad Myc-controlled resetting of biosynthetic and metabolic pathways. Various mechanisms appear involved: fast transcriptional activation, chromatin remodeling, and mRNA destabilization. Other surprises were uncovered: IL2 effects in mast cells, shifts between follicular and marginal zone B cells, paradoxical and cell-specific cross-talk between interferon and γc signatures, or an NKT-like program induced by IL21 in CD8+ T cells.
Collapse
Affiliation(s)
- Alev Baysoy
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kumba Seddu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Tamara Salloum
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital; and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Caleb A. Dawson
- The Walter and Eliza Hall Institute of Medical Researchand Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Juliana J. Lee
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Shani Gal-oz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadas Ner-Gaon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Julie Tellier
- The Walter and Eliza Hall Institute of Medical Researchand Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Alberto Millan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Sasse
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Brian Brown
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stephen Nutt
- The Walter and Eliza Hall Institute of Medical Researchand Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Daniel Dwyer
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital; and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Christophe Benoist
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
21
|
Baroncini L, Bredl S, Nicole KP, Speck RF. The Humanized Mouse Model: What Added Value Does It Offer for HIV Research? Pathogens 2023; 12:pathogens12040608. [PMID: 37111494 PMCID: PMC10142098 DOI: 10.3390/pathogens12040608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In the early 2000s, novel humanized mouse models based on the transplantation of human hematopoietic stem and progenitor cells (HSPCs) into immunocompromised mice were introduced (hu mice). The human HSPCs gave rise to a lymphoid system of human origin. The HIV research community has greatly benefitted from these hu mice. Since human immunodeficiency virus (HIV) type 1 infection results in a high-titer disseminated HIV infection, hu mice have been of great value for all types of HIV research from pathogenesis to novel therapies. Since the first description of this new generation of hu mice, great efforts have been expended to improve humanization by creating other immunodeficient mouse models or supplementing mice with human transgenes to improve human engraftment. Many labs have their own customized hu mouse models, making comparisons quite difficult. Here, we discuss the different hu mouse models in the context of specific research questions in order to define which characteristics should be considered when determining which hu mouse model is appropriate for the question posed. We strongly believe that researchers must first define their research question and then determine whether a hu mouse model exists, allowing the research question to be studied.
Collapse
Affiliation(s)
- Luca Baroncini
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Simon Bredl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kadzioch P Nicole
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Roberto F Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
22
|
Kim S, Oh S, Lee S, Kong L, Lee J, Kim T. FTO negatively regulates the cytotoxic activity of natural killer cells. EMBO Rep 2023; 24:e55681. [PMID: 36744362 PMCID: PMC10074099 DOI: 10.15252/embr.202255681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
N6 -Methyladenosine (m6 A) is the most abundant epitranscriptomic mark and plays a fundamental role in almost every aspect of mRNA metabolism. Although m6 A writers and readers have been widely studied, the roles of m6 A erasers are not well-understood. Here, we investigate the role of FTO, one of the m6 A erasers, in natural killer (NK) cell immunity. We observe that FTO-deficient NK cells are hyperactivated. Fto knockout (Fto-/- ) mouse NK cells prevent melanoma metastasis in vivo, and FTO-deficient human NK cells enhance the antitumor response against leukemia in vitro. We find that FTO negatively regulates IL-2/15-driven JAK/STAT signaling by increasing the mRNA stability of suppressor of cytokine signaling protein (SOCS) family genes. Our results suggest that FTO is an essential modulator of NK cell immunity, providing a new immunotherapeutic strategy for allogeneic NK cell therapies.
Collapse
Affiliation(s)
- Seok‐Min Kim
- Immunotherapy Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Functional Genomics, KRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Se‐Chan Oh
- Immunotherapy Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Functional Genomics, KRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
| | - Sun‐Young Lee
- Immunotherapy Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Division of Life ScienceKorea UniversitySeoulKorea
| | - Ling‐Zu Kong
- Immunotherapy Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of BiochemistryChungnam National UniversityDaejeonKorea
| | - Jong‐Hee Lee
- Department of Functional Genomics, KRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
- National Primate Research Center (NPRC), KRIBBCheongjuKorea
| | - Tae‐Don Kim
- Immunotherapy Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Functional Genomics, KRIBB School of BioscienceKorea University of Science and Technology (UST)DaejeonKorea
- Biomedical Mathematics GroupInstitute for Basic Science (IBS)DaejeonKorea
- Department of Biopharmaceutical ConvergenceSchool of PharmacySungkyunkwan UniversitySuwonKorea
| |
Collapse
|
23
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
24
|
The Effect of Supplementation Using a Mixture of Fish Oil and Linseed on the Level of Immunomodulatory Components in Bovine Colostrum. Molecules 2023; 28:molecules28052154. [PMID: 36903401 PMCID: PMC10004384 DOI: 10.3390/molecules28052154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The aim of this study was to determine the effect of supplementing rations, with a mixture of fish oil and linseed, on the level of immunomodulatory components in colostrum. Twenty multiparous cows, that were three weeks before scheduled calving, had a body condition of 3-3.5, and had not been diagnosed with multiple pregnancies, were qualified for the experiment. The cows were divided into two groups: experimental (FOL) (n = 10) and control (CTL) (n = 10). The CTL group were individually given the standard food ration for dry cows for about 21 days before calving, while the FOL group received food rations that were enriched with 150 g of fish oil and 250 g of linseed (golden variety). Colostrum samples for testing were taken twice a day on the first and second days of lactation, and then once a day from the third to the fifth day of lactation. The experiment showed that the applied supplementation had an impact, in the form of increasing the fat, protein, IgG, IgA, IgM, vitamin A, C22:6 n-3 (DHA), and C18:2 cis9 trans11 (CLA) contents in colostrum; however, the C18: 2 n-6 (LA) and C20:4 n-6 (AA) contents decreased. Due to the lower quality of colostrum found in high-yield cows, and therefore in the Holstein-Friesian breed, it is possible to improve the quality by, among other things, introducing nutritional modifications during the second stage of the dry period.
Collapse
|
25
|
Chen HY, Zhao Y, Xie YZ. Immunosenescence of brain accelerates Alzheimer's disease progression. Rev Neurosci 2023; 34:85-101. [PMID: 35791032 DOI: 10.1515/revneuro-2022-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/04/2022] [Indexed: 01/07/2023]
Abstract
Most of Alzheimer's disease (AD) cases are sporadic and occur after age 65. With prolonged life expectancy and general population aging, AD is becoming a significant public health concern. The immune system supports brain development, plasticity, and homeostasis, yet it is particularly vulnerable to aging-related changes. Aging of the immune system, called immunosenescence, is the multifaceted remodeling of the immune system during aging. Immunosenescence is a contributing factor to various age-related diseases, including AD. Age-related changes in brain immune cell phenotype and function, crosstalk between immune cells and neural cells, and neuroinflammation work together to promote neurodegeneration and age-related cognitive impairment. Although numerous studies have confirmed the correlation between systemic immune changes and AD, few studies focus on the immune state of brain microenvironment in aging and AD. This review mainly addresses the changes of brain immune microenvironment in aging and AD. Specifically, we delineate how various aspects of the brain immune microenvironment, including immune gateways, immune cells, and molecules, and the interplay between immune cells and neural cells, accelerate AD pathogenesis during aging. We also propose a theoretical framework of therapeutic strategies selectively targeting the different mechanisms to restore brain immune homeostasis.
Collapse
Affiliation(s)
- Hou-Yu Chen
- Department of Abdominal Surgery, Affiliated Cancer Hospital, Institute of Guangzhou Medical University, Guangdong 510095, China
| | - Yan Zhao
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan 410011, China
| | - Yong-Zhi Xie
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
26
|
Lu M, Lee Y, Lillehoj HS. Evolution of developmental and comparative immunology in poultry: The regulators and the regulated. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104525. [PMID: 36058383 DOI: 10.1016/j.dci.2022.104525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Avian has a unique immune system that evolved in response to environmental pressures in all aspects of innate and adaptive immune responses, including localized and circulating lymphocytes, diversity of immunoglobulin repertoire, and various cytokines and chemokines. All of these attributes make birds an indispensable vertebrate model for studying the fundamental immunological concepts and comparative immunology. However, research on the immune system in birds lags far behind that of humans, mice, and other agricultural animal species, and limited immune tools have hindered the adequate application of birds as disease models for mammalian systems. An in-depth understanding of the avian immune system relies on the detailed studies of various regulated and regulatory mediators, such as cell surface antigens, cytokines, and chemokines. Here, we review current knowledge centered on the roles of avian cell surface antigens, cytokines, chemokines, and beyond. Moreover, we provide an update on recent progress in this rapidly developing field of study with respect to the availability of immune reagents that will facilitate the study of regulatory and regulated components of poultry immunity. The new information on avian immunity and available immune tools will benefit avian researchers and evolutionary biologists in conducting fundamental and applied research.
Collapse
Affiliation(s)
- Mingmin Lu
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Youngsub Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
27
|
Cui G, Shimba A, Jin J, Ogawa T, Muramoto Y, Miyachi H, Abe S, Asahi T, Tani-Ichi S, Dijkstra JM, Iwamoto Y, Kryukov K, Zhu Y, Takami D, Hara T, Kitano S, Xu Y, Morita H, Zhang M, Zreka L, Miyata K, Kanaya T, Okumura S, Ito T, Hatano E, Takahashi Y, Watarai H, Oike Y, Imanishi T, Ohno H, Ohteki T, Minato N, Kubo M, Holländer GA, Ueno H, Noda T, Shiroguchi K, Ikuta K. A circulating subset of iNKT cells mediates antitumor and antiviral immunity. Sci Immunol 2022; 7:eabj8760. [PMID: 36269840 DOI: 10.1126/sciimmunol.abj8760] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Invariant natural killer T (iNKT) cells are a group of innate-like T lymphocytes that recognize lipid antigens. They are supposed to be tissue resident and important for systemic and local immune regulation. To investigate the heterogeneity of iNKT cells, we recharacterized iNKT cells in the thymus and peripheral tissues. iNKT cells in the thymus were divided into three subpopulations by the expression of the natural killer cell receptor CD244 and the chemokine receptor CXCR6 and designated as C0 (CD244-CXCR6-), C1 (CD244-CXCR6+), or C2 (CD244+CXCR6+) iNKT cells. The development and maturation of C2 iNKT cells from C0 iNKT cells strictly depended on IL-15 produced by thymic epithelial cells. C2 iNKT cells expressed high levels of IFN-γ and granzymes and exhibited more NK cell-like features, whereas C1 iNKT cells showed more T cell-like characteristics. C2 iNKT cells were influenced by the microbiome and aging and suppressed the expression of the autoimmune regulator AIRE in the thymus. In peripheral tissues, C2 iNKT cells were circulating that were distinct from conventional tissue-resident C1 iNKT cells. Functionally, C2 iNKT cells protected mice from the tumor metastasis of melanoma cells by enhancing antitumor immunity and promoted antiviral immune responses against influenza virus infection. Furthermore, we identified human CD244+CXCR6+ iNKT cells with high cytotoxic properties as a counterpart of mouse C2 iNKT cells. Thus, this study reveals a circulating subset of iNKT cells with NK cell-like properties distinct from conventional tissue-resident iNKT cells.
Collapse
Affiliation(s)
- Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jianshi Jin
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR) , Osaka, Japan
| | - Taisaku Ogawa
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR) , Osaka, Japan
| | - Yukiko Muramoto
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Yayoi Iwamoto
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kirill Kryukov
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University, Kanagawa, Japan
- Biological Networks Laboratory, Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Yuanbo Zhu
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daichi Takami
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto, Japan
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yan Xu
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Morita
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Moyu Zhang
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Lynn Zreka
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Shinya Okumura
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Watarai
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadashi Imanishi
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University, Kanagawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| | - Georg A Holländer
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Hideki Ueno
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR) , Osaka, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Xiao Q, Yu F, Yan L, Zhao H, Zhang F. Alterations in circulating markers in HIV/AIDS patients with poor immune reconstitution: Novel insights from microbial translocation and innate immunity. Front Immunol 2022; 13:1026070. [PMID: 36325329 PMCID: PMC9618587 DOI: 10.3389/fimmu.2022.1026070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
After long-term anti-retroviral therapy (ART) treatment, most human immunodeficiency virus (HIV)/Acquired Immure Deficiency Syndrome (AIDS) patients can achieve virological suppression and gradual recovery of CD4+ T-lymphocyte (CD4+ T cell) counts. However, some patients still fail to attain normal CD4+ T cell counts; this group of patients are called immune non-responders (INRs), and these patients show severe immune dysfunction. The potential mechanism of poor immune reconstitution (PIR) remains unclear and the identification of uniform biomarkers to predict the occurrence of PIR is particularly vital. But limited information is available on the relationship between circulating markers of INRs and immune recovery. Hence, this review summarises alterations in the intestine microbiota and associated markers in the setting of PIR to better understand host-microbiota-metabolite interactions in HIV immune reconstitution and to identify biomarkers that can predict recovery of CD4+ T cell counts in INRs.
Collapse
Affiliation(s)
- Qing Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Liting Yan
- Infectious Disease Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
A homodimeric IL-15 superagonist F4RLI with easy preparation, improved half-life, and potent antitumor activities. Appl Microbiol Biotechnol 2022; 106:7039-7050. [PMID: 36184689 DOI: 10.1007/s00253-022-12209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022]
Abstract
Interleukin-15 (IL-15) is a promising candidate for cancer immunotherapy due to its potent immune-activating effects. There are several IL-15 molecules currently in clinical trials but facing shortages of poor half-life, circulation instability, or complicated production and quality control processes. The aim of this study is to design a novel IL-15 superagonist to set out the above difficulties, and we constructed F4RLI consisting of the GS-linker spaced IgG4 Fc fragment, soluble IL-15 Rα (sIL-15Rα), and IL-15(N72D). Using a single plasmid transient transfection in HEK293E cells, the matured F4RLI was secreted in the form of homodimer and got purified by an easy step of protein A affinity chromatography. The F4RLI product can significantly stimulate the proliferation of human CD3+CD8+ T cells and NK cells in vitro. Meanwhile, F4RLI greatly extended the half-life and prolonged the exposure of IL-15 in mice nearly by 28- and 200-fold, respectively, in comparison with that of the IL-15 monomer. In vivo, F4RLI vastly expanded mouse splenic CD8+ T lymphocytes, illustrating its potential in tumor immunotherapy. Further studies showed that the combination of F4RLI with the immune checkpoint blocker atezolizumab played a synergistic effect in treating MC38 mouse tumor by increasing the percentage of CD8+ T cells in tumor tissue. Moreover, the combination therapy of F4RLI with the angiogenesis inhibitor bevacizumab resulted in significant tumor growth suppression in a xenograft human HT-29 mouse model. Overall, our results demonstrate a homodimeric IL-15 superagonist F4RLI with advances in manufacturing processes and biopharmaceutical applications for cancer immunotherapy. KEY POINTS: • The homodimeric structure of F4RLI facilitates its easy production processes and quality control. • The fusion with Fc and sIL-15Rα extends the plasma half-life of IL-15 by about 28-fold. • F4RLI can play synergistic antitumor activity with the PD-1/PD-L1 checkpoint inhibitor or angiogenesis inhibitor.
Collapse
|
30
|
Highly tailorable gellan gum nanoparticles as a platform for the development of T cell activator systems. Biomater Res 2022; 26:48. [PMID: 36180901 PMCID: PMC9523970 DOI: 10.1186/s40824-022-00297-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background T cell priming has been shown to be a powerful immunotherapeutic approach for cancer treatment in terms of efficacy and relatively weak side effects. Systems that optimize the stimulation of T cells to improve therapeutic efficacy are therefore in constant demand. A way to achieve this is through artificial antigen presenting cells that are complexes between vehicles and key molecules that target relevant T cell subpopulations, eliciting antigen-specific T cell priming. In such T cell activator systems, the vehicles chosen to deliver and present the key molecules to the targeted cell populations are of extreme importance. In this work, a new platform for the creation of T cell activator systems based on highly tailorable nanoparticles made from the natural polymer gellan gum (GG) was developed and validated. Methods GG nanoparticles were produced by a water in oil emulsion procedure, and characterized by dynamic light scattering, high resolution scanning electronic microscopy and water uptake. Their biocompatibility with cultured cells was assessed by a metabolic activity assay. Surface functionalization was performed with anti-CD3/CD28 antibodies via EDC/NHS or NeutrAvidin/Biotin linkage. Functionalized particles were tested for their capacity to stimulate CD4+ T cells and trigger T cell cytotoxic responses. Results Nanoparticles were approximately 150 nm in size, with a stable structure and no detectable cytotoxicity. Water uptake originated a weight gain of up to 3200%. The functional antibodies did efficiently bind to the nanoparticles, as confirmed by SDS-PAGE, which then targeted the desired CD4+ populations, as confirmed by confocal microscopy. The developed system presented a more sustained T cell activation over time when compared to commercial alternatives. Concurrently, the expression of higher levels of key cytotoxic pathway molecules granzyme B/perforin was induced, suggesting a greater cytotoxic potential for future application in adoptive cancer therapy. Conclusions Our results show that GG nanoparticles were successfully used as a highly tailorable T cell activator system platform capable of T cell expansion and re-education. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00297-z.
Collapse
|
31
|
To V, Evtimov VJ, Jenkin G, Pupovac A, Trounson AO, Boyd RL. CAR-T cell development for Cutaneous T cell Lymphoma: current limitations and potential treatment strategies. Front Immunol 2022; 13:968395. [PMID: 36059451 PMCID: PMC9433932 DOI: 10.3389/fimmu.2022.968395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T therapy has demonstrated remarkable outcomes for B cell malignancies, however, its application for T cell lymphoma, particularly cutaneous T cell lymphoma (CTCL), has been limited. Barriers to effective CAR-T cell therapy in treating CTCL include T cell aplasia in autologous transplants, CAR-T product contamination with leukemic T cells, CAR-T fratricide (when the target antigen is present on normal T cells), and tumor heterogeneity. To address these critical challenges, innovative CAR engineering by targeting multiple antigens to strike a balance between efficacy and safety of the therapy is necessary. In this review, we discuss the current obstacles to CAR-T cell therapy and highlight potential targets in treating CTCL. Looking forward, we propose strategies to develop more powerful dual CARs that are advancing towards the clinic in CTCL therapy.
Collapse
Affiliation(s)
- Van To
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Graham Jenkin
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | | | - Alan O. Trounson
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Richard L. Boyd
- Cartherics Pty Ltd, Notting Hill, VIC, Australia
- *Correspondence: Richard L. Boyd,
| |
Collapse
|
32
|
Naoun AA, Raphael I, Forsthuber TG. Immunoregulation via Cell Density and Quorum Sensing-like Mechanisms: An Underexplored Emerging Field with Potential Translational Implications. Cells 2022; 11:cells11152442. [PMID: 35954285 PMCID: PMC9368058 DOI: 10.3390/cells11152442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) was historically described as a mechanism by which bacteria detect and optimize their population density via gene regulation based on dynamic environmental cues. Recently, it was proposed that QS or similar mechanisms may have broader applications across different species and cell types. Indeed, emerging evidence shows that the mammalian immune system can also elicit coordinated responses on a population level to regulate cell density and function, thus suggesting that QS-like mechanisms may also be a beneficial trait of the immune system. In this review, we explore and discuss potential QS-like mechanisms deployed by the immune system to coordinate cellular-level responses, such as T cell responses mediated via the common gamma chain (γc) receptor cytokines and the aryl hydrocarbon receptors (AhRs). We present evidence regarding a novel role of QS as a multifunctional mechanism coordinating CD4+ and CD8+ T cell behavior during steady state and in response to infection, inflammatory diseases, and cancer. Successful clinical therapies such as adoptive cell transfer for cancer treatment may be re-evaluated to harness the effects of the QS mechanism(s) and enhance treatment responsiveness. Moreover, we discuss how signaling threshold perturbations through QS-like mediators may result in disturbances of the complex crosstalk between immune cell populations, undesired T cell responses, and induction of autoimmune pathology. Finally, we discuss the potential therapeutic role of modulating immune-system-related QS as a promising avenue to treat human diseases.
Collapse
Affiliation(s)
- Adrian A. Naoun
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Itay Raphael
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15217, USA
- Correspondence: (I.R.); (T.G.F.)
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (I.R.); (T.G.F.)
| |
Collapse
|
33
|
Haddad FL, Patel SV, Doornaert EE, De Oliveira C, Allman BL, Baines KJ, Renaud SJ, Schmid S. Interleukin 15 modulates the effects of poly I:C maternal immune activation on offspring behaviour. Brain Behav Immun Health 2022; 23:100473. [PMID: 35668725 PMCID: PMC9166394 DOI: 10.1016/j.bbih.2022.100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/21/2023] Open
Abstract
Maternal infections during pregnancy are linked with an increased risk for disorders like Autism Spectrum Disorder and schizophrenia in the offspring. Although precise mechanisms are still unclear, clinical and preclinical evidence suggest a strong role for maternal immune activation (MIA) in the neurodevelopmental disruptions caused by maternal infection. Previously, studies using the Polyinosinic:Polycytidylic (Poly I:C) MIA preclinical model showed that cytokines like Interleukin 6 (Il6) are important mediators of MIA's effects. In this study, we hypothesized that Il15 may similarly act as a mediator of Poly I:C MIA, given its role in the antiviral immune response. To test this hypothesis, we induced Poly I:C MIA at gestational day 9.5 in wildtype (WT) and Il15−/− rat dams and tested their offspring in adolescence and adulthood. Poly I:C MIA and Il15 knockout produced both independent and synergistic effects on offspring behaviour. Poly I:C MIA decreased startle reactivity in adult WT offspring but resulted in increased adolescent anxiety and decreased adult locomotor activity in Il15−/− offspring. In addition, Poly I:C MIA led to genotype-independent effects on locomotor activity and prepulse inhibition. Finally, we showed that Il15−/− offspring exhibit distinct phenotypes that were unrelated to Poly I:C MIA including altered startle reactivity, locomotion and signal transduction in the auditory brainstem. Overall, our findings indicate that the lack of Il15 can leave offspring either more or less susceptible to Poly I:C MIA, depending on the phenotype in question. Future studies should examine the contribution of fetal versus maternal Il15 in MIA to determine the precise developmental mechanisms underlying these changes. Poly I:C MIA decreases startle reactivity in adult WT but not Il15−/− offspring. Il15−/− offspring exposed to Poly I:C MIA show altered PPI and open field exploration. Il15−/− rats exhibit distinct behavioural phenotypes independent from MIA.
Collapse
|
34
|
Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol 2022; 13:925985. [PMID: 35936003 PMCID: PMC9355792 DOI: 10.3389/fimmu.2022.925985] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a progressive new pillar in immune cell therapy for cancer. It has yielded remarkable clinical responses in patients with B-cell leukemia or lymphoma. Unfortunately, many challenges remain to be addressed to overcome its ineffectiveness in the treatment of other hematological and solidtumor malignancies. The major hurdles of CAR T-cell therapy are the associated severe life-threatening toxicities such as cytokine release syndrome and limited anti-tumor efficacy. In this review, we briefly discuss cancer immunotherapy and the genetic engineering of T cells and, In detail, the current innovations in CAR T-cell strategies to improve efficacy in treating solid tumors and hematologic malignancies. Furthermore, we also discuss the current challenges in CAR T-cell therapy and new CAR T-cell-derived nanovesicle therapy. Finally, strategies to overcome the current clinical challenges associated with CAR T-cell therapy are included as well.
Collapse
Affiliation(s)
- Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
35
|
Zhang X, Zhu L, Zhang H, Chen S, Xiao Y. CAR-T Cell Therapy in Hematological Malignancies: Current Opportunities and Challenges. Front Immunol 2022; 13:927153. [PMID: 35757715 PMCID: PMC9226391 DOI: 10.3389/fimmu.2022.927153] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy represents a major breakthrough in cancer treatment, and it has achieved unprecedented success in hematological malignancies, especially in relapsed/refractory (R/R) B cell malignancies. At present, CD19 and BCMA are the most common targets in CAR-T cell therapy, and numerous novel therapeutic targets are being explored. However, the adverse events related to CAR-T cell therapy might be serious or even life-threatening, such as cytokine release syndrome (CRS), CAR-T-cell-related encephalopathy syndrome (CRES), infections, cytopenia, and CRS-related coagulopathy. In addition, due to antigen escape, the limited CAR-T cell persistence, and immunosuppressive tumor microenvironment, a considerable proportion of patients relapse after CAR-T cell therapy. Thus, in this review, we focus on the progress and challenges of CAR-T cell therapy in hematological malignancies, such as attractive therapeutic targets, CAR-T related toxicities, and resistance to CAR-T cell therapy, and provide some practical recommendations.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Hematology, Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingling Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Zhang
- School of Medicine, Jishou University, Jishou, China
| | - Shanshan Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yang Xiao
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|
36
|
Campisi L, Chizari S, Ho JSY, Gromova A, Arnold FJ, Mosca L, Mei X, Fstkchyan Y, Torre D, Beharry C, Garcia-Forn M, Jiménez-Alcázar M, Korobeynikov VA, Prazich J, Fayad ZA, Seldin MM, De Rubeis S, Bennett CL, Ostrow LW, Lunetta C, Squatrito M, Byun M, Shneider NA, Jiang N, La Spada AR, Marazzi I. Clonally expanded CD8 T cells characterize amyotrophic lateral sclerosis-4. Nature 2022; 606:945-952. [PMID: 35732742 PMCID: PMC10089623 DOI: 10.1038/s41586-022-04844-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogenous neurodegenerative disorder that affects motor neurons and voluntary muscle control1. ALS heterogeneity includes the age of manifestation, the rate of progression and the anatomical sites of symptom onset. Disease-causing mutations in specific genes have been identified and define different subtypes of ALS1. Although several ALS-associated genes have been shown to affect immune functions2, whether specific immune features account for ALS heterogeneity is poorly understood. Amyotrophic lateral sclerosis-4 (ALS4) is characterized by juvenile onset and slow progression3. Patients with ALS4 show motor difficulties by the time that they are in their thirties, and most of them require devices to assist with walking by their fifties. ALS4 is caused by mutations in the senataxin gene (SETX). Here, using Setx knock-in mice that carry the ALS4-causative L389S mutation, we describe an immunological signature that consists of clonally expanded, terminally differentiated effector memory (TEMRA) CD8 T cells in the central nervous system and the blood of knock-in mice. Increased frequencies of antigen-specific CD8 T cells in knock-in mice mirror the progression of motor neuron disease and correlate with anti-glioma immunity. Furthermore, bone marrow transplantation experiments indicate that the immune system has a key role in ALS4 neurodegeneration. In patients with ALS4, clonally expanded TEMRA CD8 T cells circulate in the peripheral blood. Our results provide evidence of an antigen-specific CD8 T cell response in ALS4, which could be used to unravel disease mechanisms and as a potential biomarker of disease state.
Collapse
Affiliation(s)
- Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Shahab Chizari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jessica S Y Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia Gromova
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Frederick J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Lorena Mosca
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Xueyan Mei
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yesai Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Torre
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cindy Beharry
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Jiménez-Alcázar
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Jack Prazich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Craig L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Lyle W Ostrow
- Neuromuscular Division of the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian Lunetta
- NEMO Clinical Center, Fondazione Serena Onlus, Milan, Italy
- Neurorehabilitation Department, Istituti Clinici Scientifici Maugeri, IRCCS, Milan, Italy
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Minji Byun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
37
|
McCulloch TR, Rossi GR, Schreuder J, Belz GT, Wells TJ, Souza-Fonseca-Guimaraes F. CIS and TGF-β regulatory pathways influence immunity to bacterial infection. Immunology 2022; 167:54-63. [PMID: 35611558 DOI: 10.1111/imm.13516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy has revolutionized cancer therapy by reactivating tumor-resident cytotoxic lymphocytes. More recently, immunotherapy has emerged to restore immunity against infectious agents, including bacterial infections. Immunotherapy primarily targets inhibitory pathways in T cells, however interest in other effector populations, such as natural killer (NK) cells, is growing. We have previously discovered that NK cell metabolism, proliferation, and activation can be neutralized through the transforming growth factor (TGF)-β immunosuppressive pathway by inducing plasticity of NK cells and differentiation into innate lymphoid cell (ILC)1-like subsets. NK cells are also regulated through cytokine-inducible SH2-containing protein (CIS), which is induced by interleukin (IL)-15 and is a potent intracellular checkpoint suppressing NK cell survival and function. Targeting these two distinct pathways to restore NK cell function has shown promise in cancer models, but their application in bacterial infection remains unknown. Here, we investigate whether enhancement of NK cell function can improve anti-bacterial immunity, using Salmonella Typhimurium as a model. We identified conversion of NK cells to ILC1-like for the first time in the context of bacterial infection, where TGF-β signaling contributed to this plasticity. Future work should focus on identifying further drivers of ILC1 plasticity and its functional implication in bacterial infection models. We further describe that CIS-deficient mice displayed enhanced pro-inflammatory function and dramatically enhanced anti-bacterial immunity. Inhibition of CIS may present as a viable therapeutic option to enhance immunity towards bacterial infection.
Collapse
Affiliation(s)
- Timothy R McCulloch
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Gustavo R Rossi
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Jaring Schreuder
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Gabrielle T Belz
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Timothy J Wells
- University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
38
|
Meghnem D, Maillasson M, Barbieux I, Morisseau S, Keita D, Jacques Y, Quéméner A, Mortier E. Selective Targeting of IL-15Rα Is Sufficient to Reduce Inflammation. Front Immunol 2022; 13:886213. [PMID: 35592318 PMCID: PMC9110858 DOI: 10.3389/fimmu.2022.886213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Cytokines are crucial molecules for maintaining the proper functioning of the immune system. Nevertheless, a dysregulation of cytokine expression could be involved in the pathogenesis of autoimmune diseases. Interleukin (IL)-15 is a key factor for natural killer cells (NK) and CD8 T cells homeostasis, necessary to fight cancer and infections but could also be considered as a pro-inflammatory cytokine involved in autoimmune inflammatory disease, including rheumatoid arthritis, psoriasis, along with tumor necrosis factor alpha (TNF-α), IL-6, and IL-1β. The molecular mechanisms by which IL-15 exerts its inflammatory function in these diseases are still unclear. In this study, we generated an IL-15-derived molecule called NANTIL-15 (New ANTagonist of IL-15), designed to selectively inhibit the action of IL-15 through the high-affinity trimeric IL-15Rα/IL-2Rβ/γc receptor while leaving IL-15 signaling through the dimeric IL-2Rβ/γc receptor unaffected. Administrating of NANTIL-15 in healthy mice did not affect the IL-15-dependent cell populations such as NK and CD8 T cells. In contrast, we found that NANTIL-15 efficiently reduced signs of inflammation in a collagen-induced arthritis model. These observations demonstrate that the inflammatory properties of IL-15 are linked to its action through the trimeric IL-15Rα/IL-2Rβ/γc receptor, highlighting the interest of selectively targeting this receptor.
Collapse
Affiliation(s)
- Dihia Meghnem
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Mike Maillasson
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France.,Nantes University, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, IMPACT Platform, Nantes, France
| | - Isabelle Barbieux
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Sébastien Morisseau
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France.,Centre Hospitalo-Universitaire (CHU), Nantes Hospital, Nantes, France
| | - Dalloba Keita
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Yannick Jacques
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Agnès Quéméner
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Erwan Mortier
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France.,Nantes University, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, IMPACT Platform, Nantes, France
| |
Collapse
|
39
|
Kouro T, Himuro H, Sasada T. Exhaustion of CAR T cells: potential causes and solutions. J Transl Med 2022; 20:239. [PMID: 35606821 PMCID: PMC9125881 DOI: 10.1186/s12967-022-03442-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/15/2022] [Indexed: 01/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has attracted attention for its promising therapeutic effects on hematological malignancies. However, there are problems such as relapse during long-term follow-up and limited effect on solid tumors with this therapy. Exhaustion, which impairs in vivo persistence and killing activity of CAR T cells, is one of the causes of these issues. Depending on their structure of extracellular portion, some CARs induce tonic signals in the absence of ligand stimulation and induce exhaustion phenotype in CAR T cells. Analysis of these self-activating CARs is expected to provide key information for understanding and resolving CAR T cell exhaustion. In this review, we introduced examples of self-activating CARs and summarized their phenotypes to figure out how CAR T cell exhaustion occurs. Further, we aimed to review promising solutions to the CAR T cell exhaustion that hampers generalized application of CAR T cell therapy.
Collapse
|
40
|
Li Y, Wu L, Liu Y, Ma S, Huang B, Feng X, Wang H. A novel multifunctional anti-PD-L1-CD16a-IL15 induces potent cancer cell killing in PD-L1-positive tumour cells. Transl Oncol 2022; 21:101424. [PMID: 35477065 PMCID: PMC9136603 DOI: 10.1016/j.tranon.2022.101424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Anti-PD-L1 single-domain antibodies were identified from hPD-L1-immunized camels. Three novel multifunctional antibodies, anti-PD-L1-CD16a, anti-PD-L1-IL15, and anti-PD-L1-CD16a-IL15, target PD-L1-positive cancer cells. Anti-PD-L1-IL15 and anti-PD-L1-CD16a-IL15, but not anti-PD-L1-CD16a, stimulate immune cell proliferation in vitro. The anti-PD-L1 antibodies can bind PD-L1-positive cells. Anti-PD-L1-CD16a-IL15 has the strongest antitumour activity, both in vitro and in vivo.
Cancer is the most acute disease and the leading cause of patient death worldwide. Both chemotherapy and molecular-based therapies play an important role in curing cancer. However, the median and overall survival of patients is poor. To date, immune therapies have changed the treatment methods for cancer patients. Programmed death ligand 1 (PD-L1, also known as B-H1, CD274) is a well-studied tumor antigen. PD-L1 is overexpressed in colon cancer, lung cancer, and so on and plays a vital role in cancer development. In this study, anti-PD-L1 single-domain antibodies were identified from recombinant human PD-L1 (rhPD-L1)-immunized llamas. Then, we generated a novel multifunctional anti-PD-L1-CD16a-IL15 antibody targeting PD-L1-positive tumor cells. Anti-PD-L1-CD16a-IL15 was constructed by linking the Interleukin-2 (IL-2) signal peptide, anti-PD-L1 single domain antibody (anti-PD-L1-VHH) and anti-cluster of differentiation 16a single domain antibody (anti-CD16a-VHH), and Interleukin-15/Interleukin-15 receptor alpha (IL15/IL-15Rα). This anti-PD-L1-CD16a-IL15 fusion protein can be expressed and purified from HEK-293F cells. In vitro, our data showed that the anti-PD-L1-CD16a-IL15 fusion protein can recruit T cells and drive natural killer cells (NK) with specific killing of PD-L1-overexpressing tumor cells. Furthermore, in the xenograft model, the anti-PD-L1-CD16a-IL15 fusion protein inhibited tumor growth with human peripheral blood mononuclear cells (PBMCs). These data suggested that the anti-PD-L1-CD16a-IL15 fusion protein has a latent function in antitumour activity, with better guidance for future cancer immunotherapy.
Collapse
Affiliation(s)
- Yumei Li
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Lingjun Wu
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yueying Liu
- Department of Hypertension, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siwen Ma
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Biyi Huang
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xianjing Feng
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| |
Collapse
|
41
|
Arthurs AL, Smith MD, Hintural MD, Breen J, McCullough D, Thornton FI, Leemaqz SY, Dekker GA, Jankovic-Karasoulos T, Roberts CT. Placental Inflammasome mRNA Levels Differ by Mode of Delivery and Fetal Sex. Front Immunol 2022; 13:807750. [PMID: 35401528 PMCID: PMC8992795 DOI: 10.3389/fimmu.2022.807750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Parturition signals the end of immune tolerance in pregnancy. Term labour is usually a sterile inflammatory process triggered by damage associated molecular patterns (DAMPs) as a consequence of functional progesterone withdrawal. Activation of DAMPs recruits leukocytes and inflammatory cytokine responses in the myometrium, decidua, cervix and fetal membranes. Emerging evidence shows components of the inflammasome are detectable in both maternal decidua and placenta. However, the activation of the placental inflammasome with respect to mode of delivery has not been profiled. Placental chorionic villus samples from women delivering at term via unassisted vaginal (UV) birth, labouring lower segment caesarean section (LLSCS, emergency caesarean section) and prelabour lower segment caesarean section (PLSCS, elective caesarean section) underwent high throughput RNA sequencing (NextSeq Illumina) and bioinformatic analyses to identify differentially expressed inflammatory (DE) genes. DE genes (IL1RL1, STAT1, STAT2, IL2RB, IL17RE, IL18BP, TNFAIP2, TNFSF10 and TNFRSF8), as well as common inflammasome genes (IL1B, IL1R1, IL1R2, IL6, IL18, IL18R1, IL18R1, IL10, and IL33), were targets for further qPCR analyses and Western blotting to quantify protein expression. There was no specific sensor molecule-activated inflammasome which dominated expression when stratified by mode of delivery, implying that multiple inflammasomes may function synergistically during parturition. Whilst placentae from women who had UV births overall expressed pro-inflammatory mediators, placentae from LLSCS births demonstrated a much greater pro-inflammatory response, with additional interplay of pro- and anti-inflammatory mediators. As expected, inflammasome activation was very low in placentae from women who had PLSCS births. Sex-specific differences were also detected. Placentae from male-bearing pregnancies displayed higher inflammasome activation in LLSCS compared with PLSCS, and placentae from female-bearing pregnancies displayed higher inflammasome activation in LLSCS compared with UV. In conclusion, placental inflammasome activation differs with respect to mode of delivery and neonatal sex. Its assessment may identify babies who have been exposed to aberrant inflammation at birth that may compromise their development and long-term health and wellbeing.
Collapse
Affiliation(s)
- Anya L Arthurs
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Melanie D Smith
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Mhyles D Hintural
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - James Breen
- South Australian Genomics Centre, South Australian Health & Medical Research Institute, Adelaide, SA, Australia
| | - Dylan McCullough
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Francesca I Thornton
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Shalem Y Leemaqz
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Gustaaf A Dekker
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Tanja Jankovic-Karasoulos
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Claire T Roberts
- Pregnancy Health and Beyond Laboratory, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
42
|
Rawlings SA, Torres F, Wells A, Lisco A, Fitzgerald W, Margolis L, Gianella S, Vanpouille C. Effect of HIV suppression on the cytokine network in blood and seminal plasma. AIDS 2022; 36:621-630. [PMID: 34873090 PMCID: PMC8957508 DOI: 10.1097/qad.0000000000003146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE HIV infection disrupts the cytokine network and this disruption is not completely reversed by antiretroviral therapy (ART). Characterization of cytokine changes in blood and genital secretions is important for understanding HIV pathogenesis and the mechanisms of HIV sexual transmission. Here, we characterized the cytokine network in individuals longitudinally sampled before they began ART and after achieving suppression of HIV RNA. METHODS We measured concentrations of 34 cytokine/chemokines using multiplex bead-based assay in blood and seminal plasma of 19 men with HIV-1 prior to and after viral suppression. We used Partial Least Squares Discriminant Analysis (PLS-DA) to visualize the difference in cytokine pattern between the time points. Any cytokines with VIP scores exceeding 1 were deemed important in predicting suppression status and were subsequently tested using Wilcoxon Signed Rank Tests. RESULTS PLS-DA projections in blood were fairly similar before and after viral suppression. In contrast, the difference in PLS-DA projection observed in semen emphasizes that the immunological landscape and immunological needs are very different before and after ART in the male genital compartment. When tested individually, four cytokines were significantly different across time points in semen (MIG, IL-15, IL-7, I-TAC), and two in blood (MIG and IP-10). CONCLUSION Viral suppression with ART impacts the inflammatory milieu in seminal plasma. In contrast, the overall effect on the network of cytokines in blood was modest but consistent with prior analyses. These results identify specific changes in the cytokine networks in semen and blood as the immune system acclimates to chronic, suppressed HIV infection.
Collapse
Affiliation(s)
| | - Felix Torres
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Alan Wells
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Wendy Fitzgerald
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Leonid Margolis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sara Gianella
- Department of Medicine, University of California-San Diego, La Jolla, CA
| | - Christophe Vanpouille
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
43
|
Rubinstein MP, Williams C, Mart C, Beall J, MacPherson L, Azar J, Swiderska-Syn M, Manca P, Gibney BC, Robinson MD, Krieg C, Hill EG, Taha SA, Rock AD, Lee JH, Soon-Shiong P, Wrangle J. Phase I Trial Characterizing the Pharmacokinetic Profile of N-803, a Chimeric IL-15 Superagonist, in Healthy Volunteers. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1362-1370. [PMID: 35228263 DOI: 10.4049/jimmunol.2100066] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
The oncotherapeutic promise of IL-15, a potent immunostimulant, is limited by a short serum t 1/2 The fusion protein N-803 is a chimeric IL-15 superagonist that has a >20-fold longer in vivo t 1/2 versus IL-15. This phase 1 study characterized the pharmacokinetic (PK) profile and safety of N-803 after s.c. administration to healthy human volunteers. Volunteers received two doses of N-803, and after each dose, PK and safety were assessed for 9 d. The primary endpoint was the N-803 PK profile, the secondary endpoint was safety, and immune cell levels and immunogenicity were measures of interest. Serum N-803 concentrations peaked 4 h after administration and declined with a t 1/2 of ∼20 h. N-803 did not cause treatment-emergent serious adverse events (AEs) or grade ≥3 AEs. Injection site reactions, chills, and pyrexia were the most common AEs. Administration of N-803 was well tolerated and accompanied by proliferation of NK cells and CD8+ T cells and sustained increases in the number of NK cells. Our results suggest that N-803 administration can potentiate antitumor immunity.
Collapse
Affiliation(s)
- Mark P Rubinstein
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University James Comprehensive Cancer Center, Columbus, OH
- Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Cameron Williams
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Caroline Mart
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Jonathan Beall
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Linda MacPherson
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University James Comprehensive Cancer Center, Columbus, OH
- Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Marzena Swiderska-Syn
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Paolo Manca
- Department of Medical Oncology, IRCCS Foundation - National Cancer Institute, Milan, Italy
| | - Barry C Gibney
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Carsten Krieg
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Elizabeth G Hill
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | | | | | | | | | - John Wrangle
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC;
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
44
|
TIR-Domain-Containing Adapter-Inducing Interferon-β (TRIF)-Dependent Antiviral Responses Protect Mice against Ross River Virus Disease. mBio 2022; 13:e0336321. [PMID: 35089088 PMCID: PMC8725586 DOI: 10.1128/mbio.03363-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ross River virus (RRV) is the major mosquito-borne virus in the South Pacific region. RRV infections are characterized by arthritic symptoms, which can last from several weeks to months. Type I interferon (IFN), the primary antiviral innate immune response, is able to modulate adaptive immune responses. The relationship between the protective role of type I IFN and the induction of signaling proteins that drive RRV disease pathogenesis remains poorly understood. In the present study, the role of TIR-domain-containing adapter-inducing interferon-β (TRIF), an essential signaling adaptor protein downstream of Toll-like receptor (TLR) 3, a key single-stranded RNA (ssRNA)-sensing receptor, was investigated. We found that TRIF-/- mice were highly susceptible to RRV infection, with severe disease, high viremia, and a low type I IFN response early during disease development, which suggests the TLR3-TRIF axis may engage early in response to RRV infection. The number and the activation level of CD4+ T cells, CD8+ T cells, and NK cells were reduced in TRIF-/- mice compared to those in infected wild-type (WT) mice. In addition, the number of germinal center B cells was lower in TRIF-/- mice than WT mice following RRV infection, with lower titers of IgG antibodies detected in infected TRIF-/- mice compared to WT. Interestingly, the requirement for TRIF to promote immunoglobulin class switch recombination was at the level of the local immune microenvironment rather than B cells themselves. The slower resolution of RRV disease in TRIF-/- mice was associated with persistence of the RRV genome in muscle tissue and a continuing IFN response. IMPORTANCE RRV has been prevalent in the South Pacific region for decades and causes substantial economic and social costs. Though RRV is geographically restricted, a number of other alphaviruses have spread globally due to expansion of the mosquito vectors and increased international travel. Since over 30 species of mosquitoes have been implicated as potent vectors for RRV dissemination, RRV has the potential to further expand its distribution. In the pathogenesis of RRV disease, it is still not clear how innate immune responses synergize with adaptive immune responses. Type I IFN is crucial for bridging innate to adaptive immune responses to viral invasion. Hence, key signaling proteins in type I IFN induction pathways, which are important for type I IFN modulation, may also play critical roles in viral pathogenesis. This study provides insight into the role of TRIF in RRV disease development.
Collapse
|
45
|
Hendrawan K, Khoo MLM, Visweswaran M, Massey JC, Withers B, Sutton I, Ma DDF, Moore JJ. Long-Term Suppression of Circulating Proinflammatory Cytokines in Multiple Sclerosis Patients Following Autologous Haematopoietic Stem Cell Transplantation. Front Immunol 2022; 12:782935. [PMID: 35126353 PMCID: PMC8807525 DOI: 10.3389/fimmu.2021.782935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Autologous haematopoietic stem cell transplantation (AHSCT) is a therapeutic option for haematological malignancies, such as non-Hodgkin’s lymphoma (NHL), and more recently, for autoimmune diseases, such as treatment-refractory multiple sclerosis (MS). The immunological mechanisms underlying remission in MS patients following AHSCT likely involve an anti-inflammatory shift in the milieu of circulating cytokines. We hypothesised that immunological tolerance in MS patients post-AHSCT is reflected by an increase in anti-inflammatory cytokines and a suppression of proinflammatory cytokines in the patient blood. We investigated this hypothesis using a multiplex-ELISA assay to compare the concentrations of secreted cytokine in the peripheral blood of MS patients and NHL patients undergoing AHSCT. In MS patients, we detected significant reductions in proinflammatory T helper (Th)17 cytokines interleukin (IL)-17, IL-23, IL-1β, and IL-21, and Th1 cytokines interferon (IFN)γ and IL-12p70 in MS patients from day 8 to 24 months post-AHSCT. These changes were not observed in the NHL patients despite similar pre-conditioning treatment for AHSCT. Some proinflammatory cytokines show similar trends in both cohorts, such as IL-8 and tumour necrosis factor (TNF)-α, indicating a probable treatment-related AHSCT response. Anti-inflammatory cytokines (IL-10, IL-4, and IL-2) were only transiently reduced post-AHSCT, with only IL-10 exhibiting a significant surge at day 14 post-AHSCT. MS patients that relapsed post-AHSCT exhibited significantly elevated levels of IL-17 at 12 months post-AHSCT, unlike non-relapse patients which displayed sustained suppression of Th17 cytokines at all post-AHSCT timepoints up to 24 months. These findings suggest that suppression of Th17 cytokines is essential for the induction of long-term remission in MS patients following AHSCT.
Collapse
Affiliation(s)
- Kevin Hendrawan
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Melissa L. M. Khoo
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Malini Visweswaran
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jennifer C. Massey
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Barbara Withers
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Ian Sutton
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - David D. F. Ma
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - John J. Moore
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- *Correspondence: John J. Moore,
| |
Collapse
|
46
|
Peerlings D, Mimpen M, Damoiseaux J. The IL-2 - IL-2 receptor pathway: Key to understanding multiple sclerosis. J Transl Autoimmun 2022; 4:100123. [PMID: 35005590 PMCID: PMC8716671 DOI: 10.1016/j.jtauto.2021.100123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
The development, progression, diagnosis and treatment of autoimmune diseases, such as multiple sclerosis (MS), are convoluted processes which remain incompletely understood. Multiple studies demonstrated that the interleukin (IL)-2 – IL-2 receptor (IL-2R) pathway plays a pivotal role within these processes. The most striking functions of the IL-2 – IL-2R pathway are the differential induction of autoimmune responses and tolerance. This paradoxical function of the IL-2 – IL-2R pathway may be an attractive therapeutic target for autoimmune diseases such as MS. However, the exact mechanisms that lead to autoimmunity or tolerance remain to be elucidated. Furthermore, another factor of this pathway, the soluble form of the IL-2R (sIL-2R), further complicates understanding the role of the IL-2 – IL-2R pathway in MS. The challenge is to unravel these mechanisms to prevent, diagnose and recover MS. In this review, first, the current knowledge of MS and the IL-2 – IL-2R pathway are summarized. Second, the key findings of the relation between the IL-2 – IL-2R pathway and MS have been highlighted. Eventually, this review may launch broad interest in the IL-2 – IL-2R pathway propelling further research in autoimmune diseases, including MS. The IL-2 – IL-2R pathway determines the balance between immunity and tolerance. The IL-2 – IL-2R pathway is involved in the pathogenesis of multiple sclerosis. The role of soluble IL-2R is controversial and requires further investigation.
Collapse
Affiliation(s)
- Daphne Peerlings
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
47
|
Sanz CR, Miró G, Sevane N, Reyes-Palomares A, Dunner S. Modulation of Host Immune Response during Leishmania infantum Natural Infection: A Whole-Transcriptome Analysis of the Popliteal Lymph Nodes in Dogs. Front Immunol 2022; 12:794627. [PMID: 35058931 PMCID: PMC8763708 DOI: 10.3389/fimmu.2021.794627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Leishmania infantum, the etiological agent of canine leishmaniosis (CanL) in Europe, was responsible of the largest outbreak of human leishmaniosis in Spain. The parasite infects and survives within myeloid lineage cells, causing a potentially fatal disease if left untreated. The only treatment option relies on chemotherapy, although immunotherapy strategies are being considered as novel approaches to prevent progression of the disease. To this aim, a deeper characterization of the molecular mechanisms behind the immunopathogenesis of leishmaniosis is necessary. Thus, we evaluated, for the first time, the host immune response during L. infantum infection through transcriptome sequencing of the popliteal lymph nodes aspirates of dogs with CanL. Differential expression and weighted gene co-expression network analyses were performed, resulting in the identification of 5,461 differentially expressed genes (DEGs) and four key modules in sick dogs, compared to controls. As expected, defense response was the highest enriched biological process in the DEGs, with six genes related to immune response against pathogens (CHI3L1, SLPI, ACOD1, CCL5, MPO, BPI) included among the ten most expressed genes; and two of the key co-expression modules were associated with regulation of immune response, which also positively correlated with clinical stage and blood monocyte concentration. In particular, sick dogs displayed significant changes in the expression of Th1, Th2, Th17 and Tr1 cytokines (e. g. TNF-α, IFN-γ, IL-21, IL-17, IL-15), markers of T cell and NK cell exhaustion (e. g. LAG3, CD244, Blimp-1, JUN), and B cell, monocyte and macrophage disrupted functionality (e. g. CD40LG, MAPK4, IL-1R, NLRP3, BCMA). In addition, we found an overexpression of XBP1 and some other genes involved in endoplasmic reticulum stress and the IRE1 branch of the unfolded protein response, as well as one co-expression module associated with these processes, which could be induced by L. infantum to prevent host cell apoptosis and modulate inflammation-induced lymphangiogenesis at lymph nodes. Moreover, 21 lncRNAs were differentially expressed in sick dogs, and one key co-expression module was associated with chromatin organization, suggesting that epigenetic mechanisms could also contribute to dampening host immune response during natural L. infantum infection in the lymph nodes of dogs suffering from clinical leishmaniosis.
Collapse
Affiliation(s)
- Carolina R Sanz
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Guadalupe Miró
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Natalia Sevane
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Susana Dunner
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
48
|
Talker SC, Barut GT, Lischer HE, Rufener R, von Münchow L, Bruggmann R, Summerfield A. Monocyte biology conserved across species: Functional insights from cattle. Front Immunol 2022; 13:889175. [PMID: 35967310 PMCID: PMC9373011 DOI: 10.3389/fimmu.2022.889175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Similar to human monocytes, bovine monocytes can be split into CD14highCD16- classical, CD14highCD16high intermediate and CD14-/dimCD16high nonclassical monocytes (cM, intM, and ncM, respectively). Here, we present an in-depth analysis of their steady-state bulk- and single-cell transcriptomes, highlighting both pronounced functional specializations and transcriptomic relatedness. Bulk gene transcription indicates pro-inflammatory and antibacterial roles of cM, while ncM and intM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. Notably, intM stood out by high expression of several genes associated with antigen presentation. Anti-inflammatory and antiviral functions of ncM are further supported by dominant oxidative phosphorylation and selective strong responses to TLR7/8 ligands, respectively. Moreover, single-cell RNA-seq revealed previously unappreciated heterogeneity within cM and proposes intM as a transient differentiation intermediate between cM and ncM.
Collapse
Affiliation(s)
- Stephanie C. Talker
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Stephanie C. Talker,
| | - G. Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heidi E.L. Lischer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
49
|
Sana M, Rashid M, Rashid I, Akbar H, Gomez-Marin JE, Dimier-Poisson I. Immune response against toxoplasmosis-some recent updates RH: Toxoplasma gondii immune response. Int J Immunopathol Pharmacol 2022; 36:3946320221078436. [PMID: 35227108 PMCID: PMC8891885 DOI: 10.1177/03946320221078436] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Cytokines, soluble mediators of immunity, are key factors of the innate and adaptive immune system. They are secreted from and interact with various types of immune cells to manipulate host body's immune cell physiology for a counter-attack on the foreign body. A study was designed to explore the mechanism of Toxoplasma gondii (T. gondii) resistance from host immune response. METHODS AND RESULTS The published data on aspect of host (murine and human) immune response against T. gondii was taken from Google scholar and PubMed. Most relevant literature was included in this study. The basic mechanism of immune response starts from the interactions of antigens with host immune cells to trigger the production of cytokines (pro-inflammatory and anti-inflammatory) which then act by forming a cytokinome (network of cytokine). Their secretory equilibrium is essential for endowing resistance to the host against infectious diseases, particularly toxoplasmosis. A narrow balance lying between Th1, Th2, and Th17 cytokines (as demonstrated until now) is essential for the development of resistance against T. gondii as well as for the survival of host. Excessive production of pro-inflammatory cytokines leads to tissue damage resulting in the production of anti-inflammatory cytokines which enhances the proliferation of Toxoplasma. Stress and other infectious diseases (human immunodeficiency virus (HIV)) that weaken the host immunity particularly the cellular component, make the host susceptible to toxoplasmosis especially in pregnant women. CONCLUSION The current review findings state that in vitro harvesting of IL12 from DCs, Np and MΦ upon exposure with T. gondii might be a source for therapeutic use in toxoplasmosis. Current review also suggests that therapeutic interventions leading to up-regulation/supplementation of SOCS-3, IL12, and IFNγ to the infected host could be a solution to sterile immunity against T. gondii infection. This would be of interest particularly in patients passing through immunosuppression owing to any reason like the ones receiving anti-cancer therapy, the ones undergoing immunosuppressive therapy for graft/transplantation, the ones suffering from immunodeficiency virus (HIV) or having AIDS. Another imortant suggestion is to launch the efforts for a vaccine based on GRA6Nt or other similar antigens of T. gondii as a probable tool to destroy tissue cysts.
Collapse
Affiliation(s)
- Madiha Sana
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, 66920The Islamia University of Bahawalpur, Pakistan
| | - Imran Rashid
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haroon Akbar
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jorge E Gomez-Marin
- Grupo Gepamol, Centro de Investigaciones Biomedicas, Universidad del Quindio, Armenia, CO, South America
| | - Isabelle Dimier-Poisson
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| |
Collapse
|
50
|
Haddadi MH, Negahdari B. Clinical and diagnostic potential of regulatory T cell markers: From bench to bedside. Transpl Immunol 2021; 70:101518. [PMID: 34922022 DOI: 10.1016/j.trim.2021.101518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
Regulatory T (Treg) cells are heterogeneous immune cell populations residing in the thymus and peripheral lymphatic tissues. This immune cell plays a central and critical role in maintaining immune tolerance against undesirable immune responses. Treg cells' phenotypic heterogeneity caused by different pathological conditions makes their identification and differentiation from non-suppressive T cells difficult. On the other hand, using nonspecific markers and variable isolation panels leads to undesirable outcomes. There are a variety of markers to identify functional Treg cells, including CD25, FOXP3, and CTLA-4, as well as the epigenetic signature of forkhead box P3 (FOXP3), which can be used for both natural and induced Treg cells. Phenotypic heterogeneity is a major concern in Treg purification when using nonspecific markers, which can be addressed by utilizing suitable isolation panels designed for different purposes. This review presents a clinical framework for Treg detection and isolation, focusing on Treg markers such as CD25, FOXP3, CTLA-4, CD127, GPA-33, and TSDR demethylation to design Treg isolation panels suitable for different Treg therapy purposes. The current review also highlights new reliable Treg markers applicable for different purposes.
Collapse
Affiliation(s)
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|