1
|
Hennessy EJ. LncRNAs and Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:71-95. [PMID: 35220566 DOI: 10.1007/978-3-030-92034-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel class of RNA molecule emerged from human transcriptome sequencing studies termed long non-coding RNAs. These RNA molecules differ from other classes of non-coding RNAs such as microRNAs in their sizes, sequence motifs and structures. Studies have demonstrated that long non-coding RNAs play a prominent role in the development and progression of cardiovascular disease. They provide the cell with tiered levels of gene regulation interacting with DNA, other RNA molecules or proteins acting in various capacities to control a variety of cellular mechanisms. Cell specificity is a hallmark of lncRNA studies and they have been identified in macrophages, smooth muscle cells, endothelial cells and hepatocytes. Recent lncRNA studies have uncovered functional micropeptides encoded within lncRNA genes that can have a different function to the lncRNA. Disease associated mutations in the genome tend to occur in non-coding regions signifying the importance of non-coding genes in disease associations. There is a great deal of work to be done in the non-coding RNA field and tremendous therapeutic potential due to their cell type specificity. A better understanding of the functions and interactions of lncRNAs will inevitably have clinical implications.
Collapse
Affiliation(s)
- Elizabeth J Hennessy
- University of Pennsylvania, Perelman School of Medicine, Institute for Translational Medicine and Therapeutics (ITMAT), Philadelphia, PA, USA.
| |
Collapse
|
2
|
Misra A, Rehan R, Lin A, Patel S, Fisher EA. Emerging Concepts of Vascular Cell Clonal Expansion in Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:e74-e84. [PMID: 35109671 PMCID: PMC8988894 DOI: 10.1161/atvbaha.121.316093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clonal expansion is a process that can drive pathogenesis in human diseases, with atherosclerosis being a prominent example. Despite advances in understanding the etiology of atherosclerosis, clonality studies of vascular cells remain in an early stage. Recently, several paradigm-shifting preclinical studies have identified clonal expansion of progenitor cells in the vasculature in response to atherosclerosis. This review provides an overview of cell clonality in atherosclerotic progression, focusing particularly on smooth muscle cells and macrophages. We discuss key findings from the latest research that give insight into the mechanisms by which clonal expansion of vascular cells contributes to disease pathology. The further probing of these mechanisms will provide innovative directions for future progress in the understanding and therapy of atherosclerosis and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rajan Rehan
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia,Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Alexander Lin
- Heart Research Institute, Sydney, NSW 2042, Australia,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia,Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward A Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, NY, USA,Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
3
|
Abstract
Vascular smooth muscle cells (SMC) play a critical role in controlling blood pressure and blood distribution, as well as maintaining the structural integrity of the blood vessel. SMC also participate in physiological and pathological vascular remodeling due to their remarkable ability to dynamically modulate their phenotype. During the past decade, the development of in vivo fate mapping systems for unbiased identification and tracking of SMC and their progeny has led to major discoveries as well as the reevaluation of well-established concepts about the contribution of vascular SMC in major vascular diseases including atherosclerosis. Lineage tracing studies revealed that SMC undergoes multiple phenotypic transitions characterized by the expression of markers of alternative cell types (eg, macrophage-like and mesenchymal-stem cell-like) and populate injured or diseased vessels by oligoclonal expansion of a limited number of medial SMC. With the development of high-throughput transcriptomics and single-cell RNA sequencing (scRNAseq), the field is moving forward towards in-depth SMC phenotypic characterization. Herein, we review the major observations put forth by lineage and clonality tracing studies and the evidence in support for SMC phenotypic diversity in healthy and diseased vascular tissue. We will also discuss the opportunities and remaining challenges of combining lineage tracing and single-cell transcriptomics technologies, as well as studying the functional relevance of SMC phenotypic transitions and identifying the mechanisms controlling them.
Collapse
Affiliation(s)
- Mingjun Liu
- From the Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, PA (M.L., D.G.).,Division of Cardiology, University of Pittsburgh School of Medicine, PA (M.L., D.G.)
| | - Delphine Gomez
- From the Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, PA (M.L., D.G.).,Division of Cardiology, University of Pittsburgh School of Medicine, PA (M.L., D.G.)
| |
Collapse
|
4
|
Schwartz SM, Virmani R, Majesky MW. An update on clonality: what smooth muscle cell type makes up the atherosclerotic plaque? F1000Res 2018; 7:F1000 Faculty Rev-1969. [PMID: 30613386 PMCID: PMC6305222 DOI: 10.12688/f1000research.15994.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Almost 50 years ago, Earl Benditt and his son John described the clonality of the atherosclerotic plaque. This led Benditt to propose that the atherosclerotic lesion was a smooth muscle neoplasm, similar to the leiomyomata seen in the uterus of most women. Although the observation of clonality has been confirmed many times, interest in the idea that atherosclerosis might be a form of neoplasia waned because of the clinical success of treatments for hyperlipemia and because animal models have made great progress in understanding how lipid accumulates in the plaque and may lead to plaque rupture. Four advances have made it important to reconsider Benditt's observations. First, we now know that clonality is a property of normal tissue development. Second, this is even true in the vessel wall, where we now know that formation of clonal patches in that wall is part of the development of smooth muscle cells that make up the tunica media of arteries. Third, we know that the intima, the "soil" for development of the human atherosclerotic lesion, develops before the fatty lesions appear. Fourth, while the cells comprising this intima have been called "smooth muscle cells", we do not have a clear definition of cell type nor do we know if the initial accumulation is clonal. As a result, Benditt's hypothesis needs to be revisited in terms of changes in how we define smooth muscle cells and the quite distinct developmental origins of the cells that comprise the muscular coats of all arterial walls. Finally, since clonality of the lesions is real, the obvious questions are do these human tumors precede the development of atherosclerosis, how do the clones develop, what cell type gives rise to the clones, and in what ways do the clones provide the soil for development and natural history of atherosclerosis?
Collapse
Affiliation(s)
| | - Renu Virmani
- CV Path Institute, Gaithersberg, Maryland, 20878, USA
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital Research Institute, Seattle, WA, 98112, USA
| |
Collapse
|
5
|
Integrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. Nat Commun 2018; 9:2073. [PMID: 29802249 PMCID: PMC5970166 DOI: 10.1038/s41467-018-04447-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/10/2018] [Indexed: 01/16/2023] Open
Abstract
Smooth muscle cells (SMCs) play a key role in atherogenesis. However, mechanisms regulating expansion and fate of pre-existing SMCs in atherosclerotic plaques remain poorly defined. Here we show that multiple SMC progenitors mix to form the aorta during development. In contrast, during atherogenesis, a single SMC gives rise to the smooth muscle-derived cells that initially coat the cap of atherosclerotic plaques. Subsequently, highly proliferative cap cells invade the plaque core, comprising the majority of plaque cells. Reduction of integrin β3 (Itgb3) levels in SMCs induces toll-like receptor 4 expression and thereby enhances Cd36 levels and cholesterol-induced transdifferentiation to a macrophage-like phenotype. Global Itgb3 deletion or transplantation of Itgb3(−/−) bone marrow results in recruitment of multiple pre-existing SMCs into plaques. Conditioned medium from Itgb3-silenced macrophages enhances SMC proliferation and migration. Together, our results suggest SMC contribution to atherogenesis is regulated by integrin β3-mediated pathways in both SMCs and bone marrow-derived cells. Smooth muscle cells (SMCs) invade atherosclerotic lesions and expand, contributing to plaque progression. Here Misra et al. show that SMC-derived plaque cells come from a single SMC and integrin β3 in SMCs and macrophages regulate the fate, expansion and migration of SMCs during plaque formation.
Collapse
|
6
|
Wang D, Li LK, Dai T, Wang A, Li S. Adult Stem Cells in Vascular Remodeling. Am J Cancer Res 2018; 8:815-829. [PMID: 29344309 PMCID: PMC5771096 DOI: 10.7150/thno.19577] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/01/2017] [Indexed: 01/03/2023] Open
Abstract
Understanding the contribution of vascular cells to blood vessel remodeling is critical for the development of new therapeutic approaches to cure cardiovascular diseases (CVDs) and regenerate blood vessels. Recent findings suggest that neointimal formation and atherosclerotic lesions involve not only inflammatory cells, endothelial cells, and smooth muscle cells, but also several types of stem cells or progenitors in arterial walls and the circulation. Some of these stem cells also participate in the remodeling of vascular grafts, microvessel regeneration, and formation of fibrotic tissue around biomaterial implants. Here we review the recent findings on how adult stem cells participate in CVD development and regeneration as well as the current state of clinical trials in the field, which may lead to new approaches for cardiovascular therapies and tissue engineering.
Collapse
|
7
|
Tapia-Vieyra JV, Delgado-Coello B, Mas-Oliva J. Atherosclerosis and Cancer; A Resemblance with Far-reaching Implications. Arch Med Res 2017; 48:12-26. [PMID: 28577865 DOI: 10.1016/j.arcmed.2017.03.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/02/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis and cancer are chronic diseases considered two of the main causes of death all over the world. Taking into account that both diseases are multifactorial, they share not only several important molecular pathways but also many ethiological and mechanistical processes from the very early stages of development up to the advanced forms in both pathologies. Factors involved in their progression comprise genetic alterations, inflammatory processes, uncontrolled cell proliferation and oxidative stress, as the most important ones. The fact that external effectors such as an infective process or a chemical insult have been proposed to initiate the transformation of cells in the artery wall and the process of atherogenesis, emphasizes many similarities with the progression of the neoplastic process in cancer. Deregulation of cell proliferation and therefore cell cycle progression, changes in the synthesis of important transcription factors as well as adhesion molecules, an alteration in the control of angiogenesis and the molecular similarities that follow chronic inflammation, are just a few of the processes that become part of the phenomena that closely correlates atherosclerosis and cancer. The aim of the present study is therefore, to provide new evidence as well as to discuss new approaches that might promote the identification of closer molecular ties between these two pathologies that would permit the recognition of atherosclerosis as a pathological process with a very close resemblance to the way a neoplastic process develops, that might eventually lead to novel ways of treatment.
Collapse
Affiliation(s)
| | - Blanca Delgado-Coello
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
8
|
FAM3B mediates high glucose-induced vascular smooth muscle cell proliferation and migration via inhibition of miR-322-5p. Sci Rep 2017; 7:2298. [PMID: 28536423 PMCID: PMC5442163 DOI: 10.1038/s41598-017-02683-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) play an essential role during the development of cardiovascular diseases (CVDs). While many factors potentially contribute to the abnormal activation of VSMCs, hyperglycemia is generally believed to be a major causative factor. On the other hand, FAM3B (named PANDER for its secretory form) is a uniquely structured protein strongly expressed within and secreted from the endocrine pancreas. FAM3B is co-secreted with insulin from the β-cell upon glucose stimulation and regulates glucose homeostasis. In the present study, we sought to determine the roles of FAM3B in the regulation of VSMC physiology, especially under the hyperglycemic condition. We found that FAM3B expression was induced by hyperglycemia both in vivo and in vitro. FAM3B knockdown inhibited, whereas FAM3B overexpression accelerated VSMC proliferation and migration. At the molecular level, FAM3B inhibited miR-322-5p expression, and enforced expression of miR-322-5p antagonized FAM3B-induced VSMC proliferation and migration, suggesting that FAM3B facilitated VSMC pathological activation via miR-322-5p. Taken together, FAM3B mediates high glucose-induced VSMC proliferation and migration via inhibition of miR-322-5p. Thus, FAM3B may therefore serve as a novel therapeutic target for diabetes-related CVDs.
Collapse
|
9
|
Jirasek A, Knief J, Deng M, Reddemann K, Thorns C. Evaluation of general and coronary atherosclerosis and malignant disease demonstrates inverse correlations for specific cancer types as well as cancer in general. Pathol Res Pract 2016; 212:988-994. [PMID: 27726911 DOI: 10.1016/j.prp.2016.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT Historical data has shown that cancer in general has been associated with less atherosclerosis while recently several studies have demonstrated more heterogeneous relations. However, most investigations were carried out clinically or radiographically and updated exhaustive, comprehensive autopsy studies are lacking. In our study, we aimed to assess the relationship between malignancy and grade of atherosclerosis in different locations (general, coronary) in a large study population over the course of 14 years. METHODS 2370 patients (autopsy reports) were analyzed retrospectively in regard to various parameters including demographics, organ weights, distribution and severity of atherosclerosis and presence or absence of malignancy. RESULTS Our study shows that malignant disease is usually associated with less general and coronary atherosclerosis (p=0.002 and p<0.001). Especially breast, colorectal and pancreatic cancer as well as lymphomas/lymphoid leukaemia and sarcomas were associated with significantly less general and coronary AS (p-values<0.001-0.031). In addition, a positive correlation between coronary atherosclerosis and heart weight could be detected (ρ=0.302, p<0.001). As a common observation, male sex was associated with increased severity of general and coronary atherosclerosis in both cancer and non-cancer groups (p<0.001). CONCLUSIONS We demonstrated that an inverse correlation between atherosclerosis and cancer in general is still sound today despite tremendous changes and advances in therapy strategies and diagnostics. Additionally, we could highlight that the effect was most pronounced in breast, colorectal and pancreatic cancer, sarcomas and lymphomas/lymphoid leukaemia.
Collapse
Affiliation(s)
- Anne Jirasek
- Department of Pathology, Section of Hematopathology and endocrine Pathology, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Juliana Knief
- Department of Pathology, Section of Hematopathology and endocrine Pathology, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.
| | - Mario Deng
- Department of Pathology, Section of Hematopathology and endocrine Pathology, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Katharina Reddemann
- Department of Pathology, Section of Hematopathology and endocrine Pathology, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Christoph Thorns
- Department of Pathology, Section of Hematopathology and endocrine Pathology, University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| |
Collapse
|
10
|
Sheikh AQ, Misra A, Rosas IO, Adams RH, Greif DM. Smooth muscle cell progenitors are primed to muscularize in pulmonary hypertension. Sci Transl Med 2016; 7:308ra159. [PMID: 26446956 DOI: 10.1126/scitranslmed.aaa9712] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Excess and ectopic smooth muscle cells (SMCs) are central to cardiovascular disease pathogenesis, but underlying mechanisms are poorly defined. For instance, pulmonary hypertension (PH) or elevated pulmonary artery blood pressure is a devastating disease with distal extension of smooth muscle to normally unmuscularized pulmonary arterioles. We identify novel SMC progenitors that are located at the pulmonary arteriole muscular-unmuscular border and express both SMC markers and the undifferentiated mesenchyme marker platelet-derived growth factor receptor-β (PDGFR-β). We term these cells "primed" because in hypoxia-induced PH, they express the pluripotency factor Kruppel-like factor 4 (KLF4), and in each arteriole, one of them migrates distally, dedifferentiates, and clonally expands, giving rise to the distal SMCs. Furthermore, hypoxia-induced expression of the ligand PDGF-B regulates primed cell KLF4 expression, and enhanced PDGF-B and KLF4 levels are required for distal arteriole muscularization and PH. Finally, in PH patients, KLF4 is markedly up-regulated in pulmonary arteriole smooth muscle, especially in proliferating SMCs. In sum, we have identified a pool of SMC progenitors that are critical for the pathogenesis of PH, and perhaps other vascular disorders, and therapeutic strategies targeting this cell type promise to have profound implications.
Collapse
Affiliation(s)
- Abdul Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA
| | - Ashish Misra
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 300 George Street, Room 773J, New Haven, CT 06511, USA.
| |
Collapse
|
11
|
Kurz C, Hakimi M, Kloor M, Grond-Ginsbach C, Gross-Weissmann ML, Böckler D, von Knebel Doeberitz M, Dihlmann S. Coding Microsatellite Frameshift Mutations Accumulate in Atherosclerotic Carotid Artery Lesions: Evaluation of 26 Cases and Literature Review. Mol Med 2015; 21:479-86. [PMID: 26070012 DOI: 10.2119/molmed.2014.00258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
Somatic DNA alterations are known to occur in atherosclerotic carotid artery lesions; however, their significance is unknown. The accumulation of microsatellite mutations in coding DNA regions may reflect a deficiency of the DNA mismatch repair (MMR) system. Alternatively, accumulation of these coding microsatellite mutations may indicate that they contribute to the pathology. To discriminate between these two possibilities, we compared the mutation frequencies in coding microsatellites (likely functionally relevant) with those in noncoding microsatellites (likely neutral). Genomic DNA was isolated from carotid endarterectomy (CEA) specimens of 26 patients undergoing carotid surgery and from 15 nonatherosclerotic control arteries. Samples were analyzed by DNA fragment analysis for instability at three noncoding (BAT25, BAT26, CAT25) and five coding (AIM2, ACVR2, BAX, CASP5, TGFBR2) microsatellite loci, with proven validity for detection of microsatellite instability in neoplasms. We found an increased frequency of coding microsatellite mutations in CEA specimens compared with control specimens (34.6 versus 0%; p = 0.0013). Five CEA specimens exhibited more than one frameshift mutation, and ACVR2 and CASP5 were affected most frequently (5/26 and 6/26). Moreover, the rate of coding microsatellite alterations (15/130) differed significantly from that of noncoding alterations (0/78) in CEA specimens (p = 0.0013). In control arteries, no microsatellite alterations were observed, neither in coding nor in noncoding microsatellite loci. In conclusion, the specific accumulation of coding mutations suggests that these mutations play a role in the pathogenesis of atherosclerotic carotid lesions, since the absence of mutations in noncoding microsatellites argues against general microsatellite instability, reflecting MMR deficiency.
Collapse
Affiliation(s)
- Carolin Kurz
- Department of Neurology, Technical University Munich, Munich, Germany
| | - Maani Hakimi
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Marie-Luise Gross-Weissmann
- General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Pathologie Heidelberg, Heidelberg, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Susanne Dihlmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Sobenin IA, Zhelankin AV, Sinyov VV, Bobryshev YV, Orekhov AN. Mitochondrial Aging: Focus on Mitochondrial DNA Damage in Atherosclerosis - A Mini-Review. Gerontology 2014; 61:343-9. [DOI: 10.1159/000368923] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
|
13
|
Chaabane C, Coen M, Bochaton-Piallat ML. Smooth muscle cell phenotypic switch: implications for foam cell formation. Curr Opin Lipidol 2014; 25:374-9. [PMID: 25110900 DOI: 10.1097/mol.0000000000000113] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW It is well accepted that LDLs and its modified form oxidized-LDL (ox-LDL) play a major role in the development of atherosclerosis and foam cell formation. Whereas the majority of these cells have been demonstrated to be derived from macrophages, smooth muscle cells (SMCs) give rise to a significant number of foam cells as well. During atherosclerotic plaque formation, SMCs switch from a contractile to a synthetic phenotype. The contribution of this process to foam cell formation is still not well understood. RECENT FINDINGS It has been confirmed that a large proportion of foam cells in human atherosclerotic plaques and in experimental intimal thickening arise from SMCs. SMC-derived foam cells express receptors involved in ox-LDL uptake and HDL reverse transport. In-vitro studies show that treatment of SMCs with ox-LDL induces typical foam-cell formation; this process is associated with a transition of SMCs toward a synthetic phenotype. SUMMARY This review summarizes data regarding the phenotypic switch of arterial SMCs within atherosclerotic lesion and their contribution to intimal foam cell formation.
Collapse
Affiliation(s)
- Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
14
|
Yang D, Wang H, Zhang J, Li C, Lu Z, Liu J, Lin C, Li G, Qian H. In vitro characterization of stem cell-like properties of drug-resistant colon cancer subline. Oncol Res 2014; 21:51-7. [PMID: 24330852 DOI: 10.3727/096504013x13793555706768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to investigate the stem cell-like properties of drug-resistant colon cancer cells. Oxaliplatin was used to induce the drug-resistant subline of HCT116(p53+/+) cell line. The stem cell-like characteristics of the drug-resistant subline were assayed for the proliferation capacity, cell cycle, adhesion, invasion, multiple drug resistance, and clone sphere formation capacity. The expression of ABCG2 (ATP-binding cassette superfamily G member 2) and "stemness" indicators SOX2 (SRY-related HMG box-containing transcription factor-2) and OCT4 (octamer-binding transcription factor 4) was determined by Western blot. We established the HCT116(p53+/+)-oxaliplatin subline (HCT116(p53+/+)OXA), which was resistant to oxaliplatin with a resistance index (RI) of 3.03 ± 0.14. The HCT116(p53+/+)OXA was also resistant to Taxol, showing lower proliferation, higher adhesion and invasion ability, greater proportion of G0/G1 phase, and higher sphere-forming capacity than its parental cells. SOX2, OCT4, and ABCG2 were expressed at higher levels in drug-resistant cells than in their parental cells. We verified that the HCT116(p53+/+)OXA was enriched with cancer stem cell properties and provided an ideal cell model for drug-resistance study.
Collapse
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Quantitative assessment of heteroplasmy of mitochondrial genome: perspectives in diagnostics and methodological pitfalls. BIOMED RESEARCH INTERNATIONAL 2014; 2014:292017. [PMID: 24818137 PMCID: PMC4003915 DOI: 10.1155/2014/292017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/14/2014] [Indexed: 11/17/2022]
Abstract
The role of alterations of mitochondrial DNA (mtDNA) in the development of human pathologies is not understood well. Most of mitochondrial mutations are characterized by the phenomenon of heteroplasmy which is defined as the presence of a mixture of more than one type of an organellar genome within a cell or tissue. The level of heteroplasmy varies in wide range, and the expression of disease is dependent on the percent of alleles bearing mutations, thus allowing consumption that an upper threshold level may exist beyond which the mitochondrial function collapses. Recent findings have demonstrated that some mtDNA heteroplasmic mutations are associated with widely spread chronic diseases, including atherosclerosis and cancer. Actually, each etiological mtDNA mutation has its own heteroplasmy threshold that needs to be measured. Therefore, quantitative evaluation of a mutant allele of mitochondrial genome is an obvious methodological challenge, since it may be a keystone for diagnostics of individual genetic predisposition to the disease. This review provides a comprehensive comparison of methods applicable to the measurement of heteroplasmy level of mitochondrial mutations associated with the development of pathology, in particular, in atherosclerosis and its clinical manifestations.
Collapse
|
16
|
Budczies J, von Winterfeld M, Klauschen F, Kimmritz AC, Daniel JM, Warth A, Endris V, Denkert C, Pfeiffer H, Weichert W, Dietel M, Wittschieber D, Stenzinger A. Comprehensive analysis of clinico-pathological data reveals heterogeneous relations between atherosclerosis and cancer. J Clin Pathol 2014; 67:482-90. [PMID: 24519989 DOI: 10.1136/jclinpath-2013-202148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS Atherosclerosis and cancer share common risk factors and involve similar molecular pathomechanisms. Most clinical and epidemiological studies show a positive correlation between atherosclerosis and smoking-related cancers and heterogeneous results for non-smoking-related cancers. However, up-to-date large-scale autopsy studies including a detailed analysis of cancer types are lacking. Therefore, we sought to investigate the relation between major cancer types and the grade of atherosclerosis in a recent well-powered autopsy cohort. METHODS In 2101 patients, both autopsy data and clinical data including demographics, disease groups, tumour type, cause of death and grade of atherosclerosis were reviewed and statistically analysed. RESULTS We found cancer in general is associated with less atherosclerosis (OR 0.60, p<0.0001). In particular, haematological neoplasm and sarcomas were associated with much less atherosclerosis (OR=0.45, p<0.0001 and OR=0.43, p=0.087), while carcinomas were associated with moderately less atherosclerosis (OR=0.72, p=0.002). Furthermore, non-smoking-related cancers were associated with much less atherosclerosis (OR=0.41, p<0.0001), while possibly smoking-related cancer and smoking-related cancer showed no significant association. In a comprehensive analysis of 21 cancer types, biliary tract cancer, lymphomas/lymphoid leukaemias and kidney cancer were associated with much less atherosclerosis (OR=0.19, p<0.0001; OR=0.41, p<0.0001; and OR=0.48, p=0.029). In an exploratory analysis of treatment strategies, we found that tumours with a recommendation of oxazaphosphorines and pyrimidine antagonist treatment were significantly associated with less atherosclerosis (OR=0.33, p=0.0068 and OR=0.58, p=0.012). CONCLUSIONS In conclusion, the study showed an inverse association between cancer and atherosclerosis postmortem that depends on the cancer type and suggests a possible impact of chemotherapy regimens.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Charité University Hospital, Berlin, Germany
| | | | | | | | - Jan-Marcus Daniel
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Charité University Hospital, Berlin, Germany
| | - Heidi Pfeiffer
- Institute of Legal Medicine, University Hospital Münster, Münster, Germany
| | - Wilko Weichert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Manfred Dietel
- Institute of Pathology, Charité University Hospital, Berlin, Germany
| | | | | |
Collapse
|
17
|
Targeting versus tinkering: Explaining why the clinic is frustrated with molecular mapping of disease mechanisms. Med Hypotheses 2013; 81:553-6. [DOI: 10.1016/j.mehy.2013.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/22/2013] [Indexed: 12/17/2022]
|
18
|
Bi Y, Zhong H, Xu K, Qi X. Combination of Periaortic Elastase Incubation and Cholesterol-Rich Diet: A Novel Model of Atherosclerosis in Rabbit Abdominal Aorta. Cell Biochem Biophys 2013; 68:611-4. [DOI: 10.1007/s12013-013-9753-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Simon AS, Vijayakumar T. Molecular studies on coronary artery disease-a review. Indian J Clin Biochem 2013; 28:215-26. [PMID: 24426215 PMCID: PMC3689340 DOI: 10.1007/s12291-013-0303-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/16/2013] [Indexed: 12/11/2022]
Abstract
Coronary artery disease (CAD) remains the major cause of mortality and morbidity in the entire world population. The conventional risk factors of CAD include hypertension, hyperlipidemia, diabetes mellitus, family history, smoking etc. These factors contribute only 50 % of the total risk of CAD. For providing a complete risk assessment in CAD, it is mandatory to have well-planned clinical, biochemical and genetic studies in patients with CAD and subjects who are at risk of developing CAD. In this review an attempt is made to critically evaluate the conventional and emerging risk factors which predispose the individual to CAD. Specifically, the molecular basis of CAD including high oxidative stress, low antioxidant status and increased DNA damage are covered. A comprehensive and multifactorial approach to the problem is the better way to reduce the morbidity and mortality of the disease.
Collapse
Affiliation(s)
- A. Supriya Simon
- />Department of Biochemistry, Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, 689 101 Kerala India
| | - T. Vijayakumar
- />Educare Institute of Dental Sciences, Malappuram, 676 504 Kerala India
| |
Collapse
|
20
|
Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, Little MP. Non-targeted effects of ionising radiation--implications for low dose risk. Mutat Res 2013; 752:84-98. [PMID: 23262375 PMCID: PMC4091999 DOI: 10.1016/j.mrrev.2012.12.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/17/2022]
Abstract
Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionising radiation. Other outstanding questions include links between the different non-targeted responses and the variations in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects.
Collapse
Affiliation(s)
- Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| | - Sisko Salomaa
- STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki, Finland
| | - Eric Wright
- School of Medicine, College of Medicine, Dentistry and Nursing, University of Dundee, Nethergate, Dundee, DD1 4HN, Scotland, UK
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Südring 75, 18051 Rostock, Germany
| | - Oleg V Belyakov
- Hevesy Laboratory, Center for Nuclear Technologies, Technical University of Denmark, 4000 Roskilde, Denmark
| | | | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, 6120 Executive Boulevard, Rockville, MD 20852, USA
| |
Collapse
|
21
|
Greif DM, Kumar M, Lighthouse JK, Hum J, An A, Ding L, Red-Horse K, Espinoza FH, Olson L, Offermanns S, Krasnow MA. Radial construction of an arterial wall. Dev Cell 2013; 23:482-93. [PMID: 22975322 DOI: 10.1016/j.devcel.2012.07.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 05/24/2012] [Accepted: 07/16/2012] [Indexed: 01/04/2023]
Abstract
Some of the most serious diseases involve altered size and structure of the arterial wall. Elucidating how arterial walls are built could aid understanding of these diseases, but little is known about how concentric layers of muscle cells and the outer adventitial layer are assembled and patterned around endothelial tubes. Using histochemical, clonal, and genetic analysis in mice, here we show that the pulmonary artery wall is constructed radially, from the inside out, by two separate but coordinated processes. One is sequential induction of successive cell layers from surrounding mesenchyme. The other is controlled invasion of outer layers by inner layer cells through developmentally regulated cell reorientation and radial migration. We propose that a radial signal gradient controls these processes and provide evidence that PDGF-B and at least one other signal contribute. Modulation of such radial signaling pathways may underlie vessel-specific differences and pathological changes in arterial wall size and structure.
Collapse
Affiliation(s)
- Daniel M Greif
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bogen KT. Efficient tumorigenesis by mutation-induced failure to terminate microRNA-mediated adaptive hyperplasia. Med Hypotheses 2012. [PMID: 23183421 DOI: 10.1016/j.mehy.2012.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Seven current contending cancer theories consider different sets of critical events as sufficient for tumorigenesis. These theories, most recently the microRNA dysregulation (MRD) theory, have overlapping attributes and extensive empirical support, but also some discrepancies, and some do not address both benign and malignant tumorigenesis. By definition, the most efficient tumorigenic pathways will dominate under conditions that selectively activate those pathways. The MRD theory provides a mechanistic basis to combine elements of the current theories into a new hypothesis that: (i) tumors arise most efficiently under stress that induces and sustains either protective or regenerative states of adaptive hyperplasia (AH) that normally are epigenetically maintained unless terminated; and (ii) if dysregulated by a somatic mutation that prevents normal termination, these two AH states can generate benign and malignant tumors, respectively. This hypothesis, but not multistage cancer theory, predicts that key participating AH-stem-cell populations expand markedly when triggered by stress, particularly chronic metabolic or oxidative stress, mechanical irritation, toxic exposure, wounding, inflammation, and/or infection. This hypothesis predicts that microRNA expression patterns in benign vs. malignant tumor tissue will correlate best with those governing protective vs. regenerative AH in that tissue, and that tumors arise most efficiently inmutagen-exposed stem cells that either happen to be in, or incidentally later become recruited into, an AH state.
Collapse
Affiliation(s)
- Kenneth T Bogen
- DrPH DABT, Exponent Inc., Health Sciences, 475, 14th Street, Ste 400, Oakland, CA 94612, USA.
| |
Collapse
|
23
|
Alaiti MA, Orasanu G, Tugal D, Lu Y, Jain MK. Kruppel-like factors and vascular inflammation: implications for atherosclerosis. Curr Atheroscler Rep 2012; 14:438-49. [PMID: 22850980 PMCID: PMC4410857 DOI: 10.1007/s11883-012-0268-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mohamad Amer Alaiti
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Gabriela Orasanu
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Derin Tugal
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Yuan Lu
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| | - Mukesh K. Jain
- Harrington Heart and Vascular Institute and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106, USA
| |
Collapse
|
24
|
Restenosis and therapy. Int J Vasc Med 2012; 2012:406236. [PMID: 22489270 PMCID: PMC3303576 DOI: 10.1155/2012/406236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/11/2011] [Accepted: 12/05/2011] [Indexed: 01/03/2023] Open
Abstract
The vascular disease involves imbalanced function of the blood vessels. Risk factors playing a role in development of impaired vessel functions will be briefly discussed. In ischemia/reperfusion (I/R), ischemic hypoxia is one of the cardinal risk factors of restenosis. Various insults are shown to initiate the phenotype switch of VSMCs. The pathological process, leading to activated inflammatory process, complement activation, and release of growth factors, initiate the proliferation of VSMCs in the media and cause luminal narrowing and impaired vascular function. The review summarizes the alteration process and demonstrates some of the clinical genetic background showing the role of complement and the genotypes of mannose-binding lectin (MBL2). Those could be useful markers of carotid restenosis after stent implantation. Gene therapy and therapeutic angiogenesis is proposed for therapy in restenosis. We suggest a drug candidate (iroxanadine), which ensures a noninvasive treatment by reverse regulation of the highly proliferating VSMCs and the disturbed function of ECs.
Collapse
|
25
|
Laing ST, Kim H, Kopechek JA, Parikh D, Huang S, Klegerman ME, Holland CK, McPherson DD. Ultrasound-mediated delivery of echogenic immunoliposomes to porcine vascular smooth muscle cells in vivo. J Liposome Res 2012; 20:160-7. [PMID: 19842795 DOI: 10.3109/08982100903218918] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are important targets in the treatment of atherosclerosis. However, the arterial media, where the majority of VSMCs reside, have proven to be a difficult target for drug/gene delivery. We have demonstrated that ultrasound enhances drug/gene delivery to VSMCs in vitro by using echogenic immunoliposomes (ELIPs) as the vector. This study aimed to evaluate whether ultrasound can similarly enhance the delivery of an agent to VSMCs, particularly within the arterial media, in vivo, using ELIP. Anti-smooth-muscle cell actin-conjugated calcein-loaded ELIP were injected into the peripheral arteries of Yucatan miniswine (n = 8 arterial pairs). The right-sided porcine arteries were treated with 1-MHz continuous-wave ultrasound at a peak-to-peak pressure amplitude of 0.23 +/- 0.05 MPa for 2 minutes. The contralateral arteries served as controls. Arteries were harvested after 30 minutes and imaged with fluorescence microscopy. Image data were converted to grayscale and analyzed by using computer-assisted videodensitometry. There was significant improvement in calcein uptake in all three arterial layers in the arteries exposed to ultrasound (> 300%). This enhanced uptake was site specific and appeared limited to the ultrasound-treated arterial segment. We have demonstrated enhanced delivery of a small molecule to VSMCs in all arterial wall layers, particularly the arterial media, using ultrasound and targeted ELIP. The combined effect of ultrasound exposure and ELIP as a contrast agent and a drug/gene-bearing vector has the potential for site-specific therapy directed at VSMC function.
Collapse
Affiliation(s)
- Susan T Laing
- Department of Internal Medicine, University of Texas Health Science Center-Houston, 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Transcriptional Control of Vascular Smooth Muscle Cell Proliferation by Peroxisome Proliferator-Activated Receptor-gamma: Therapeutic Implications for Cardiovascular Diseases. PPAR Res 2011; 2008:429123. [PMID: 18288288 PMCID: PMC2225465 DOI: 10.1155/2008/429123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/24/2007] [Indexed: 12/14/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (SMCs) is a critical process for the development of atherosclerosis and complications of procedures used to treat atherosclerotic diseases, including postangioplasty restenosis, vein graft failure, and transplant vasculopathy. Peroxisome proliferator-activated receptor (PPAR) gamma is a member of the nuclear hormone receptor superfamily and the molecular target for the thiazolidinediones (TZD), used clinically to treat insulin resistance in patients with type 2 diabetes. In addition to their efficacy to improve insulin sensitivity, TZD exert a broad spectrum of pleiotropic beneficial effects on vascular gene expression programs. In SMCs, PPARgamma is prominently upregulated during neointima formation and suppresses the proliferative response to injury of the arterial wall. Among the molecular target genes regulated by PPARgamma in SMCs are genes encoding proteins involved in the regulation of cell-cycle progression, cellular senescence, and apoptosis. This inhibition of SMC proliferation is likely to contribute to the prevention of atherosclerosis and postangioplasty restenosis observed in animal models and proof-of-concept clinical studies. This review will summarize the transcriptional target genes regulated by PPARgamma in SMCs and outline the therapeutic implications of PPARgamma activation for the treatment and prevention of atherosclerosis and its complications.
Collapse
|
27
|
Mahoney WM, Fleming JN, Schwartz SM. A unifying hypothesis for scleroderma: identifying a target cell for scleroderma. Curr Rheumatol Rep 2011; 13:28-36. [PMID: 21181314 DOI: 10.1007/s11926-010-0152-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We propose that a recent change in the conception of the role of type 1 interferon and the identification of adventitial stem cells suggests a unifying hypothesis for scleroderma. This hypothesis begins with vasospasm. Vasospasm is fully reversible unless, as proposed here, the resulting ischemia leads to apoptosis and activation of type 1 interferon. The interferon, we propose, initiates immune amplification, including characteristic scleroderma-specific antibodies. We propose that the interferon also acts on adventitial stem cells, producing myofibroblasts, rarefaction, and intimal hyperplasia--three morphologic changes that characterize this disease. Regulator of G-protein signaling 5 (RGS5), a regulator of vasoactive G-protein-coupled receptors, is a cell type-specific marker of pericytes and scleroderma myofibroblasts. RGS5 may provide a key link between initial hyperplasia and fibrosis in this disease.
Collapse
Affiliation(s)
- William M Mahoney
- Department of Pathology, Center for Cardiovascular Biology, University of Washington School of Medicine, 815 Mercer Street, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
28
|
Weakley SM, Jiang J, Kougias P, Lin PH, Yao Q, Brunicardi FC, Gibbs RA, Chen C. Role of somatic mutations in vascular disease formation. Expert Rev Mol Diagn 2010; 10:173-85. [PMID: 20214536 DOI: 10.1586/erm.10.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coronary artery disease, cerebrovascular disease, pulmonary artery hypertension and Alzheimer's disease all lead to substantial morbidity and mortality, and we currently lack effective treatments for these vascular diseases. Since the discovery, decades ago, that atherosclerotic lesions display clonal growth, atherosclerosis and other vascular diseases have been postulated to be neoplastic processes, arising through a series of critical somatic mutations. There is conflicting evidence supporting this but studies of DNA damage and mutagenesis, both genomic and mitochondrial, in atherosclerotic and vascular lesions, have yielded evidence that somatic mutations are involved in atherogenesis and vascular disease development. The roles of mitochondrial DNA damage, oxidative stress and signaling by members of the TGF-beta receptor family are implicated. With the increasing convenience and cost-effectiveness of genome sequencing, it is feasible to continue to seek specific genetic targets in the pathogenesis of these devastating diseases, with the hope of developing personalized genomic medicine in the future.
Collapse
Affiliation(s)
- Sarah M Weakley
- Michael E DeBakey Department of Surgery, Molecular Surgeon Research Center, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM391, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Winkelmann BR, von Holt K, Unverdorben M. Smoking and atherosclerotic cardiovascular disease: Part I: atherosclerotic disease process. Biomark Med 2010; 3:411-28. [PMID: 20477486 DOI: 10.2217/bmm.09.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The normal endothelium inhibits platelet and leukocyte adhesion to the vascular surface maintaining a balance of profibrinolytic and prothrombotic activity. Endothelial function is assessed largely as endothelium-dependent vasomotion, partly based on the assumption that impaired endothelium-dependent vasodilation reflects the alteration of important endothelial functions. Atherosclerotic risk factors, such as hypercholesterolemia, hypertension, diabetes and smoking, are associated with endothelial dysfunction. In the diseased endothelium, the balance between pro- and antithrombotic, pro- and anti-inflammatory, pro- and antiadhesive or pro- and antioxidant effects shifts towards a proinflammatory, prothrombotic, pro-oxidative and proadhesive phenotype of the endothelium. A common mechanism underlying endothelial dysfunction is related to the increased vascular production of reactive oxygen species. Recent studies suggest that inflammation per se, and C-reactive protein in particular, may contribute directly to endothelial dysfunction. The loss of endothelial integrity is a hallmark of atherosclerosis and the causal possible link between each individual risk factor, the development of atherosclerosis and the subsequent clinical events, such as myocardial infarction or stroke.
Collapse
|
30
|
Little MP, Tawn EJ, Tzoulaki I, Wakeford R, Hildebrandt G, Paris F, Tapio S, Elliott P. Review and meta-analysis of epidemiological associations between low/moderate doses of ionizing radiation and circulatory disease risks, and their possible mechanisms. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:139-53. [PMID: 19862545 PMCID: PMC3075616 DOI: 10.1007/s00411-009-0250-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 10/04/2009] [Indexed: 05/10/2023]
Abstract
Although the link between high doses of ionizing radiation and damage to the heart and coronary arteries has been well established for some time, the association between lower-dose exposures and late occurring cardiovascular disease has only recently begun to emerge, and is still controversial. In this paper, we extend an earlier systematic review by Little et al. on the epidemiological evidence for associations between low and moderate doses of ionizing radiation exposure and late occurring blood circulatory system disease. Excess relative risks per unit dose in epidemiological studies vary over at least two orders of magnitude, possibly a result of confounding and effect modification by well-known (but unobserved) risk factors, and there is statistically significant (p < 0.00001) heterogeneity between the risks. This heterogeneity is reduced, but remains significant, if adjustments are made for the effects of fractionated delivery or if there is stratification by endpoint (cardiovascular disease vs. stroke, morbidity vs. mortality). One possible biological mechanism is damage to endothelial cells and subsequent induction of an inflammatory response, although it seems unlikely that this would extend to low-dose and low-dose-rate exposure. A recent paper of Little et al. proposed an arguably more plausible mechanism for fractionated low-dose effects, based on monocyte cell killing in the intima. Although the predictions of the model are consistent with the epidemiological data, the experimental predictions made have yet to be tested. Further epidemiological and biological evidence will allow a firmer conclusion to be drawn.
Collapse
Affiliation(s)
- M P Little
- Department of Epidemiology and Public Health, Imperial College Faculty of Medicine, Norfolk Place, London, W2 1PG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Little MP. Do non-targeted effects increase or decrease low dose risk in relation to the linear-non-threshold (LNT) model? Mutat Res 2010; 687:17-27. [PMID: 20105434 PMCID: PMC3076714 DOI: 10.1016/j.mrfmmm.2010.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this paper we review the evidence for departure from linearity for malignant and non-malignant disease and in the light of this assess likely mechanisms, and in particular the potential role for non-targeted effects. Excess cancer risks observed in the Japanese atomic bomb survivors and in many medically and occupationally exposed groups exposed at low or moderate doses are generally statistically compatible. For most cancer sites the dose-response in these groups is compatible with linearity over the range observed. The available data on biological mechanisms do not provide general support for the idea of a low dose threshold or hormesis. This large body of evidence does not suggest, indeed is not statistically compatible with, any very large threshold in dose for cancer, or with possible hormetic effects, and there is little evidence of the sorts of non-linearity in response implied by non-DNA-targeted effects. There are also excess risks of various types of non-malignant disease in the Japanese atomic bomb survivors and in other groups. In particular, elevated risks of cardiovascular disease, respiratory disease and digestive disease are observed in the A-bomb data. In contrast with cancer, there is much less consistency in the patterns of risk between the various exposed groups; for example, radiation-associated respiratory and digestive diseases have not been seen in these other (non-A-bomb) groups. Cardiovascular risks have been seen in many exposed populations, particularly in medically exposed groups, but in contrast with cancer there is much less consistency in risk between studies: risks per unit dose in epidemiological studies vary over at least two orders of magnitude, possibly a result of confounding and effect modification by well known (but unobserved) risk factors. In the absence of a convincing mechanistic explanation of epidemiological evidence that is, at present, less than persuasive, a cause-and-effect interpretation of the reported statistical associations for cardiovascular disease is unreliable but cannot be excluded. Inflammatory processes are the most likely mechanism by which radiation could modify the atherosclerotic disease process. If there is to be modification by low doses of ionizing radiation of cardiovascular disease through this mechanism, a role for non-DNA-targeted effects cannot be excluded.
Collapse
Affiliation(s)
- M P Little
- Department of Epidemiology and Biostatistics, Imperial College School of Public Health, Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
32
|
Allahverdian S, Francis GA. Cholesterol Homeostasis and High-Density Lipoprotein Formation in Arterial Smooth Muscle Cells. Trends Cardiovasc Med 2010; 20:96-102. [DOI: 10.1016/j.tcm.2010.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2010] [Indexed: 01/24/2023]
|
33
|
Abstract
It is well established that moderate to high doses of radiation can increase the occurrence also of a variety of non-cancer effects in exposed individuals, but for radiation protection purposes it has generally been assumed that there is a threshold of dose below which no significant non-cancer effects (apart from hereditary disease) arise. In recent years, there is growing epidemiological evidence of excess risk of late occurring cardiovascular disease at much lower radiation doses and occurring over much longer intervals after radiation exposure without a clear cut threshold. However, the epidemiological evidence available so far for non-cancer health effects after exposure to moderate or low radiation doses is suggestive rather than persuasive. The mechanisms of radiation-induced vascular disease induction are far away from being understood. However, it seems to be very likely that inflammatory responses are involved. Recent experimental studies by Stewart et al. [25] could demonstrate that high dose exposure to the cardiovascular system is associated with an earlier onset and accelerated development of macrophage-rich, inflammatory atherosclerotic lesions prone to intra-plaque hemorrhage and may also cause a decrease in myocardial perfusion. Both, macro-vascular and micro-vascular radiation effects involve the endothelium and pro-inflammatory signalling cascades. If modulation of inflammatory response is arguably also the most likely cause of radiation-induced cardiovascular disease after low dose exposure, this also implies a role for non-targeted radiation effects. In the absence of a convincing mechanistic explanation of the currently available epidemiological evidence for radiation-induced cardiovascular risk at low radiation doses, caution is required in the interpretation of the statistical associations. On the other hand, the possibility of such a causal explanation cannot be reliably excluded. Further epidemiological and biological evidence from currently ongoing research projects will allow a firmer conclusion to be drawn.
Collapse
Affiliation(s)
- Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 9a, 04103 Leipzig, Germany; Department of Radiotherapy, University of Rostock, Südring 75, 18059 Rostock, Germany.
| |
Collapse
|
34
|
Khan SJ, Pham S, Wei Y, Mateo D, St-Pierre M, Fletcher TM, Vazquez-Padron RI. Stress-induced senescence exaggerates postinjury neointimal formation in the old vasculature. Am J Physiol Heart Circ Physiol 2010; 298:H66-74. [DOI: 10.1152/ajpheart.00501.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aims to demonstrate the role of stress-induced senescence in aged-related neointimal formation. We demonstrated that aging increases senescence-associated β-galactosidase activity (SA-β-Gal) after vascular injury and the subsequent neointimal formation (neointima-to-media ratio: 0.8 ± 0.2 vs. 0.54 ± 0.15) in rats. We found that senescent cells (SA-β-Gal+ p21+) were scattered throughout the media and adventitia of the vascular wall at day 7 after injury and reached their maximum number at day 14. However, senescent cells only persisted in the injured arteries of aged animals until day 30. No senescent cells were observed in the noninjured, contralateral artery. Interestingly, vascular senescent cells accumulated genomic 8-oxo-7,8-dihydrodeoxyguanine, indicating that these cells were under intense oxidative stress. To demonstrate whether senescence worsens intimal hyperplasia after injury, we seeded matrigel-embedded senescent and nonsenescent vascular smooth muscle cells around injured vessels. The neointima was thicker in arteries treated with senescent cells with respect to those that received normal cells (neointima-to-media ratio: 0.41 ± 0.105 vs. 0.26 ± 0.04). In conclusion, these results demonstrate that vascular senescence is not only a consequence of postinjury oxidative stress but is also a worsening factor for neointimal development in the aging vasculature.
Collapse
Affiliation(s)
- Sheik J. Khan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Si Pham
- Department of Surgery and Vascular Biology Institute and
| | - Yunteo Wei
- Department of Surgery and Vascular Biology Institute and
| | - Dania Mateo
- Department of Surgery and Vascular Biology Institute and
| | | | - Terace M. Fletcher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | | |
Collapse
|
35
|
Little MP, Gola A, Tzoulaki I. A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLoS Comput Biol 2009; 5:e1000539. [PMID: 19851450 PMCID: PMC2759077 DOI: 10.1371/journal.pcbi.1000539] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/21/2009] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is the main cause of coronary heart disease and stroke, the two major causes of death in developed society. There is emerging evidence of excess risk of cardiovascular disease at low radiation doses in various occupationally exposed groups receiving small daily radiation doses. Assuming that they are causal, the mechanisms for effects of chronic fractionated radiation exposures on cardiovascular disease are unclear. We outline a spatial reaction-diffusion model for atherosclerosis and perform stability analysis, based wherever possible on human data. We show that a predicted consequence of multiple small radiation doses is to cause mean chemo-attractant (MCP-1) concentration to increase linearly with cumulative dose. The main driver for the increase in MCP-1 is monocyte death, and consequent reduction in MCP-1 degradation. The radiation-induced risks predicted by the model are quantitatively consistent with those observed in a number of occupationally-exposed groups. The changes in equilibrium MCP-1 concentrations with low density lipoprotein cholesterol concentration are also consistent with experimental and epidemiologic data. This proposed mechanism would be experimentally testable. If true, it also has substantive implications for radiological protection, which at present does not take cardiovascular disease into account. The Japanese A-bomb survivor data implies that cardiovascular disease and cancer mortality contribute similarly to radiogenic risk. The major uncertainty in assessing the low-dose risk of cardiovascular disease is the shape of the dose response relationship, which is unclear in the Japanese data. The analysis of the present paper suggests that linear extrapolation would be appropriate for this endpoint. Atherosclerosis is the main cause of coronary heart disease and stroke, the two major causes of death in developed society. There is emerging evidence of excess risk of cardiovascular disease in various occupationally exposed groups, exposed to fractionated radiation doses with small doses/fraction. The mechanisms for such effects of fractionated low-dose radiation exposures on cardiovascular disease are unclear. We outline a spatial reaction-diffusion model for early stage atherosclerotic lesion formation and perform a stability analysis, based on experimentally derived parameters. We show that following multiple small radiation doses the chemo-attractant (MCP-1) concentration increases proportionally to cumulative dose; this is driven by radiation-induced monocyte death. This will result in risk of atherosclerosis increasing approximately linearly with cumulative dose. This proposed mechanism would be testable. If true, it also has substantive implications for radiological protection, which at present does not take cardiovascular disease into account. The major uncertainty in assessing low-dose risk of cardiovascular disease is the shape of the dose response relationship, which is unclear in high dose data. Our analysis suggests that linear extrapolation would be appropriate.
Collapse
Affiliation(s)
- Mark P Little
- Department of Epidemiology and Public Health, Faculty of Medicine, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
36
|
Irradiations à faibles doses et risque de pathologie cardiovasculaire : revue des études épidémiologiques. Rev Epidemiol Sante Publique 2009; 57:347-59. [DOI: 10.1016/j.respe.2009.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/17/2009] [Accepted: 04/15/2009] [Indexed: 12/20/2022] Open
|
37
|
Curci JA. Digging in the "soil" of the aorta to understand the growth of abdominal aortic aneurysms. Vascular 2009; 17 Suppl 1:S21-9. [PMID: 19426606 DOI: 10.2310/6670.2008.00085] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extensive studies into the etiology of aortic aneurysm disease have focused on the characteristic and unique inflammatory infiltration and elaboration of products of inflammatory cells which can result in matrix degradation. While these changes clearly have a significant impact on the development of aneurysm disease, little attention has been paid to the changes in the parenchymal cells of the aorta. Under normal conditions, the vascular smooth muscle cells which populate the aortic wall are responsible for the maintenance of the matrix components of the media, particularly the elastic fibers. As our understanding of the mechanisms of aneurysm formation and normal arterial anatomy become more sophisticated, it is clear that specific changes to these smooth muscle cells make them active participants in the medial matrix destruction characteristic of aneurysm disease. As others have described for intimal arterial disease, this is the "soil" from which aortic aneurysms grow.
Collapse
Affiliation(s)
- John A Curci
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
van Oostrom O, Fledderus JO, de Kleijn D, Pasterkamp G, Verhaar MC. Smooth muscle progenitor cells: friend or foe in vascular disease? Curr Stem Cell Res Ther 2009; 4:131-40. [PMID: 19442197 PMCID: PMC3182076 DOI: 10.2174/157488809788167454] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The origin of vascular smooth muscle cells that accumulate in the neointima in vascular diseases such as transplant arteriosclerosis, atherosclerosis and restenosis remains subject to much debate. Smooth muscle cells are a highly heterogeneous cell population with different characteristics and markers, and distinct phenotypes in physiological and pathological conditions. Several studies have reported a role for bone marrow-derived progenitor cells in vascular maintenance and repair. Moreover, bone marrow-derived smooth muscle progenitor cells have been detected in human atherosclerotic tissue as well as in in vivo mouse models of vascular disease. However, it is not clear whether smooth muscle progenitor cells can be regarded as a 'friend' or 'foe' in neointima formation. In this review we will discuss the heterogeneity of smooth muscle cells, the role of smooth muscle progenitor cells in vascular disease, potential mechanisms that could regulate smooth muscle progenitor cell contribution and the implications this may have on designing novel therapeutic tools to prevent development and progression of vascular disease.
Collapse
Affiliation(s)
- Olivia van Oostrom
- Department of Vascular Medicine, University Medical Center Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Rodriguez-Menocal L, St-Pierre M, Wei Y, Khan S, Mateu D, Calfa M, Rahnemai-Azar AA, Striker G, Pham SM, Vazquez-Padron RI. The origin of post-injury neointimal cells in the rat balloon injury model. Cardiovasc Res 2008; 81:46-53. [DOI: 10.1093/cvr/cvn265] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
40
|
Pontikoglou C, Delorme B, Charbord P. Human bone marrow native mesenchymal stem cells. Regen Med 2008; 3:731-41. [DOI: 10.2217/17460751.3.5.731] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
41
|
Haurani MJ, Cifuentes ME, Shepard AD, Pagano PJ. Nox4 oxidase overexpression specifically decreases endogenous Nox4 mRNA and inhibits angiotensin II-induced adventitial myofibroblast migration. Hypertension 2008; 52:143-9. [PMID: 18474828 DOI: 10.1161/hypertensionaha.107.101667] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The vascular adventitia is emerging as an important modulator of vessel remodeling. Adventitial myofibroblasts migrate to the neointima after balloon angioplasty, contributing to restenosis. We postulated that angiotensin II (Ang II) enhances adventitial myofibroblast migration in vitro via reduced nicotinamide-adenine dinucleotide phosphate oxidase-derived H(2)O(2) and that Nox4-based oxidase promotes migration. Ang II increased myofibroblast migration in a concentration-dependent manner, with a peak increase of 1023+/-83%. Rat adventitial myofibroblasts were cotransfected with human Nox4 and human p22-phox plasmids or an empty vector. PCR showed an 8-fold increase in human Nox4 and human p22-phox plasmid expression. Using RT-PCR with primers specifically designed for rat reduced nicotinamide-adenine dinucleotide phosphate oxidases, endogenous Nox levels were determined. Ang II decreased endogenous Nox4 and Nox1 mRNA to 41% and 27% of control, respectively, but had no effect on Nox2. Cotransfection with human Nox4 and human p22-phox plasmids combined with Ang II reduced endogenous Nox4 mRNA levels (37+/-5% of control; P<0.05), whereas it had no significant effect on Nox1 or Nox2. In empty vector-transfected cells, Ang II increased myofibroblast migration by 192+/-32% versus vehicle (P<0.01) while increasing H(2)O(2) (473+/-22% versus control; P<0.001). Cotransfection with human Nox4 and human p22-phox plasmids decreased Ang II-induced migration (46+/-6%; P<0.001) in parallel with attenuation of H(2)O(2) production (23+/-8% versus empty vector; P<0.05). Our data suggest that Nox4 promotes Ang II-induced myofibroblast migration via an H(2)O(2)-dependent pathway. The data also suggest that Nox4 causes feedback inhibition of its own expression in adventitial myofibroblasts.
Collapse
Affiliation(s)
- Mounir J Haurani
- Department of General Surgery, Hypertension and Vascular Research Division, Room 7044, E&R Building, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | | | | | | |
Collapse
|
42
|
Abstract
A significant proportion of pituitary macroadenomas, and by definition all microadenomas, regain trophic stability after an initial period of deregulated growth. Classical proto-oncogene activation and tumor suppressor mutation are rarely responsible, and no histologic or molecular markers reliably predict behavior. GNAS1 activation and the mutations associated with multiple endocrine neoplasia type 1 and Carney complex, aryl hydrocarbon receptor interacting protein gene mutations, and a narrowing region of chromosome 11q13 in familial isolated acromegaly together account for such a small proportion of pituitary adenomas that the pituitary adenoma pathogenic epiphany is surely yet to come.
Collapse
Affiliation(s)
- Andy Levy
- Henry Wellcome Labs for Integrative Neuroscience & Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK.
| |
Collapse
|
43
|
Activation of PKCβII and PKCθ is essential for LDL-induced cell proliferation of human aortic smooth muscle cells via Gi-mediated Erk1/2 activation and Egr-1 upregulation. Biochem Biophys Res Commun 2008; 368:126-31. [DOI: 10.1016/j.bbrc.2008.01.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 01/13/2008] [Indexed: 11/23/2022]
|
44
|
Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28:812-9. [PMID: 18276911 DOI: 10.1161/atvbaha.107.159327] [Citation(s) in RCA: 613] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The initiation of atherosclerosis results from complex interactions of circulating factors and various cell types in the vessel wall, including endothelial cells, lymphocytes, monocytes, and smooth muscle cells (SMCs). Recent reviews highlight the role of activated endothelium and inflammatory cell recruitment in the initiation of and progression of early atherosclerosis. Yet, human autopsy studies, in vitro mechanistic studies, and in vivo correlative data suggest an important role for SMCs in the initiation of atherosclerosis. SMCs are the major producers of extracellular matrix within the vessel wall and in response to atherogenic stimuli can modify the type of matrix proteins produced. In turn, the type of matrix present can affect the lipid content of the developing plaque and the proliferative index of the cells that are adherent to it. SMCs are also capable of functions typically attributed to other cell types. Like macrophages, SMCs can express a variety of receptors for lipid uptake and can form foam-like cells, thereby participating in the early accumulation of plaque lipid. Like endothelial cells, SMCs can also express a variety of adhesion molecules such as vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 to which monocytes and lymphocytes can adhere and migrate into the vessel wall. In addition, through these adhesion molecules, SMCs can also stabilize these cells against apoptosis, thus contributing to the early cellularity of the lesion. Like many cells within the developing plaque, SMCs also produce many cytokines such as PDGF, transforming growth factor-beta, IFNgamma, and MCP-1, all of which contribute to the initiation and propagation of the inflammatory response to lipid. Recent advances in SMC-specific gene modulation have enhanced our ability to determine the role of SMCs in early atherogenesis.
Collapse
Affiliation(s)
- Amanda C Doran
- Cardiovascular Division/Department of Medicine, the Cardiovascular Research Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
45
|
Ramos KS, Partridge CR, Teneng I. Genetic and molecular mechanisms of chemical atherogenesis. Mutat Res 2007; 621:18-30. [PMID: 17433375 DOI: 10.1016/j.mrfmmm.2006.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 01/19/2023]
Abstract
Injury to the cellular components of the vascular wall and blood by endogenous and exogenous chemicals has been associated with atherosclerosis in humans and experimental systems. The genetic and molecular mechanisms responsible for initiation and promotion of atherosclerotic changes include modulation of extracellular matrix-integrin axis, genes involved in the regulation of growth and differentiation and possibly, genomic stability. This review summarizes seminal studies over the past 20 years that shed light on critical gene-gene and gene-environment interactions mediating the atherogenic response to chemical injury.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, United States.
| | | | | |
Collapse
|
46
|
Li F, Luo Z, Huang W, Lu Q, Wilcox CS, Jose PA, Chen S. Response gene to complement 32, a novel regulator for transforming growth factor-beta-induced smooth muscle differentiation of neural crest cells. J Biol Chem 2007; 282:10133-7. [PMID: 17327222 DOI: 10.1074/jbc.c600225200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously developed a robust in vitro model system for vascular smooth muscle cell (VSMC) differentiation from neural crest cell line Monc-1 upon transforming growth factor-beta (TGF-beta) induction. Further studies demonstrated that both Smad and RhoA signaling are critical for TGF-beta-induced VSMC development. To identify downstream targets, we performed Affymetrix cDNA array analysis of Monc-1 cells and identified a gene named response gene to complement 32 (RGC-32) to be important for the VSMC differentiation. RGC-32 expression was increased 5-fold after 2 h and 50-fold after 24 h of TGF-beta induction. Knockdown of RGC-32 expression in Monc-1 cells by small interfering RNA significantly inhibited the expression of multiple smooth muscle marker genes, including SM alpha-actin (alpha-SMA), SM22alpha, and calponin. Of importance, the inhibition of RGC-32 expression correlated with the reduction of alpha-SMA while not inhibiting smooth muscle-unrelated c-fos gene expression, suggesting that RGC-32 is an important protein factor for VSMC differentiation from neural crest cells. Moreover, RGC-32 overexpression significantly enhanced TGF-beta-induced alpha-SMA, SM22alpha, and SM myosin heavy chain promoter activities in both Monc-1 and C3H10T1/2 cells. The induction of VSMC gene promoters by RGC-32 appears to be CArG-dependent. These data suggest that RGC-32 controls VSMC differentiation by regulating marker gene transcription in a CArG-dependent manner. Further studies revealed that both Smad and RhoA signaling are important for RGC-32 activation.
Collapse
Affiliation(s)
- Fengmin Li
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Schultz-Hector S, Trott KR. Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys 2007; 67:10-8. [PMID: 17189062 DOI: 10.1016/j.ijrobp.2006.08.071] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 08/24/2006] [Accepted: 08/30/2006] [Indexed: 12/11/2022]
Abstract
The Life Span Study of Japanese atomic bomb survivors demonstrates that radiation exposure significantly increased the risk of developing ischemic heart disease, in particular myocardial infarction. Similarly, epidemiologic investigations in very large populations of patients who had received postoperative radiotherapy for breast cancer or for peptic ulcer demonstrate that radiation exposure of the heart with an average equivalent single dose of approximately 2 Gy significantly increased the risk of developing ischemic heart disease more than 10 years after irradiation. These epidemiologic findings are compatible with radiobiologic data on the pathogenesis of radiation-induced heart disease in experimental animals. The critical target structure appears to be the endothelial lining of blood vessels, in particular arteries, leading to early functional alterations such as pro-inflammatory responses and other changes, which are slowly progressive. Research should concentrate on the interaction of these radiation-induced endothelial changes with the early stages of age-related atherosclerosis to develop criteria for optimizing treatment plans in radiotherapy and also potential interventional strategies.
Collapse
|
48
|
Martin-McNulty B, Zhang L, da Cunha V, Vincelette J, Rutledge JC, Vergona R, Sullivan ME, Wang YX. Urokinase-type plasminogen activator deficiency (uPA-KO) prevented carotid artery ligation-induced vascular remodeling in mice. Transl Res 2007; 149:70-5. [PMID: 17240317 DOI: 10.1016/j.trsl.2006.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/03/2006] [Accepted: 09/05/2006] [Indexed: 11/16/2022]
Abstract
It has been demonstrated that urokinase-type plasminogen activator (uPA) plays an important role in vascular remodeling. This study was designed to determine whether uPA deficiency (KO) affects carotid artery ligation-induced vessel remodeling and the interaction with angiotensin II (Ang II). Ligation of the left common carotid artery in 6-month-old wild-type (C57 black/6J) mice for 4 weeks induced a concentric remodeling with vessel wall thickening, characterized by cell proliferation in neointima, media, and adventitia, and with lumen narrowing without a significant enlargement of overall vessel dimension. Intima lesions were characterized by alpha-actin positive smooth muscle cell (SMC) proliferation in a matrix background. No detectable presence of MAC-3 positive macrophages existed in the vascular wall. The ligation-induced vascular neointimal formation and adventitial proliferation, but not lumen narrowing and media expansion, were completely prevented in age-matched uPA-KO mice. Chronic infusion of Ang II (1.44 mg/kg per day) via a subcutaneously implanted osmotic minipump did not significantly affect the gross morphology of the nonligated carotid artery from both wild-type and uPA-KO mice, but it enhanced ligation-induced vascular remodeling. However, in the presence of Ang II, uPA deficiency had no effects on ligation-induced mophermetric change, but it partially and significantly reduced cell proliferation. These data indicate that uPA may play a critical role in ligation-induced vessel remodeling. Ang II may activate other mechanisms independent of uPA to exacerbate ligation-induced vascular remodeling.
Collapse
|
49
|
Abstract
Over the last 4 decades, heart transplantation (HTx) has evolved as a mainstream therapy for heart failure. Approximately half of patients needing HTx have organ failure consequent to atherosclerosis. Despite advances in immunosuppressive drugs, long-term success of HTx is limited by the development of a particular type of coronary atherosclerosis, referred to as cardiac allograft vasculopathy (CAV). Although the exact pathogenesis of CAV remains to be established, there is strong evidence that CAV involves immunologic mechanisms operating in a milieu of nonimmunologic risk factors. The immunologic events constitute the principal initiating stimuli, resulting in endothelial injury and dysfunction, altered endothelial permeability, with consequent myointimal hyperplasia and extracellular matrix synthesis. Lipid accumulation in allograft arteries is prominent, with lipoprotein entrapment in the subendothelial tissue, through interactions with proteoglycans. The apparent endothelial "intactness" in human coronary arteries of the transplanted heart suggest that permeability and function of the endothelial barrier altered. Various insults to the vascular bed result in vascular smooth muscle cell (SMC) activation. Activated SMCs migrate from the media into the intima, proliferate, and elaborate cytokines and extracellular matrix proteins, resulting in luminal narrowing and impaired vascular function. Arteriosclerosis is a broad term that is used to encompass all diseases that lead to arterial hardening, including native atherosclerosis, postangioplasty restenosis, vein bypass graft occlusion, and CAV. These diseases exhibit many similarities; however, they are distinct from one another in numerous ways as well. The present review summarizes the current understanding of the risk factors and the pathophysiological similarities and differences between CAV and atherosclerosis.
Collapse
Affiliation(s)
- Maziar Rahmani
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Research Institute, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
50
|
Kim J, Kim JY, Song KS, Lee YH, Seo JS, Jelinek J, Goldschmidt-Clermont PJ, Issa JPJ. Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys Acta Mol Basis Dis 2006; 1772:72-80. [PMID: 17110088 DOI: 10.1016/j.bbadis.2006.10.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Epigenetic changes marked by DNA methylation have been proposed to play a role in age-related disease. We investigated DNA methylation changes in cardiovascular atherosclerotic tissues and in-vitro vascular senescence in the promoter of estrogen receptor beta gene, which has essential roles in vascular function. Coronary atherosclerotic tissues showed higher methylation levels (28.7%) than normal appearing arterial (6.7%-10.1%) and venous tissues (18.2%). In comparing estrogen receptor beta methylation between plaque and non-plaque regions in ascending aorta, common carotid artery, and femoral artery of two patients, the plaque lesions showed consistently higher methylation levels than non-plaque regions. Passage-dependent increased estrogen receptor beta methylation was observed in three of six human aortic endothelial or smooth muscle cell lines cultured in-vitro to vascular senescence. Estrogen receptor beta expression in these vascular cell lines was significantly activated by DNA-methyltransferase inhibition. This activity was augmented by histone deacetylase inhibition. These findings provide evidence of epigenetic dysregulation of estrogen receptor beta in atherosclerosis and vascular aging. We suggest that focal epigenetic changes in estrogen receptor beta contribute to the development of atherosclerosis and vascular aging.
Collapse
Affiliation(s)
- Jei Kim
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|