1
|
Boehm T. Understanding vertebrate immunity through comparative immunology. Nat Rev Immunol 2025; 25:141-152. [PMID: 39317775 DOI: 10.1038/s41577-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary immunology has entered a new era. Classical studies, using just a handful of model animal species, combined with clinical observations, provided an outline of how innate and adaptive immunity work together to ensure tissue homeostasis and to coordinate the fight against infections. However, revolutionary advances in cellular and molecular biology, genomics and methods of genetic modification now offer unprecedented opportunities. They provide immunologists with the possibility to consider, at unprecedented scale, the impact of the astounding phenotypic diversity of vertebrates on immune system function. This Perspective is intended to highlight some of the many interesting, but largely unexplored, biological phenomena that are related to immune function among the roughly 60,000 existing vertebrate species. Importantly, hypotheses arising from such wide-ranging comparative studies can be tested in representative and genetically tractable species. The emerging general principles and the discovery of their evolutionarily selected variations may inspire the future development of novel therapeutic strategies for human immune disorders.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany.
- Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Alcobia I, Gama-Carvalho M, Magalhães L, Proa V, Ferreira S, Henrique D, Neves H. Thymus-forming potential of the second pharyngeal pouch and its regulation by local mesenchyme in avian embryos. Cell Rep 2024; 43:114998. [PMID: 39612245 DOI: 10.1016/j.celrep.2024.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/12/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
The thymus derives from the endoderm of pharyngeal pouches (PPs). The number and location of PPs with thymus-forming potential differ among jawed vertebrates, and ectopic thymus locations in mice and humans suggest a broader thymus-forming potential in PP endoderm than previously ascribed. We used the quail-chick chimera system to test if non-canonical pouches could form a thymus and examined the role of pharyngeal arch (PA) mesenchyme in this process. After testing several tissue associations, we identified thymus-forming potential in both non-canonical second PP and canonical third/fourth PP endoderm. We found the 3/4PA and the ventral region of 2PA mesenchyme to be capable of positively regulating this potential, while the dorsal region of 2PA exerts an inhibitory effect. Transcriptomic analysis revealed a shared genetic program associated with thymic potential in PP endoderm and uncovered distinct signaling pathways mediating cellular interactions between PP endoderm and PA mesenchyme, which modulate this thymic potential.
Collapse
Affiliation(s)
- Isabel Alcobia
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; GIMM-Gulbenkian Institute for Molecular Medicine, 1649-028 Lisboa, Portugal
| | - Margarida Gama-Carvalho
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Leonor Magalhães
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Vitor Proa
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Ferreira
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Domingos Henrique
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; GIMM-Gulbenkian Institute for Molecular Medicine, 1649-028 Lisboa, Portugal
| | - Hélia Neves
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; GIMM-Gulbenkian Institute for Molecular Medicine, 1649-028 Lisboa, Portugal.
| |
Collapse
|
3
|
Whitehead AK, Wang Z, Boustany RJ, Vivès RR, Lazartigues E, Liu J, Siggins RW, Yue X. Myeloid deficiency of heparan sulfate 6-O-endosulfatases impairs bone marrow hematopoiesis. Matrix Biol 2024; 134:107-118. [PMID: 39368561 PMCID: PMC11585435 DOI: 10.1016/j.matbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The heparan sulfate (HS) 6-O-endosulfatases or the Sulfs (Sulf1 and Sulf2) are the only known enzymes that can modify HS sulfation status extracellularly and have been shown to regulate diverse biological processes. The role of the Sulfs in bone marrow (BM) hematopoiesis is not known. In this study, we generated a novel mouse line with myeloid-specific deletion of the Sulfs by crossing Sulf1/2 double floxed mice with the LysM-cre line. The LysM-Sulf knockout (KO) male mice exhibited age-dependent expansion of hematopoietic stem cells and the granulocyte-monocyte lineages in the BM, whereas common lymphoid progenitors and B lymphocyte populations were significantly reduced. Although megakaryocytic and erythroid progenitors were not reduced in the BM, the LysM-Sulf KO males suffered age-dependent reduction of red blood cells (RBCs) and platelets in the peripheral blood, suggesting that the production of RBCs and platelets was arrested at later stages. In addition, LysM-Sulf KO males displayed progressive splenomegaly with extramedullary hematopoiesis. Compared to males, LysM-Sulf KO females exhibited a much-reduced phenotype, and ovariectomy had little effect. Mechanistically, reduced TGF-β/Smad2 but enhanced p53/p21 signaling were observed in male but not female LysM-Sulf KO mice. Finally, HS disaccharide analysis via LC-MS/MS revealed increased HS 6-O-sulfation in the BM from both male and female LysM-Sulf KO mice, however, the distribution of 6-O-sulfated motifs were different between the sexes with compensatory increase in Sulf1 expression observed only in LysM-Sulf KO females. In conclusion, our study reveals that myeloid deficiency of the Sulfs leads to multilineage abnormalities in BM hematopoiesis in an age- and sex-dependent manner.
Collapse
Affiliation(s)
- Anna K Whitehead
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | - Romain R Vivès
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Robert W Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Xinping Yue
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
4
|
Anderson G, Cosway EJ, James KD, Ohigashi I, Takahama Y. Generation and repair of thymic epithelial cells. J Exp Med 2024; 221:e20230894. [PMID: 38980292 PMCID: PMC11232892 DOI: 10.1084/jem.20230894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
In the vertebrate immune system, thymus stromal microenvironments support the generation of αβT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.
Collapse
Affiliation(s)
- Graham Anderson
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Emilie J. Cosway
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kieran D. James
- Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Pardini E, Barachini S, Alì G, Infirri GS, Burzi IS, Montali M, Petrini I. Single-cell sequencing has revealed a more complex array of thymic epithelial cells. Immunol Lett 2024; 269:106904. [PMID: 39117004 DOI: 10.1016/j.imlet.2024.106904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Thymic epithelial cells participate in the maturation and selection of T lymphocytes. This review explores recent insights from single-cell sequencing regarding classifying thymic epithelial cells in both normal and neoplastic thymus. Cortical thymic epithelial cells facilitate thymocyte differentiation and contribute to positive selection. Medullary epithelial cells are distinguished by their expression of AIRE. Cells progress from a pre-AIRE state, containing precursors with cortical and medullary characteristics, termed junctional cells. Mature medullary epithelial cells exhibit promiscuous gene expression and after that downregulate AIRE mRNA. Post-AIRE cells can adopt a Hassall corpuscle-like phenotype or exhibit distinctive differentiation characteristics including tuft cells, ionocytes, neuroendocrine cells, and myoid cells.
Collapse
Affiliation(s)
- Eleonora Pardini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Greta Alì
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Irene Sofia Burzi
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Marina Montali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Michelson DA, Mathis D. Thymic Mimetic Cells: Ontogeny as Immunology. Annu Rev Cell Dev Biol 2024; 40:283-300. [PMID: 38608315 PMCID: PMC11446667 DOI: 10.1146/annurev-cellbio-112122-023316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Medullary thymic epithelial cells (mTECs) generate immunological self-tolerance by ectopically expressing peripheral-tissue antigens (PTAs) within the thymus to preview the peripheral self to maturing T cells. Recent work, drawing inspiration from old histological observations, has shown that subtypes of mTECs, collectively termed mimetic cells, co-opt developmental programs from throughout the organism to express biologically coherent groups of PTAs. Here, we review key aspects of mimetic cells, especially as they relate to the larger contexts of molecular, cellular, developmental, and evolutionary biology. We highlight lineage-defining transcription factors as key regulators of mimetic cells and speculate as to what other factors, including Aire and the chromatin potential of mTECs, permit mimetic cell differentiation and function. Last, we consider what mimetic cells can teach us about not only the thymus but also other tissues.
Collapse
Affiliation(s)
- Daniel A Michelson
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
7
|
Mayer A, Voller J, Varga I. Enigmatic thymus: Variations in anatomical localisation of thymic tissue as an easily misdiagnosed congenital anomaly in surgical practice. World J Clin Cases 2024; 12:5646-5652. [PMID: 39247750 PMCID: PMC11263050 DOI: 10.12998/wjcc.v12.i25.5646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 07/12/2024] Open
Abstract
We point out the issue of differential diagnosis regarding the finding of ectopically localised thymic tissue (a thymic cyst) in the neck. Thymic tissue can be found anywhere along its developmental tract of descent, from the angle of the mandible to the upper mediastinum. Disruption of the thymic descent can result in ectopically/abnormally localised islets of accessory thymic tissue, which may undergo cystic changes, as described in a case report by Sun et al. This anatomical variation of the thymus may be clinically misinterpreted as a neoplasm or other congenital anomalies as a branchial cyst, lymphatic malformation or cystic hygroma. The present editorial focuses on the challenge of establishing a diagnosis of ectopically localised tissue of thymus often presented as a lateral cervical mass, especially in the case of cystic variation/degeneration of this thymic tissue. We summarise hypotheses on the origin of such congenital cervical thymic cysts from the point of view of evolutionary history and embryology. We also discuss lesser-known facts about the anatomy, histopathology and developmental biology of the thymus as one of the most enigmatic organs in the human body.
Collapse
Affiliation(s)
- Alexander Mayer
- Fourth Department of Surgery, Faculty of Medicine, Comenius University and University Hospital Bratislava, Bratislava 81372, Slovakia
| | - Jaroslav Voller
- Faculty of Health Care Studies, University of Western Bohemia, Pilsen 30100, Czech Republic
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81372, Slovakia
| |
Collapse
|
8
|
Wang J, Zhu F, Jiao D, Yang C, Wang J, Wang F, Zhao H, Wei HJ, Zhao HY. Generation of RAG2 Knockout Immune-Deficient Miniature Pigs. Animals (Basel) 2024; 14:2597. [PMID: 39272382 PMCID: PMC11393836 DOI: 10.3390/ani14172597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Recombination-activating genes (RAGs) play a crucial role in the V(D)J recombination process and the development of immune cells. The development of the immune system and its mechanisms in pigs exhibit greater similarity to those of humans compared to other animals, thus rendering pigs a valuable tool for biomedical research. In this study, we utilized CRISPR/Cas9 gene editing and somatic cell nuclear transfer technology to generate RAG2 knockout (KO) pigs. Furthermore, we evaluated the impact of RAG2 KO on the immune organs and immune cell development through morphological observations, blood analysis and flow cytometry technology. RAG2 KO cell lines were used as donors for cloning. The reconstructed embryos were transplanted into 4 surrogate sows, and after 116 days of gestation, 2 sows gave birth to 12 live piglets, all of which were confirmed to be RAG2 KO. The thymus and spleen sizes of RAG2 KO pigs were significantly smaller than those of wild-type (WT) pigs. Hematoxylin-eosin staining results revealed that the thymus and spleen tissue structures of RAG2 KO pigs were disorganized and lacked the characteristic structures, indicating that RAG2 KO leads to dysplasia of the thymus and spleen. Hematological analysis demonstrated that the total number of white blood cells and lymphocytes in the circulation of RAG2 KO pigs was significantly lower, while the number of eosinophils was higher. Flow cytometry results indicated that the proportions of mature T and B lymphocytes were significantly reduced compared to WT pigs. These findings successfully verified the immunodeficiency phenotype of RAG2 KO pigs. This study may provide experimental animals for the development of tumor models and humanized animals.
Collapse
Affiliation(s)
- Jing Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Feiyan Zhu
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Deling Jiao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Chang Yang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Junqi Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Fengchong Wang
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Jiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Ye Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Province Xenotransplantation Research Engineering Centre, Yunnan Agricultural University, Kunming 650201, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
9
|
Ruiz Pérez M, Vandenabeele P, Tougaard P. The thymus road to a T cell: migration, selection, and atrophy. Front Immunol 2024; 15:1443910. [PMID: 39257583 PMCID: PMC11384998 DOI: 10.3389/fimmu.2024.1443910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
The thymus plays a pivotal role in generating a highly-diverse repertoire of T lymphocytes while preventing autoimmunity. Thymus seeding progenitors (TSPs) are a heterogeneous group of multipotent progenitors that migrate to the thymus via CCR7 and CCR9 receptors. While NOTCH guides thymus progenitors toward T cell fate, the absence or disruption of NOTCH signaling renders the thymus microenvironment permissive to other cell fates. Following T cell commitment, developing T cells undergo multiple selection checkpoints by engaging with the extracellular matrix, and interacting with thymic epithelial cells (TECs) and other immune subsets across the different compartments of the thymus. The different selection checkpoints assess the T cell receptor (TCR) performance, with failure resulting in either repurposing (agonist selection), or cell death. Additionally, environmental cues such as inflammation and endocrine signaling induce acute thymus atrophy, contributing to the demise of most developing T cells during thymic selection. We discuss the occurrence of acute thymus atrophy in response to systemic inflammation. The thymus demonstrates high plasticity, shaping inflammation by abrogating T cell development and undergoing profound structural changes, and facilitating regeneration and restoration of T cell development once inflammation is resolved. Despite the challenges, thymic selection ensures a highly diverse T cell repertoire capable of discerning between self and non-self antigens, ultimately egressing to secondary lymphoid organs where they complete their maturation and exert their functions.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
10
|
Zhao J, Hu R, Lai KC, Zhang Z, Lai L. Recombinant FOXN1 fusion protein increases T cell generation in old mice. Front Immunol 2024; 15:1423488. [PMID: 39072332 PMCID: PMC11272594 DOI: 10.3389/fimmu.2024.1423488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
T cell development in the thymus is dependent on the thymic microenvironment, in which thymic epithelial cells (TECs) are the major component. However, TECs undergo both a qualitative and quantitative loss during aging, which is believed to be the major factor responsible for age-dependent thymic atrophy. FOXN1 plays a critical role in TEC development and adult TECs maintenance. We have previously reported that intrathymic injection of a recombinant (r) protein containing murine FOXN1 and a protein transduction domain increases the number of TECs in mice, leading to enhanced thymopoiesis. However, intrathymic injection may not be an ideal choice for clinical applications. In this study, we produced a rFOXN1 fusion protein containing the N-terminal of CCR9, human FOXN1 and a protein transduction domain. When injected intravenously into 14-month-old mice, the rFOXN1 fusion protein enters the thymus and TECs, and enhances thymopoiesis, resulting in increased T cell generation in the thymus and increased number of T cells in peripheral lymphoid organ. Our results suggest that the rFOXN1 fusion protein has the potential to be used in preventing and treating T cell immunodeficiency in older adults.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Kuan Chen Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Zhenzhen Zhang
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
11
|
Perrino M, Voulaz E, Balin S, Cazzato G, Fontana E, Franzese S, Defendi M, De Vincenzo F, Cordua N, Tamma R, Borea F, Aliprandi M, Airoldi M, Cecchi LG, Fazio R, Alloisio M, Marulli G, Santoro A, Di Tommaso L, Ingravallo G, Russo L, Da Rin G, Villa A, Della Bella S, Zucali PA, Mavilio D. Autoimmunity in thymic epithelial tumors: a not yet clarified pathologic paradigm associated with several unmet clinical needs. Front Immunol 2024; 15:1288045. [PMID: 38629065 PMCID: PMC11018877 DOI: 10.3389/fimmu.2024.1288045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare mediastinal cancers originating from the thymus, classified in two main histotypes: thymoma and thymic carcinoma (TC). TETs affect a primary lymphoid organ playing a critical role in keeping T-cell homeostasis and ensuring an adequate immunological tolerance against "self". In particular, thymomas and not TC are frequently associated with autoimmune diseases (ADs), with Myasthenia Gravis being the most common AD present in 30% of patients with thymoma. This comorbidity, in addition to negatively affecting the quality and duration of patients' life, reduces the spectrum of the available therapeutic options. Indeed, the presence of autoimmunity represents an exclusion criteria for the administration of the newest immunotherapeutic treatments with checkpoint inhibitors. The pathophysiological correlation between TETs and autoimmunity remains a mystery. Several studies have demonstrated the presence of a residual and active thymopoiesis in adult patients affected by thymomas, especially in mixed and lymphocytic-rich thymomas, currently known as type AB and B thymomas. The aim of this review is to provide the state of art in regard to the histological features of the different TET histotype, to the role of the different immune cells infiltrating tumor microenvironments and their impact in the break of central immunologic thymic tolerance in thymomas. We discuss here both cellular and molecular immunologic mechanisms inducing the onset of autoimmunity in TETs, limiting the portfolio of therapeutic strategies against TETs and greatly impacting the prognosis of associated autoimmune diseases.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Emanuele Voulaz
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Elena Fontana
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Martina Defendi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabio De Vincenzo
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberto Tamma
- Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
| | - Federica Borea
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Aliprandi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Airoldi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luigi Giovanni Cecchi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberta Fazio
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Alloisio
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giuseppe Marulli
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Laura Russo
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giorgio Da Rin
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
12
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
13
|
Kulesh V, Peskov K, Helmlinger G, Bocharov G. An integrative mechanistic model of thymocyte dynamics. Front Immunol 2024; 15:1321309. [PMID: 38469297 PMCID: PMC10925769 DOI: 10.3389/fimmu.2024.1321309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Background The thymus plays a central role in shaping human immune function. A mechanistic, quantitative description of immune cell dynamics and thymic output under homeostatic conditions and various patho-physiological scenarios are of particular interest in drug development applications, e.g., in the identification of potential therapeutic targets and selection of lead drug candidates against infectious diseases. Methods We here developed an integrative mathematical model of thymocyte dynamics in human. It incorporates mechanistic features of thymocyte homeostasis as well as spatial constraints of the thymus and considerations of age-dependent involution. All model parameter estimates were obtained based on published physiological data of thymocyte dynamics and thymus properties in mouse and human. We performed model sensitivity analyses to reveal potential therapeutic targets through an identification of processes critically affecting thymic function; we further explored differences in thymic function across healthy subjects, multiple sclerosis patients, and patients on fingolimod treatment. Results We found thymic function to be most impacted by the egress, proliferation, differentiation and death rates of those thymocytes which are most differentiated. Model predictions also showed that the clinically observed decrease in relapse risk with age, in multiple sclerosis patients who would have discontinued fingolimod therapy, can be explained mechanistically by decreased thymic output with age. Moreover, we quantified the effects of fingolimod treatment duration on thymic output. Conclusions In summary, the proposed model accurately describes, in mechanistic terms, thymic output as a function of age. It may be further used to perform predictive simulations of clinically relevant scenarios which combine specific patho-physiological conditions and pharmacological interventions of interest.
Collapse
Affiliation(s)
- Victoria Kulesh
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
| | - Kirill Peskov
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
- Modeling & Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
- Sirius University of Science and Technology, Sirius, Russia
| | | | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics at INM Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
14
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
15
|
Zhong X, Peddada N, Wang J, Moresco JJ, Zhan X, Shelton JM, SoRelle JA, Keller K, Lazaro DR, Moresco EMY, Choi JH, Beutler B. OVOL2 sustains postnatal thymic epithelial cell identity. Nat Commun 2023; 14:7786. [PMID: 38012144 PMCID: PMC10682436 DOI: 10.1038/s41467-023-43456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Distinct pathways and molecules may support embryonic versus postnatal thymic epithelial cell (TEC) development and maintenance. Here, we identify a mechanism by which TEC numbers and function are maintained postnatally. A viable missense allele (C120Y) of Ovol2, expressed ubiquitously or specifically in TECs, results in lymphopenia, in which T cell development is compromised by loss of medullary TECs and dysfunction of cortical TECs. We show that the epithelial identity of TECs is aberrantly subverted towards a mesenchymal state in OVOL2-deficient mice. We demonstrate that OVOL2 inhibits the epigenetic regulatory BRAF-HDAC complex, specifically disrupting RCOR1-LSD1 interaction. This causes inhibition of LSD1-mediated H3K4me2 demethylation, resulting in chromatin accessibility and transcriptional activation of epithelial genes. Thus, OVOL2 controls the epigenetic landscape of TECs to enforce TEC identity. The identification of a non-redundant postnatal mechanism for TEC maintenance offers an entry point to understanding thymic involution, which normally begins in early adulthood.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Nagesh Peddada
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - James J Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Xiaowei Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8821, USA
| | - John M Shelton
- Intermal Medicine-Histopathology Core, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Jeffrey A SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9072, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9063, USA
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Danielle Renee Lazaro
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA.
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA.
| |
Collapse
|
16
|
Zhang D, Jia M, Wang C, Li Y, Ma C, Zhu G, Ma R, Wen D, Jia X, Xu G, Zhang X, Cong B. CCK2-receptor deficiency impairs immune balance by influencing CD4 + T cells development by inhibiting cortical-thymic-epithelial-cells. Exp Biol Med (Maywood) 2023; 248:1718-1731. [PMID: 37787155 PMCID: PMC10792431 DOI: 10.1177/15353702231198083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 10/04/2023] Open
Abstract
Immune balance is crucial for an organism's survival and is inseparable from the regulation of the nervous system. Accumulating evidence indicates that cholecystokinin (CCK) plays an important role in mediating the immune response through the activation of cholecystokinin receptors (CCKRs). However, it remains unclear whether CCKRs deficiency may impair immune balance. Here, we showed that CCK2R-deficient adult mice were immunocompromised and had an increased risk of shock and even death in an endotoxemia (ETM)/endotoxin shock (ES) model. In addition, in both adult and juvenile mice, CCK2R deficiency not only influenced the development of CD4 single-positive (SP) thymocytes in thymic positive selection but also decreased the population of CD3+ CD4+ T cells in the spleen. More importantly, CCK2R deficiency inhibited the expression of major histocompatibility complex class II (MHC II) and CD83 on cortical thymic epithelial cells (cTECs) in juvenile and adult mice. Overall, our study suggests that CCK2R is essential for maintaining CD4+ T cell development in the thymus and reveals that CCK2R plays an important role in maintaining immune balance.
Collapse
Affiliation(s)
- Dong Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050017, China
| | - Miaomiao Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Chuan Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingmin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Guiyun Zhu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Rufei Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Di Wen
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Guangming Xu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang 050017, China
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, China
| |
Collapse
|
17
|
Zhang X, He J, Zhao K, Liu S, Xuan L, Chen S, Xue R, Lin R, Xu J, Zhang Y, Xiang AP, Jin H, Liu Q. Mesenchymal stromal cells ameliorate chronic GVHD by boosting thymic regeneration in a CCR9-dependent manner in mice. Blood Adv 2023; 7:5359-5373. [PMID: 37363876 PMCID: PMC10509672 DOI: 10.1182/bloodadvances.2022009646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Mature donor T cells within the graft contribute to severe damage of thymic epithelial cells (TECs), which are known as key mediators in the continuum of acute GVHD (aGVHD) and cGVHD pathology. Mesenchymal stromal cells (MSCs) are reportedly effective in the prevention and treatment of cGVHD. In our previous pilot clinical trial in patients with refractory aGVHD, the incidence and severity of cGVHD were decreased, along with an increase in levels of blood signal joint T-cell receptor excision DNA circles after MSCs treatment, which indicated an improvement in thymus function of patients with GVHD, but the mechanisms leading to these effects remain unknown. Here, we show in a murine GVHD model that MSCs promoted the quantity and maturity of TECs as well as elevated the proportion of Aire-positive medullary TECs, improving both CD4+CD8+ double-positive thymocytes and thymic regulatory T cells, balancing the CD4:CD8 ratio in the blood. In addition, CCL25-CCR9 signaling axis was found to play an important role in guiding MSC homing to the thymus. These studies reveal mechanisms through which MSCs ameliorate cGVHD by boosting thymic regeneration and offer innovative strategies for improving thymus function in patients with GVHD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiabao He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Shiqi Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Shan Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Rongtao Xue
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
18
|
Wang Y, Zhao J, Gu Y, Wang H, Jiang M, Zhao S, Qing H, Ni J. Cathepsin H: molecular characteristics and clues to function and mechanism. Biochem Pharmacol 2023; 212:115585. [PMID: 37148981 DOI: 10.1016/j.bcp.2023.115585] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Cathepsin H (CatH) is a lysosomal cysteine protease with a unique aminopeptidase activity that is extensively expressed in the lung, pancreas, thymus, kidney, liver, skin, and brain. Owing to its specific enzymatic activity, CatH has critical effects on the regulation of biological behaviours of cancer cells and pathological processes in brain diseases. Moreover, a neutral pH level is optimal for CatH activity, so it is expected to be active in the extra-lysosomal and extracellular space. In the present review, we describe the expression, maturation, and enzymatic properties of CatH, and summarize the available experimental evidence that mechanistically links CatH to various physiological and pathological processes. Finally, we discuss the challenges and potentials of CatH inhibitors in CatH-induced disease therapy.
Collapse
Affiliation(s)
- Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Juan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China; Aerospace Medical Center, Aerospace Center Hospital, Beijing, 100081, China
| | - Yebo Gu
- Department of Stomatology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Haiping Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, China
| | - Muzhou Jiang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110002, China
| | - Shuxuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
19
|
MacNabb BW, Rothenberg EV. Speed and navigation control of thymocyte development by the fetal T-cell gene regulatory network. Immunol Rev 2023; 315:171-196. [PMID: 36722494 PMCID: PMC10771342 DOI: 10.1111/imr.13190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell differentiation is a tightly regulated developmental program governed by interactions between transcription factors (TFs) and chromatin landscapes and affected by signals received from the thymic stroma. This process is marked by a series of checkpoints: T-lineage commitment, T-cell receptor (TCR)β selection, and positive and negative selection. Dynamically changing combinations of TFs drive differentiation along the T-lineage trajectory, through mechanisms that have been most extensively dissected in adult mouse T-lineage cells. However, fetal T-cell development differs from adult in ways that suggest that these TF mechanisms are not fully deterministic. The first wave of fetal T-cell differentiation occurs during a unique developmental window during thymic morphogenesis, shows more rapid kinetics of differentiation with fewer rounds of cell division, and gives rise to unique populations of innate lymphoid cells (ILCs) and invariant γδT cells that are not generated in the adult thymus. As the characteristic kinetics and progeny biases are cell-intrinsic properties of thymic progenitors, the differences could be based on distinct TF network circuitry within the progenitors themselves. Here, we review recent single-cell transcriptome data that illuminate the TF networks involved in T-cell differentiation in the fetal and adult mouse thymus.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
20
|
Bosticardo M, Notarangelo LD. Human thymus in health and disease: Recent advances in diagnosis and biology. Semin Immunol 2023; 66:101732. [PMID: 36863139 PMCID: PMC10134747 DOI: 10.1016/j.smim.2023.101732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
The thymus is the crucial tissue where thymocytes develop from hematopoietic precursors that originate from the bone marrow and differentiate to generate a repertoire of mature T cells able to respond to foreign antigens while remaining tolerant to self-antigens. Until recently, most of the knowledge on thymus biology and its cellular and molecular complexity have been obtained through studies in animal models, because of the difficulty to gain access to thymic tissue in humans and the lack of in vitro models able to faithfully recapitulate the thymic microenvironment. This review focuses on recent advances in the understanding of human thymus biology in health and disease obtained through the use of innovative experimental techniques (eg. single cell RNA sequencing, scRNAseq), diagnostic tools (eg. next generation sequencing), and in vitro models of T-cell differentiation (artificial thymic organoids) and thymus development (eg. thymic epithelial cell differentiation from embryonic stem cells or induced pluripotent stem cells).
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Zhao J, Zhang Z, Lai KC, Lai L. Recombinant FOXN1 fusion protein increases T cell generation in aged mice. RESEARCH SQUARE 2023:rs.3.rs-2557067. [PMID: 36798162 PMCID: PMC9934747 DOI: 10.21203/rs.3.rs-2557067/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Background Although the thymus continues to export T cells throughout life, it undergoes a profound involution/atrophy with age, resulting in decreased numbers of T cells in the older adult, which has direct etiological linkages with many diseases. T cell development in the thymus is dependent on the thymic microenvironment, in which thymic epithelial cells (TECs) are the major component. However, TECs undergo both a qualitative and quantitative loss during aging, which is believed to be the major factor responsible for age-dependent thymic atrophy. FOXN1 plays a critical role in TEC development and adult TECs maintenance. We have previously reported that intrathymic injection of a recombinant (r) protein containing FOXN1 and a protein transduction domain increases the number of TECs in mice, leading to enhanced thymopoiesis. However, intrathymic injection may not be an ideal choice for clinical applications. In this study, we produce a rFOXN1 fusion protein containing the N-terminal of CCR9, FOXN1 and a protein transduction domain. Results We show here that, when injected intravenously into aged mice, the rFOXN1 fusion protein migrates into the thymus and enhances thymopoiesis, resulting in increased T cell generation in the thymus and increased number of T cells in peripheral lymphoid organ. Conclusions Our results suggest that the rFOXN1 fusion protein has the potential to be used in preventing and treating T cell immunodeficiency in the older adult.
Collapse
|
22
|
Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol 2023; 14:1172939. [PMID: 37180714 PMCID: PMC10174313 DOI: 10.3389/fphar.2023.1172939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Herbs originating from the Aconitum L. (Ranunculaceae), such as Aconitum carmichaelii Debeaux. (Wutou), Aconitum pendulum Busch. (Tiebangchui), and Aconitum kusnezoffii Reichb. (Caowu), etc. are highly valued for their medicinal properties. The roots and tubers of these herbs are commonly used to treat an array of ailments, including joint pain and tumors. The alkaloids present in them are the primary active components, with aconitine being the most notable. Aconitine has gained attention for its exceptional anti-inflammatory and analgesic properties, as well as its potential as an anti-tumor and cardiotonic agent. However, the exact process through which aconitine hinders the growth of cancerous cells and triggers their programmed cell death remains unclear. Therefore, we have undertaken a comprehensive systematic review and meta-analysis of the current research on the potential antitumor properties of aconitine. Methods: We conducted a thorough search of relevant preclinical studies in databases including PubMed, Web of Science, VIP, WanFang Data, CNKI, Embase, Cochrane Library, and National Center for Biotechnology Information (NCBI). The search was conducted up until 15 September 2022, and the data were statistically analyzed using RevMan 5.4 software. The number of tumor cell value-added, tumor cell apoptosis rate, thymus index (TI), and Bcl-2 gene expression level were the main indicators to be analyzed. Results: After applying the final inclusion criteria, a total of thirty-seven studies, comprising both in vivo and in vitro research were analyzed. The results showed that treatment with aconitine led to a significant reduction in tumor cell proliferation, a noteworthy increase in the rate of apoptosis among tumor cells, a decrease in the thymus index, and a reduction in the expression level of Bcl-2. These results suggested that aconitine could inhibit the proliferation, invasion, and migration abilities of tumor cells by regulating Bcl-2 etc., thereby enhancing the anti-tumor effects. Conclusion: In summary, our present study demonstrated that aconitine effectively reduced tumor size and volume, indicating a strong anti-tumor effect. Additionally, aconitine could increase the expression levels of caspase-3, Bax and other targets. Mechanistically, it may regulate the expression levels of Bax and Bcl-2 through the NF-κB signaling pathway, ultimately inhibiting tumor cell proliferation through autophagy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| |
Collapse
|
23
|
The unilateral involution in the thymus of a 96-year-old male leads to the preservation of structural integrity in one thymic lobe, as assessed by the expression of medullar and cortical antigens and the presence of CD3+ cells. Heliyon 2022; 8:e11734. [PMID: 36411931 PMCID: PMC9674545 DOI: 10.1016/j.heliyon.2022.e11734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The process of thymic involution begins soon after birth and continues through adult life. Although evolutionary conserved in all vertebrates, the thymic involution has no defined kinetics. Little is known about the pace of its regression in humans, except that there is a marked increase of thymic involution after puberty. This report describes the unusual structural findings in the thymus of a 96-year-old male. The morphological parameters of the organ were evaluated using H&E and immunohistochemistry (IHC) techniques. The macroscopic examination showed a typical organ's weight and size, except that the right thymic lobe presented a well-preserved organ and the left lobe was significantly adiposed. The H&E staining of the thymic sections from the left and right lobes confirmed advanced thymic adiposity in the left lobe and preserved thymic epithelial space containing hematoxylin-stained cells in the right lobe. The multiplex immunostaining of the right lobe sections with antibodies specific to cytokeratins -14 and -8, CD3, and CD4 revealed the presence of medullar and cortical epithelium and mix population of CD3+/CD4+ and CD3+/CD4- T cells. The T cells were associated with the medulla but not with the cortex of the thymus. The immunostaining with an antibody to FoxN1 showed that the protein was expressed in the thymic epithelium. Taken together, we provide evidence that the thymus of a 96-year-old man involuted different kinetics in each of the two thymic lobes. Furthermore, the presence of CD3+/CD4+ and CD3+/CD4-cells gives a hand to the hypothesis that a pool of T-cells may associate with this primary lymphatic organ for as long as there is the available thymic epithelium and be a source of lymphocytes aiding adaptive immune responses to old age.
Collapse
|
24
|
De novo construction of T cell compartment in humanized mice engrafted with iPSC-derived thymus organoids. Nat Methods 2022; 19:1306-1319. [PMID: 36064772 DOI: 10.1038/s41592-022-01583-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Abstract
Hematopoietic humanized (hu) mice are powerful tools for modeling the action of human immune system and are widely used for preclinical studies and drug discovery. However, generating a functional human T cell compartment in hu mice remains challenging, primarily due to the species-related differences between human and mouse thymus. While engrafting human fetal thymic tissues can support robust T cell development in hu mice, tissue scarcity and ethical concerns limit their wide use. Here, we describe the tissue engineering of human thymus organoids from inducible pluripotent stem cells (iPSC-thymus) that can support the de novo generation of a diverse population of functional human T cells. T cells of iPSC-thymus-engrafted hu mice could mediate both cellular and humoral immune responses, including mounting robust proinflammatory responses on T cell receptor engagement, inhibiting allogeneic tumor graft growth and facilitating efficient Ig class switching. Our findings indicate that hu mice engrafted with iPSC-thymus can serve as a new animal model to study human T cell-mediated immunity and accelerate the translation of findings from animal studies into the clinic.
Collapse
|
25
|
Human thymoma-associated mutation of the GTF2I transcription factor impairs thymic epithelial progenitor differentiation in mice. Commun Biol 2022; 5:1037. [PMID: 36175547 PMCID: PMC9522929 DOI: 10.1038/s42003-022-04002-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
Few human tumours present with a recurrent pathognomonic mutation in a transcription factor. Thymomas are an exception, with the majority of some subtypes exhibiting a distinct somatically acquired missense mutation in the general transcription factor GTF2I. Co-dominant expression of wild-type and mutated forms of Gtf2i in the mouse thymic epithelium is associated with aberrant thymic architecture and reduced thymopoietic activity. Phenotypic and molecular characterization of the mutant epithelium indicates that medullary differentiation is particularly affected as a result of impaired differentiation of bi-potent epithelial progenitors. The resulting gene expression signature is dominated by that of immature cortex-like thymic epithelial cells. TCR repertoire analysis of the cytopenic T cell compartment indicates efficient intrathymic selection; hence, despite marked homeostatic proliferation of T cell clones, autoimmunity is not observed. Thus, our transgenic mouse model recapitulates some aspects of the pathophysiology of a genetically defined type of human thymoma. Thymic architecture and T cell repertoire analysis of a mouse model for thymoma and the role of the transcription factor GTF2I shows suitability of this model to recapitulate human thymomas and a severe effect of Gtf2i mutations on the medullary compartment.
Collapse
|
26
|
Axin2/Conductin Is Required for Normal Haematopoiesis and T Lymphopoiesis. Cells 2022; 11:cells11172679. [PMID: 36078085 PMCID: PMC9454631 DOI: 10.3390/cells11172679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The development of T lymphocytes in the thymus and their stem cell precursors in the bone marrow is controlled by Wnt signaling in strictly regulated, cell-type specific dosages. In this study, we investigated levels of canonical Wnt signaling during hematopoiesis and T cell development within the Axin2-mTurquoise2 reporter. We demonstrate active Wnt signaling in hematopoietic stem cells (HSCs) and early thymocytes, but also in more mature thymic subsets and peripheral T lymphocytes. Thymic epithelial cells displayed particularly high Wnt signaling, suggesting an interesting crosstalk between thymocytes and thymic epithelial cells (TECs). Additionally, reporter mice allowed us to investigate the loss of Axin2 function, demonstrating decreased HSC repopulation upon transplantation and the partial arrest of early thymocyte development in Axin2Tg/Tg full mutant mice. Mechanistically, loss of Axin2 leads to supraphysiological Wnt levels that disrupt HSC differentiation and thymocyte development.
Collapse
|
27
|
Kadouri N, Givony T, Nevo S, Hey J, Ben Dor S, Damari G, Dassa B, Dobes J, Weichenhan D, Bähr M, Paulsen M, Haffner-Krausz R, Mall MA, Plass C, Goldfarb Y, Abramson J. Transcriptional regulation of the thymus master regulator Foxn1. Sci Immunol 2022; 7:eabn8144. [PMID: 36026441 DOI: 10.1126/sciimmunol.abn8144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
FOXN1 is a transcription factor critical for the development of both thymic epithelial cell (TEC) and hair follicle cell (HFC) compartments. However, mechanisms controlling its expression remain poorly understood. To address this question, we performed thorough analyses of the evolutionary conservation and chromatin status of the Foxn1 locus in different tissues and states and identified several putative cis-regulatory regions unique to TECs versus HFCs. Furthermore, experiments using genetically modified mice with specific deletions in the Foxn1 locus and additional bioinformatic analyses helped us identify key regions and transcription factors involved in either positive or negative regulation of Foxn1 in both TECs and HFCs. Specifically, we identified SIX1 and FOXN1 itself as key factors inducing Foxn1 expression in embryonic and neonatal TECs. Together, our data provide important mechanistic insights into the transcriptional regulation of the Foxn1 gene in TEC versus HFC and highlight the role of FOXN1 in its autoregulation.
Collapse
Affiliation(s)
- Noam Kadouri
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Givony
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shir Nevo
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Ruprecht Karl University of Heidelberg, Heidelberg, Germany
| | - Shifra Ben Dor
- Bioinformatics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Golda Damari
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Dobes
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marion Bähr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michelle Paulsen
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany
| | | | - Marcus A Mall
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany.,Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yael Goldfarb
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Handel AE, Cheuk S, Dhalla F, Maio S, Hübscher T, Rota I, Deadman ME, Ekwall O, Lütolf M, Weinberg K, Holländer G. Developmental dynamics of the neural crest-mesenchymal axis in creating the thymic microenvironment. SCIENCE ADVANCES 2022; 8:eabm9844. [PMID: 35559672 PMCID: PMC9106291 DOI: 10.1126/sciadv.abm9844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The thymic stroma is composed of epithelial and nonepithelial cells providing separate microenvironments controlling homing, differentiation, and selection of hematopoietic precursor cells to functional T cells. Here, we explore at single-cell resolution the complex composition and dynamic changes of the nonepithelial stromal compartment across different developmental stages in the human and mouse thymus, and in an experimental model of the DiGeorge syndrome, the most common form of human thymic hypoplasia. The detected gene expression signatures identify previously unknown stromal subtypes and relate their individual molecular profiles to separate differentiation trajectories and functions, revealing an unprecedented heterogeneity of different cell types that emerge at discrete developmental stages and vary in their expression of key regulatory signaling circuits and extracellular matrix components. Together, these findings highlight the dynamic complexity of the nonepithelial thymus stroma and link this to separate instructive roles essential for normal thymus organogenesis and tissue maintenance.
Collapse
Affiliation(s)
- Adam E. Handel
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stanley Cheuk
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Fatima Dhalla
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stefano Maio
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tania Hübscher
- Laboratory of Stem Cell Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Ioanna Rota
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mary E. Deadman
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Lütolf
- Laboratory of Stem Cell Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Kenneth Weinberg
- Division of Stem Cell Transplantation and Regenerative Medicine Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Georg Holländer
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
30
|
Gao H, Cao M, Deng K, Yang Y, Song J, Ni M, Xie C, Fan W, Ou C, Huang D, Lin L, Liu L, Li Y, Sun H, Cheng X, Wu J, Xia C, Deng X, Mou L, Chen P. The Lineage Differentiation and Dynamic Heterogeneity of Thymic Epithelial Cells During Thymus Organogenesis. Front Immunol 2022; 13:805451. [PMID: 35273595 PMCID: PMC8901506 DOI: 10.3389/fimmu.2022.805451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Although much progress has been made recently in revealing the heterogeneity of the thymic stromal components, the molecular programs of cell lineage divergency and temporal dynamics of thymic epithelial cell (TEC) development are largely elusive. Here, we constructed a single-cell transcriptional landscape of non-hematopoietic cells from mouse thymus spanning embryonic to adult stages, producing transcriptomes of 30,959 TECs. We resolved the transcriptional heterogeneity of developing TECs and highlighted the molecular nature of early TEC lineage determination and cortico-medullary thymic epithelial cell lineage divergency. We further characterized the differentiation dynamics of TECs by clarification of molecularly distinct cell states in the thymus developing trajectory. We also identified a population of Bpifa1+ Plet1+ mTECs that was preserved during thymus organogenesis and highly expressed tissue-resident adult stem cell markers. Finally, we highlighted the expression of Aire-dependent tissue-restricted antigens mainly in Aire+ Csn2+ mTECs and Spink5+ Dmkn+ mTECs in postnatal thymus. Overall, our data provided a comprehensive characterization of cell lineage differentiation, maturation, and temporal dynamics of thymic epithelial cells during thymus organogenesis.
Collapse
Affiliation(s)
- Hanchao Gao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Mengtao Cao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Kai Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yang Yang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinqi Song
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Ming Ni
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chuntao Xie
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Wenna Fan
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Chunpei Ou
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Dinggen Huang
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lizhong Lin
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lixia Liu
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Yangyang Li
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xinyu Cheng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jinmei Wu
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Cuilan Xia
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Xuefeng Deng
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Pengfei Chen
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China.,Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
31
|
Jussiani GG, Março KS, Bertolo PHL, de Oliveira Vasconcelos R, Machado GF. Thymic changes due to leishmaniasis in dogs: An immunohistochemical study. Vet Immunol Immunopathol 2022; 247:110416. [DOI: 10.1016/j.vetimm.2022.110416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/23/2022] [Accepted: 03/20/2022] [Indexed: 11/28/2022]
|
32
|
Chakrabarti S, Hoque M, Jamil NZ, Singh VJ, Pollacksmith D, Meer N, Pezzano MT. Bone Marrow-Derived Cells Contribute to the Maintenance of Thymic Stroma including TECs. J Immunol Res 2022; 2022:6061746. [PMID: 35528618 PMCID: PMC9076333 DOI: 10.1155/2022/6061746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022] Open
Abstract
In paradox to critical functions for T-cell selection and self-tolerance, the thymus undergoes profound age-associated atrophy and loss of T-cell function, further enhanced by cancer therapies. Identifying thymic epithelial progenitor populations capable of forming functional thymic tissue will be critical in understanding thymic epithelial cell (TEC) ontogeny and designing strategies to reverse involution. We identified a new population of progenitor cells, present in both the thymus and bone marrow (BM) of mice, that coexpress the hematopoietic marker CD45 and the definitive thymic epithelial marker EpCAM and maintain the capacity to form functional thymic tissue. Confocal analysis and qRT-PCR of sorted cells from both BM and thymus confirmed coexpression of CD45 and EpCAM. Grafting of C57BL/6 fetal thymi under the kidney capsule of H2BGFP transgenic mice revealed that peripheral CD45+ EpCAM+ GFP-expressing cells migrate into the developing thymus and contribute to both TECs and FSP1-expressing thymic stroma. Sorted BM-derived CD45+ EpCAM+ cells contribute to reaggregate thymic organ cultures (RTOCs) and differentiate into keratin and FoxN1-expressing TECs, demonstrating that BM cells can contribute to the maintenance of TEC microenvironments previously thought to be derived solely from endoderm. BM-derived CD45+ EpCAM+ cells represent a new source of progenitor cells that contribute to thymic homeostasis. Future studies will characterize the contribution of BM-derived CD45+ EpCAM+ TEC progenitors to distinct functional TEC microenvironments in both the steady-state thymus and under conditions of demand. Cell therapies utilizing this population may help counteract thymic involution in cancer patients.
Collapse
Affiliation(s)
- Shami Chakrabarti
- Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Mohammed Hoque
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Nawshin Zara Jamil
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Varan J. Singh
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Daniel Pollacksmith
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Neelab Meer
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Mark T. Pezzano
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
- Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
33
|
Bégay V, Cirovic B, Barker AJ, Klopfleisch R, Hart DW, Bennett NC, Lewin GR. Immune competence and spleen size scale with colony status in the naked mole-rat. Open Biol 2022; 12:210292. [PMID: 35382566 PMCID: PMC8984379 DOI: 10.1098/rsob.210292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Naked mole-rats (NM-R; Heterocephalus glaber) live in multi-generational colonies with a social hierarchy, and show low cancer incidence and long life-spans. Here we asked if an immune component might underlie such extreme physiology. The largest lymphoid organ is the spleen, which plays an essential role in responding to immunological insults and may participate in combating cancer and slowing ageing. We investigated the anatomy, molecular composition and function of the NM-R spleen using RNA-sequencing and histological analysis in healthy NM-Rs. Spleen size in healthy NM-Rs showed considerable inter-individual variability, with some animals displaying enlarged spleens. In all healthy NM-Rs, the spleen is a major site of adult haematopoiesis under normal physiological conditions. However, myeloid-to-lymphoid cell ratio is increased and splenic marginal zone showed markedly altered morphology when compared to other rodents. Healthy NM-Rs with enlarged spleens showed potentially better anti-microbial profiles and were much more likely to have a high rank within the colony. We propose that the anatomical plasticity of the spleen might be regulated by social interaction and gives immunological advantage to increase the lifespan of higher-ranked animals.
Collapse
Affiliation(s)
- Valérie Bégay
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory for Molecular Physiology of Somatic Sensation, Robert-Rössle Straße 10, D-13125 Berlin, Germany
| | - Branko Cirovic
- Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Alison J. Barker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory for Molecular Physiology of Somatic Sensation, Robert-Rössle Straße 10, D-13125 Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University Berlin, Robert von Ostertag Strasse 15, 14163 Berlin, Germany
| | - Daniel W. Hart
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Republic of South Africa
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, Republic of South Africa
| | - Gary R. Lewin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Laboratory for Molecular Physiology of Somatic Sensation, Robert-Rössle Straße 10, D-13125 Berlin, Germany
| |
Collapse
|
34
|
Ramos SA, Morton JJ, Yadav P, Reed B, Alizadeh SI, Shilleh AH, Perrenoud L, Jaggers J, Kappler J, Jimeno A, Russ HA. Generation of functional human thymic cells from induced pluripotent stem cells. J Allergy Clin Immunol 2022; 149:767-781.e6. [PMID: 34331993 PMCID: PMC8815270 DOI: 10.1016/j.jaci.2021.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The thymus is a glandular organ that is essential for the formation of the adaptive immune system by educating developing T cells. The thymus is most active during childhood and involutes around the time of adolescence, resulting in a severe reduction or absence of naive T-cell output. The ability to generate a patient-derived human thymus would provide an attractive research platform and enable the development of novel cell therapies. OBJECTIVES This study sought to systematically evaluate signaling pathways to develop a refined direct differentiation protocol that generates patient-derived thymic epithelial progenitor cells from multiple induced pluripotent stem cells (iPSCs) that can further differentiate into functional patient-derived thymic epithelial cells on transplantation into athymic nude mice. METHODS Directed differentiation of iPSC generated TEPs that were transplanted into nude mice. Between 14 and 19 weeks posttransplantation, grafts were removed and analyzed by flow cytometry, quantitative PCR, bulk RNA sequencing, and single-cell RNA sequencing for markers of thymic-cell and T-cell development. RESULTS A direct differentiation protocol that allows the generation of patient-derived thymic epithelial progenitor cells from multiple iPSC lines is described. On transplantation into athymic nude mice, patient-derived thymic epithelial progenitor cells further differentiate into functional patient-derived thymic epithelial cells that can facilitate the development of T cells. Single-cell RNA sequencing analysis of iPSC-derived grafts shows characteristic thymic subpopulations and patient-derived thymic epithelial cell populations that are indistinguishable from TECs present in primary neonatal thymus tissue. CONCLUSIONS These findings provide important insights and resources for researchers focusing on human thymus biology.
Collapse
Affiliation(s)
- Stephan A. Ramos
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - John J. Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Prabha Yadav
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brendan Reed
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Sheila I. Alizadeh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ali H. Shilleh
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Loni Perrenoud
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - James Jaggers
- Surgery- Cardiothoracic department, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - John Kappler
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA,Department of Biomedical Research, National Jewish Health, Denver CO 80206
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA,Correspondence to: Holger A. Russ, PhD, Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, 1775 Aurora Court, M20-4202G, Aurora, CO. 80045, Office: +1 303 724 8544, Cell: +1 415 933 9952, Lab phone: +1 303 724 0192, ; Antonio Jimeno, MD, PhD, University of Colorado Cancer Center & Charles C. Gates Center of Stem Cell Biology, Anschutz Medical Campus, 12801 East 17th Avenue, RC1S L18-8111, Aurora, CO 80045, Office: +1 303 724 2478, Lab phone: +1 303 724 6614,
| | - Holger A. Russ
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Aurora, CO, 80045, USA,Correspondence to: Holger A. Russ, PhD, Barbara Davis Center for Diabetes, University of Colorado, Anschutz Medical Campus, 1775 Aurora Court, M20-4202G, Aurora, CO. 80045, Office: +1 303 724 8544, Cell: +1 415 933 9952, Lab phone: +1 303 724 0192, ; Antonio Jimeno, MD, PhD, University of Colorado Cancer Center & Charles C. Gates Center of Stem Cell Biology, Anschutz Medical Campus, 12801 East 17th Avenue, RC1S L18-8111, Aurora, CO 80045, Office: +1 303 724 2478, Lab phone: +1 303 724 6614,
| |
Collapse
|
35
|
Zhu SY, Li CX, Tong YX, Xu YR, Wang ZY, Li JL. IL-6/STAT3/Foxo1 Axis as a Target of Lycopene Ameliorates Atrazine-Induced Thymic Mitophagy and Pyroptosis Cross-talk. Food Funct 2022; 13:8871-8879. [DOI: 10.1039/d2fo01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intensive adoption of atrazine (ATZ) has been a persistently widespread pollutant in daily life. However, ATZ is still used as an essential herbicide in numerous countries because its toxic...
Collapse
|
36
|
Zheng YY, Wang Y, Chen X, Wei LS, Wang H, Tao T, Zhou YW, Jiang ZH, Qiu TT, Sun ZY, Sun J, Wang P, Zhao W, Li YQ, Chen HQ, Zhu MS, Zhang XN. The thymus regulates skeletal muscle regeneration by directly promoting satellite cell expansion. J Biol Chem 2021; 298:101516. [PMID: 34942145 PMCID: PMC8752954 DOI: 10.1016/j.jbc.2021.101516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/22/2023] Open
Abstract
The thymus is the central immune organ, but it is known to progressively degenerate with age. As thymus degeneration is paralleled by the wasting of aging skeletal muscle, we speculated that the thymus may play a role in muscle wasting. Here, using thymectomized mice, we show that the thymus is necessary for skeletal muscle regeneration, a process tightly associated with muscle aging. Compared to control mice, the thymectomized mice displayed comparable growth of muscle mass, but decreased muscle regeneration in response to injury, as evidenced by small and sparse regenerative myofibers along with inhibited expression of regeneration-associated genes myh3, myod and myogenin. Using Pax7 immunofluorescence staining and BrdU incorporation assay, we determined that the decreased regeneration capacity was caused by a limited satellite cell pool. Interestingly, the conditioned culture medium of isolated thymocytes (TCMs) had a potent capacity to directly stimulate satellite cell expansion in vitro. These expanded cells were enriched in subpopulations of quiescent satellite cells (Pax7highMyoDlowEdUpos) and activated satellite cells (Pax7highMyoDhighEdUpos), which were efficiently incorporated into the regenerative myofibers. We thus propose that the thymus plays an essential role in muscle regeneration by directly promoting satellite cell expansion and may function profoundly in the muscle aging process.
Collapse
Affiliation(s)
- Yan-Yan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Li-Sha Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Han Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Yu-Wei Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Zhi-Hui Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Tian-Tian Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Zhi-Yuan Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Ye-Qiong Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China
| | - Hua-Qun Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China.
| | - Xue-Na Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Medical School and Gulou Hospital affiliated Medical School, Nanjing University, Nanjing, 210061, China.
| |
Collapse
|
37
|
Hosaka N, Kanda S, Shimono T, Nishiyama T. Induction of γδT cells from HSC-enriched BMCs co-cultured with iPSC-derived thymic epithelial cells. J Cell Mol Med 2021; 25:10604-10613. [PMID: 34687276 PMCID: PMC8581322 DOI: 10.1111/jcmm.16993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
T cells bearing γδ antigen receptors have been investigated as potential treatments for several diseases, including malignant tumours. However, the clinical application of γδT cells has been hampered by their relatively low abundance in vivo and the technical difficulty of inducing their differentiation from hematopoietic stem cells (HSCs) in vitro. Here, we describe a novel method for generating mouse γδT cells by co-culturing HSC-enriched bone marrow cells (HSC-eBMCs) with induced thymic epithelial cells (iTECs) derived from induced pluripotent stem cells (iPSCs). We used BMCs from CD45.1 congenic C57BL/6 mice to distinguish them from iPSCs, which expressed CD45.2. We showed that HSC-eBMCs and iTECs cultured with IL-2 + IL-7 for up to 21 days induced CD45.1+ γδT cells that expressed a broad repertoire of Vγ and Vδ T-cell receptors. Notably, the induced lymphocytes contained few or no αβT cells, NK1.1+ natural killer cells, or B220+ B cells. Adoptive transfer of the induced γδT cells to leukemia-bearing mice significantly reduced tumour growth and prolonged mouse survival with no obvious side effects, such as tumorigenesis and autoimmune diseases. This new method suggests that it could also be used to produce human γδT cells for clinical applications.
Collapse
Affiliation(s)
- Naoki Hosaka
- Department of Pathology, Fuchu Hospital, Izumi, Osaka, Japan.,Department of Hygiene and Public Health, Kansai Medical University, Hitakata, Osaka, Japan
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University, Hitakata, Osaka, Japan.,Regenerative Research Center for Intractable Diseases, Kansai Medical University, Hitakata, Osaka, Japan
| | - Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University, Hitakata, Osaka, Japan.,Regenerative Research Center for Intractable Diseases, Kansai Medical University, Hitakata, Osaka, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, Hitakata, Osaka, Japan
| |
Collapse
|
38
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
39
|
Pinheiro RGR, Alves NL. The Early Postnatal Life: A Dynamic Period in Thymic Epithelial Cell Differentiation. Front Immunol 2021; 12:668528. [PMID: 34220815 PMCID: PMC8250140 DOI: 10.3389/fimmu.2021.668528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
The microenvironments formed by cortical (c) and medullary (m) thymic epithelial cells (TECs) play a non-redundant role in the generation of functionally diverse and self-tolerant T cells. The role of TECs during the first weeks of the murine postnatal life is particularly challenging due to the significant augment in T cell production. Here, we critically review recent studies centered on the timely coordination between the expansion and maturation of TECs during this period and their specialized role in T cell development and selection. We further discuss how aging impacts on the pool of TEC progenitors and maintenance of functionally thymic epithelial microenvironments, and the implications of these chances in the capacity of the thymus to sustain regular thymopoiesis throughout life.
Collapse
Affiliation(s)
- Ruben G R Pinheiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Doctoral Program in Cell and Molecular Biology, Instituto de Ciências Biomédicas, Universidade do Porto, Porto, Portugal
| | - Nuno L Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Liang Y, Zhang T, Tang M. Toxicity of quantum dots on target organs and immune system. J Appl Toxicol 2021; 42:17-40. [PMID: 33973249 DOI: 10.1002/jat.4180] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/06/2022]
Abstract
Quantum dots (QDs), due to their superior luminous properties, have been proven to be a very promising biological probe, which can be used as a candidate material for clinical applications. The toxicity of QDs in the environment and biological systems has caused widespread concern in the nanosphere, but their immune toxicity and their impact on the immune system are still relatively unknown. At present, the research on the toxicity of QDs is mainly focused on in vitro models, but few have systematically evaluated their adverse effects on target organs. Animal studies have shown that QDs can be accumulated in various organs due to their main exposure routes, thereby posing a potential threat to major organs. This review briefly describes general characteristics and the wide medical applications of QDs and focuses on the adverse effects of QDs on major target organs, such as liver, lung, kidney, brain, and spleen, after acute and chronic exposure. QDs mainly cause changes in the corresponding indicators of target organs, such as oxidative damage, and in severe cases cause hyperemia, tissue necrosis, and even death. In addition to causing direct damage to target organs, QDs can also cause a large number of immune cells to accumulate and cause inflammatory reactions when causing damage to other major organs. Whether it is to avoid the risk of people contacting QDs in production and life, or to realize the clinical applications of QDs, is very essential to conduct systematic in vivo toxicity assessment of QDs.
Collapse
Affiliation(s)
- Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Tao Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
41
|
Nanaware PP, Jurewicz MM, Clement CC, Lu L, Santambrogio L, Stern LJ. Distinguishing Signal From Noise in Immunopeptidome Studies of Limiting-Abundance Biological Samples: Peptides Presented by I-A b in C57BL/6 Mouse Thymus. Front Immunol 2021; 12:658601. [PMID: 33995376 PMCID: PMC8116589 DOI: 10.3389/fimmu.2021.658601] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Antigen presentation by MHC-II proteins in the thymus is central to selection of CD4 T cells, but analysis of the full repertoire of presented peptides responsible for positive and negative selection is complicated by the low abundance of antigen presenting cells. A key challenge in analysis of limiting abundance immunopeptidomes by mass spectrometry is distinguishing true MHC-binding peptides from co-eluting non-specifically bound peptides present in the mixture eluted from immunoaffinity-purified MHC molecules. Herein we tested several approaches to minimize the impact of non-specific background peptides, including analyzing eluates from isotype-control antibody-conjugated beads, considering only peptides present in nested sets, and using predicted binding motif analysis to identify core epitopes. We evaluated these methods using well-understood human cell line samples, and then applied them to analysis of the I-Ab presented immunopeptidome of the thymus of C57BL/6 mice, comparing this to the more easily characterized splenic B cell and dendritic cell populations. We identified a total of 3473 unique peptides eluted from the various tissues, using a data dependent acquisition strategy with a false-discovery rate of <1%. The immunopeptidomes presented in thymus as compared to splenic B cells and DCs identified shared and tissue-specific epitopes. A broader length distribution was observed for peptides presented in the thymus as compared to splenic B cells or DCs. Detailed analysis of 61 differentially presented peptides indicated a wider distribution of I-Ab binding affinities in thymus as compared to splenic B cells. These results suggest different constraints on antigen processing and presentation pathways in central versus peripheral tissues.
Collapse
Affiliation(s)
- Padma P. Nanaware
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mollie M. Jurewicz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Cristina C. Clement
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Liying Lu
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
42
|
Zhang Q, Liang Z, Zhang J, Lei T, Dong X, Su H, Chen Y, Zhang Z, Tan L, Zhao Y. Sirt6 Regulates the Development of Medullary Thymic Epithelial Cells and Contributes to the Establishment of Central Immune Tolerance. Front Cell Dev Biol 2021; 9:655552. [PMID: 33869219 PMCID: PMC8044826 DOI: 10.3389/fcell.2021.655552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Although some advances have been made in understanding the molecular regulation of mTEC development, the role of epigenetic regulators in the development and maturation of mTEC is poorly understood. Here, using the TEC-specific Sirt6 knockout mice, we found the deacetylase Sirtuin 6 (Sirt6) is essential for the development of functionally competent mTECs. First of all, TEC-specific Sirt6 deletion dramatically reduces the mTEC compartment, which is caused by reduced DNA replication and subsequent impaired proliferation ability of Sirt6-deficient mTECs. Secondly, Sirt6 deficiency specifically accelerates the differentiation of mTECs from CD80–Aire– immature population to CD80+Aire– intermediate mature population by promoting the expression of Spib. Finally, Sirt6 ablation in TECs markedly interferes the proper expression of tissue-restricted antigens (TRAs) and impairs the development of thymocytes and nTreg cells. In addition, TEC conditional knockout of Sirt6 results in severe autoimmune disease manifested by reduced body weight, the infiltration of lymphocytes and the presence of autoantibodies. Collectively, this study reveals that the expression of epigenetic regulator Sirt6 in TECs is crucial for the development and differentiation of mTECs, which highlights the importance of Sirt6 in the establishment of central immune tolerance.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tong Lei
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Huiting Su
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Morimoto R, Swann J, Nusser A, Trancoso I, Schorpp M, Boehm T. Evolution of thymopoietic microenvironments. Open Biol 2021; 11:200383. [PMID: 33622100 PMCID: PMC8061691 DOI: 10.1098/rsob.200383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vertebrates, the development of lymphocytes from undifferentiated haematopoietic precursors takes place in so-called primary lymphoid organs, such as the thymus. Therein, lymphocytes undergo a complex differentiation and selection process that culminates in the generation of a pool of mature T cells that collectively express a self-tolerant repertoire of somatically diversified antigen receptors. Throughout this entire process, the microenvironment of the thymus in large parts dictates the sequence and outcome of the lymphopoietic activity. In vertebrates, direct genetic evidence in some species and circumstantial evidence in others suggest that the formation of a functional thymic microenvironment is controlled by members of the Foxn1/4 family of transcription factors. In teleost fishes, both Foxn1 and Foxn4 contribute to thymopoietic activity, whereas Foxn1 is both necessary and sufficient in the mammalian thymus. The evolutionary history of Foxn1/4 genes suggests that an ancient Foxn4 gene lineage gave rise to the Foxn1 genes in early vertebrates, raising the question of the thymopoietic capacity of the ancestor common to all vertebrates. Recent attempts to reconstruct the early events in the evolution of thymopoietic tissues by replacement of the mouse Foxn1 gene by Foxn1-like genes isolated from various chordate species suggest a plausible scenario. It appears that the primordial thymus was a bi-potent lymphoid organ, supporting both B cell and T cell development; however, during the course of vertebrate, evolution B cell development was gradually diminished converting the thymus into a site specialized in T cell development.
Collapse
Affiliation(s)
- Ryo Morimoto
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Jeremy Swann
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Anja Nusser
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Inês Trancoso
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
44
|
Campinoti S, Gjinovci A, Ragazzini R, Zanieri L, Ariza-McNaughton L, Catucci M, Boeing S, Park JE, Hutchinson JC, Muñoz-Ruiz M, Manti PG, Vozza G, Villa CE, Phylactopoulos DE, Maurer C, Testa G, Stauss HJ, Teichmann SA, Sebire NJ, Hayday AC, Bonnet D, Bonfanti P. Reconstitution of a functional human thymus by postnatal stromal progenitor cells and natural whole-organ scaffolds. Nat Commun 2020; 11:6372. [PMID: 33311516 PMCID: PMC7732825 DOI: 10.1038/s41467-020-20082-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
The thymus is a primary lymphoid organ, essential for T cell maturation and selection. There has been long-standing interest in processes underpinning thymus generation and the potential to manipulate it clinically, because alterations of thymus development or function can result in severe immunodeficiency and autoimmunity. Here, we identify epithelial-mesenchymal hybrid cells, capable of long-term expansion in vitro, and able to reconstitute an anatomic phenocopy of the native thymus, when combined with thymic interstitial cells and a natural decellularised extracellular matrix (ECM) obtained by whole thymus perfusion. This anatomical human thymus reconstruction is functional, as judged by its capacity to support mature T cell development in vivo after transplantation into humanised immunodeficient mice. These findings establish a basis for dissecting the cellular and molecular crosstalk between stroma, ECM and thymocytes, and offer practical prospects for treating congenital and acquired immunological diseases.
Collapse
Affiliation(s)
- Sara Campinoti
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Asllan Gjinovci
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Hospital, London, NW3 2PF, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Hospital, London, NW3 2PF, UK
| | - Luca Zanieri
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Hospital, London, NW3 2PF, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem Cell laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Marco Catucci
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, DIBIT 20132, Milan, Italy
| | - Stefan Boeing
- Bioinformatics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - John C Hutchinson
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 1EH, UK
| | - Miguel Muñoz-Ruiz
- Immunosurveillance laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierluigi G Manti
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gianluca Vozza
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carlo E Villa
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Demetra-Ellie Phylactopoulos
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Constance Maurer
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Giuseppe Testa
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Hans J Stauss
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Hospital, London, NW3 2PF, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Neil J Sebire
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 1EH, UK
| | - Adrian C Hayday
- Immunosurveillance laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Paola Bonfanti
- Epithelial Stem Cell Biology & Regenerative Medicine laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Royal Free Hospital, London, NW3 2PF, UK.
| |
Collapse
|
45
|
Kreins AY, Maio S, Dhalla F. Inborn errors of thymic stromal cell development and function. Semin Immunopathol 2020; 43:85-100. [PMID: 33257998 PMCID: PMC7925491 DOI: 10.1007/s00281-020-00826-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
Abstract
As the primary site for T cell development, the thymus is responsible for the production and selection of a functional, yet self-tolerant T cell repertoire. This critically depends on thymic stromal cells, derived from the pharyngeal apparatus during embryogenesis. Thymic epithelial cells, mesenchymal and vascular elements together form the unique and highly specialised microenvironment required to support all aspects of thymopoiesis and T cell central tolerance induction. Although rare, inborn errors of thymic stromal cells constitute a clinically important group of conditions because their immunological consequences, which include autoimmune disease and T cell immunodeficiency, can be life-threatening if unrecognised and untreated. In this review, we describe the molecular and environmental aetiologies of the thymic stromal cell defects known to cause disease in humans, placing particular emphasis on those with a propensity to cause thymic hypoplasia or aplasia and consequently severe congenital immunodeficiency. We discuss the principles underpinning their diagnosis and management, including the use of novel tools to aid in their identification and strategies for curative treatment, principally transplantation of allogeneic thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stefano Maio
- Developmental Immunology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Fatima Dhalla
- Developmental Immunology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. .,Department of Clinical Immunology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
46
|
Rezzani R, Franco C, Hardeland R, Rodella LF. Thymus-Pineal Gland Axis: Revisiting Its Role in Human Life and Ageing. Int J Mol Sci 2020; 21:E8806. [PMID: 33233845 PMCID: PMC7699871 DOI: 10.3390/ijms21228806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
For years the thymus gland (TG) and the pineal gland (PG) have been subject of increasingly in-depth studies, but only recently a link that can associate the activities of the two organs has been identified. Considering, on the one hand, the well-known immune activity of thymus and, on the other, the increasingly emerging immunological roles of circadian oscillators and the rhythmically secreted main pineal product, melatonin, many studies aimed to analyse the possible existence of an interaction between these two systems. Moreover, data confirmed that the immune system is functionally associated with the nervous and endocrine systems determining an integrated dynamic network. In addition, recent researches showed a similar, characteristic involution process both in TG and PG. Since the second half of the 20th century, evidence led to the definition of an effectively interacting thymus-pineal axis (TG-PG axis), but much has to be done. In this sense, the aim of this review is to summarize what is actually known about this topic, focusing on the impact of the TG-PG axis on human life and ageing. We would like to give more emphasis to the implications of this dynamical interaction in a possible therapeutic strategy for human health. Moreover, we focused on all the products of TG and PG in order to collect what is known about the role of peptides other than melatonin. The results available today are often unclear and not linear. These peptides have not been well studied and defined over the years. In this review we hope to awake the interest of the scientific community in them and in their future pharmacological applications.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Lower Saxony, D-37073 Göttingen, Germany;
| | - Luigi Fabrizio Rodella
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (C.F.); (L.F.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
47
|
Ohigashi I, Tanaka Y, Kondo K, Fujimori S, Kondo H, Palin AC, Hoffmann V, Kozai M, Matsushita Y, Uda S, Motosugi R, Hamazaki J, Kubota H, Murata S, Tanaka K, Katagiri T, Kosako H, Takahama Y. Trans-omics Impact of Thymoproteasome in Cortical Thymic Epithelial Cells. Cell Rep 2020; 29:2901-2916.e6. [PMID: 31775054 PMCID: PMC6897492 DOI: 10.1016/j.celrep.2019.10.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/27/2019] [Accepted: 10/18/2019] [Indexed: 12/19/2022] Open
Abstract
The thymic function to produce self-protective and self-tolerant T cells is chiefly mediated by cortical thymic epithelial cells (cTECs) and medullary TECs (mTECs). Recent studies including single-cell transcriptomic analyses have highlighted a rich diversity in functional mTEC subpopulations. Because of their limited cellularity, however, the biochemical characterization of TECs, including the proteomic profiling of cTECs and mTECs, has remained unestablished. Utilizing genetically modified mice that carry enlarged but functional thymuses, here we show a combination of proteomic and transcriptomic profiles for cTECs and mTECs, which identified signature molecules that characterize a developmental and functional contrast between cTECs and mTECs. Our results reveal a highly specific impact of the thymoproteasome on proteasome subunit composition in cTECs and provide an integrated trans-omics platform for further exploration of thymus biology. Ohigashi et al. show that the use of cyclin D1-transgenic mice allows quantitative proteomic analysis of cortical and medullary thymic epithelial cells (TECs). Results provide a trans-omics platform for further exploration of TEC biology and reveal the specific impact of the thymoproteasome on proteasome subunit composition in cortical TECs.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yu Tanaka
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Kenta Kondo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Hiroyuki Kondo
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Amy C Palin
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Victoria Hoffmann
- Division of Veterinary Resources, Office of Research Services, NIH, Bethesda, MD 20892, USA
| | - Mina Kozai
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Shinsuke Uda
- Division of Integrated Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Motosugi
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keiji Tanaka
- Tokyo Metropolitan Institute for Medical Science, Tokyo 156-8506, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Guo H, Liu H, Jian Z, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L, He R, Tang H. Immunotoxicity of nickel: Pathological and toxicological effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111006. [PMID: 32684520 DOI: 10.1016/j.ecoenv.2020.111006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Nickel (Ni) is a widely distributed metal in the environment and an important pollutant because of its many industrial applications. With increasing incidences of Ni contamination, Ni toxicity has become a global public health concern and recent evidence suggests that Ni adversely affects the immune system. Hence, this paper reviews the literature on immune-related effects of Ni exposure, the immunotoxicological effects of Ni, and the underlying mechanism of Ni immunotoxicity. The main focus was on the effect of Ni on the development of organs of immune system, lymphocyte subpopulations, cytokines, immunoglobulins, natural killer (NK) cells, and macrophages. Moreover, Ni toxicity also induces inflammation and several studies demonstrated that Ni could induce immunotoxicity. Excessive Ni exposure can inhibit the development of immune organs by excessively inducing apoptosis and inhibiting proliferation. Furthermore, Ni can decrease T and B lymphocytes, the specific mechanism of which requires further research. The effects of Ni on immunoglobulin A (IgA), IgG, and IgM remain unknown and while Ni inhibited IgA, IgG, and IgM levels in an animal experiment, the opposite result was found in research on humans. Ni inhibits the production of cytokines in non-inflammatory responses. Cytokine levels increased in Ni-induced inflammation responses, and Ni activates inflammation through toll like (TL)4-mediated nuclear factor-κB (NF-κB) and signal transduction cascades mitogen-activated protein kinase (MAPK) pathways. Ni has been indicated to inactivate NK cells and macrophages both in vitro and in vivo. Identifying the mechanisms underlying the Ni-induced immunotoxicity may help to explain the growing risk of infections and cancers in human populations that have been exposed to Ni for a long time. Such knowledge may also help to prevent and treat Ni-related carcinogenicity and toxicology.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan, Sichuan, 625014, China.
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China; Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ran He
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| |
Collapse
|
49
|
Liu Z, Zhang H, Hu Y, Liu D, Li L, Li C, Wang Q, Huo J, Liu H, Xie N, Huang X, Liu Y, Chen CD, Shi Y, Zhang X. Critical role of histone H3 lysine 27 demethylase Kdm6b in the homeostasis and function of medullary thymic epithelial cells. Cell Death Differ 2020; 27:2843-2855. [PMID: 32346138 PMCID: PMC7493893 DOI: 10.1038/s41418-020-0546-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/26/2023] Open
Abstract
Medullary thymic epithelial cells (mTECs) play a central role in the establishment of T cell central immunological tolerance by promiscuously expressing tissue-restricted antigens (TRAs) and presenting them to developing T cells, leading to deletion of T cells responding to self-antigens. However, molecular mechanisms especially epigenetic regulation of mTEC homeostasis and TRA expression remain elusive. Here we show that the H3K27 demethylase Kdm6b is essential to maintain the postnatal thymic medulla by promoting mTEC survival and regulating the expression of TRA genes. Moreover, mice lacking Kdm6b developed pathological autoimmune disorders. Mechanically, Kdm6b exerted its function by reducing repressive H3K27 trimethylation (H3K27me3) at the promoters of anti-apoptotic gene Bcl2 and a set of Aire-dependent TRA genes. Thus, our findings reveal a dual role of Kdm6b in the regulation of mTEC-mediated T cell central tolerance.
Collapse
Affiliation(s)
- Zhi Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Haohao Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiming Hu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dandan Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lingling Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cuifeng Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junhaohui Huo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hanshao Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ningxia Xie
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xingxu Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
50
|
Wang HX, Pan W, Zheng L, Zhong XP, Tan L, Liang Z, He J, Feng P, Zhao Y, Qiu YR. Thymic Epithelial Cells Contribute to Thymopoiesis and T Cell Development. Front Immunol 2020; 10:3099. [PMID: 32082299 PMCID: PMC7005006 DOI: 10.3389/fimmu.2019.03099] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The thymus is the primary lymphoid organ responsible for the generation and maturation of T cells. Thymic epithelial cells (TECs) account for the majority of thymic stromal components. They are further divided into cortical and medullary TECs based on their localization within the thymus and are involved in positive and negative selection, respectively. Establishment of self-tolerance in the thymus depends on promiscuous gene expression (pGE) of tissue-restricted antigens (TRAs) by TECs. Such pGE is co-controlled by the autoimmune regulator (Aire) and forebrain embryonic zinc fingerlike protein 2 (Fezf2). Over the past two decades, research has found that TECs contribute greatly to thymopoiesis and T cell development. In turn, signals from T cells regulate the differentiation and maturation of TECs. Several signaling pathways essential for the development and maturation of TECs have been discovered. New technology and animal models have provided important observations on TEC differentiation, development, and thymopoiesis. In this review, we will discuss recent advances in classification, development, and maintenance of TECs and mechanisms that control TEC functions during thymic involution and central tolerance.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenrong Pan
- Department of General Surgery, Taihe Branch of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Liang Tan
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing He
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingfeng Feng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|